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Abstract: 

Research has provided robust evidence for the use of GPS as the new, scalable gold-standard in land area 
measurement in household surveys. Nonetheless, facing budget constraints, survey agencies often measure 
with GPS only plots within a given radius of dwelling locations. It is, subsequently, common for significant 
shares of plots not to be measured, and research has highlighted the selection biases resulting from using 
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a Multiple Imputation (MI) model for predicting missing GPS-based plot areas in household surveys. The 
analysis randomly creates missingness among plots beyond two operationally-relevant distance measures 
from the dwelling locations, conducts MI for each artificially-created dataset, and compares the 
distributions of the imputed plot-level outcomes, namely area and agricultural productivity, with the 
distributions of their true, observed counterparts. MI procedure results in imputed yields that are 
statistically undistinguishable from the true distributions with up to 82% and 56% missingness, respectively 
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the promise of using MI for reliably predicting missing GPS-based plot areas.  
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Mission Impossible? Exploring the Promise of MI for Predicting 

Missing GPS-Based Land Area Measures in Household Surveys 

Abstract 

Research has provided robust evidence for the use of GPS as the new, scalable gold-standard in land area 

measurement in household surveys. Nonetheless, facing budget constraints, survey agencies often 

measure with GPS only plots within a given radius of dwelling locations. It is, subsequently, common for 

significant shares of plots not to be measured, and research has highlighted the selection biases resulting 

from using incomplete data. This study relies on nationally-representative, multi-topic household survey 

data from Malawi and Ethiopia with near-negligible missingness in GPS-based plot areas to validate the 

accuracy of a Multiple Imputation (MI) model for predicting missing GPS-based plot areas in household 

surveys. The analysis randomly creates missingness among plots beyond two operationally-relevant 

distance measures from the dwelling locations, conducts MI for each artificially-created dataset, and 

compares the distributions of the imputed plot-level outcomes, namely area and agricultural productivity, 

with the distributions of their true, observed counterparts. MI procedure results in imputed yields that 

are statistically undistinguishable from the true distributions with up to 82% and 56% missingness, 

respectively for Malawi and Ethiopia, for plots located more than 1 kilometer away from dwellings. The 

study highlights the promise of using MI for reliably predicting missing GPS-based plot areas.  

JEL Codes: C53, C83, Q12, Q15. 

Keywords: Survey Methodology, Global Positioning System (GPS), Land Area Measurement, Missing 

Data, Multiple Imputation, Malawi, Sub-Saharan Africa. 
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1 Introduction 
 

Land area is a fundamental input into statistical and economic analyses linked to agriculture, inequality 

and land registration, titling and redistribution programs. The Sustainable Development Goal (SDG) 

Targets 2.3 and 2.4 require doubling of agricultural productivity and incomes of small-scale food 

producers, and ensuring sustainable food production systems and implementing resilient agricultural 

practices that increase productivity and production, respectively. Both targets are associated with 

indicators1 that rely on land area information sourced from household or farm surveys, and research has 

demonstrated the importance of accurate land area measurement for accurate measurement and 

analysis of land productivity (Carletto, et al., 2013) (Carletto, et al., 2015). 

 

While data collection on smallholder production systems has traditionally relied on self-reported land 

areas, this is problematic, particularly in the African context, which is characterized by the high incidence 

of smallholder farming and the fragmentation of farms into multiple parcels with irregular shapes and 

without formal titles. Several reasons may contribute to the inaccuracy in self-reported land areas. First, 

farmers may knowingly overstate or understate their landholdings for strategic reasons that may relate 

to access to development programs and/or taxation. Second, there is a natural tendency to round off 

numbers and provide approximations, which leads to heaping of the data around discrete values. Third, 

geography, particularly slope, can influence the way farmers assess distance and area. Fourth, the use of 

non-standard measurement units and within-country variation in the type and standard unit equivalence 

of these units complicate the compilation of conversion factors for land area measurement. Fifth, the 

magnitude and direction of the measurement error in self-reported land areas have been shown 

repeatedly to be systematically associated with observable plot, household and respondent attributes.  

 

These reasons, combined with (i) the validated accuracy of GPS-based land area measurement in 

household survey experiments in Ethiopia, Nigeria, and Tanzania (Zanzibar) (Carletto, et al., 2016), and (ii) 

the ever-increasing affordability and accuracy of handheld GPS devices makes GPS-based land area 

measurement a desirable alternative for household and farm surveys in countries dominated by 

smallholder agricultural production. However, with the emergence of GPS-based area measurement as 

the new, scalable gold-standard for household and farm surveys, a key drawback is related to the 

operationalization of the technology. To reduce transportation costs, keep household interview durations 

within reasonable limits, and avoid the difficulty of asking respondents to accompany enumerators to 

agricultural plots that are situated far from dwelling locations, survey implementing agencies often 

require enumerators to only obtain GPS-based area measures for plots within a given radius of dwelling 

locations. Thus, non-ignorable shares of area measures are missing in public use datasets. For instance, 

among the selected national, multi-topic panel household surveys that are supported by the World Bank 

Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) program, the rate of 

missingness in GPS-based plot areas range from 13 (Nigeria) to 44 percent (Uganda), as shown in Table 1. 

                                                             
1 The final list of SDG indicators can be found in (Inter-Agency and Expert Group on Sustainable Development Goal 
Indicators, 2016). 
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The missing data, in turn, may limit the operational relevance and the analytical value of GPS-based area 

measurement, given the potential biases introduced by missingness. 

 

Recognizing the need to address the problem of missing data for increasing the usability of household 

survey data, (Kilic, et al., 2017) use LSMS-ISA data from Tanzania and Uganda to show that the missing 

GPS-based plot areas constitute a non-random subset of the unit-record data, but that the missing data 

can be simulated by Multiple Imputation (MI). In their analysis of plot-level agricultural productivity, the 

authors document the non-trivial effects of using the completed datasets following MI.  

 

Given potential of MI for imputing the missing GPS-based land areas and the importance of rigorously 

addressing missingness for productivity estimation, this paper takes on the challenging task of 

determining thresholds for acceptable rates of item non-response in plot areas in large-scale surveys that 

adopt GPS technology for land area measurement. To do so, we work with national household survey data 

from Malawi and Ethiopia that exhibit near-negligible rates of missingness in GPS-based plot areas, and 

use these datasets as validation samples to gauge the accuracy of an MI application to predict missing 

GPS-based land areas.  

 

The use of actual data collected as part of large-scale household surveys that had adopted GPS-based area 

measurement is key to the operational relevance of our research. We set up our empirical framework as 

to identify the limits to simulation accuracy and provide recommendations for capturing the minimum set 

of required data for robust statistical analyses relying on plot areas. Specifically, in both datasets, we 

 

i. create artificial missingness in GPS-based plot areas at random at a rate of 1 to 100 percent, at an 

increment of 1 percent, among plots that are above two distance thresholds, namely a distance 

of greater than 500 meters or 1 kilometer from the dwelling unit, 

ii. construct an imputation model for missing GPS-based plot areas following (Kilic, et al., 2017),  

iii. conduct MI based on each unique data set under a specific simulated degree of missing 

observations beyond the two different distance thresholds,  

iv. compare the distributions of two outcomes, namely plot area and plot-level agricultural 

productivity, based on the imputed GPS-based plot areas with the distributions of the same 

variables based on the observed area measures for the same plots, and lastly 

v. identify the missingness threshold beyond which MI yields at least 1 imputed distribution out of 

a total of 50 imputations that is statistically different from the observed distribution at the 5 

percent level. 

 

The headline finding is that in Malawi, MI can produce imputed yields that are statistically 

undistinguishable from the true distributions with up to 82 percent missingness in plot areas that are 

further than 1 kilometer with respect to the dwelling location. The comparable figure in Ethiopia is 56 

percent. These rates correspond to overall rates of missingness of 23 percent in Malawi and 13 percent in 

Ethiopia. If one sets the distance threshold at 500 meters, the imputed yields are statistically 

undistinguishable from the true distributions with distant plot missingness up to 45 percent in Malawi and 
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36 percent in Ethiopia, translating, respectively, into overall tolerable missingness rates of 21 percent and 

15 percent.  

 

The paper is organized as follows. Section 2 describes the data. Section 3 presents the empirical approach. 

Section 4 discussed the results. Section 5 concludes.  

 

 

2 Data 
 

The Malawi Third Integrated Household Survey 2010/2011 (IHS3), and the Ethiopia Socioeconomic Survey 

Wave II 2013/2014 (ESS2), which were conducted respectively by the Malawi National Statistical Office 

(NSO) and the Central Statistics Agency (CSA) of Ethiopia inform our analysis. Both surveys were 

implemented under the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-

ISA) program.   

 

The IHS3 data were collected within a two-stage cluster sampling design, and are representative at the 

national, urban/rural, regional, and district levels, covering 12,271 households in 768 enumeration areas 

(EAs). ESS2 is part of a long-term project to collect panel data. It covered all regional states including the 

capital, Addis Ababa. Much of the sample is comprised of rural areas as it was carried over from ESS1. The 

survey is representative at the national, urban/rural and, 6 strata (4 regions plus Addis Ababa and the 

other regions) covering 5,262 households in 433 EAs.  

 

In terms of questionnaire instruments, the IHS3 and the ESS2 both had Household, Agriculture, and 

Community Questionnaires. In each setting, the sample households were administered a multi-topic 

Household Questionnaire that collected individual-disaggregated information on demographics, 

education, health, wage employment, nonfarm enterprises, anthropometrics, and control of income from 

non-farm income sources, as well as data on housing, food consumption, food and non-food expenditures, 

food security, and durable and agricultural asset ownership, among other topics. In addition, agricultural 

households received the Agriculture Questionnaire, which solicited information on land areas, 

manager/holder identification, physical characteristics, labor and non-labor input use, and crop 

cultivation and production at the plot-level.  

 

Further, it is important to note that the IHS3 and the ESS2 make a clear distinction between a parcel and 

a plot. A parcel is conceptualized as a continuous piece of land under a common tenure system, while a 

plot is defined as a continuous piece of land on which a unique crop or a mixture of crops is grown, under 

a uniform, consistent crop management system, not split by a path of more than one meter in width, and 

with boundaries defined in accordance with the crops grown and the operator. Therefore, a parcel can be 

made up of one or more plots. This distinction is key since for the purposes of within-farm analysis of 

agricultural productivity, the ideal is to capture within-parcel, plot area measurements linked with plot-
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level measurement of agricultural production.2 Further, agricultural production data were collected for 

the two main agricultural seasons in each survey. Handheld global positioning system (GPS)-based 

locations and land areas of the plots were recorded, permitting us to link household- and plot-level data 

to outside geographic information system (GIS) databases.  

 

The IHS3 required GPS-based area measurement of all plots that are owned and/or cultivated by the 

sampled households, within 2 hours of travel with respect to the household location, regardless of mode 

of transportation. For the distant plots, the field teams were advised to cluster them in accordance with 

their location, and to visit them in a coordinated fashion by using the team vehicle. For the sub-sample of 

IHS3 households that were visited twice, the first visit data were also reviewed, and the missing GPS-based 

plot areas were fed forward to the second visit interviews for potential capture by the field teams. While 

the first visit constraints leading to missing data still applied to most of these households during the 

second visit, the continuing emphasis on increasing the volume of GPS-based plot area measures did result 

in additional data capture. On the other hand, the ESS2 instructed the enumerators to take GPS-based 

area measures of all plots that are owned and/or cultivated by the sampled households, irrespective of 

distance. For plots less than 40 square meters, the enumerators measured areas by traversing, instead of 

GPS units. The overall rates of missingness in GPS-based plot areas were considerably low in both settings: 

3.8 percent in Malawi and 6.2 percent in Ethiopia. These are in fact the lowest levels observed among the 

surveys supported by the LSMS-ISA program. 

 

Our analysis assumes both data sets to be complete and representative of the true distributions of 

interest, and is subsequently conducted using plots for which GPS based-land area measurements are 

available.3 Table 2 shows the distribution of plots according to their distance from the dwelling for both 

datasets. Table 3 presents the summary statistics based on the IHS3 and the ESS2, including the plot-level 

means for the entire sample; for the sample within 1 kilometer of the dwelling; and for the sample that 

lie outside of the 1 kilometer radius of the dwelling. Table 4 accomplishes the same objective but for the 

                                                             
2 Parcel-level GPS-based area estimation could serve other objectives, such as surveying of land for land registration 
or titling programs or for land ownership measurement. An open empirical question is whether the extent to which 
parcel-area measurement could be reliably backed from aggregation of within-parcel, plot area measures – an 
exercise that will be mediated by the precision with which parcel and plot boundaries are established in the field 
prior to GPS-based area measurement. 
3We cannot work with approximately 50 percent of the ESS2 plots in the public use data since the CSA ancillary 
dataset with the conversion factors for the non-standard land area measurement units (to express farmer-reported 
plot areas in hectares) does not include conversion factors for all non-standard measurement units. This limitation 
further underscores the importance using GPS-based land area measurements. Going forward, the ESS2 can be used 
to update the referenced ancillary dataset of conversion factors. Prior to the validation exercise, we elected not to 
update the ancillary dataset using the ESS2 since the imputation model performance would have improved 
dramatically in a mechanical manner. Further, the overwhelming majority of the predictors that we use in the 
validation exercise based on the ESS2 data do present statistically significant differences across the plots depending 
on whether land area conversion factor is available. These predictors are included in the imputation model, and to 
the extent that they are correlated with observed and unobserved attributes that predict the likelihood of a farmer-
reported plot area with a missing conversion factors, the ESS2 sample that we end up focusing on should be deemed 
satisfactory for validation purposes.   
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samples split by the alternative, 500-meter, distance threshold. We provide the differences between the 

sample means, and note when a given mean difference is statistically significant.  

 

Several noteworthy findings emerge from Tables 2, 3 and 4. First, the distribution of plots per distance 

threshold is quite similar across the two countries. Between 54 and 60 percent of the plots are within 500 

meters and between 72 to 77 percent are within 1.0 km.  Second, the plots within the distance threshold 

tend to be of significantly smaller areas than the plots beyond that threshold. Third, several important 

plot and household level characteristics which are expected to be associated with productivity related 

outcomes, display statistically significant differences by distance threshold status. As also noted by (Kilic, 

et al., 2017), these observations highlight the importance of systematically addressing missingness in GPS-

based plot areas, if such GPS data are to be used in a robust fashion.  

 

 

3 Empirical Approach 
 

3.1 Artificial Missingness Creation 

 

The first step in our analysis is to generate missing GPS-based plot areas in a way that would be similar to 

real-life field experience. Missing GPS-based plot areas measurements are often tied to numerous field 

logistics and cost constraints. However, the variable that underlies the lion share of missing GPS-based 

plot areas in household survey operations is the plot distance from the dwelling or the location with 

respect to the EA boundaries. As noted above, the IHS3 instructed the enumerators to measure all plots 

within 2 hours travel time from the dwelling locations, while the ESS2 required the measurement of all 

plots, with the exception of those less than 40 square meters, irrespective of distance/travel time. For a 

more time and/or budget constrained operation, a lower threshold for GPS based land areas 

measurements could be enforced.  

 

Our study uses 500 meters and 1 kilometer as the distance thresholds beyond which 1 to 100 percent of 

GPS-based plot area observations are artificially and randomly tagged to be missing in an increment of 1 

percentage point. The distance variable underlying the thresholds is the Euclidean (crow-fly) distance 

between the geo-referenced plot and dwelling location.4 To get sense of the time requirements associated 

with visiting plot locations that are below versus above the chosen distance thresholds, consider, for 

instance, the walking time associated with the inclination-adjusted minimum cost distance between 

dwelling and plot locations in Malawi. For plots that are within the 500 meter and within the 1 kilometer 

threshold, the average walking time is 4 minutes and 6 minutes, respectively. Conversely, for plots that 

                                                             
4 Other geospatial measures of the plot distance to the dwelling were considered, including the estimated minimum 
cost distance that considers topography; the walking time associated with the minimum cost distance; and the 
inclination-adjusted measures of these two variables. The weighted pairwise correlation between any of the 
alternatives and our Euclidean distance measure is above 99 percent, and our results are robust to the use of these 
alternative distance measures. 
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are outside the 500 meter and outside the 1 kilometer threshold, the average walking time is 33 minutes 

and 47 minutes, respectively. 

 

3.2 Multiple Imputation 

 

The second step of our approach is to use Multiple Imputation (MI) to fill the gaps that we artificially 

create in the GPS-based plot area measures. MI, first proposed by (Rubin, 1987), is a Monte Carlo 

technique that replaces missing values for a given variable with m > 1 simulated alternatives. MI typically 

consists of three steps: (i) m imputations (i.e. m complete datasets) are generated based on an imputation 

model that encompasses a vector of observable covariates that predict the missingness in a given variable, 

(ii) statistical analysis is performed separately with each of the m complete datasets, and (iii) the results 

obtained from m complete data analyses are combined into a single set of multiply-imputed parameter 

estimates and standard errors.  

 

The conditions under which valid inferences could be obtained from missing data is laid out in Rubin's 

(1987) seminal work on MI. The procedure assumes that data are missing at random (MAR) and that 

missing data could be predicted based on observable attributes underlying missingness. While the MAR 

assumption is not empirically testable, the limits of its tenability could be assessed in our study.  

 

In building the imputation model, the literature (Rubin, 1996) or (van Buuren, et al., 1999) advises to 

include as explanatory variables: (i) the variables appearing in the analysis model that features the 

multiply-imputed variable(s), (ii) the variables that are known to have influenced the occurrence of 

missing data, and other variables for which the distributions differ between the response and non-

response groups, (iii) the variables that explain a considerable amount of variance of the multiply-imputed 

variable(s) and that help to reduce the uncertainty of the imputations, and (iv) the variables with 

information on the features of the complex survey design, including stratum and cluster identifiers, and 

sampling weights.  

 

In their MI application to missingness in GPS-based land areas in Tanzania and Uganda, (Kilic, et al., 2017) 

attempt to provide support for the MAR assumption by (i) detailing the field work processes underlying 

the missing data, (ii) providing insights from their field experience and interactions with the survey teams, 

(iii) systematically documenting the established guidelines on imputation model specification, and (iv) 

including in the imputation model explanatory variables that influence the occurrence of missing data; 

that have different distributions between the response and non-response groups; that explain a 

considerable amount of variance of the multiply-imputed variable; and that include information on the 

survey design.  Our approach to specifying the imputation model mirrors that of (Kilic, et al., 2017). A key 

covariate that is included in the imputation model and that is both a powerful predictor and an alternative 

measure of the GPS-based plot area is the farmer-reported plot area. The availability of this variable 

distinguishes our study as well as (Kilic, et al., 2017) from other studies that have employed MI to tackle 

item non-response. 
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For illustration, Table 5 and Table 6 show the details of the Ordinary Least Squares (OLS) imputation model 

for Malawi and Ethiopia, respectively. In addition to farmer-reported plot area, we include plot manager, 

household and other plots attributes as predictors. The model specification differs slightly between the 

IHS3 and the ESS2 depending of the availability of the variables or the specificity of the data set. For 

example, the raw data on farmer-reported plot areas could have been expressed in non-standard 

measurement units in the ESS2, as such we add dummy variables for these units in the imputation model 

for Ethiopia.  

 

We estimate the imputation model using each dataset that is created by a given distance threshold-

artificial missingness combination. While the results confirm that the predictions are essentially driven by 

the farmer-reported plot area, the more comprehensive model improves the accuracy and precision of 

our predictions. As pointed out by (Kilic, et al., 2017), it is worth emphasizing that the imputation model 

neither intends to provide a parsimonious description of the data nor attempts to portray structural 

relationships among variables. Instead, it attempts to be as comprehensive as possible to minimize any 

bias that could stem from omitting variables that might be relevant to the pattern of missingness or the 

subsequent analysis. “The possible lost precision when including unimportant predictors is usually viewed 

as a relatively small price to pay for the general validity of analyses of the resultant multiply-imputed 

database” (Rubin, 1996).  

 

In multiply imputing missing values that have been artificially created in each scenario, we fit plot-level 

OLS regression models with the GPS-based plot area as the dependent variable and obtain linear 

predictions for all plots in the dataset. Under the partially parametric method of predictive mean matching 

(PMM), we use the linear prediction as a distance measure to form a set of 5 nearest neighbors chosen 

from the plot sample with GPS-based area measures, and randomly pick one of the neighbors whose 

observed GPS-based plot area value replaces the missing value for the incomplete case at hand.5  

 

The imputation is carried out 50 times6 to reduce the potential sampling error due to imputation, and 50 

complete datasets are generated. The posterior estimates of the model parameters are obtained using 

sampling with replacement, which is standard practice when the asymptotic normality of parameter 

estimates is suspect.7 By drawing from the observed data, PMM preserves the distribution of observed 

values in the missing part of the data, which makes it more robust than the fully parametric regression 

approach. In total, we generate 50 complete datasets of GPS-based land plot areas for each of rate 

missingness (100) for each distance threshold for each country datasets. These data sets are used to assess 

the tolerable rates of missingness, as explained below. 

                                                             
5 The results are robust to using linear regression, as opposed to PMM. The number of nearest neighbors in the PMM 
framework is inversely related to the correlation among imputations. While high correlation may increase the 
variability in MI point estimates, low correlation may increase the bias in MI point estimates. The literature does not 
provide definitive guidance on the decision regarding the number of nearest neighbors, but the results are robust 
to the specification of ten nearest neighbors, with or without bootstrapping.  
6 The results are robust to performing 100 imputations instead. 
7 The results are robust to sampling estimates from the posterior distribution of model parameters, as opposed to 
bootstrapping.  
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3.3 Assessing the tolerable rates of missingness in GPS-based plot areas 

 

In order to assess the performance of the imputation model, we compare, the distributions of the true, 

observed versions of key variables that rely on GPS-based plot areas with the distributions of their 

completed (observed plus imputed) counterparts. The key outcomes that our assessment focuses on is 

GPS-based plot area and plot-level agricultural productivity, which is measured as the quantity or value of 

crop harvested based on farmer-reporting (the numerator) over cultivated land (the denominator). As 

discussed earlier, plot-level agricultural productivity is of policy relevance.  

 

Given the nature of the problems to which MI is applied, it appears difficult for analysts to verify the 

appropriateness of their imputation procedures. Imputation values are guesses of unobserved, unknown 

values (Abayomi, et al., 2008). In this study, however, missingness is artificially created such that the true 

values are known. This allows direct comparison of the distributions of the observed vs. the completed 

data. Numerically, the comparison of the empirical distributions is done using the Kolmogorov-Smirnov 

(KS) test for each outcome variable for the different level of missingness, raising the flag when there’s 

statistically significant differences at the 5 percent level8 for at least 1 of the 50 imputations generated. 

As noted by (Abayomi, et al., 2008), there is no reason to suppose that setting a 5 percent level of 

significance will be appropriate when producing a MI diagnostic through density comparisons. However, 

it is useful to start with this rule and further examine the results.  

 

 

4 Results 
 

The results of our simulations are illustrated in Figure 1. Each panel shows the results for one threshold 

of one dataset. The first panel, for example, shows the result for the IHS3 when we impose a threshold of 

1 kilometer. In each panel, the y-axis shows the number of imputations out of 50 for which, the KS test 

indicates that the distribution of the relevant outcome variable derived from the imputed GPS-based land 

area, was statistically indistinguishable from its observed counterpart.  We also highlight the tolerable 

rates of missingness with a vertical line. The x-axis, on the other hand, shows the percentage of simulated 

missing GPS-based plot areas measurements beyond a given distance threshold. Three general 

observations emerge from Figure 1. 

 

First, for low rates of missingness, all 50 imputations are statistically indistinguishable from the true 

distribution. As the rate of missingness increases, this count starts to decrease until only a small number 

(between 0 and 10) of the imputations appear to have distributions that are not statistically different from 

the observed true distribution. Second, within each data set, the tolerable rate of missingness is lower for 

                                                             
8 The p-values for the test are approximate. The imputations are generated from the observed data. Hence, the 
empirical distributions are not independent of the observed data. 
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500 meters than it is for 1 km. Third, plot-level agricultural productivity is more sensitive to missingness 

than plot area (i.e. the tolerable rate of missingness is reached earlier in the case of the latter). 

 

The first and second observations confirm the expectations anchored in the descriptive analyses discussed 

in Section 2. Plots that are further from the dwelling are inherently different from the ones that are closer. 

Thus, as missingness increases, the pool of plots with similar characteristics (and thus comparable areas) 

to choose from gets smaller, and it is understandable that the distribution differs substantially. The third 

observation is also foreseen: land area being the denominator of the formula for yield, a small deviation 

of the imputed values from the observed land values brings about a relatively more important deviation 

in the yield estimates obtained from them. Consequently, the yields calculated from the imputed land 

areas differ substantially from the true yields at lower rates of missingness.   

 

We now compare the results obtained in the different panels depicted in Figure 1. For convenience, the 

tolerable rates of missing GPS-based plot areas are summarized in Table 7. Along with the tolerable rates 

in terms of the percentages of plot areas observations that could go missing beyond a given distance 

threshold, we report the corresponding overall rates of missingness in parentheses. In the discussion that 

follows, we focus on the discussion of the results pertaining to plot-level agricultural productivity, given 

the policy relevance of the outcome and its lower tolerance to missingness vis-à-vis plot area. 

The results obtained with the 1 kilometer threshold are very encouraging. In IHS3, the MI procedure can 

produce imputed yields that are statistically undistinguishable from the true distributions at rates of up 

to 82 percent. For Ethiopia, the comparable figure is 56 percent, indicating that the plot-level agricultural 

productivity estimation is more sensitive, compared to Malawi, to missingness among the GPS-based plot 

areas that are beyond the 1 kilometer threshold. These rates translate into overall tolerable missingness 

rates of 23 percent and 13 percent in Malawi and Ethiopia, respectively.   

 

As noted above, we get lower tolerable rates of missingness among distant GPS-based plot areas when 

we lower the threshold from 1 kilometer to 500 meters. In this case, the MI procedure can produce 

imputed yields that are statistically undistinguishable from the true distributions with up to 45 percent 

missingness among distant GPS-based plot areas in Malawi. The comparable figure is 36 percent for 

Ethiopia. These rates translate into overall tolerable missingness rates of 21 percent and 15 percent in 

Malawi and Ethiopia, respectively. 

 

The cross-country differences in tolerable missingness rates are likely in part tied to the differences in 

farm organization.9 On the one hand, the average plot size in hectares in Malawi (0.4) is twice as much as 

the comparable statistic in Ethiopia (0.2), as reported in Table 3. On the other hand, the household-level 

average number of plots per holding in Ethiopia (11.7) is more than six times the comparable figure in 

Malawi (1.9). While the spatial distribution of the plot samples across the distance intervals in Table 2 are 

comparable across the two settings, the average plot distance from the dwelling is 2.19 kilometers in 

Malawi, with a 95 percent confidence interval of 1.91-2.47, versus 1.10 kilometers in Ethiopia with a 95 

                                                             
9 Unless otherwise stated, the statistics in this paragraph are not reported in any of the tables, but have been 
computed based on the same datasets used for analysis. 
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percent confidence interval of 0.76-1.43. The plot distance from the dwelling further exhibits cross-

country distributional differences that are statistically significant at the 1 percent level. 

Finally, Table 8 presents country-specific multiply-imputed mean versus true mean comparisons for plot-

level area and agricultural productivity, following MI at identified tolerable rates of missingness above the 

distance thresholds as reported in Table 7. Irrespective of the distance threshold and country in question, 

the root mean square error for plot area is close to zero and the difference between the MI mean and the 

true mean as a percentage of the true mean does not exceed 1.5 percent. For plot-level agricultural 

productivity, we have more promising findings in Malawi compared to Ethiopia. In Malawi, for instance, 

at 82 percent missingness above the 1 kilometer threshold, the difference between the MI mean and the 

true mean as a percentage of the true mean stands at 7.5 percent. The comparable statistic for Ethiopia 

is 40.4 percent. These findings underscore the relative sensitivity to missingness of plot-level agricultural 

productivity measures vis-à-vis plot area, and the fact that this sensitivity is likely to vary by country and 

production system complexity, as in this study.  

 

 

5 Conclusion 
 

This paper provides further evidence that combining GPS-based plot areas measurements with farmer-

reported plots areas in a sound Multiple Imputation (MI) application can result in reliable simulations of 

missing GPS-based plot areas. While the idea was first pursued by (Kilic, et al., 2017) using data from 

Tanzania and Uganda, our analysis extends the pursuit with data from Malawi and Ethiopia featuring 

negligible levels of missing GPS measurements. By artificially simulating the missingness in otherwise 

assumed-to-be-complete data from these two settings, we compare the MI-based predictions to the true, 

observed values and gauge the levels of missingness in GPS-based land area measurements that can be 

handled with MI without compromising the robustness of key land area related statistics. 

  

Among the outcome variables of interest, plot-level agricultural productivity, as measured by maize yield 

in Malawi and total harvest value per land area in Ethiopia, is more sensitive to missingness. Still, in 

Malawi, MI can produce imputed yields that are statistically undistinguishable from the true distributions 

with up to 82 percent missingness in plot areas that are further than 1 kilometer with respect to the 

dwelling location. The comparable figure in Ethiopia is 56 percent. In other words, if only 18 percent of 

the distant plot areas in Malawi and 44 percent of the distant plots in Ethiopia were randomly selected 

for GPS-based area measurement, one can generate reliable, imputed plot-level measures for area and 

agricultural productivity. If implemented in future surveys, this would clearly result in significant savings 

in terms of time and resources. 

 

However, since the tolerable missingness rates vary by country, distance threshold and outcome variable, 

prior to scaling up, it is imperative to replicate similar analyses using other survey data that exhibit low 

rates of missingness in GPS-based plot areas in order to converge on comprehensive operational 

guidelines for survey practitioners. Nevertheless, the potential of using MI for complementing missing 

GPS measurements is evident and should be pursued whenever possible.  



12 
 

Finally, although dealing with missingness empirically in the post-fieldwork period is usually an option, 

there is no substitute for good fieldwork to prevent unwarranted missing measurements as much as 

possible. Thus, we would advise countries to follow a combination of (i) well-supervised field practices 

aimed at reducing missingness, as exemplified in Section 2, and (ii) sound MI applications to fill the data 

gaps that will still be unavoidable to a degree. 
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Table 1: Rates of Missingness in GPS-Based Plot Areas in Selected Datasets Generated by  
the World Bank Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS ISA)  

& Survey Instructions on the Required Spatial Coverage of GPS-Based Plot Area Measurements 
 

Survey 
 

Rate of 
Missingness 

Required Spatial Coverage of  
GPS-Based Plot Area Measurements 

Niger Enquete Nationale sur les Conditions 
de Vie des Menages et l’Agriculture 2011 

29% 
Measure all plots in the same enumeration 
area as the household. 

Nigeria General Household Survey - Panel 
2012/2013 

13% 
Measure all plots in the same district of the 
household and within 3 hours of travel, 
regardless of mode of transportation. 

Tanzania National Panel Survey 
2010/2011 

22% 
Measure all plots within 1 hour of travel from 
the household, regardless of mode of 
transportation. 

Uganda National Panel Survey 
2011/2012 

44% Measure all plots in the same enumeration 
area as the household. 

 

 

Table 2: Plot Distribution Based on the Euclidean Distance from Household 

 Malawi (IHS3) Ethiopia (ESS2) 

Distance  
Interval 

Frequency Percentage 
Cumulative 
Percentage 

Frequency Percentage 
Cumulative 
Percentage 

[0.0, 0.5 Km) 9,798 53.67 53.67 12,282 61.51 61.51 

[0.5, 1.0 Km) 3,363 18.42 72.09 3,070 15.38 76.89 

[1.0, 2.0 Km) 2,888 15.82 87.91 2,455 12.30 89.19 

[2.0, 3.0 Km) 755 4.14 92.05 862 4.32 93.50 

[3.0, 5.0 Km) 404 2.21 94.26 537 2.69 96.19 

[5.0, 10.0 Km) 306 1.68 95.94 342 1.71 97.91 

[10.0, ~ Km) 742 4.06 100.00 418 2.09 100.00 

Total 18,256 100.00 
 

19,966 100.00 
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Table 3:  Selected Plot-Level Means by Plot Distance to Household (Above versus Below 1 Kilometer) 

  Malawi (IHS3) Ethiopia (ESS2) 

  
Entire 

sample 
Sample 

[d < 1km] 
Sample 

[d > = 1km] 
x[d <1km] - 
x[d >= 1km] 

Entire 
sample 

Sample 
[d < 1km] 

Sample 
[d > = 1km] 

x[d <1km] - 
x[d >= 1km] 

Observations (Plots) 18,256 13,161 5,095  19,966 15,352 4,614  

Plot Areas          

GPS-based plot area (Ha) 0.394 0.383 0.420 -0.037*** 0.197 0.177 0.261 -0.084*** 

Farmer-reported plot area (Ha) 0.414 0.403 0.440 -0.036*** 0.193 0.175 0.251 -0.075*** 

Yields          

Maize yield (Kg/Ha) 1,693 1,694 1,692 2      
Value of output/Ha     29,303 31,575 22,447 9,128 

Plot Manager Characteristics          

Female † 0.261 0.267 0.246 0.021 0.153 0.158 0.137 0.021 

Age (Years) 43.147 43.511 42.273 1.238*** 46.817 47.220 45.472 1.748* 

Education (Years) 5.028 4.934 5.252 -0.318*** 1.874 1.952 1.614 0.338 

Household Characteristics          

Household size 4.934 4.871 5.086 -0.215*** 6.476 6.491 6.427 0.064 

# of HH members - [0,5] 0.981 0.974 0.998 -0.024 0.916 0.920 0.904 0.016 

# of HH members - [6,14] 1.396 1.369 1.461 -0.093** 1.932 1.930 1.940 -0.010 

# of female HH members - [15,39] 0.901 0.879 0.953 -0.074*** 1.111 1.102 1.143 -0.041 

# of male HH members - [15,39] 0.837 0.819 0.881 -0.062** 1.212 1.210 1.217 -0.007 

# of female HH members - [40,59] 0.270 0.270 0.268 0.002 0.386 0.394 0.363 0.031 

# of male HH members - [40,59] 0.269 0.262 0.287 -0.024 0.391 0.387 0.404 -0.017 

# of HH members – 60 & above 0.280 0.297 0.238 0.059*** 0.527 0.548 0.456 0.092* 

Household consumption expenditures per capita 50,431 48,494 55,087 -6,593*** 5,723 5,804 5,453 350 

Number of plots in the holding 2.374 2.359 2.410 -0.051 15.857 16.086 15.091 0.995 

Plot Characteristics          

Owned by household †  0.904 0.917 0.872 0.045*** 0.866 0.888 0.794 0.094*** 

Use of hired labor † 0.223 0.195 0.290 -0.095*** 0.057 0.050 0.082 -0.032*** 

Use of organic fertilizer † 0.116 0.122 0.101 0.021*** 0.183 0.213 0.085 0.128*** 

Use of inorganic fertilizer † 0.618 0.623 0.607 0.016 0.404 0.415 0.369 0.047 

Irrigated † 0.005 0.005 0.006 -0.001 0.016 0.017 0.011 0.006 

Soil quality good † 0.467 0.453 0.503 -0.050*** 0.327 0.329 0.319 0.010 

Soil quality poor † 0.113 0.112 0.116 -0.004 0.173 0.168 0.188 -0.019 

Note: † denotes a dummy variable. *** p<0.01, ** p<0.05, * p<0.1. Sample of plots within a 1 kilometer radius is the comparison group for the tests of mean differences.  
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Table 4:  Selected Plot-Level Means by Plot Distance to Household (Above versus Below 500 meters) 

  Malawi (IHS3) Ethiopia (ESS2) 

  
Entire 

sample 
Sample 

[d < 500m] 
Sample 

[d >= 500 m] 
x[d <500m] - 
 x[d >= 500m] 

Entire 
sample 

Sample 
[d < 500m] 

Sample 
[d >= 500 m] 

x[d <500m] -  
x[d >= 500m] 

Observations (Plots) 18,256 9,798 8,458   19,966 12,282 7,684  

Plot Areas           

GPS-based plot area (Ha) 0.394 0.377 0.412 -0.035*** 0.197 0.163 0.249 -0.086*** 

Farmer-reported plot area (Ha) 0.414 0.397 0.432 -0.034*** 0.193 0.162 0.239 -0.076** 

Yields           

Maize yield (Kg/Ha) 1,693 1,734 1,648 87      
Value of output/Ha      29,303 25,373 34,563 -9,190 

Plot Manager Characteristics           

Female † 0.261 0.270 0.251 0.019 0.153 0.171 0.125 0.046*** 

Age (Years) 43.147 44.017 42.235 1.782*** 46.817 47.508 45.759 1.749** 

Education (Years) 5.028 4.961 5.098 -0.137 1.874 1.965 1.735 0.230 

Household Characteristics           

Household size 4.934 4.843 5.031 -0.188*** 6.476 6.490 6.455 0.035 

# of HH members - [0,5] 0.981 0.964 0.999 -0.035 0.916 0.929 0.897 0.032 

# of HH members - [6,14] 1.396 1.369 1.424 -0.055 1.932 1.938 1.923 0.015 

# of female HH members - [15,39] 0.901 0.868 0.936 -0.068*** 1.111 1.092 1.142 -0.050 

# of male HH members - [15,39] 0.837 0.797 0.879 -0.081*** 1.212 1.207 1.219 -0.011 

# of female HH members - [40,59] 0.270 0.269 0.270 -0.001 0.386 0.388 0.384 0.004 

# of male HH members - [40,59] 0.269 0.264 0.275 -0.011 0.391 0.365 0.431 -0.066** 

# of HH members – 60 & above 0.280 0.311 0.247 0.063*** 0.527 0.571 0.458 0.113*** 

Household consumption expenditures per capita 50,431 48,099 52,876 -4,777*** 5,723 5,787 5,625 161 

Number of plots in the holding 2.374 2.337 2.414 -0.077** 15.857 16.160 15.392 0.768 

Plot Characteristics           

Owned by household †  0.904 0.927 0.879 0.048*** 0.866 0.902 0.811 0.091*** 

Use of hired labor † 0.223 0.188 0.260 -0.071*** 0.057 0.045 0.075 -0.030** 

Use of organic fertilizer † 0.116 0.123 0.108 0.016** 0.183 0.246 0.088 0.157*** 

Use of inorganic fertilizer † 0.618 0.630 0.606 0.024** 0.404 0.419 0.383 0.036 

Irrigated † 0.005 0.003 0.007 -0.004** 0.016 0.016 0.015 0.001 

Soil quality good † 0.467 0.449 0.487 -0.038*** 0.327 0.338 0.309 0.030 

Soil quality poor † 0.113 0.112 0.114 -0.002 0.173 0.162 0.190 -0.028 

Note: † denotes a dummy variable. *** p<0.01, ** p<0.05, * p<0.1. Sample of plots within a 1 kilometer radius is the comparison group for the tests of mean differences.  
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Table 5: OLS Imputation Model Results for Malawi - Dependent Variable: GPS-Based Plot Area (HA) 

  Full Sample Plots [d <= 1km] Plots [d <= 500m] 

Plot Area    

Farmer-reported plot area (Ha) 0.583*** 0.583*** 0.613*** 
 (0.006) (0.007) (0.008) 

Plot Manager Characteristics    

Female †  -0.060*** -0.069*** -0.069*** 
 (0.013) (0.015) (0.016) 

Age (Years) 0.003*** 0.003*** 0.002*** 
 (0.001) (0.001) (0.001) 

Education (Years) -0.003** -0.004** -0.005** 
 (0.001) (0.002) (0.002) 

Plot manager is respondent † 0.032*** 0.042*** 0.039*** 
 (0.011) (0.013) (0.014) 

Has a chronic disease † -0.039** -0.043** -0.054** 
 (0.017) (0.020) (0.022) 

Religion: Christian † 0.054** 0.062** 0.037 
 (0.025) (0.029) (0.032) 

Religion: Muslim † -0.018 -0.005 -0.042 
 (0.030) (0.036) (0.039) 

Religion: Traditional † 0.012 0.045 -0.014 
 (0.047) (0.057) (0.070) 

Plot Characteristics    

Soil quality good † -0.025 -0.021 -0.015 
 (0.016) (0.019) (0.021) 

Use of organic fertilizer † 0.036** 0.048*** 0.033* 
 (0.016) (0.018) (0.020) 

Use of inorganic fertilizer † 0.086*** 0.085*** 0.064*** 
 (0.011) (0.012) (0.013) 

Use of hired labor † 0.113*** 0.104*** 0.109*** 
 (0.013) (0.015) (0.017) 

Irrigated † -0.142** -0.088 -0.035 
 (0.072) (0.088) (0.111) 

Household Characteristics    

# of HH members - [0,5] 0.006 0.005 0.008 
 (0.006) (0.007) (0.007) 

# of HH members - [6,14] 0.022*** 0.022*** 0.022*** 
 (0.004) (0.005) (0.005) 

# of female HH members - [15,39] 0.011 0.001 0.001 
 (0.008) (0.009) (0.010) 

# of female HH members - [40,59] 0.057*** 0.055*** 0.068*** 
 (0.013) (0.015) (0.017) 

# of male HH members - [15,39] 0.023*** 0.022*** 0.016* 
 (0.006) (0.008) (0.008) 

# of male HH members - [40,59] 0.039*** 0.040** 0.044** 
 (0.014) (0.016) (0.017) 

# of HH members – 60 & above 0.030** 0.025 0.041** 
 (0.015) (0.017) (0.018) 
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Table 5 (Cont’d) 

  Full Sample Plots [d <= 1km] Plots [d <= 500m] 

Household Characteristics (Cont’d)    

Wealth index 0.010*** 0.008** 0.006 
 (0.003) (0.003) (0.004) 

Agriculture implement index 0.022*** 0.028*** 0.030*** 
 (0.004) (0.005) (0.006) 

Number of plots in the holding -0.053*** -0.052*** -0.050*** 
 (0.005) (0.006) (0.006) 

Access to non-farm labor income † -0.054*** -0.052*** -0.065*** 
 (0.010) (0.012) (0.013) 

Access to non-Farm non-labor income † -0.018* -0.024** -0.018 
 (0.010) (0.012) (0.013) 

Observations 18,256 13,161 9,798 

Adjusted R2 0.430 0.425 0.466 

Note: † denotes a dummy variable. *** p<0.01, ** p<0.05, * p<0.1. Constant, district fixed effects 
(30 in total) included but not reported. 
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Table 6: OLS Imputation Model Results for Ethiopia - Dependent Variable: GPS-Based Plot Area (HA) 

  Full Sample Plots [d <= 1km] Plots [d <= 500m] 

Plot Area    

Farmer-reported plot area (Ha) 0.871*** 0.827*** 0.865*** 
 (0.004) (0.004) (0.004) 

Unit reported: Square Meters † 0.278*** 0.270*** 0.380*** 
 (0.021) (0.023) (0.027) 

Unit reported: Timad† 0.241*** 0.253*** 0.371*** 
 (0.018) (0.021) (0.025) 

Unit reported: Boy † 0.160*** 0.167*** 0.285*** 
 (0.020) (0.022) (0.026) 

Unit reported: Senga † 0.301*** 0.247*** 0.336*** 
 (0.024) (0.027) (0.031) 

Unit reported: Kert † 0.188*** 0.200*** 0.295*** 
 (0.028) (0.030) (0.034) 

Plot Manager Characteristics    

Female † -0.011* -0.007 -0.008 
 (0.007) (0.007) (0.007) 

Age (Years) -0.000 -0.000 0.000 
 (0.000) (0.000) (0.000) 

Education (Years) -0.002** -0.002*** -0.002* 
 (0.001) (0.001) (0.001) 

Religion: Orthodox † 0.023 0.037 0.031 
 (0.024) (0.025) (0.028) 

Religion: Protestant † 0.030 0.046* 0.043 
 (0.025) (0.025) (0.029) 

Religion: Muslim † 0.022 0.024 0.019 
 (0.024) (0.025) (0.028) 

Religion: Traditional † 0.028 0.045 0.039 
 (0.037) (0.039) (0.042) 
 0.030 0.046* 0.043 

Plot Characteristics    

Cultivated † 0.037*** 0.030*** 0.028*** 
 (0.008) (0.008) (0.009) 

Pasture † 0.078*** 0.073*** 0.066*** 
 (0.011) (0.010) (0.011) 

Fallowed † 0.047*** 0.047*** 0.040*** 
 (0.013) (0.013) (0.015) 

Soil quality good † -0.013* -0.007 -0.012 
 (0.007) (0.007) (0.008) 

Use of organic fertilizer † -0.040*** -0.044*** -0.035*** 
 (0.008) (0.008) (0.009) 

Use of hired labor † 0.070*** 0.063*** 0.051*** 
 (0.010) (0.010) (0.012) 

Irrigated † -0.022 -0.014 -0.010 
 (0.015) (0.015) (0.016) 
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Table 6 (Cont’d) 

  Full Sample Plots [d <= 1km] Plots [d <= 500m] 

Household Characteristics    

# of HH members - [0,5] 0.003 0.003 0.003 
 (0.003) (0.003) (0.003) 

# of HH members - [6,14] 0.001 -0.000 -0.002 
 (0.002) (0.002) (0.002) 

# of female HH members - [15,39] 0.007** 0.005 0.004 
 (0.003) (0.003) (0.003) 

# of female HH members - [40,59] 0.012** 0.009* 0.009 
 (0.005) (0.005) (0.006) 

# of male HH members - [15,39] 0.010*** 0.006** 0.006** 
 (0.003) (0.003) (0.003) 

# of male HH members - [40,59] 0.012** 0.015*** 0.011* 
 (0.005) (0.005) (0.006) 

# of HH members – 60 & above 0.007** 0.006* 0.002 
 (0.003) (0.003) (0.003) 

Household consumption expenditure per capita  0.001* 0.001*** 0.001*** 
 (0.000) (0.000) (0.000) 

Number of plots in the holding -0.001* -0.001 -0.001 
 (0.000) (0.000) (0.000) 

Observations 19,966 15352 12282 

Adjusted R2 0.789 0.768 0.805 

Note: † denotes a dummy variable. *** p<0.01, ** p<0.05, * p<0.1. Constant, woreda fixed effects (228 in 
total) included but not reported. 

 

 

Table 7: Tolerable Rates of Missingness in GPS-Based Plot Areas Above a  
Given Distance Threshold for Plot Area & Plot-Level Yield Analysis 

 

    Plot Area Yield 

    
Tolerable  
rate (%) 

Tolerable  
rate (%) 

Malawi 
1.0 km 

93 
(26) 

82 
(23) 

500 m 
52 

(24) 
45 

(21) 

Ethiopia 
1.0 km 

73 
(18) 

56 
(13) 

500 m 
48 

(20) 
36 

(15) 

Note: The overall rates of missingness implied by the tolerable 

rates of missingness above a given distance threshold are noted 

in the parentheses. 
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Table 8: Country-Specific Multiply Imputed Overall Mean versus True Mean Comparisons Following Multiple Imputation  
At Identified Tolerable Rates of Missingness above the Distance Thresholds as Specified in Table 7 

 

Country 
Distance  

Threshold 
Tolerable Rate of Missingness  

Above Distance Threshold 
Variable 

MI  
Mean 

True  
Mean 

Difference 
Difference % of 

True Mean 
RMSE 

RMSE % of  
True Mean 

Ethiopia 

1 Kilometer 
73 Plot Area 0.206 0.209 -0.003 -1.4% 0.003 1.4% 

56 Yield 41,141 29,303 11,839 40.4% 11,839 40.4% 

500 Meters 
48 Plot Area 0.207 0.209 -0.002 -1.1% 0.002 1.1% 

36 Yield 39,628 29,303 10,325 35.2% 10,325 35.2% 

Malawi 

1 Kilometer 
93 Plot Area 0.390 0.394 -0.004 -0.9% 0.004 0.9% 

82 Yield 1,821 1,693 128 7.5% 128 7.5% 

500 Meters 
52 Plot Area  0.391 0.394 -0.003 -0.8% 0.003 0.8% 

45 Yield 1,794 1,693 101 5.9% 101 5.9% 

Note: RMSE stands for Root Mean Squared Error. Plot area is in hectares. Yield is maize production in kilograms per hectare in Malawi and value of output per 
hectare in Ethiopia. 
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Figure 1: Tolerable Rates of Missingness in GPS-Based Plot Areas Above a Given Distance Threshold for Plot Area & Plot-Level Yield Analysis 
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