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ABSTRACT

Agro-food logistics is increasingly challenged to ensure that a wide variety of high-quality products are always
available at retail stores. This paper discusses high-density logistics issues caused by more frequent and smaller
orders from retailers. Through a case study of the distribution process in a Dutch floricultural supply chain, we
demonstrate that using inbound and outbound information flows to plan daily warehouse operations improves the
logistics performance. A discrete-event simulation and a simulation-based scheduling algorithm are used as
decision-support models to assess the value of information. The results indicate that the higher the density of
logistics process, the higher the value of the information. Future research will investigate different uses of
information as more types of information become available in the agro-food sector supply chains.

Keywords: high-density logistics; value of information; agro-food logistics; distribution; information accuracy

1 Introduction

Nowadays consumers increasingly expect daily fresh agro-food products to be always available at retail
stores (van der Vorst et al.,, 2011). However, because of the perishability of agro-food products, most
retailers prefer to hold only small amounts of inventory to reduce holding costs, which involve costly
temperature and humidity controlled storage processes (Trienekens et al., 2014), and spoilage costs,
which occur because of continuous decay of product quality (Akkerman et al.,, 2010). In the last two
decades, the assortments of products have increased significantly for most retailers, e.g., US grocery
retailers had 50% more products in 2010 compared with 2003 (FMI, 2010). Therefore, a common policy in
retail inventory management is to order small quantities of many different products frequently (Fernie
and Sparks, 2014). A consequence of this phenomena is increased complexity of logistics operations and
distribution of perishable products. Retailers’ orders have become smaller, more frequent, and with
shorter lead times required to meet the consumers’ requirements (Romsdal et al., 2014; Verdouw et al.,
2014b). This trend leads to a high-density logistics context in the distribution process of agro-food supply
chains in which small quantities of a wide product assortment have to be distributed more frequently
within short timeframes.

The term “high-density logistics” (HDL) has been used in the literature without being formally defined
(e.g., Lee and Whang, 2001, p. 59). We start with a clear definition of this concept and its constituents in
Section 2. An important factor in managing the complexity of the logistics and distribution process in an
HDL context is accessing and utilizing information. We further investigate the value of information (VOI) in
HDL through an illustrative case study of the distribution process in a Dutch flower supply chain. Section 3
provides a concise theoretical background on VOI in the supply chain and logistics and discusses a
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stepwise framework to assess the VOI in improving logistics performance. Section 4 introduces the case
study. The results of the case study are reported in Section 5. The last section concludes with our findings,
discusses the implications of this study for agro-food supply chains, and suggests directions for future
research.

2 Defining High-Density Logistics

The Council of Supply Chain Management Professionals defines logistics management as “the part of
supply chain management that plans, implements, and controls the efficient, effective forward and
reverse flow and storage of goods, services and related information between the point of origin and the
point of consumption in order to meet customers' requirements” (CSCMP, 2017). This definition
emphasizes four aspects of logistics: (i) efficiency and effectiveness, (ii) physical flows, (iii) customer
requirements, and (iv) information flows. In defining HDL, we connect the first three aspects to the three
dimensions that characterize an HDL context. Then we propose the use of the fourth aspect, information
flows, as a mean to tackle the logistics challenges caused by HDL. The dimensions in defining the HDL
environment are shown in Figure 1 and elaborated in the following.

Complexity of
physical flows

Timeframe High-Density Logistics

Capacity

Figure 1. Three dimensions in defining high-density logistics

e Complexity of physical flows in the logistics process: a physical flow involves moving products between
two points in the supply chain, which can be within a facility or between facilities. The complexity of
physical flows in a logistics process can be influenced by the number of items that need to be handled
throughout the logistics process (i.e. the number of physical flows) or by the number of material
handling activities (i.e. the number of stages) in the process. For example, in the distribution process
between a manufacturer and a retailer in the case studies by Liu et al. (2009) and Bryan and Srinivasan
(2014), the flow complexity is influenced by the fact that a large number of shipments have to pass
multiple facilities and stages before arriving at the retailer. Another example is the order-picking
process in a distribution center in which the daily total number of orders, the number of order lines
and stock keeping units (which are located in different picking zones) per order will affect the
complexity of the process (Le-Duc, 2005). In these examples, increasing customer requirements on
product variety (with small orders) is the main cause of increased complexity.

o Timeframe of the logistics process: this is defined by the time required to perform logistics activities,
e.g. the timeframe of the distribution process is the required delivery lead time of an order. Time is
one of the most important aspects in fast-moving consumer product chains and agro-food value
chains (Brandenburg and Seuring, 2011). As these chains have become more demand-driven
(Trienekens et al., 2003), customer requirements have also become stricter on delivery lead times to
improve the chains’ competitive advantage (Morash et al., 1996).

e Capacity: the capacity of logistics resources utilized in a logistics process such as human resource,
truck fleet size, and travelling space in the warehouses. Because the resources are limited and shared
among different supply chain actors or different logistics processes (Arshinder et al., 2011), an efficient
and effective capacity allocation is a determinant factor in the success of the logistics activities (Perona
and Miragliotta, 2004).

Given a fixed capacity, a logistics process develops towards a high-density context if the timeframe
becomes shorter or the complexity of physical flows becomes higher.

An example of an HDL context is city logistics distribution operations. Recently, many western European
cities have applied strict regulations that force the distribution activities of retail chain to take place
within a specific time period (Quak and de Koster, 2007). These regulations make the distribution
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schedule from distribution centers to retail outlets more difficult because of the shorter time available for
order processing and delivery, and increasing congestion because there are more trucks moving on city
roads within the same time windows (Stathopoulos et al., 2012). At the same time, the size of retail order
is decreasing, and subsequently, the number of handling and the physical flows in order processing (e.g.,
receiving, sorting, transferring, picking) at the distribution warehouse are increased (Quak and de Koster,
2009). In this example, HDL is caused by both a shorter timeframe and a higher complexity of physical
flow.

The second example of HDL is the distribution in the Dutch floricultural sector. The supply chain network
of the sector consists of approximately 5000 national and international growers; 1200 buyers, including
wholesalers, exporters, importers; 70 logistics service providers; 6 auction sites and many market places.
The consumers of flowers and ornamental plants have not only become more demanding with regard to
product variety and availability at shops but also on product shelf life (van der Vorst et al., 2012; Verdouw
et al., 2013). As a result, buyers place more small orders for a large variety of products every day (De
Keizer et al., 2015). The average order size has dropped from full flower trolleys to less than a trolley (e.g.
a number of buckets). From the point of view of auctions and distribution, this implies that a full flower
trolley has to be split over several buyers; thus the number of handling operations and the complexity of
logistics processes have increased significantly. Moreover, because the buyers demand products with a
longer shelf life, shorter delivery lead times (i.e. between 2 and 4 hours) have become the “new normal”
(Wallace and Xia, 2014). In this example, both dimensions have become more restricted (i.e. a shorter
timeframe and a higher complexity of logistics and distribution processes), which makes the daily
distribution in the Dutch sector very challenging. In Section 4, we specifically discuss the logistics
challenges caused by HDL at the distribution warehouse for a Dutch flower supply chain.

Integrating information flows in decision-making can leverage the existing logistics resources to achieve
the distribution challenge (Lee and Whang, 2001; Lumsden and Mirzabeiki, 2008). The Dutch floricultural
sector is active in improving information sharing and information availability throughout the supply chain
network (Verdouw et al., 2014a). Taking advantage of the rising momentum of information availability, we
propose that the daily distribution process in the case study can be improved by using outbound and
inbound information flows in operational planning. Outbound information includes order information
such as required lead times, quantity, and destination for each consignment. Inbound information
basically includes the contents of the inbound trucks. In addition, the growers can also share information
on the arrival time of the inbound trucks with the warehouse operator. In the case study, we examine the
value of both outbound and inbound information. Before introducing the case study and the use of
inbound and outbound information in decision making, we provide the theoretical background on the VOI
in supply chain and logistics decision making in the following section.

3 Value of Information in the Supply chain and Logistics

We first provide an overview of the literature on the VOI in decision making to improve logistics
performance. Thereafter, we discuss a stepwise framework to evaluate the value of inbound and
outbound information in the case study.

3.1 Value of information in supply chain and logistics decisions

VOI can be seen from two angles. The first associates VOI with the willingness of the information users to
pay to gain access to the information (King and Griffiths, 1986). The second defines VOI as the resulting
(or expected) benefits from using the information in making a specific decision (Lumsden and Mirzabeiki,
2008). The benefits are determined as improvements in one or several key performance indicators (KPls)
that are achieved through the use of the information in decision making compared with the base scenario
in which the information does not exist (Ketzenberg et al., 2006; Ganesh et al., 2014). Therefore, a piece
of information can have different values when it is used in different supply chain and logistics decisions.
Here, we adopt the second approach, which is also the dominant view in the literature.

The largest part of the VOI literature is about the value of information sharing in inventory decisions such
as decisions on order quantity, order frequency, safety stock, etc. The general conclusion from these
studies is that the VOI is positive, yet numerically sensitive to logistics process parameters such as
capacity, inventory costs, and lead time (Li et al., 2005). We refer to Ketzenberg et al. (2007) and Giard
and Sali (2013) for extensive reviews on the value of information sharing in inventory decisions. The
second largest area of the literature concerns the VOI in transportation decisions. In collaborative
transporation, advanced load information from shippers enables carriers to better plan vehicle routing,
and the pickup and delivery schedule (Tjokroamidjojo et al., 2006; Zolfagharinia and Haughton, 2014).
Product location information enabled by tracking and tracing technologies is a highly demanded
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information type by supply chain members (Lumsden and Mirzabeiki, 2008). This type of information is
frequently used in optimizing transportation decisions, including vehicle routing and repositioning of
empty vehicles (Kim et al., 2008; Flamini et al., 2011).

The literature focusing on the VOI to improve distribution and warehousing decisions is limited. The use of
outbound information (i.e. order information) has been considered extensively in the order-picking
literature (de Koster et al., 2007), whereas the literature on the value of inbound information, especially
information on truck-arrival time, is rather scant. The reason is that most of the literature assumes that
the truck contents and arrival time information are always available for solving distribution warehouse
problems, such as inbound and outbound truck scheduling (Ladier and Alpan, 2016). In one of the few
studies on this domain, Larbi et al. (2011) studied the VOI on inbound truck contents and arrival time to
improve the scheduling of outbound trucks. In their study, three scenarios were explored: full information
(i.e. every detail about inbound truck content and arrival time is known), partial information (i.e. contents
and arrival times of a number of inbound trucks are known), and no information (i.e. no inbound
information is available). The authors concluded that knowing the contents and arrival times of the next
14 inbound trucks is as valuable as knowing the arrival times of all the next trucks to arrive. However,
their approaches use exact truck arrival time, which is hard to obtain; in reality, many factors such as
traffic congestion can affect the truck arrival time. In addition to Larbi et al. (2011), who explicitly discuss
the value of inbound information in managing warehouse operations, other studies have emphasized the
importance of considering the uncertainty of truck-arrival time in solving the truck scheduling problem;
see for example the study by Konur and Golias (2013).

An important factor in determining the VOI in logistics is the characteristics of the information. Most of
the literature considers only the availability aspect of information. In other words, these studies compare
two scenarios: decision making with- and without information. However, in many cases, not only the
availability of information but also other information characteristics such as timeliness, accuracy,
completeness, consistency, and security may influence the VOI. Information characteristics have also been
addressed under two different terms: information quality dimension (Miller, 1996; Gustavsson and
Wanstréom, 2009), or information value attributes (Sellitto et al., 2007; Levidkangas, 2011). These terms
are interchangeable from the perspective of their impact on the VOI. A recent extensive literature review
on the VOI by Viet et al. (2017) reveals that the three intrinsic characteristics of information - accuracy,
timeliness and completeness — have been studied the most. The definition of these characteristics is
provided in Table 1. In the case study, we also focus on these three characteristics in the assessment of
the VOI because they are objective to the information (Hazen et al., 2014).

Table 1.
Definitions of three intrinsic information characteristics

Characteristic Definition
Accuracy Accuracy defines how the available information reflects the underlying reality
Timeliness Timeliness indicates how up to date the information is and how well it meets the demand

for information in a particular time and space.

Completeness Completeness refers to different levels of detail of the information.

3.2 Stepwise framework to assess the VOI

We follow the stepwise framework on assessing the VOI in supply chain and logistics decisions as
proposed by Viet et al. (2017). As depicted in Figure 2, the VOI is assessed by comparing the KPls resulting
from two decision-making scenarios:

e In the base scenario, base information is used. Base information is a given set of information (with
some specific information characteristics) that is available originally to the decision maker.
Accordingly, the base decision is the output from the decision-support model using this base
information. In some cases, no information is used in the base scenario.

e |n the information scenario, additional information is added to the base information. The additional
information is expected to contribute to an improvement in the logistics performance. The decision
maker aims to assess the value of this additional information. Given the additional and the base
information as input, the decision-support model generates the decision based on the additional
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information as output. The difference between performance measures in this case and the base
scenario determines the VOI. Furthermore, multiple information sub-scenarios can be defined by
considering different options for different information characteristics. Studying these sub-scenarios
will provide insight into the impact of the information characteristics on the VOI. The results of this
analysis can be used to determine the requirements for information characteristics in information
sharing between different actors in the chain.

In the framework, different decision-support models can be used in the base and information scenarios.
For instance, in the study by Larbi et al. (2011), a polynomial algorithm is developed for full information
scenarios and two heuristics are used for the partial and no information scenarios. In the next section we
apply this framework to the case study.

Base scenario Decision Base decision
e ’ SUPDOrt ------------ )
model *

Base
information

Value of
information

Information scenarios:
* Timeliness

N Decision
.Afdd|t|o:_a| e Accuracy support
Inrformation .
Completeness model Additional-information

based decisions

Figure 2. Stepwise framework to assess the VOI in improving the logistics performance

4 A Case Study on a Dutch Flower Supply Chain

In this section, we elaborate on the current HDL situation at the distribution warehouse of a Dutch flower
supply chain and the scope of this study. Subsequently, we discuss how the value of inbound and
outbound information can be assessed by mapping each concept in the research framework to the case
study.

4.1 Case description

The distribution warehouse in this case study is part of a Dutch flower supply chain. The flower growers
send the flower orders by trucks to the warehouse, and the warehouse is responsible for distributing the
right flowers to the right buyers in the right quantities. The buyers’ facilities are in the neighborhood
surrounding the warehouse. Figure 3 shows the information flows and the physical flows in the supply
chain.

4.1.1  Information flows

After processing the orders from the buyers received in a day, growers send online forms to the
distribution warehouse indicating the destination of each flower bucket in the flower trolleys that will be
transported by trucks to the warehouse. Regularly, the warehouse receives the forms the night before the
flower trolleys arrive. Urgent orders, which require lead times of around two hours, are not considered in
this study because the growers often send flowers for urgent orders directly to the buyers’ facilities. In
addition, currently information on the truck arrival time is not included in the online forms. We design
multiple scenarios about the availability of truck arrival time information in the experiment section.
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Figure 3. Information flows and physical flows in the Dutch flower supply chain

4.1.2  Physical flows

At the grower sites, many buckets of the same type flower are consolidated to make full trolleys. Each
trolley can contain a maximum of 30 buckets. The inbound trucks transporting the trolleys usually arrive
at the warehouse from 9:00 hours in the morning. The trucks are unloaded on a first-come first-serve
policy. As shown in Figure 3, the internal process at the warehouse between unloading and shipping
consists of three stages: breakbulk, consolidating, and aggregating. All unloaded flower trolleys are
queued at the breakbulk area, with a first-in first-out policy. Next to the breakbulk area are multiple
parallel consolidating and aggregating lanes. Each lane is reserved for a buyer, or a group of buyers whose
facilities are closely located to each other. Empty trolleys are prepared at the lanes to receive flower
buckets from the breakbulk area.

From the breakbulk area, flower trolleys are distributed to the consolidating and aggregating lanes
following the “put system” order-picking (de Koster et al.,, 2007), which is a popular method for
floricultural products and for distribution systems with a large number of orders and a short time window
for picking. A worker can carry a trolley directly to a consolidating and aggregating lane if all the buckets
in the trolley are to be distributed to the same destination. This happens when the order quantity is large
enough. Otherwise, the workers have to drive the trolley to multiple consolidating and aggregating lanes
and place the correct number of (ordered) buckets in the trolleys waiting at the lanes. Currently, on
average, 60% of inbound trolleys are split among multiple buyers’ lanes due to the high number of small
order quantities and the high number of flower varieties. As a consequence, the average time for
processing an inbound trolley has increased. The number and complexity of the physical flows has also
increased because the worker has to move a trolley multiple times. As a result, congestion often occurs in
the travelling space between the breakbulk and the consolidating and aggregating areas. Here we define
the variable B as “the percentage of inbound trolleys that are not split at breakbulk stage”; so in the base
case, B is equal to 40%. Later this variable will be varied to model different levels of high-density in the
distribution process. The lower B is, the higher the complexity of the physical flows, and thus the higher
the density level.

At each consolidating and aggregating lane, flower buckets are merged into full trolleys again. Full trolleys
are aggregated and physically connected before they are shipped to the buyers. Currently one worker is in
charge of a number of lanes. The worker waits until an aggregating lane reaches 12 trolleys, which is the
maximum size, and then ships the set of aggregated trolleys to their destination. It takes a worker on
average 15 minutes to drive the aggregated set to the buyers’ facilities. Larger aggregating sizes require
longer shipping time.

At the buyers’ facilities, trolleys are then re-processed for deliveries to their next customers. The buyers
place high value on deliveries within a 4-hour time window from 9:00 to 13:00 hours which provides
sufficient time for their internal logistics activities. We specify this “time window” as T (hours). In the
experimental design, T is varied to demonstrate different levels of density. The lower T is, the higher the
density level.
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4.1.3  Scope of this study

In the current situation, the warehouse distributes flowers to a large number of buyers. In the case study,
we simplify the current warehouse situation by modelling only three consolidating and aggregating lanes
(three groups of buyers). This simplification is justified because we aim for an illustrative case to study the
HDL context and the VOI. Therefore, the VOI could be higher in the real situation with the entire
distribution system. In addition, we assume a fixed time period for unloading each inbound truck. Our
focus is on the complexity of the operations in the three internal stages: breakbulk, consolidating, and
aggregating. Two workers work at the breakbulk, consolidating, and aggregating areas. One worker waits
at the three aggregating lanes. The day shift of the workers ends when all the inbound trolleys have been
processed and delivered.

4.2 Applying the VOI assessment framework to the case study

In this case study, we aim to evaluate the value of inbound and outbound information in improving the
logistics performance at the warehouse. Specifically, inbound information is the truck-arrival time
information, and outbound information is the order information. Ketzenberg et al. (2007) conclude that
the value of additional information depends on the base information in the base scenario. The more
information types used in the current decision-making, the lower the value of the additional information
can be. Currently, outbound information is available at the warehouse but unused. To understand the
value of the outbound and inbound information, we consider three scenarios:

(i) Base scenario: no information is used in decision-making as in the current situation;
(i) Outbound information scenario: only outbound information is used; and
(iii) Total information scenario: both outbound and inbound information is used.

In the following, we first define the logistics KPl and the planning decision. Subsequently, we discuss the
mapping of each concept in the VOI framework to the case study in each scenario.

e KPIs: The first indicator KPI, is defined as the number of full trolleys that are distributed to the buyers
before the time window T. The travelling cost at the shipping stage is mainly associated with the
utilization of the shipping workers, which is insignificant in this case. The second indicator KPI, is the
completion time to deliver all the inbound trolleys to the buyers. To quantify the VOI, we used the
total improvement in these KPIs where the KPIs are equally important:

KP[; information scenario — KPI; base scenario

Vol =37, X 100% (

KPI; base scenario

e The decision: Truck-arrival time information is used to schedule outbound trucks in Larbi et al. (2011)
and Amini et al. (2014). In this case study, we scheduled the outbound shipping trips by dynamically
changing the aggregating sizes at each aggregating lane because the aggregating sizes directly affect
both KPIs. Dynamically updating the aggregating sizes every hour can reduce a worker’s productivity.
In this case study, we aim to locate the aggregating sizes of the lanes before and after the time
window T for future practical implementation.

From the scheduling problem perspective, the problem in this case study falls into the category of a single
batch-process machine with dynamic job arrivals. Full trolleys at the aggregating lanes that need to be
shipped can be seen as jobs, the single machine is the worker, the batch service time is the shipping time
of the set of aggregated trolleys, and the decision variable is the batch size, i.e. the aggregating size. This
type of scheduling problem has been studied extensively in the literature (lkura and Gimple, 1986; Lee
and Uzsoy, 1999). The classic problem formulation is “given n jobs J; with release times r; (i =1, 2, ..., n)
and batch service time p independent of batch size, minimize the completion time”. In this case study,
the problem setting is slightly different because in addition to the completion time KPI,, the number of
full trolleys distributed to the buyers before the time window T (KPI;) must also be considered. Moreover,
the batch service time depends on the batch size. Therefore, we formulate the problem as “given n jobs J;
with release times r; (i = 1, 2, .., n) and batch service time ps (which depends on batch size s),
maximize Q; and minimize the completion time; where Q; is the number of jobs finished before time
T”. Moreover, the release time 1, i.e., the time when a trolley at the aggregating lane is ready for
shipping, is unknown. We explain the method to estimate the release time r; using the information in each
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information scenario.

4.2.1

4.2.2

4.2.3

Base scenario

Base information: in the base scenario, which represents the current situation, no information is used
in the decision making. The shipping worker waits until an aggregating lane reaches 12 trolleys. In this
case, the aggregating size combination is (12, 12, 12) for three lanes.

Decision-support model is not needed in this base scenario.

Outbound information scenario

Additional information: order information

Decision-support model — a scheduling algorithm: we developed a polynomial time scheduling
algorithm based on the order information. Without the truck arrival time, the objective of the
algorithm is solely to improve KPl,, the completion time. Two main inputs for the algorithm are (i) the
total trolley quantity ordered for each aggregating lane and (ii) the estimated time interval for a trolley
to be fully filled with flower buckets at the aggregating lanes (i.e. the inter-arrival of the release time r;
). The total trolley quantity ordered can be easily calculated from the order information. The second
input is estimated based on the average deterministic flow time at the breakbulk and consolidating
stages, similar to the common practice of modelling warehouse handling in the literature (Boysen et
al., 2010; Konur and Golias, 2013). With the two inputs, the algorithm can calculate the completion
time for each aggregating size combination. The algorithm loops exhaustively through all the
combinations of the aggregating sizes and selects the one with the shortest completion time. The
pseudo-code is provided in Appendix A.

Information characteristics: we assume that the order information is accurate, complete and available
at the moment of decision-making.

Total information scenario

Additional information: both the truck-arrival time information and the order information
Decision-support model — a simulation-based scheduling algorithm: knowing the truck arrival time
information, the time that the inbound trolleys enter the internal process is known. The dynamic
operations at the breakbulk and consolidating stages cannot be modelled by queueing systems. To
estimate the release time r;, we built a discrete-event simulation model that includes only the
breakbulk and consolidating stages (i.e. a partial simulation model) using the Enterprise Dynamics 9
software package (EnterpriseDynamics, 2017). Discrete-event simulation is widely used for modelling
logistics operation processes (Tako and Robinson, 2012). Given the truck arrival time information and
order information, the partial simulation model records the release time r; of each full trolley at each
aggregating lane. Because the simulation model uses stochastic cycle times of worker operations at
the breakbulk and consolidating stages (Appendix B), the recorded release time r; are different for
different simulation runs. However, the recorded release time r; from a single run is an acceptable
estimation because we do not need the exact release time of each job arrival, but the estimated
release time of an s-sized batch of jobs; i.e. the time that a s-sized set of aggregated trolleys is ready
for shipping.

Using the recorded release time r; as input, we developed a similar scheduling algorithm to the one in
the outbound information scenario. The algorithm loops exhaustively for the entire set of aggregating
size combinations. Before the time window T, the algorithm selects the combination with the highest
KPl,, the number of trolleys delivered within the time window T. After the time window T, it selects
the combination with the shortest KPI,, completion time of the remained trolleys. The pseudo-code is
provided in Appendix C.

Information characteristics: each information characteristic needs specific interpretation according to
the specific logistics context. In this case study, we interpreted the characteristics as follows and
explain why the focus is on information accuracy.
= Information accuracy: the inbound information is inaccurate if the trucks actually arrive
earlier or later than the arrival time provided.
= Information completeness: with regard to the level of detail for inbound truck arrival
information, it is common in practice that, instead of an exact time, a time window in quarter
hours is provided for each truck (Konur and Golias, 2013). In other words, the lower and
upper bounds of a truck’s arrival time are known. For example, the information states that
truck A will arrive in one-quarter time window between 9:00 and 9:15 hours, and truck B will
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arrive in a two-quarter time window between 9:00 and 9:30 hours. In these cases, the
warehouse operator can use the mid-arrival time windows in his scheduling as suggested by
Konur andGolias (2013): truck A is expected to arrive at 9:07:30 hours, and 9:15:00 hours for
truck B. Therefore, we associate the impact of information completeness with the impact of
information accuracy by investigating the impact of information accuracy in different ranges
of inaccuracy.

= Information timeliness: from the time dimension, the information is considered timely if it
arrives before the warehouse operator makes the schedule. Because this case study does not
include the urgent orders, we assume that the growers will have sufficient time to provide
the truck arrival information on the online forms.

4.2.4  Summary of decision-making flows in the three scenarios

For a fair comparison of the KPIs in all three scenarios, the output aggregating size combinations in these
scenarios need to be examined by the same tool and in a stochastic environment to reflect the dynamic
nature of warehouse operations. The partial discrete-event simulation was extended to include the
complete distribution process i.e. full simulation model. Figure 4 summarizes the decision-making flows in
the three scenarios.

Total information .Outbouhd No information
information
Y
5 Partial
simulation model
Input / Output
\ 4
I:l Recorded release
time
Decision-support
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Y A
Scheduling algorithm in Scheduling algorithm in
C) Total information Outbound information
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\ 4 A 4 A 4
Aggregating size . . Aggregating size
combinations Aggregba-tlntg' size combination
combination
before and after T (12, 12,12)
A A
Full simulation model
KPlIs in KPIs in .
. . ; . KPlIs in
Total information Outbound information .
. . Base scenario
scenario scenario
Figure 4. Decision-making flows in the three scenarios
4.3 Experimental design and results

We designed different sets of experiments to test the VOI in different parameter settings, in different
density levels, and in different scenarios of information accuracy. In each set of experiments, one
parameter is varied while the others are fixed at the values in the current situation. Because of the
stochastic nature of the parameters in the simulation model, it is incorrect to measure the VOI based on
the KPIs observed from a single run. Therefore, we executed 50 separate runs for each parametric setting
to achieve narrow intervals with a 95% confidence level. In this way, the mean KPIs obtained from the 50
runs could be used to calculate the VOI. The experiments and the results are elaborated in the following.
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4.3.1 Value of accurate information

We investigate the VOI assuming that accurate order information and accurate and exact arrival times of
all the trucks are provided. The VOI is subject to logistics process parameters (Li et al., 2005). To carry out
the sensitivity experiments, we generated five different datasets based on five different means of the
inbound truck inter-arrival time, as shown in Table 2. The bold values indicate the current situation. The
current literature has not considered truck inter-arrival time when assessing the value of truck-arrival
time information in truck scheduling. We aim to test if the truck inter-arrival time can be an influential
factor on the internal handling operations and the value of order and truck-arrival time information.

Parameter setting in experiments Iz?cl:ezi.nter-arrival time of inbound trucks
Parameter Value
Inter-arrival time of trucks Exponential distribution with mean: 6, 8, 10, 12, 15 minutes
B 40%
Time window T 4 hours

In the five sensitivity experiments, the inter-arrival times of 30 trucks were randomly generated using
exponential distribution with different means when the trucks’ contents, i.e. B, and time window T were
unchanged. Each truck carries between 8 and 12 full trolleys. For each full trolley, the allocation of flower
buckets to three buyer destinations was randomized using uniform distribution, yet the sum of the
quantities was always 30. Currently 40% of the inbound trolleys are fully ordered by one buyer destination
(B = 40%); in this case, the possible quantity combinations are (30, 0, 0) or (0, 30, 0) or (0, 0, 30). Details of
the other parameters, such as the cycle times at breakbulk, consolidating, and aggregating stages are
provided in Appendix B.

20,00%
18,00% /ﬁ\
16,00%

14,00% / AN

12,00% /

10,00% :
8,00% R / P ) | == Total information
6,00% —#—4 7 i =l = Outbound information
4,00% '~ 2
2,00% .
0,00% T T T T 1
6 min 8 min 10 min 12 min 15 min

VOI

Mean of inbound truck inter-arrival time

Figure 5. VOI with different means of truck inter-arrival time

The value of outbound information (VOI,uwoung) and the value of total information (VOl,,, ) are positive as
shown in Figure 5. The VOI is the percentage improvement in KPIs compared with the base scenario, as
presented in Equation 1. The numerical values vary between 1.99% and 10.11% for VOlyubound, and
between 5.57% and 18.52% for VOl,w. We observe that the VOl is generally higher than the
VOloutbound- This result supports the conclusion by Ketzenberg et al. (2007) and Ketzenberg et al. (2006):
using an additional information type results in additional benefit. In this case, inbound information adds
additional value on top of the outbound information. However, this conclusion is not always true.

10
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Interested readers are referred to the results of the case study by Rached et al. (2015) and the analysis on
this issue by Viet et al. (2017).

Furthermore, we observed no clear relationship between the VOl,,poung and the truck inter-arrival time
means, which is intuitive. However, the gap between VOly, and VOlyummoung iNCreases as the mean inter-
arrival time becomes larger. This gap can be interpreted as the additional value from the truck arrival time
information, inbound information. We define VOl poung @s the additional value of the inbound truck arrival
time information, given that the order information is already in use in decision making. We measured
VOlibound in Equation 2 by comparing the KPIs in the total information scenario with those in the
outbound information scenario. In other words, the outbound information scenario serves as the base
scenario in assessing the VOl pound-

KPI; Total information — KPl; Outbound information

VOlinbound = Y7, x 100% (2)

KPI; Cutbound information

10,00%

8,00%

6,00%

vol  4,00% . .
0 Inbound information

2,00%

0,00% N . L T T T 1
6 min 8 min 10 min 12 min 15 min

-2,00%

Mean of inbound truck inter-arrival time

Figure 6. VOl ,0ung With different means of truck inter-arrival time

Figure 6 reports the numerical values of VOl,poung in the five experiments on inbound truck inter-arrival
times. In the cases of 6 minutes and 8 minutes, the VOl ,oung is close to zero (0.20% and 0.30%,
respectively). The VOli,,oung is higher when the inter-arrival time mean is larger. This observation implies
that the additional information does not always result in additional value in some specific contexts (in this
case, for the small value of the mean truck inter-arrival time). We suggest that the VOl ,0ung is small with
the small mean inter-arrival times because the observed deterministic flow time of the breakbulk and
consolidating stages in the outbound information scenario performs well with small inter-arrival time. As
a result, the difference between the KPIs in total information scenario and outbound information scenario
is small, thus VOl poung is small. As the mean inter-arrival time becomes larger, the flow time, especially at
the consolidating stage, fluctuates more widely. Therefore, the deterministic value cannot be
representative for the dynamic flow time of products through the stages.

4.3.2  Value of accurate information for different density levels

We measured the VOI at different levels of density by changing the value of the time window T and the
value of B.

4.3.2.1 Time window T: timeframe of the logistics process

By varying T, the timeframe of the logistics process is changed. The smaller T is, the higher the density
level. In the experiments on T, the truck-arrival times and the truck contents were unchanged, as shown
in Table 3.

11
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Table 3.
Parameter setting in experiments on time window T

Parameter Value

Inter-arrival time of trucks Exponential distribution with mean of 10 minutes

B 40%

Time window T 5,4, 3, 2 hours

Figure 7 illustrates the results. On the timeframe dimension, the VOlyupound (and thus VOl also)
increases as the density level increases. Also, one can see that as the timeframe of the process is long
enough, these two VOIs converge to zero (at 5 hours) because the combination of maximum aggregating
sizes (12, 12, 12) for the base scenario performs well with long timeframes as suggested by lkura and
Gimple (1986). Contradictorily, the VOli,boung P€aks at T = 4 hours and then decreases as the density level
increases; at T = 2 hours, the VOl uoung is approximately equal to zero.

16,00%
14,00%
12,00%

10,00%
8,00%

VOl 6 00%
4,00%

2,00% vV .!_'.

: —4—Total information

= M = Outbound information

Inbound information

0,00%

-2,00%

. -
ShHJI’S

4 hours 3 hours

2 hours

Time window T

Figure 7. VOI with different settings for time window T

4.3.2.2 B:the complexity of physical flow

By varying B, the complexity of the physical flow is altered. The lower B is (i.e. the more trolleys are split
over multiple buyer destinations), the higher the complexity, and thus the higher the density level. In the
experiments on B, the truck arrival times and the time window T were unchanged, whereas the allocation
of flower bucket quantities to each buyer destinations was done according to different values of B, as
shown in Table 4.

Table 4. Parameter Setting In Experiments On 3

Parameter Value

Inter-arrival time of trucks Exponential distribution with mean of 10 minutes
B 60%, 40%, 20%, 0%

Time window T 4 hours

12
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Figure 8 shows the results. On the complexity of the physical flows dimension, the VOl;,,0ung increases as
the density level increases, whereas the VOlyuoung do€s not have a clear relationship with the density
level. As a result of increasing VOlinpound, the VOl also increases.
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16,00%
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12,00%

10,00%
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0,00%
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Figure 8. VOI with different settings for

4.3.3  Summary on the value of accurate information

== Total information
= B = Qutbound information

Inbound information

The impact of process parameters on the values for inbound, outbound, and total information are
summarized in Table 5. Overall, the results of the experiments point to (i) a positive correlation between
the VOlinpound and the mean inbound truck inter-arrival time, (ii) a positive correlation between the
VOlinpouna/VOliotar and the density level on the physical flow complexity dimension, and (iii) a positive
correlation between the VOlyubound/VOliotasr and the density level on
Understanding the impact of the parameters on VOI, especially the parameters that affect the dimensions
of HDL, improves the decision about which information to collect and use in different characteristics of

the HDL processes.

Table 5.
Summary on value of accurate information

the timeframe dimension.

VOl

Impact of process parameter

Mean truck . .
Density level on timeframe

Density level on physical flow

. . . dimension complexity dimension
inter-arrival time
Value of outbound
Non-monotonic Positively correlated Non-monotonic
information
Value of inbound
Positively correlated Non-monotonic Positively correlated
information
Value of total information Non-monotonic Positively correlated Positively correlated

13
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4.3.4  Impact of inaccurate information

In the previous experiments, we assumed that the information was accurate. Now, we consider inaccurate
truck-arrival time information and examine how information accuracy influences the VOlinpoung- Three
scenarios of information accuracy were established by adding random errors to the exact truck arrival
times. The mean of truck inter-arrival time was kept at 10 minutes as in the current situation. In detail,
suppose ti (i =1, 2, ..., 30) are the accurate truck-arrival times, the inaccurate truck-arrival times are t; +
g (i =1, 2, .. 30) where & are the randomized integers following uniform distributions with three
different intervals: (-7,7) minutes, (-15,15) minutes, and (-30,30) minutes. These three intervals link to
three inbound trucks’ arrival time windows of one-, two-, and four quarters of an hour, respectively
(Konur and Golias, 2013). With each error interval, we randomized two different data sets. In each
scenario, we input the full simulation model with the inaccurate truck-arrival times, yet with the same
aggregating size combinations obtained from the decision making based on the accurate information
scenario. The purpose is to examine how the decisions based on the accurate truck-arrival time
information perform in the case of inaccurate truck arrival times.

The results of experiments on inaccurate information are shown in Table 6. Intuitively we would expect
that inaccurate information would reduce the VOI. The results support the expectation, yet it is not clear
if there is a relationship between the magnitude of reduction and the error interval. Generally, the
VOlinbound Femains positive in most of the experiments except one case in the error interval of (-15, 15).

Table 6.
Results of the experiments on inaccurate information
Error interval (minutes) Truck-arrival information VOlinbound
0 Accurate information 4.42%
(-7,7) Inaccurate information dataset 1 2.10%
(-7,7) Inaccurate information dataset 2 1.80%
(-15,15) Inaccurate information dataset 1 -2.08%
(-15,15) Inaccurate information dataset 2 3.46%
(-30,30) Inaccurate information dataset 1 3.31%
(-30,30) Inaccurate information dataset 2 4.16%
5 Discussion and Conclusion

This paper discusses the HDL context in agro-food supply chains in which the distribution process is
confronted with more frequent small orders and short lead times. The capacity of logistics resources, the
expected timeframe of logistics activities, and the complexity of physical flows in a logistics process are
the main factors that shape HDL. The concept is further elaborated through a case study on the
distribution warehouse of a Dutch floricultural supply chain. We further discuss the value of inbound and
outbound information to improve the logistics performance in the HDL context. We find that as the
density of the logistics context increases, the VOI increases. We also discuss the impact of information
characteristics on the VOI; we particularly examine information accuracy and find that inaccurate truck-
arrival information diminishes its value.

This research contributes to agro-food logistics by explicitly characterizing the HDL in agro-food supply
chains, which is mainly caused by the increasing development from supply-driven towards demand-driven
requirements. As proposed, effective uses of information flows are the key to overcome the logistics
challenges. Extensive research is available on tackling technical challenges of virtual supply chains and
smart systems of tracking, tracing, and sensing devices (Verdouw et al., 2013; Verdouw et al., 2016;
Wolfert et al.,, 2017). However, effective real-time uses of different information types enabled by such
systems and virtualization in supply chain and logistics decisions remains a promising research area. For
example, under regulations on food traceability, the availability of product location and condition
information has been improved in the agro-food sector (Heyder et al., 2010; Bosona and Gebresenbet,
2013). Besides direct uses in relation to food safety, quality and food waste, this information can be useful
in handling and distribution planning.

14



Nguyen Quoc Viet et al. / Int. J. Food System Dynamics 9 (1), 2018, 1-20

Decision-support models developed in the case study can be applied in operations planning at cross-
docking distribution warehouses for fresh agricultural products. Particularly, the simulation-based
scheduling approach in the total information scenario is suitable to capture dynamics and complex
operations in the distribution process. For future research, we suggest two directions to extend the
models. Firstly, we only discussed the use of inbound and outbound information in the outbound shipping
scheduling decision. This information could have additional value if used in other decisions such as
dynamic work force scheduling. We can model the dynamic work shifts of workers by varying the cycle
time at each stage in the simulation. Another interesting direction is to include urgent orders in the
scheduling process. Entering of flower trolleys linked to urgent orders into the internal distribution
process can immediately trigger outbound shipping regardless of the current number of trolleys at the
aggregating lanes; thus, it can affect the KPIs and the original shipping planning. Furthermore, the
distribution network could be redesigned to be able to handle the distributions of different order types
with different required lead times. In that case, we anticipate that the inbound information flows will play
a more crucial role in efficient process coordination and resources allocation across the entire network.
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Appendix A

Pseudo-code for the scheduling algorithm in the outbound information scenario (implemented in Python)

Initialization
S = all combinations of aggregating sizes at lanes A, B, C
T = buyer time window
Completion_time = a big number
Output = (0,0,0)

a is the estimated inter-arrival time that a trolley becomes full at the aggregating lanes.
It is calculated based on the average flow time at Breakbulk and Consolidating

FOR (sA, sB, sC)in S:
IA = (tuples (rea, SA, Hsa) )
IB = (tuples (re¢, SB, Ue) )
IC = (tuples (rsc, sC, Us) )

“rs is the release time of the s-sized aggregated set of trolleys at the aggregating lane,
re=s*a.”
“W, is the shipping time for the s-sized aggregated set of trolleys”

L =sorted (IA N IBMIC) by the ascending order of r
time=0
FOR all tuples in L:
time = max(time, rg) + W
ENDFOR
If (time < Completion_time):
Completion_time = time
Output = (sA, sB, sC)
ENDFOR

Return Output
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Appendix B

Parameter setting in the discrete-event simulation model

Parameter Value Unit
Number of trucks 30 Trucks
Number of trolleys per truck Uniform(8,12) Trolleys
Size of a full trolley 30 Buckets
Percentage of full trolleys ordered by only one buyer 40%
Worker’s walking time between breakbulk area and

Normal distribution (30,5) Seconds
consolidating areas
Time to sort, scan, and place a bucket on the trolleys at

Normal distribution (6,0.5) Seconds
consolidating
Shipping time to different buyers destinations

Normal distribution (15,1) * max(1, size/9) Minutes

(larger size of aggregating requires longer time)

19



Nguyen Quoc Viet et al. / Int. J. Food System Dynamics 9 (1), 2018, 1-20

Appendix C

Pseudo-code for the scheduling algorithm in the total information scenario (implemented in Python)

Initialization
S = all combinations of aggregating sizes at lanes A, B, C
T = buyer time window
KPI1=0
Completion_time = a big number
Outputl = (0,0,0) “aggregating sizes before T”
Output2 = (0,0,0) “aggregating sizes after T”

FOR (sA, sB, sC)in S:
IA = (tuples (rsa, SA, Ksa) )
IB = (tuples (rss, B, Hss) )
IC = (tuples (rs, sC, M) )

“r, is the appearing time of the s-sized aggregated set of trolleys at the aggregating lane
based on the recorded release time r; of each trolley”
“Ws is the shipping time for the s-sized aggregated set of trolleys”

L=sorted (IA M IB M IC) by the ascending order of r
time=0
kpil=0
WHILE (time < T):
time = max(time, r,) +

kpil =kpil +s
ENDWHILE
If (kpil > KPI1):

KPI1 = kpil

Outputl = (sA, sB, sC)
ENDFOR

Identify the remained trolleys after the time T for each destination
FOR (sA, sB, sC)in S:

reA = (tuples (rsa, SA, Hsa) )
reB = (tuples (reg, B, Wsg) )
reC = (tuples (rsc, sC, Hsc) )

“reA, reB, reC are the sets of the remained trolleys after the time window T”

reL = sorted ( reA M reB N reC) by the ascending order of r,
time=0
FOR all tuples in reL:
time = max(time, r,) +
ENDFOR
If (time < Completion_time):
Completion_time =time
Output2 = (sA, sB, sC)
ENDFOR

Return Outputl and Output2
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