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Abstract: Discrete dynamic programming, widely used in addressing optimization over time, suffers
from the so-called curse of dimensionality, the exponential increase in problem size as the number of
system variables increases. One method to partially address this problem is to avoid the use of state
transition probability matrices, which grow in the square of the size of the state space. This can be done
through the use of expected value (EV) functions, which compute the expectation of functions of the
future state variables conditioned on current variables. Two ways that this leads to potential gains arise
when the state transition can be broken into separate phases and when the transitions for different state
variables are conditionally independent. Both of these situations arise in models that are used in natural
resource management and are illustrated with several examples.

Keywords: dynamic programming, computational efficiency, SPOMs, harvest management, Kronecker
products

Discrete dynamic programming (DDP) is a fundamental tool for making good decisions
concerning dynamically changing systems. For a gentle introduction see Marescot, et al. (2013) and for
more in-depth discussions see Puterman (1994) or Rust (2008). A significant limitation of DDP, the so-
called curse of dimensionality, arises due to the exponential increase in the problem size as the number of
variables increases (Powell and Topaloglu; 2005). This problem is particularly acute in the handling of
the state transition, which is typically defined in terms of a transition probability matrix P that specifies
the probability that some specific value of the state variable will occur in the next period given the current
value of the state and actions variables. The total number of elements of this matrix grows with the square

of the number of state values.

This note discusses how the curse of dimensionality can be made somewhat less problematic by
careful attention to how the transition is handled. In particular it points out that the transition matrix P
need not be explicitly defined but instead can be replaced by a function which computes the expectation

of future values conditioned on current states and actions. Such a function will be referred to as an

© 2017-2018, Paul L. Fackler



30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

expected value (EV) function and its use can have significant advantages both in reducing memory
requirements and in speeding up computations (using both function and policy iteration). Two common
examples of when such advantages are possible arise when the state variables are conditionally
independent or when the transition can be broken into separate phases. The methods discussed in this note
are easily implemented using the freely available MATLAB based MDPSolve package (Fackler, 2011)

and code for the examples discussed here is available as a supplement.

One application area where the curse of dimensionality is particularly problematic is in
conservation management of spatial units. For example in Stochastic Patch Occupancy Models (SPOMs)
the state variables are binary variables representing the absence or presence of some species on a site
(patch). With N sites the state space is 2" and thus grows exponentially in the number of sites. Another
example of such a problem is the reserve site selection problem in which a set of sites are targeted for
acquisition by a conservation organization but may instead be acquired and developed for non-
conservation uses. In this case each site has three alternative states (available, reserved, developed) and

hence the state space is 3".

This paper first briefly reviews the dynamic programming framework, including a discussion of
how index vectors can be used to improve efficiency. It then introduces the concept of an Expected Value
(EV) function. Two situations which lead to significant advantages by using EV functions are then
discussed and illustrated. The first is the situation in which the state transition occurs in stages, with each
stage represented by a sparse transition probability matrix. The second is when a model can be

represented in a factored form by a set of conditionally independent state transitions.

Dynamic Programming

The basic components of a DDP model are (1) a reward function R(S, A) which describes the
current net benefits of being in a given state S and taking a specified action A, (2) a transition probability

matrix, P(S*|S, A), which gives the transition probability of moving to a specified state S* in the next
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period, given the current state and action and (3) a discount factor § € [0,1] that measures the value of
obtaining a given reward in the next period relative to obtaining it this period. The solution to a dynamic
programming problem is a strategy that defines how the action should be chosen for each value of the
state, A*(S), and a value function V (S) which describes the value in each state of the sum of the expected

discounted rewards when using the optimal strategy.

Standard algorithms for solving dynamic programming problems are based on the Bellman

Equation
V(S) = maxR(S,4) + 52 P(S*]S, AV (S™)
S+

If there are ng values of the state variable(s) and n,. possible combinations of state and action values then
V is an ng element vector, R is an n,. element vector and P is an ng X n, column-stochastic matrix (a
matrix composed of non-negative numbers with columns that sum to 1).? In this case the Bellman

function can be written as

V = maxRy + SPJV*
where the A refers to a given strategy. The two standard methods for solving DP problems (function and
policy iteration) both use an initial guess of the vector V and compute the vector V = R + §PTV. Each
row of this vector is associated with a specified value for the state and the maximal value for each state
can then be identified. This results in an ng vector of indices I¢ that selects these values of V

I} = argmax V;
Jil()=i

(the use of index vectors is discussed in more detail in Supplemental Appendix 1). The two methods
differ in how they update V. Function iteration replaces V with V[I*] whereas policy iteration replaces V
with the solution to the linear system

(I — 8P[:, 1417V = R[I%].

2 Alternatively it could be an n,, X ng row-stochastic matrix with rows that sum to 1.
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Both methods repeat this process iteratively until a convergence criterion is met. In general, policy
iteration uses fewer iterations but each iteration is more expensive because of the need to perform a linear

solve.

The state S is typically composed of a set of d variables and the size of the state space is the
number of possible combinations (tuples) of these variables. A significant challenge in formulating and
solving realistic decision models is the so-called curse of dimensionality. The problem size grows
exponentially as dg increases; for example, if all state variables can take on m different values then the
size of the state space is m%s. Of particular importance is that the P matrix can become prohibitively
large. Even when sparse (i.e., having many 0 elements) it can use up large amounts of memory and
performing the linear solve in policy iteration may become extremely time consuming or even impossible
due to memory limitations. Even the matrix-vector operations used to compute PV may be prohibitively

time-consuming.

One approach to rescuing policy iteration which works well for large problems uses iterative
linear solvers, including Krylov methods (Barrett et al., 1994). This approach is discussed in Rust (1996)
and was demonstrated by Mrkaic (2002) to result in significant reductions in the time required for each
iteration when using policy iteration. The use of Krylov methods, such as Generalized Minimum Residual
(GMRES) and Bi-Conjugate Gradient-Stabilized (BiCGSTAB), are easily implemented into dynamic
programming algorithms in MATLAB because these linear equation solvers are part of the basic

MATLAB package.

What does not appear to be widely recognized in the literature is the potential for memory and
speed efficiencies from not forming the P matrix in the first place. All that is required of function

iteration or policy iteration, if a Krylov solver is used, is that PTV can be evaluated.
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Expected Value Functions

An expected value (EV) function produces the same result as P TV but without the need to
explicitly compute P. Specifically, an EV function v transforms the future state vector into its expectation
conditional on current states and actions (X):

v(V*) = E[V*|X]
An EV function might also use a second input argument,
vV, 1%) = E[V*X[I%,:]]
in which case it is an indexed evaluation that transforms the future state vector into its expectation

condition on the states and actions indexed by 1¢.

The maximization step in the dynamic programming algorithm uses a full EV evaluation:
I = argmax R; + §[v(V)];
JiLe()=i
whereas the value function updates use an indexed evaluation. If function iteration is used
V « R[I%] + 6v(V,I%)
If policy iteration is used then V solves the linear equation:
h(V) =V —§v(V,1%) =R[I%]

Note that this linear solve cannot be performed using direct methods (e.g., LU decomposition) because
the matrix operator is not available but can be solved efficiently using iterative Krylov methods.® Thus
both standard methods for solving DP problems are still available when EV functions are used.

There are at least two situations in which the use of EV functions is advantageous. The first
situation in which large gains are possible with an EV function approach arises when the state transition
occurs in phases, P = P, P;, where the transition matrix for each phase, P;, is sparse. Typically P will be

far less sparse than its components, in which this case it is possible that P, (P; V) can be computed far

3 The implicit matrix involved here, I — §PT, is easily shown to be row-wise strictly diagonally dominant, which is a
typical sufficient condition for ensuring that an iterative linear solver converges.
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faster than PTV and use far less memory. This will be illustrated with a Stochastic Patch Occupancy
Model (SPOM) and with a model in which, in the first stage, the action transforms the state

deterministically.

The second situation is when two or more sets of the state variables have transition probabilities
that are conditionally independent, where conditioning is on subsets of the current state and action
variables. Such a situation arises in many dynamic programming models. This is illustrated with a harvest
management example and with an SPOM model defined on a network of interconnected sites. To
facilitate the specification of such EV functions a set of procedures was developed that allows a user to
pass a set of transition matrices for individual state variables, along with information on the conditioning

variables involved.

Staged Transitions

The first situation in which there are gains from using the EV function approach arises when the
transition can be broken into separate phases, each of which can be described by a sparse transition
matrix. Such a situation arises with so-called Stochastic Patch Occupancy Models (SPOMs). Early
contributors to this literature are Caswell & Etter (1993), Hanski (1994) and Day & Possingham (1995).
In these models there are N sites or patches that can each be classified as either empty or occupied. In one
of the phases, the extinction phase, an occupied patch might change to empty with probability e (and if
empty it remains so0). In the other phase, the colonization phase, an empty patch might change to occupied
with probability ¢ (and if occupied it remains so). Typically e and ¢ may differ from patch to patch and

will be functions of the current condition of the other patches and of actions that resource managers take.

In SPOMs the state variable is a vector of N Os and 1s representing the occupancy status of each
patch. The number of possible configurations is 2V which clearly is a manifestation of the curse of
dimensionality. The larger issue for such models, however, is that P has 4" elements (for any given

treatment) and is typically dense or nearly so. The transition matrix however can be decomposed into its
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extinction and colonization phases, either as P = EC or P = CE where E and C represent the transition
probability matrices for the two phases (which order is used depends on when action is taken). For an

individual site the site transition matrices for each stage are triangular:

_ 1 e; _ 1—-¢ O
Ei‘[o 1—ei] Ci‘[ ; 1]

Note that, in this simple model, the colonization probabilities do not depend on the occupancy status of
other patches. The full extinction and colonization transition matrices can therefore be written as a
sequence of Kronecker products, e.g., E = E; ® E, ® ... ® Ey, implying that there are 3V non-zero
values in each of E and C. (this assumes that none of the values of the e; and c; are exactly 0 or exactly
1), The density of these matrices is thus of 3V /4 (their sparsity pattern is shown in Figure 1 for N =
10). Although still problematic, storing 3V elements in each of two sparse matrices may be feasible for
values of N for which storing a dense matrix with 4" elements is not. Also performing 3" arithmetic

operations twice is much faster than performing 4" operations once.

These results are even more dramatic if each site can be classified into more than 2 categories. If
there are m possible categories then there will be m”" values of the state and the transition matrix will
contain m2N values. If the two phases represent a decreasing and an increasing phase the single site phase
transition matrices will be triangular and thus contain m(m + 1)/2 non-zero elements. The number of
non-zero elements in full phase transition matrix is this number raised to the power N which implies that

m+1

N
ﬁ) . The density therefore declines towards 27V as m

the density of the phase transition matrix is (

gets large. Clearly the curse of dimensionality is still present but at least some of its sting has been

reduced.
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166 Figure 1. Sparsity patterns for extinction and colonization transition matrices (N = 10)
167
168 Table 1 displays the relative times required to do a basic matrix-vector multiplication, which is

169 the basis for Krylov methods, using the full and staged transition approaches. Row 1 displays the time
170  required for 1000 of these operations using the staged form ET(C V) and row 2 shows the same for the
171 full form PTV. At relatively low values of N the full method actually is faster than the staged form, a

172 result that is likely due to the greater efficiency of the matrix multiply operation for full versus sparse

173 formats (this is, of course, dependent on both the software and hardware used). Once N is greater than 10,
174  however, the staged form is faster by an increasingly wide gap, being over 13 times faster for N = 14.
175  The third row of the table shows the time required to actually form P by multiplying € and E. This also

176  imposes a significant and avoidable computational burden both in time and memory utilization.
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Table 1. Typical computational times and sparsity for SPOM model

N
8 9 10 11 12 13 14
ET(C™v) 0.026 0.065 0.086 0.136 0.292 1.672 4.870
Pv 0.014 0.036 0.084 0.801 4.011 15.298 64.277
P =CE 0.008 0.008 0.046 0.154 0.724 3.499 19.332
density 0.100 0.075 0.056 0.042 0.032 0.024 0.018
Rows 1 & 2 display the time required for 1000 evaluations using the factored form ET(C "v) and

full form PTv
Row 3 shows the setup time required to a form P
Row 4 shows the fraction of non-zero elements in E and C

Another way that staged transitions can lead to substantial computational gains arises when the
state transition can be written in terms of the so-called post-decision state. For example, in some fisheries
models the future state depends only on escapement which equals the current stock less that harvest. In a
simple model the current stock is the state, the harvest is the action and the escapement is the post-harvest

state.

In general if the transition can be divided into a deterministic transition S = g, (S,4) and a
stochastic transition ST = g, (S, e) then we only require an ng X n, transition matrix P, and an n,, index

vector I; that defines the g, mapping. The expected value function can then be written as v(V) =

[P VI(H).

Conditional Independence

Many dynamic models consist of a d;-element set of state variables that evolve independently
when conditioned on the current state and action variables. The values of the conditioning variables can
organized into an n, X d, matrix X, with each row representing a unique combination of states and
actions. In addition to X a model is defined by a set of d, conditional probability tables (CPTs), P;,

representing the transition probability conditioned on a subset of X and an associated set of index vectors
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q; defining the sets of conditioning (parent) variables, with the values of the g; associated with columns

of X.

The simplest case arises when the state variables have disjoint conditioning sets (q;Nq; = @ for
i # j). In this case the transition matrix can be written as a chain of Kronecker products:
P=P,Q ..Q P,
(this was true of the SPOM discussed in the previous section). It is well known that Kronecker product-
vector multiplication can be performed efficiently without actually forming the Kronecker product
(Pereyra and Scherer; 1973). The model of dynamic reserve site selection of Costello and Polasky (2004)

and the harvest management example discussed below both fit this framework.

In the more general case, in which the conditioning sets overlap, an EV function can be evaluated
by processing each CPT sequentially using index vectors to define the associated conditioning variables.

The basic approach uses a special indexed multiplication of a 3-D array by a 2-D array:

vi(, k) = yia (0, )P (5, 1P (K) )
where Iiy and If’ are index vectors that indicate the page (the 3 dimension) of y;_, and the column of P;
associated with column k of y;. Each column of the output y; is computed as multiplication of an
(H;?:i +1 nj) X n; matrix by an n; vector. At each step the result y; is reshaped in a 3-D array with n;

elements in its 2" dimension. The process is initialized by combining V with P; to form y,. The
algorithm, which is discussed in greater detail in Supplemental Appendix 2, has the significant advantages
that no copying or shuffling of values in memory is required and that the bulk of the work is performed
using matrix-vector multiplication, which can be implemented in a highly efficient way and uses minimal

memaory resources.

The number of arithmetic operations is X~ [1¢; n; min(k;, ny) (recall that ng = [1%-, n;). Contrast this

with an indexed operation using P[:, %] which uses n2 arithmetic operations.
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To illustrate the operations involved consider a problem with 3 state variables and 1 action variable. The
state variable sizes are all n and the action has size n,. With the action in the last column of X suppose

that the parents vectors are given by

q=[14] q2=[124] q3=][234]
So future state 1 depends on current state 1 and the action, etc. The EV function is performed in 3 steps
each involving the current intermediate product y;_; and the current CPT P_i. The variables involved

with each array and the humber of arithmetic operations required by the indexed multiplication are:

i Yi-1 P; # of operations
1 S¥SySy S¥S,A n*ng
2 S+S+5,8,A S58,S,A nng
3 S+85,5,A S§5,5;A n*n,

The total operation count is 3n*n,. If the full transition matrix is used the operations count is n®n,.

EV functions can be evaluated using this approach for both full evaluations of the form v(V) and
indexed evaluations of the form v(V, I*) where [* is an index vector specifying a strategy. . The latter
form is a bit more complicated to implement and is discussed in detail with an example in Supplemental

Appendix 2.

The efficiency of computing an EV function can be influenced both by the sequencing of the
state variables and by performing a preprocessing step in which some of the CPTs are combined to reduce
the amount of computation performed. Determining the optimal sequencing is a difficult problem to solve
and there do not appear to be any polynomial algorithms to solve it. The minimal arithmetic operation
preprocessing of CPTs into groups, however, can be determined using a simple algorithm; this is

discussed in detail in Supplemental Appendix 3.

To illustrate the advantage of combining CPTs in a preprocessing step consider 2 CPTs with the
same conditioning sets: g; = [1 2 4] and q, = [1 2 4]. The first two steps with P; and P, have

operation counts
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i Yi p; # of operations

1 S;S;Sf 51-'-515214 nsna
2 S;SZ-'-SlSzA 5;515214 n4na
If we combine P; and P, in a preprocessing step to form P;, the same operation has

i Vi Pi5 # of operations

1 SFSysy SFS¥S,S,A nn,

Thus we can do both operations in a single step with the same operation count as the previous first step.

Example: Harvest Management

To demonstrate the extent of the gains consider first the case of managing the harvest of a wild
stock, such as a fishery. Models of this sort go back at least to Clarke & Munro (1975) and many variants
have appeared using both continuous and discrete time formulations. Here we use a fairly simple variant
in which a biological population is commercially harvested with a transition function that can be written
as

N* = f(N,H)u
where N is the population size, H is the harvest size and u is a random noise term. Suppose that this is
discretized with sorted sets of ny values of N and ny values of H. The resulting transition matrix Py is
ny X nyny (this can be viewed as an 1 X ny vector composed of blocks of size ny % ny). In addition the
price received (M) for the harvest evolves dynamically according to

M* = g(M)w
where w is also a random noise term. Proceeding as before this is discretized and the n,, X n,, transition

matrix P, is formed.

This is an example in which the conditioning sets (parent variables) form non-overlapping sets
and so the transition matrix can be written as a Kronecker product. If the variables are organized
lexicographically and ordered as (H, N, M) then the combined transition matrix can be written as P =

Py ® Py,. Rather than using (Py ® Py) TV to compute the EV function we can use Py, V Py where V is
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the n,,, X n,, matrix such that vec() = V. This expression can be computed as either Py (VPy) or
(P,}V)PN. The former approach requiring n,,n2n, + n2,n,n, arithmetic operations and the latter

requiring n2,n,, + n,,n2n,; the latter expression therefore unambiguously requires less computational

effort.

This model was implemented and solved using ny = 51, ny = 101 and ny, = 101. The
transitions were discretized using linear interpolation weights and either 10000 randomly generated
values of u and w (Monte Carlo method) or 21 Gaussian quadrature nodes and weights (quadrature
method). The dynamic programming problem was then solved using the full transition matrix with both a
direct (LU) linear solver and an iterative Krylov solver (stabilized bi-conjugate gradient) and with 2 EV
functions that differed in the order of operations. Using a direct solver required only 6 iterations whereas
the use of the Krylov method required 10 iterations (this was true for both discretization methods). The
Krylov method typically requires more iterations because is does not attempt to obtain more accuracy
than is necessary at each iteration. The optimal decision strategy did not differ between the two linear

solve methods.

Typical timing results are shown in Table 2. Comparison of the direct and Krylov methods using
the full transition matrix (in the first two columns of numbers) clearly demonstrates the advantages
possible using Krylov methods rather than direct methods with policy iteration, as has already been
demonstrated by Mrkaic (2002). The further advantage of using an EV function is also demonstrated with
the better of the two EV functions solving the model approximately 10 times as quickly using Krylov
with the full transition matrix and 37-58 times faster than if a direct method is used. The difference in
timing results for the two EV functions methods results because the second method performs the first

multiplication with P,, which is much smaller than Py.

The differences in the results for the Monte Carlo and the quadrature based methods can be

explained by the differences in the degree of sparsity of the transition matrices that the 2 methods
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produced. Py and Py, 12% and 39% dense with the Monte Carlo based approach and 20% and 35% with
the quadrature based approach; these values imply densities of 4% and 7% for the full transition matrix.
This leads to a moderate increase in time for the Krylov methods (which rely on simple matrix-vector
operations) and a fairly dramatic increase in time for the direct methods. These results are, of course,
specific to the particular example used here and don’t allow the conclusion that the Monte Carlo approach
to discretization should be preferred. Indeed initial computation of the Py matrices differed dramatically

for the two approaches (3 seconds for the quadrature versus 17 seconds for the Monte Carlo approach).

Table 2. Typical timing results for the harvest management example
solution method
discretization approach | full -direct  full -Krylov  PL,(VPy) (Py,V)Py
Monte Carlo ‘ 25.76 6.51 2.01 0.69
guadrature 54.73 10.28 2.26 0.95

Example: Controlling a spatial network

Chades et al. (2011) developed a Stochastic Patch Occupancy Model (SPOM) for managing
networks of spatial sites that consisted of N sites withan N X N adjacency matrix C (C;; = 1 is sites i and
j are neighbors and 0 otherwise). Each site is either occupied or empty and either treated or not treated:

OIT, OIN, E/T or E/N and a single site can be treated each period.

The transition probability for site i depends on whether it is occupied or empty (S;), treated or not
treated (4;) and, if empty & not treated, on the # of occupied/untreated neighbors: q; = Z?’=1 CijS; (1 —
Aj). The transition matrix for site i can be represented by a 2 X (4 + K;) matrix

0 1 K;
Pi — pOt pOTL pet pen pen penK
1 — Dot 1 — Pon 1 — Det 1_pgn 1_pgn 1_p91:
where the probabilities of occupancy in the next period are p,; (occupied, not treated), p,, (occupied,

treated), p.: (empty, treated) and pgn (empty, untreated with j occupied/untreated neighbors, up to K;).
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The state space has size 2V and there are N + 1 possible actions (including doing nothing). There are,

therefore, (N + 1)2" state/action combinations

If EV functions are used the operation count depends on the density of the network, which can
range from all isolated (no neighbors) to all connected, with the operation count increasing as the network
becomes more connected. Figure 2 shows the logio operation count for both isolated and fully connected
networks using the EV function approach and compares this to the operation count using the full
transition matrix. Even a fully connected network requires significantly fewer operations than using P;

with N = 16 there are nearly 3 orders of magnitude fewer operations using the EV function approach.

It might seem that, for a fully connected network, there would be no advantage to using an EV
function because the transition for each site depends, in principle, on the current state of every other site.
In this model, however, the transition for any specific site depends only on how many of its neighbors are
occupied. This means that the intermediate factors (the y;) do not need to grow as fast as they would if

the transitions depended on the identities of the occupied neighbors.
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Figure 2. Operation count for spatial network model as a function of the number of sites. EV functions
are used for the “no neighbors” and “all connected cases.” (SpatNet.m)

Concluding comments

This paper introduces the use of expected value (EV) functions as a way to at least partially
address curse of dimensionality issues. Although model size still exhibits exponential grow as the humber
of model variables grows, the use of EV models can nonetheless make feasible the solution of models that
might otherwise be out of reach and speed up the solution of models that might previously have been
frustratingly slow to solve. This was demonstrated for situations for which the state transition can be

broken into separate phases and transitions that can be modeled in factored form.

An important challenge for making such an approach more widely used is to recognize when

these methods are applicable. Ideally this could be done by the computer so users would not have to
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engage in complicated programming. In some cases, such as transitions that can be broken into stages, the
use of EV functions is fairly natural. It may also be easy to determine if a model can be described in
factored form with the state transitions conditioned on subsets of current states and actions. In this case
easy-to-use software for creating the EV function has been incorporated into the MDPSolve package.
This consists of a function that accepts as inputs the CPTs (P;), the set of parent variables for each future
state variable (g;) and the matrix of conditioning variables (X) and returns an EV function which can then

be passed to the dynamic programming solver.

The examples provided here do not cover all of the possible cases for which EV functions may be
useful. An important omission is one in which the CPTs for the future state variables are conditioned on
noise terms that are common to 2 or more states. Such a noise term cannot be eliminated until all the state
variables that it affects are already processed. This typically results in larger intermediate factors, thereby
increasing both processing time and memory usage. Nonetheless, a factored approach may still improve
on the use of the full transition matrix, especially if there are subsets of state variables which involve

nearly disjoint sets of conditioning variables.
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Supplemental Appendix 1:
Index Vectors

Index vectors are vectors composed of positive integers and can be used for extraction, expansion and
shuffling operations. They are used extensively in matrix based programming environments such
as MATLAB and R. To illustrate let:

1 0 0
10 1

11 0

1 0 11 1

|[11]| 2 0 0

[2 ol 2 0 1

A=15 4] B=1, 1 0
I3 ol 2 1 1

l3 4l 30 0

3 0 1

3 1 0

3 1 1

Theindex vector I =[5 6 7 8] extracts the rows of B with the first column equal to 2 so B(I;, 1) =
2 forevery j. Theindexvector /=1 1 2 2 3 3 4 4 5 5 6 6]expandsAsoA(l,:)=
B(:,[12]).Similarly/ =[1 2 1 2 3 4 3 4 5 6 5 6]expandsAsoA(l,:)=
B(:,[13]). Finally theindex vector I =[1 3 5 2 4 6] shuffles the rows of A so they are sorted
by the second column rather than the first:

Dynamic programming algorithms can be described in terms of index vectors. Consider a DP model with
2 state variables, each binary, and 3 possible actions

The matrix S lists all possible states and X lists all possible state/action combinations:

== O O
_ O L O
e
Il

PP OO R RPRPROORFR PR OO

WWWWNNRNN R R R
RFORORORORORO

(note that column 1 of X is the action and columns 2 and 3 are the 2 states). The expansion index vector
that gives the states in each row of X is
L=[1 2 3 4 1 2 3 4 1 2 3 4]
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This expands Sso S(I,:) = X(:,[2 3]).

A state dependent strategy can be specified as an extraction index vector with the ith element associated
with state i:

1 =1[16 7 12] yields:

X% ) =

W NN -
= =0 O
_ o = O

i.e., a strategy that associates action 1 with state 1, action 2 with states 2 and 3 and action 3 with state 4

Strategy vectors select a single row of X for each state so X (1%,]5) = S where J* is an index of the
columns of X associated with the state variables.
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Supplemental Appendix 2:
Computational approach to evaluating EV functions

A factored model is defined by a set of dg conditional transition probability matrices P; of size n; X m;.
The computations necessary to compute an EV function can be implemented in a set of d, multiplication
operations involving the CPTs. The multiplication operations have a special form which can be called
indexed multiplications. These involve a 3-D array X multiplied by a 2-D array Y with the arrays matched
according to 2 index vectors, I* and I”, both of length K.

The indexed multiplication can be described as follows. Let the inputs X bem xn xpandY ben X q
and the output Z be m x K, where Z,;, = X”’lfY:’Z (the : indicates all elements for a given dimension).
Thus each column of the output Z is computed as an ordinary matrix-vector product of one of the pages
(3" dimension) of X and one of the columns of Y. Note that when arrays are stored in column-major form
(as is true with MATLAB) the subarrays used in the matrix-vector products are stored in contiguous
memory. These matrix-vector products can be computed efficiently with a call to the BLAS gemv
procedure (Netlib, BLAS (Basic Linear Algebra Subprograms), https://www.netlib.org/blas/). Let this
function be represented as Z = IM (X, I,.,Y, 1,,). To avoid unnecessary indexing, if the index vector for
either X or Y is null (empty) then the index is assumed to equal 1 through K.

The algorithm for computing an EV function can now be described. First, set y, = V and let y; be the
intermediate product after incorporating the first i CPTs. Let Iip and Iiy be index vectors with length k; =
[1jeq, nj Where Q; = Ub_, qx. In words, k; is the size of the space of conditioning variables for the first
i state variables.

Using the I index vectors a full EV function evaluation is computed using the following pseudo-code:
sety =v
reshape y to be [1%,n; x n;
sety <« y=*p;
loop fromi=2toi=d
reshape y to be ([1%,11;) X n; X ki_y
sety « IM(y,I7,P,IP
return y

The total operation count is Y&, p;k; where p; = l'[jLi n; is the size of the space of the remaining
unprocessed state variables. This can be contrasted to the use of the full transition matrix, which uses
ngn, operations. Note that variable order matters and ideally we want the k; to grow slowly. It should
also be noted that the reshape operation that transforms a (T1%; n;) x k;—; matrix into a (I1%-;4, 1) X
n; X k;_, 3-D array has no computational cost as it does not require access to the elements of the array
but merely alters how those elements are interpreted.

The discussion thus far has applied to a full EV evaluation which returns E[V (S*)|X] for all state/action
combinations. When the dynamic programming algorithm is carried out using policy iteration and Krylov
methods most EV evaluations are indexed. Hence we also require an efficient way to compute
E[V(S*)|X] for a specific strategy. A strategy can be defined by the index vector 1¢ (with length ny).
Although it is possible to simply do a full (non-indexed) evaluation and then extract the elements using I*
such an approach would perform a large amount of unnecessary computations.
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An alternative uses a set of ]f index vectors that expand the columns of P; to match those of the full X
matrix. Each J? is a vector of length n, (i.e., equals the # of rows of X). The algorithm could be
initialized as before (y « y * p;) and then y could be expanded by setting (y < y(:,J¥). Then, looping
over the remaining CPTS we could use y « IM(y,[], P;,JF)

Where [] represents a null (empty) input. A more efficient approach recognizes that early in the operation
it is generally more efficient to use the I? indices and latter it is more efficient to use the J? indices. At
some point the length of I? is greater than ng (the length of /%), at which point it would be more efficient
to switch to the use of the J? indices. To implement this we also need an additional index vector J¥ to
expand y; at the time the switch is made.

The indexed EV function evaluation is described by the following pseudo-code:

sety=v
reshape y to be [1%,n; x n;
sety < yx*p;
set usel = true
loop fromi=2toi=d
if m; > n,
reshape y to be (1% ;1)) X n; X m;_,
and expand y(:,:, k) « y ( :,]y(la(k)))
set usel = false
if usel=true
reshape y to be (1%, ;1) X n; X m;_,
sety « IM(y,I7,P, 1P
otherwise
sety « IM (y, [],Pi,]f(la))

To illustrate the impact of this algorithm recall the numerical example given in the paper. Furthermore,
suppose that n < n, < n? and note that a strategy index has length n, = n3. The I; indices have sizes
nng, n?ng and n?n,. The crossover from I to J indexing would therefore occur in step 2.

i Vi P; # of operations
1 SFSS st S1S,A nn,
2 S35+45,5,8; 555,5,85 n®
3 5$5:5,5; 555,5,5; n*

The total operation count is n*(n, + n + 1). If the full transition matrix is used by extracting the
appropriate columns of P: P[:,1%] the operation requires n® operations.
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Supplemental Appendix 3:
Optimal preprocessing of CPTs

It can be advantageous to preprocess groups of state variables into joint CPTs, especially when the
variables in the group have similar sets of conditioning variables. The optimal grouping of operations can
be solved using an 0(d®) dynamic programming algorithm that is similar to the approach used to address
the well-known matrix chain multiplication problem. Given a variable order the cost of incorporating a
CPT that groups variables i through j > i is C;; = p;m;, where p; = [1¢_; n and m; is the number of
tuples of the parents of variables 1 through j. For each (i, j) we can evaluate whether breaking the
grouped variables into two further groups results in a less costly set of operations:

Mygor + Mivirn )
i+1) i,i+k i+k+1,j

The minimal cost grouping is given by M, . This is optimal for a full evaluation. For an indexed
evaluation we could instead define

M--=min(C-~ min
Y Y’ kefo,...j—

Cij =Di min(mj, ns)

By storing where splits occur the optimal groupings can be determined.
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