
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Center for Environmental and Resource Economic Policy
College of Agriculture and Life Sciences
https://cenrep.ncsu.edu

Stochastic Dynamic Programming
without Transition Matrices

Paul L. Fackler

Center for Environmental and Resource Economic Policy

Working Paper Series: No. 18-018
September 2018

Suggested citation: Fackler, Paul L (2018). Stochastic dynamic programming without transition matrices. (CEnREP Working Paper No. 18-018).
Raleigh, NC: Center for Environmental and Resource Economic Policy.

Stochastic dynamic programming without transition matrices 1

Paul L. Fackler1 2
Professor, North Carolina State University 3
9/17/2018 4

Abstract: Discrete dynamic programming, widely used in addressing optimization over time, suffers 5
from the so-called curse of dimensionality, the exponential increase in problem size as the number of 6
system variables increases. One method to partially address this problem is to avoid the use of state 7
transition probability matrices, which grow in the square of the size of the state space. This can be done 8
through the use of expected value (EV) functions, which compute the expectation of functions of the 9
future state variables conditioned on current variables. Two ways that this leads to potential gains arise 10
when the state transition can be broken into separate phases and when the transitions for different state 11
variables are conditionally independent. Both of these situations arise in models that are used in natural 12
resource management and are illustrated with several examples. 13

Keywords: dynamic programming, computational efficiency, SPOMs, harvest management, Kronecker 14
products 15

 16

Discrete dynamic programming (DDP) is a fundamental tool for making good decisions 17

concerning dynamically changing systems. For a gentle introduction see Marescot, et al. (2013) and for 18

more in-depth discussions see Puterman (1994) or Rust (2008). A significant limitation of DDP, the so-19

called curse of dimensionality, arises due to the exponential increase in the problem size as the number of 20

variables increases (Powell and Topaloglu; 2005). This problem is particularly acute in the handling of 21

the state transition, which is typically defined in terms of a transition probability matrix 𝑃 that specifies 22

the probability that some specific value of the state variable will occur in the next period given the current 23

value of the state and actions variables. The total number of elements of this matrix grows with the square 24

of the number of state values. 25

This note discusses how the curse of dimensionality can be made somewhat less problematic by 26

careful attention to how the transition is handled. In particular it points out that the transition matrix 𝑃 27

need not be explicitly defined but instead can be replaced by a function which computes the expectation 28

of future values conditioned on current states and actions. Such a function will be referred to as an 29

1 © 2017-2018, Paul L. Fackler

expected value (EV) function and its use can have significant advantages both in reducing memory 30

requirements and in speeding up computations (using both function and policy iteration). Two common 31

examples of when such advantages are possible arise when the state variables are conditionally 32

independent or when the transition can be broken into separate phases. The methods discussed in this note 33

are easily implemented using the freely available MATLAB based MDPSolve package (Fackler, 2011) 34

and code for the examples discussed here is available as a supplement. 35

One application area where the curse of dimensionality is particularly problematic is in 36

conservation management of spatial units. For example in Stochastic Patch Occupancy Models (SPOMs) 37

the state variables are binary variables representing the absence or presence of some species on a site 38

(patch). With 𝑁 sites the state space is 2𝑁 and thus grows exponentially in the number of sites. Another 39

example of such a problem is the reserve site selection problem in which a set of sites are targeted for 40

acquisition by a conservation organization but may instead be acquired and developed for non-41

conservation uses. In this case each site has three alternative states (available, reserved, developed) and 42

hence the state space is 3𝑁. 43

This paper first briefly reviews the dynamic programming framework, including a discussion of 44

how index vectors can be used to improve efficiency. It then introduces the concept of an Expected Value 45

(EV) function. Two situations which lead to significant advantages by using EV functions are then 46

discussed and illustrated. The first is the situation in which the state transition occurs in stages, with each 47

stage represented by a sparse transition probability matrix. The second is when a model can be 48

represented in a factored form by a set of conditionally independent state transitions. 49

Dynamic Programming 50

The basic components of a DDP model are (1) a reward function 𝑅(𝑆, 𝐴) which describes the 51

current net benefits of being in a given state 𝑆 and taking a specified action 𝐴, (2) a transition probability 52

matrix, 𝑃(𝑆+|𝑆, 𝐴), which gives the transition probability of moving to a specified state 𝑆+ in the next 53

period, given the current state and action and (3) a discount factor 𝛿 ∈ [0,1] that measures the value of 54

obtaining a given reward in the next period relative to obtaining it this period. The solution to a dynamic 55

programming problem is a strategy that defines how the action should be chosen for each value of the 56

state, 𝐴∗(𝑆), and a value function 𝑉(𝑆) which describes the value in each state of the sum of the expected 57

discounted rewards when using the optimal strategy. 58

Standard algorithms for solving dynamic programming problems are based on the Bellman 59

Equation 60

𝑉(𝑆) = max
𝐴

𝑅(𝑆, 𝐴) + 𝛿 ∑ 𝑃(𝑆+|𝑆, 𝐴)𝑉(𝑆+)

𝑆+

 65

If there are 𝑛𝑠 values of the state variable(s) and 𝑛𝑥 possible combinations of state and action values then 61

𝑉 is an 𝑛𝑠 element vector, 𝑅 is an 𝑛𝑥 element vector and 𝑃 is an 𝑛𝑠 × 𝑛𝑥 column-stochastic matrix (a 62

matrix composed of non-negative numbers with columns that sum to 1).2 In this case the Bellman 63

function can be written as 64

𝑉 = max
𝐴

𝑅𝐴 + 𝛿𝑃𝐴
⊤𝑉+ 73

where the 𝐴 refers to a given strategy. The two standard methods for solving DP problems (function and 66

policy iteration) both use an initial guess of the vector 𝑉 and compute the vector 𝑉̃ = 𝑅 + 𝛿𝑃⊤𝑉. Each 67

row of this vector is associated with a specified value for the state and the maximal value for each state 68

can then be identified. This results in an 𝑛𝑠 vector of indices 𝐼𝑎 that selects these values of 𝑉̃ 69

𝐼𝑖
𝑎 = argmax

𝑗: 𝐼𝑥(𝑗)=𝑖
𝑉̃𝑗 74

(the use of index vectors is discussed in more detail in Supplemental Appendix 1). The two methods 70

differ in how they update 𝑉. Function iteration replaces 𝑉 with 𝑉̃[𝐼𝑎] whereas policy iteration replaces 𝑉 71

with the solution to the linear system 72

(𝐼 − 𝛿𝑃[: , 𝐼𝑎]⊤)𝑉 = 𝑅[𝐼𝑎]. 75

2 Alternatively it could be an 𝑛𝑥 × 𝑛𝑠 row-stochastic matrix with rows that sum to 1.

Both methods repeat this process iteratively until a convergence criterion is met. In general, policy 76

iteration uses fewer iterations but each iteration is more expensive because of the need to perform a linear 77

solve. 78

The state 𝑆 is typically composed of a set of 𝑑𝑠 variables and the size of the state space is the 79

number of possible combinations (tuples) of these variables. A significant challenge in formulating and 80

solving realistic decision models is the so-called curse of dimensionality. The problem size grows 81

exponentially as 𝑑𝑠 increases; for example, if all state variables can take on 𝑚 different values then the 82

size of the state space is 𝑚𝑑𝑠. Of particular importance is that the 𝑃 matrix can become prohibitively 83

large. Even when sparse (i.e., having many 0 elements) it can use up large amounts of memory and 84

performing the linear solve in policy iteration may become extremely time consuming or even impossible 85

due to memory limitations. Even the matrix-vector operations used to compute 𝑃⊤𝑉 may be prohibitively 86

time-consuming. 87

One approach to rescuing policy iteration which works well for large problems uses iterative 88

linear solvers, including Krylov methods (Barrett et al., 1994). This approach is discussed in Rust (1996) 89

and was demonstrated by Mrkaic (2002) to result in significant reductions in the time required for each 90

iteration when using policy iteration. The use of Krylov methods, such as Generalized Minimum Residual 91

(GMRES) and Bi-Conjugate Gradient-Stabilized (BiCGSTAB), are easily implemented into dynamic 92

programming algorithms in MATLAB because these linear equation solvers are part of the basic 93

MATLAB package. 94

What does not appear to be widely recognized in the literature is the potential for memory and 95

speed efficiencies from not forming the 𝑃 matrix in the first place. All that is required of function 96

iteration or policy iteration, if a Krylov solver is used, is that 𝑃⊤𝑉 can be evaluated. 97

Expected Value Functions 98

An expected value (EV) function produces the same result as 𝑃⊤𝑉 but without the need to 99

explicitly compute 𝑃. Specifically, an EV function 𝑣 transforms the future state vector into its expectation 100

conditional on current states and actions (𝑋): 101

𝑣(𝑉+) = 𝐸[𝑉+|𝑋] 105

An EV function might also use a second input argument, 102

𝑣(𝑉+, 𝐼𝑎) = 𝐸[𝑉+|𝑋[𝐼𝑎 , :]] 106

in which case it is an indexed evaluation that transforms the future state vector into its expectation 103

condition on the states and actions indexed by 𝐼𝑎. 104

The maximization step in the dynamic programming algorithm uses a full EV evaluation: 107

𝐼𝑖
𝑎 = argmax

𝑗: 𝐼𝑥(𝑗)=𝑖
𝑅𝑗 + 𝛿[𝑣(𝑉)]𝑗 109

whereas the value function updates use an indexed evaluation. If function iteration is used 108

𝑉 ← 𝑅[𝐼𝑎] + 𝛿𝑣(𝑉, 𝐼𝑎) 111

If policy iteration is used then 𝑉 solves the linear equation: 110

ℎ(𝑉) = 𝑉 − 𝛿𝑣(𝑉, 𝐼𝑎) =𝑅[𝐼𝑎] 115

Note that this linear solve cannot be performed using direct methods (e.g., LU decomposition) because 112

the matrix operator is not available but can be solved efficiently using iterative Krylov methods.3 Thus 113

both standard methods for solving DP problems are still available when EV functions are used. 114

There are at least two situations in which the use of EV functions is advantageous. The first 116

situation in which large gains are possible with an EV function approach arises when the state transition 117

occurs in phases, 𝑃 = 𝑃2𝑃1, where the transition matrix for each phase, 𝑃𝑖, is sparse. Typically 𝑃 will be 118

far less sparse than its components, in which this case it is possible that 𝑃1
⊤(𝑃2

⊤𝑉) can be computed far 119

3 The implicit matrix involved here, 𝐼 − 𝛿𝑃⊤, is easily shown to be row-wise strictly diagonally dominant, which is a

typical sufficient condition for ensuring that an iterative linear solver converges.

faster than 𝑃⊤𝑉 and use far less memory. This will be illustrated with a Stochastic Patch Occupancy 120

Model (SPOM) and with a model in which, in the first stage, the action transforms the state 121

deterministically. 122

The second situation is when two or more sets of the state variables have transition probabilities 123

that are conditionally independent, where conditioning is on subsets of the current state and action 124

variables. Such a situation arises in many dynamic programming models. This is illustrated with a harvest 125

management example and with an SPOM model defined on a network of interconnected sites. To 126

facilitate the specification of such EV functions a set of procedures was developed that allows a user to 127

pass a set of transition matrices for individual state variables, along with information on the conditioning 128

variables involved. 129

Staged Transitions 130

The first situation in which there are gains from using the EV function approach arises when the 131

transition can be broken into separate phases, each of which can be described by a sparse transition 132

matrix. Such a situation arises with so-called Stochastic Patch Occupancy Models (SPOMs). Early 133

contributors to this literature are Caswell & Etter (1993), Hanski (1994) and Day & Possingham (1995). 134

In these models there are 𝑁 sites or patches that can each be classified as either empty or occupied. In one 135

of the phases, the extinction phase, an occupied patch might change to empty with probability 𝑒 (and if 136

empty it remains so). In the other phase, the colonization phase, an empty patch might change to occupied 137

with probability 𝑐 (and if occupied it remains so). Typically 𝑒 and 𝑐 may differ from patch to patch and 138

will be functions of the current condition of the other patches and of actions that resource managers take. 139

In SPOMs the state variable is a vector of 𝑁 0s and 1s representing the occupancy status of each 140

patch. The number of possible configurations is 2𝑁 which clearly is a manifestation of the curse of 141

dimensionality. The larger issue for such models, however, is that 𝑃 has 4𝑁 elements (for any given 142

treatment) and is typically dense or nearly so. The transition matrix however can be decomposed into its 143

extinction and colonization phases, either as 𝑃 = 𝐸𝐶 or 𝑃 = 𝐶𝐸 where 𝐸 and 𝐶 represent the transition 144

probability matrices for the two phases (which order is used depends on when action is taken). For an 145

individual site the site transition matrices for each stage are triangular: 146

 𝐸𝑖 = [
1 𝑒𝑖

0 1 − 𝑒𝑖
] 𝐶𝑖 = [

1 − 𝑐𝑖 0
𝑐𝑖 1

] 147

Note that, in this simple model, the colonization probabilities do not depend on the occupancy status of 148

other patches. The full extinction and colonization transition matrices can therefore be written as a 149

sequence of Kronecker products, e.g., 𝐸 = 𝐸1 ⊗ 𝐸2 ⊗ …⊗ 𝐸𝑁, implying that there are 3𝑁 non-zero 150

values in each of 𝐸 and 𝐶. (this assumes that none of the values of the 𝑒𝑖 and 𝑐𝑖 are exactly 0 or exactly 151

1), The density of these matrices is thus of 3𝑁/4𝑁 (their sparsity pattern is shown in Figure 1 for 𝑁 =152

10). Although still problematic, storing 3𝑁 elements in each of two sparse matrices may be feasible for 153

values of 𝑁 for which storing a dense matrix with 4𝑁 elements is not. Also performing 3𝑁 arithmetic 154

operations twice is much faster than performing 4𝑁 operations once. 155

These results are even more dramatic if each site can be classified into more than 2 categories. If 156

there are 𝑚 possible categories then there will be 𝑚𝑁 values of the state and the transition matrix will 157

contain 𝑚2𝑁 values. If the two phases represent a decreasing and an increasing phase the single site phase 158

transition matrices will be triangular and thus contain 𝑚(𝑚 + 1)/2 non-zero elements. The number of 159

non-zero elements in full phase transition matrix is this number raised to the power 𝑁 which implies that 160

the density of the phase transition matrix is (
𝑚+1

2𝑚
)
𝑁

. The density therefore declines towards 2−𝑁 as 𝑚 161

gets large. Clearly the curse of dimensionality is still present but at least some of its sting has been 162

reduced. 163

___ 164

 165

Figure 1. Sparsity patterns for extinction and colonization transition matrices (𝑁 = 10) 166

___ 167

Table 1 displays the relative times required to do a basic matrix-vector multiplication, which is 168

the basis for Krylov methods, using the full and staged transition approaches. Row 1 displays the time 169

required for 1000 of these operations using the staged form 𝐸⊤(𝐶⊤𝑉) and row 2 shows the same for the 170

full form 𝑃⊤𝑉. At relatively low values of 𝑁 the full method actually is faster than the staged form, a 171

result that is likely due to the greater efficiency of the matrix multiply operation for full versus sparse 172

formats (this is, of course, dependent on both the software and hardware used). Once 𝑁 is greater than 10, 173

however, the staged form is faster by an increasingly wide gap, being over 13 times faster for 𝑁 = 14. 174

The third row of the table shows the time required to actually form 𝑃 by multiplying 𝐶 and 𝐸. This also 175

imposes a significant and avoidable computational burden both in time and memory utilization. 176

___ 177

Table 1. Typical computational times and sparsity for SPOM model 178
 𝑁
 8 9 10 11 12 13 14

𝐸⊤(𝐶⊤𝑣) 0.026 0.065 0.086 0.136 0.292 1.672 4.870

𝑃𝑣 0.014 0.036 0.084 0.801 4.011 15.298 64.277

𝑃 = 𝐶𝐸 0.008 0.008 0.046 0.154 0.724 3.499 19.332

density 0.100 0.075 0.056 0.042 0.032 0.024 0.018

Rows 1 & 2 display the time required for 1000 evaluations using the factored form 𝐸⊤(𝐶⊤𝑣) and 179
 full form 𝑃⊤𝑣 180
Row 3 shows the setup time required to a form 𝑃 181
Row 4 shows the fraction of non-zero elements in 𝐸 and 𝐶 182
___ 183

Another way that staged transitions can lead to substantial computational gains arises when the 184

state transition can be written in terms of the so-called post-decision state. For example, in some fisheries 185

models the future state depends only on escapement which equals the current stock less that harvest. In a 186

simple model the current stock is the state, the harvest is the action and the escapement is the post-harvest 187

state. 188

In general if the transition can be divided into a deterministic transition 𝑆 = 𝑔1(𝑆, 𝐴) and a 189

stochastic transition 𝑆+ = 𝑔2(𝑆, 𝑒) then we only require an 𝑛𝑠 × 𝑛𝑠 transition matrix 𝑃2 and an 𝑛𝑥 index 190

vector 𝐼1 that defines the 𝑔1 mapping. The expected value function can then be written as 𝑣(𝑉) =191

[𝑃2
⊤𝑉](𝐼1). 192

Conditional Independence 193

Many dynamic models consist of a 𝑑𝑠-element set of state variables that evolve independently 194

when conditioned on the current state and action variables. The values of the conditioning variables can 195

organized into an 𝑛𝑥 × 𝑑𝑥 matrix 𝑋, with each row representing a unique combination of states and 196

actions. In addition to 𝑋 a model is defined by a set of 𝑑𝑠 conditional probability tables (CPTs), 𝑃𝑖, 197

representing the transition probability conditioned on a subset of 𝑋 and an associated set of index vectors 198

𝑞𝑖 defining the sets of conditioning (parent) variables, with the values of the 𝑞𝑖 associated with columns 199

of 𝑋. 200

The simplest case arises when the state variables have disjoint conditioning sets (𝑞𝑖⋂𝑞𝑗 = ∅ for 201

𝑖 ≠ 𝑗). In this case the transition matrix can be written as a chain of Kronecker products: 202

𝑃 = 𝑃1 ⊗ …⊗ 𝑃𝑑𝑠
 207

(this was true of the SPOM discussed in the previous section). It is well known that Kronecker product-203

vector multiplication can be performed efficiently without actually forming the Kronecker product 204

(Pereyra and Scherer; 1973). The model of dynamic reserve site selection of Costello and Polasky (2004) 205

and the harvest management example discussed below both fit this framework. 206

In the more general case, in which the conditioning sets overlap, an EV function can be evaluated 208

by processing each CPT sequentially using index vectors to define the associated conditioning variables. 209

The basic approach uses a special indexed multiplication of a 3-D array by a 2-D array: 210

𝑦𝑖(: , 𝑘) = 𝑦𝑖−1(: , : , 𝐼𝑖
𝑦
(𝑘))𝑃𝑖(: , 𝐼𝑖

𝑝(𝑘)) 219

where 𝐼𝑖
𝑦

 and 𝐼𝑖
𝑝

 are index vectors that indicate the page (the 3rd dimension) of 𝑦𝑖−1 and the column of 𝑃𝑖 211

associated with column 𝑘 of 𝑦𝑖. Each column of the output 𝑦𝑖 is computed as multiplication of an 212

(∏ 𝑛𝑗
𝑑
𝑗=𝑖+1) × 𝑛𝑖 matrix by an 𝑛𝑖 vector. At each step the result 𝑦𝑖 is reshaped in a 3-D array with 𝑛𝑖 213

elements in its 2nd dimension. The process is initialized by combining 𝑉 with 𝑃1 to form 𝑦1. The 214

algorithm, which is discussed in greater detail in Supplemental Appendix 2, has the significant advantages 215

that no copying or shuffling of values in memory is required and that the bulk of the work is performed 216

using matrix-vector multiplication, which can be implemented in a highly efficient way and uses minimal 217

memory resources. 218

The number of arithmetic operations is ∑ ∏ 𝑛𝑗 min(𝑘𝑖 , 𝑛𝑠)
𝑑
𝑗=𝑖

𝑑
𝑖=1 (recall that 𝑛𝑠 = ∏ 𝑛𝑖

𝑑
𝑗=1). Contrast this 220

with an indexed operation using 𝑃[: , 𝐼𝑎] which uses 𝑛𝑠
2 arithmetic operations. 221

To illustrate the operations involved consider a problem with 3 state variables and 1 action variable. The 222

state variable sizes are all 𝑛 and the action has size 𝑛𝑎. With the action in the last column of 𝑋 suppose 223

that the parents vectors are given by 224

 𝑞1 = [1 4] 𝑞2 = [1 2 4] 𝑞3 = [2 3 4] 225

So future state 1 depends on current state 1 and the action, etc. The EV function is performed in 3 steps 226

each involving the current intermediate product 𝑦𝑖−1 and the current CPT 𝑃_𝑖. The variables involved 227

with each array and the number of arithmetic operations required by the indexed multiplication are: 228

𝑖 𝑦𝑖−1 𝑃𝑖 # of operations

1 𝑆3
+𝑆2

+𝑆1
+ 𝑆1

+𝑆1𝐴 𝑛4𝑛𝑎

2 𝑆3
+𝑆2

+𝑆1𝑆2𝐴 𝑆2
+𝑆1𝑆2𝐴 𝑛4𝑛𝑎

3 𝑆3
+𝑆1𝑆2𝐴 𝑆3

+𝑆2𝑆3𝐴 𝑛4𝑛𝑎

The total operation count is 3𝑛4𝑛𝑎. If the full transition matrix is used the operations count is 𝑛6𝑛𝑎 . 229

EV functions can be evaluated using this approach for both full evaluations of the form 𝑣(𝑉) and 230

indexed evaluations of the form 𝑣(𝑉, 𝐼𝑎) where 𝐼𝑎 is an index vector specifying a strategy. . The latter 231

form is a bit more complicated to implement and is discussed in detail with an example in Supplemental 232

Appendix 2. 233

 The efficiency of computing an EV function can be influenced both by the sequencing of the 234

state variables and by performing a preprocessing step in which some of the CPTs are combined to reduce 235

the amount of computation performed. Determining the optimal sequencing is a difficult problem to solve 236

and there do not appear to be any polynomial algorithms to solve it. The minimal arithmetic operation 237

preprocessing of CPTs into groups, however, can be determined using a simple algorithm; this is 238

discussed in detail in Supplemental Appendix 3. 239

To illustrate the advantage of combining CPTs in a preprocessing step consider 2 CPTs with the 240

same conditioning sets: 𝑞1 = [1 2 4] and 𝑞2 = [1 2 4]. The first two steps with 𝑃1 and 𝑃2 have 241

operation counts 242

𝑖 𝑦𝑖 𝑃𝑖 # of operations

1 𝑆3
+𝑆2

+𝑆1
+ 𝑆1

+𝑆1𝑆2𝐴 𝑛5𝑛𝑎

2 𝑆3
+𝑆2

+𝑆1𝑆2𝐴 𝑆2
+𝑆1𝑆2𝐴 𝑛4𝑛𝑎

If we combine 𝑃1 and 𝑃2 in a preprocessing step to form 𝑃12 the same operation has 243

𝑖 𝑦𝑖 𝑃12 # of operations

1 𝑆3
+𝑆2

+𝑆1
+ 𝑆2

+𝑆1
+𝑆1𝑆2𝐴 𝑛5𝑛𝑎

Thus we can do both operations in a single step with the same operation count as the previous first step. 244

Example: Harvest Management 245

To demonstrate the extent of the gains consider first the case of managing the harvest of a wild 246

stock, such as a fishery. Models of this sort go back at least to Clarke & Munro (1975) and many variants 247

have appeared using both continuous and discrete time formulations. Here we use a fairly simple variant 248

in which a biological population is commercially harvested with a transition function that can be written 249

as 250

𝑁+ = 𝑓(𝑁,𝐻)𝑢 257

where 𝑁 is the population size, 𝐻 is the harvest size and 𝑢 is a random noise term. Suppose that this is 251

discretized with sorted sets of 𝑛𝑁 values of 𝑁 and 𝑛𝐻 values of 𝐻. The resulting transition matrix 𝑃𝑁 is 252

𝑛𝑁 × 𝑛𝑁𝑛𝐻 (this can be viewed as an 1 × 𝑛𝐻 vector composed of blocks of size 𝑛𝑁 × 𝑛𝑁). In addition the 253

price received (𝑀) for the harvest evolves dynamically according to 254

𝑀+ = 𝑔(𝑀)𝑤 258

where 𝑤 is also a random noise term. Proceeding as before this is discretized and the 𝑛𝑀 × 𝑛𝑀 transition 255

matrix 𝑃𝑀 is formed. 256

This is an example in which the conditioning sets (parent variables) form non-overlapping sets 259

and so the transition matrix can be written as a Kronecker product. If the variables are organized 260

lexicographically and ordered as (𝐻,𝑁,𝑀) then the combined transition matrix can be written as 𝑃 =261

𝑃𝑁 ⊗ 𝑃𝑀. Rather than using (𝑃𝑁 ⊗ 𝑃𝑀)⊤𝑉 to compute the EV function we can use 𝑃𝑀
⊤𝑉̆𝑃𝑁 where 𝑉̆ is 262

the 𝑛𝑚 × 𝑛𝑛 matrix such that vec(𝑉̆) = 𝑉. This expression can be computed as either 𝑃𝑀
⊤(𝑉̆𝑃𝑁) or 263

(𝑃𝑀
⊤𝑉̆)𝑃𝑁. The former approach requiring 𝑛𝑚𝑛𝑛

2𝑛𝑎 + 𝑛𝑚
2 𝑛𝑛𝑛𝑎 arithmetic operations and the latter 264

requiring 𝑛𝑚
2 𝑛𝑛 + 𝑛𝑚𝑛𝑛

2𝑛𝑎; the latter expression therefore unambiguously requires less computational 265

effort. 266

This model was implemented and solved using 𝑛𝐻 = 51, 𝑛𝑁 = 101 and 𝑛𝑀 = 101. The 267

transitions were discretized using linear interpolation weights and either 10000 randomly generated 268

values of 𝑢 and 𝑤 (Monte Carlo method) or 21 Gaussian quadrature nodes and weights (quadrature 269

method). The dynamic programming problem was then solved using the full transition matrix with both a 270

direct (LU) linear solver and an iterative Krylov solver (stabilized bi-conjugate gradient) and with 2 EV 271

functions that differed in the order of operations. Using a direct solver required only 6 iterations whereas 272

the use of the Krylov method required 10 iterations (this was true for both discretization methods). The 273

Krylov method typically requires more iterations because is does not attempt to obtain more accuracy 274

than is necessary at each iteration. The optimal decision strategy did not differ between the two linear 275

solve methods. 276

Typical timing results are shown in Table 2. Comparison of the direct and Krylov methods using 277

the full transition matrix (in the first two columns of numbers) clearly demonstrates the advantages 278

possible using Krylov methods rather than direct methods with policy iteration, as has already been 279

demonstrated by Mrkaic (2002). The further advantage of using an EV function is also demonstrated with 280

the better of the two EV functions solving the model approximately 10 times as quickly using Krylov 281

with the full transition matrix and 37-58 times faster than if a direct method is used. The difference in 282

timing results for the two EV functions methods results because the second method performs the first 283

multiplication with 𝑃𝑀 which is much smaller than 𝑃𝑁. 284

The differences in the results for the Monte Carlo and the quadrature based methods can be 285

explained by the differences in the degree of sparsity of the transition matrices that the 2 methods 286

produced. 𝑃𝑁 and 𝑃𝑀 12% and 39% dense with the Monte Carlo based approach and 20% and 35% with 287

the quadrature based approach; these values imply densities of 4% and 7% for the full transition matrix. 288

This leads to a moderate increase in time for the Krylov methods (which rely on simple matrix-vector 289

operations) and a fairly dramatic increase in time for the direct methods. These results are, of course, 290

specific to the particular example used here and don’t allow the conclusion that the Monte Carlo approach 291

to discretization should be preferred. Indeed initial computation of the 𝑃𝑁 matrices differed dramatically 292

for the two approaches (3 seconds for the quadrature versus 17 seconds for the Monte Carlo approach). 293

___ 294
Table 2. Typical timing results for the harvest management example 295

 solution method
discretization approach full - direct full - Krylov 𝑷𝑴

⊤ (𝑽̆𝑷𝑵) (𝑷𝑴
⊤ 𝑽̆)𝑷𝑵

Monte Carlo 25.76 6.51 2.01 0.69
quadrature 54.73 10.28 2.26 0.95

___ 296
 297

Example: Controlling a spatial network 298

Chadès et al. (2011) developed a Stochastic Patch Occupancy Model (SPOM) for managing 299

networks of spatial sites that consisted of 𝑁 sites with an 𝑁 × 𝑁 adjacency matrix 𝐶 (𝐶𝑖𝑗 = 1 is sites 𝑖 and 300

𝑗 are neighbors and 0 otherwise). Each site is either occupied or empty and either treated or not treated: 301

O/T, O/N, E/T or E/N and a single site can be treated each period. 302

The transition probability for site 𝑖 depends on whether it is occupied or empty (𝑆𝑖), treated or not 303

treated (𝐴𝑖) and, if empty & not treated, on the # of occupied/untreated neighbors: 𝑞𝑖 = ∑ 𝐶𝑖𝑗𝑆𝑗
𝑁
𝑗=1 (1 −304

𝐴𝑗). The transition matrix for site 𝑖 can be represented by a 2 × (4 + 𝐾𝑖) matrix 305

𝑃𝑖 = [
𝑝𝑜𝑡 𝑝𝑜𝑛 𝑝𝑒𝑡 𝑝𝑒𝑛

0 𝑝𝑒𝑛
1 … 𝑝𝑒𝑛

𝐾𝑖

1 − 𝑝𝑜𝑡 1 − 𝑝𝑜𝑛 1 − 𝑝𝑒𝑡 1 − 𝑝𝑒𝑛
0 1 − 𝑝𝑒𝑛

1 … 1 − 𝑝𝑒𝑛
𝐾𝑖

] 308

where the probabilities of occupancy in the next period are 𝑝𝑜𝑡 (occupied, not treated), 𝑝𝑜𝑛 (occupied, 306

treated), 𝑝𝑒𝑡 (empty, treated) and 𝑝𝑒𝑛
𝑗

 (empty, untreated with 𝑗 occupied/untreated neighbors, up to 𝐾𝑖). 307

The state space has size 2𝑁 and there are 𝑁 + 1 possible actions (including doing nothing). There are, 309

therefore, (𝑁 + 1)2𝑁 state/action combinations 310

If EV functions are used the operation count depends on the density of the network, which can 311

range from all isolated (no neighbors) to all connected, with the operation count increasing as the network 312

becomes more connected. Figure 2 shows the log10 operation count for both isolated and fully connected 313

networks using the EV function approach and compares this to the operation count using the full 314

transition matrix. Even a fully connected network requires significantly fewer operations than using 𝑃; 315

with 𝑁 = 16 there are nearly 3 orders of magnitude fewer operations using the EV function approach. 316

It might seem that, for a fully connected network, there would be no advantage to using an EV 317

function because the transition for each site depends, in principle, on the current state of every other site. 318

In this model, however, the transition for any specific site depends only on how many of its neighbors are 319

occupied. This means that the intermediate factors (the 𝑦𝑖) do not need to grow as fast as they would if 320

the transitions depended on the identities of the occupied neighbors. 321

__ 322

 323
Figure 2. Operation count for spatial network model as a function of the number of sites. EV functions 324
are used for the “no neighbors” and “all connected cases.” (SpatNet.m) 325
___ 326

 327

Concluding comments 328

This paper introduces the use of expected value (EV) functions as a way to at least partially 329

address curse of dimensionality issues. Although model size still exhibits exponential grow as the number 330

of model variables grows, the use of EV models can nonetheless make feasible the solution of models that 331

might otherwise be out of reach and speed up the solution of models that might previously have been 332

frustratingly slow to solve. This was demonstrated for situations for which the state transition can be 333

broken into separate phases and transitions that can be modeled in factored form. 334

An important challenge for making such an approach more widely used is to recognize when 335

these methods are applicable. Ideally this could be done by the computer so users would not have to 336

engage in complicated programming. In some cases, such as transitions that can be broken into stages, the 337

use of EV functions is fairly natural. It may also be easy to determine if a model can be described in 338

factored form with the state transitions conditioned on subsets of current states and actions. In this case 339

easy-to-use software for creating the EV function has been incorporated into the MDPSolve package. 340

This consists of a function that accepts as inputs the CPTs (𝑃𝑖), the set of parent variables for each future 341

state variable (𝑞𝑖) and the matrix of conditioning variables (𝑋) and returns an EV function which can then 342

be passed to the dynamic programming solver. 343

The examples provided here do not cover all of the possible cases for which EV functions may be 344

useful. An important omission is one in which the CPTs for the future state variables are conditioned on 345

noise terms that are common to 2 or more states. Such a noise term cannot be eliminated until all the state 346

variables that it affects are already processed. This typically results in larger intermediate factors, thereby 347

increasing both processing time and memory usage. Nonetheless, a factored approach may still improve 348

on the use of the full transition matrix, especially if there are subsets of state variables which involve 349

nearly disjoint sets of conditioning variables. 350

References 351

Barrett, R., M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine 352
and H. Van der Vorst. 1994. “Templates for the Solution of Linear Systems: Building Blocks for 353

Iterative Methods.” SIAM, Philadelphia, PA. 354

Caswell, H. & R.J. Etter. 1993. “Ecological interactions in patchy environments, from patch occupancy 355

models to cellular automata.” Lect. Notes Biomath., 96: 93–109. 356

Chadès, Iadine, Tara G. Martin, Samuel Nicol, Mark A. Burgman, Hugh P. Possingham, and Yvonne M. 357
Buckley. 2011. “General rules for managing and surveying networks of pests, diseases, and 358

endangered species.” PNAS, 108 (20) 8323-8328. https://doi.org/10.1073/pnas.1016846108 359

Clark, C. W. & G. R. Munro. 1975. “The economics of fishing and modern capital theory: A simplified 360

approach.” Journal of Environmental Economics and Management, 2: 92–106. 361

Costello, Christopher and Stephen Polasky. 2004. “Dynamic Reserve Site Selection.” Resource and 362

Energy Economics, 26(2): 157-174. 363

Day, J. & H.P. Possingham. 1995. A stochastic metapopulation model with variability in patch size and 364

position. Theor. Popul. Biol., 48: 333–360. 365

Fackler, Paul L. 2011. “MDPSolve User’s Guide.” Available at: https://sites.google.com/site/mdpsolve/ 366

Hanski, I., 1994. “A practical model of metapopulation dynamics.” J. Anim. Ecol., 63: 151–162. 367

Marescot, Lucile, Guillaume Chapron, Iadine Chadès, Paul L. Fackler, Christophe Duchamp, Eric 368
Marboutin & Olivier Gimenez. 2013. Complex decisions made simple: A primer on stochastic 369

dynamic programming. Methods in Ecology and Evolution, 4: 872–884 370

Mrkaic, Mico. 2002. “Policy Iteration Accelerated with Krylov Methods.” Journal of Economic 371

Dynamics and Control 26: 517-45. 372

Pereyra, V. & Scherer, G. 1973. Efficient computer manipulation of tensor products with applications to 373

multidimensional approximation. ACM Transactions Math. Comput., 27: 595-605. 374

Powell, Warren B. and Huseyin Topaloglu, 2005. Approximate Dynamic Programming for Large-Scale 375
Resource Allocation Problems. Tutorials in Operations Research, Chapter X, INFORMS—New 376

Orleans 2005. doi 10.1287/educ.1053.0000 377

Puterman, M.L. 1994 Markov Decision Processes: Discrete Stochastic Dynamic Programming. John 378

Wiley & Sons, New York. 379

Rust, John. 1996. “Numerical Dynamic Programming in Economics” in H. Amman, D. Kendrick and J. 380

Rust (eds.) Handbook of Computational Economics. Elsevier, North Holland. 381

Rust, John. 2008. “Dynamic programming” in Steven N. Durlauf and Lawrence E. Blume (eds.), The 382

New Palgrave Dictionary of Economics. Second Edition. Palgrave Macmillan. 383

https://sites.google.com/site/mdpsolve/

Supplemental Appendix 1: 384

Index Vectors 385

Index vectors are vectors composed of positive integers and can be used for extraction, expansion and 386
 shuffling operations. They are used extensively in matrix based programming environments such 387
as MATLAB and R. To illustrate let: 388

 𝐴 =

[

1 0
1 1
2 0
2 1
3 0
3 1]

 𝐵 =

[

1 0 0
1 0 1
1 1 0
1 1 1
2 0 0
2 0 1
2 1 0
2 1 1
3 0 0
3 0 1
3 1 0
3 1 1]

 389

The index vector 𝐼 = [5 6 7 8] extracts the rows of 𝐵 with the first column equal to 2 so 𝐵(𝐼𝑗 , 1) =390

2 for every 𝑗. The index vector 𝐼 = [1 1 2 2 3 3 4 4 5 5 6 6] expands 𝐴 so 𝐴(𝐼, :) =391
𝐵(: , [1 2]). Similarly 𝐼 = [1 2 1 2 3 4 3 4 5 6 5 6] expands 𝐴 so 𝐴(𝐼, :) =392
𝐵(: , [1 3]). Finally the index vector 𝐼 = [1 3 5 2 4 6] shuffles the rows of 𝐴 so they are sorted 393
by the second column rather than the first: 394

 𝐴(𝐼, :) =

[

1 0
2 0
3 0
1 1
2 1
3 1]

 396

 395
Dynamic programming algorithms can be described in terms of index vectors. Consider a DP model with 397
2 state variables, each binary, and 3 possible actions 398
 399
The matrix 𝑆 lists all possible states and 𝑋 lists all possible state/action combinations: 400
 401

𝑆 = [

0 0
0 1
1 0
1 1

] 𝑋 =

[

1 0 0
1 0 1
1 1 0
1 1 1
2 0 0
2 0 1
2 1 0
2 1 1
3 0 0
3 0 1
3 1 0
3 1 1]

 402

 403
(note that column 1 of 𝑋 is the action and columns 2 and 3 are the 2 states). The expansion index vector 404
that gives the states in each row of 𝑋 is 405
 𝐼𝑥 = [1 2 3 4 1 2 3 4 1 2 3 4] 406

This expands 𝑆 so 𝑆(𝐼𝑥 , :) = 𝑋(: , [2 3]). 407
 408
A state dependent strategy can be specified as an extraction index vector with the 𝑖th element associated 409
with state 𝑖: 410
 411
𝐼𝑎 = [1 6 7 12] yields: 412

 𝑋(𝐼𝑎 , :) = [

1 0 0
2 0 1
2 1 0
3 1 1

] 414

 413
i.e., a strategy that associates action 1 with state 1, action 2 with states 2 and 3 and action 3 with state 4 415
 416
Strategy vectors select a single row of 𝑋 for each state so 𝑋(𝐼𝑎 , 𝐽𝑠) = 𝑆 where 𝐽𝑠 is an index of the 417
columns of 𝑋 associated with the state variables. 418
 419

Supplemental Appendix 2: 420

Computational approach to evaluating EV functions 421

 422
A factored model is defined by a set of 𝑑𝑠 conditional transition probability matrices 𝑃𝑖 of size 𝑛𝑖 × 𝑚𝑖. 423
The computations necessary to compute an EV function can be implemented in a set of 𝑑𝑠 multiplication 424
operations involving the CPTs. The multiplication operations have a special form which can be called 425
indexed multiplications. These involve a 3-D array 𝑋 multiplied by a 2-D array 𝑌 with the arrays matched 426
according to 2 index vectors, 𝐼𝑥 and 𝐼𝑦 , both of length 𝐾. 427

The indexed multiplication can be described as follows. Let the inputs 𝑋 be 𝑚 × 𝑛 × 𝑝 and 𝑌 be 𝑛 × 𝑞 428
and the output 𝑍 be 𝑚 × 𝐾, where 𝑍:𝑘 = 𝑋::𝐼𝑘

𝑥𝑌:𝐼𝑘
𝑦 (the : indicates all elements for a given dimension). 429

Thus each column of the output 𝑍 is computed as an ordinary matrix-vector product of one of the pages 430
(3rd dimension) of 𝑋 and one of the columns of 𝑌. Note that when arrays are stored in column-major form 431
(as is true with MATLAB) the subarrays used in the matrix-vector products are stored in contiguous 432
memory. These matrix-vector products can be computed efficiently with a call to the BLAS gemv 433
procedure (Netlib, BLAS (Basic Linear Algebra Subprograms), https://www.netlib.org/blas/). Let this 434
function be represented as 𝑍 = 𝐼𝑀(𝑋, 𝐼𝑥 , 𝑌, 𝐼𝑦). To avoid unnecessary indexing, if the index vector for 435

either 𝑋 or 𝑌 is null (empty) then the index is assumed to equal 1 through 𝐾. 436

The algorithm for computing an EV function can now be described. First, set 𝑦0 = 𝑉 and let 𝑦𝑖 be the 437

intermediate product after incorporating the first 𝑖 CPTs. Let 𝐼𝑖
𝑝

 and 𝐼𝑖
𝑦

 be index vectors with length 𝑘𝑖 =438

∏ 𝑛𝑗𝑗∈𝑄𝑖
 where 𝑄𝑖 = ⋃ 𝑞𝑘

𝑖
𝑘=1 . In words, 𝑘𝑖 is the size of the space of conditioning variables for the first 439

𝑖 state variables. 440

Using the 𝐼 index vectors a full EV function evaluation is computed using the following pseudo-code: 441

 442

The total operation count is ∑ 𝑝𝑖𝑘𝑖 where 𝑝𝑖 = ∏ 𝑛𝑗
𝑑
𝑗=𝑖

𝑑
𝑖=1 is the size of the space of the remaining 443

unprocessed state variables. This can be contrasted to the use of the full transition matrix, which uses 444
𝑛𝑠𝑛𝑥 operations. Note that variable order matters and ideally we want the 𝑘𝑖 to grow slowly. It should 445

also be noted that the reshape operation that transforms a (∏ 𝑛𝑗
𝑑
𝑗=𝑖) × 𝑘𝑖−1 matrix into a (∏ 𝑛𝑗

𝑑
𝑗=𝑖+1) ×446

𝑛𝑖 × 𝑘𝑖−1 3-D array has no computational cost as it does not require access to the elements of the array 447
but merely alters how those elements are interpreted. 448
 449
The discussion thus far has applied to a full EV evaluation which returns 𝐸[𝑉(𝑆+)|𝑋] for all state/action 450
combinations. When the dynamic programming algorithm is carried out using policy iteration and Krylov 451
methods most EV evaluations are indexed. Hence we also require an efficient way to compute 452
𝐸[𝑉(𝑆+)|𝑋] for a specific strategy. A strategy can be defined by the index vector 𝐼𝑎 (with length 𝑛𝑠). 453
Although it is possible to simply do a full (non-indexed) evaluation and then extract the elements using 𝐼𝑎 454
such an approach would perform a large amount of unnecessary computations. 455

set 𝑦 = 𝑣

reshape 𝑦 to be ∏ 𝑛𝑗
𝑑
𝑗=2 × 𝑛1

set 𝑦 ← 𝑦 ∗ 𝑝1

loop from 𝑖 = 2 to 𝑖 = 𝑑

 reshape 𝑦 to be (∏ 𝑛𝑗
𝑑
𝑗=𝑖+1) × 𝑛𝑖 × 𝑘𝑖−1

 set 𝑦 ← 𝐼𝑀(𝑦, 𝐼𝑖
𝑦
, 𝑃𝑖, 𝐼𝑖

𝑝
)

return 𝑦

An alternative uses a set of 𝐽𝑖
𝑝
 index vectors that expand the columns of 𝑃𝑖 to match those of the full 𝑋 456

matrix. Each 𝐽𝑖
𝑝

 is a vector of length 𝑛𝑥 (i.e., equals the # of rows of 𝑋). The algorithm could be 457

initialized as before (𝑦 ← 𝑦 ∗ 𝑝1) and then 𝑦 could be expanded by setting (𝑦 ← 𝑦(: , 𝐽1
𝑝
). Then, looping 458

over the remaining CPTS we could use 𝑦 ← 𝐼𝑀(𝑦, [], 𝑃𝑖 , 𝐽𝑖
𝑝
) 459

Where [] represents a null (empty) input. A more efficient approach recognizes that early in the operation 460
it is generally more efficient to use the 𝐼𝑝 indices and latter it is more efficient to use the 𝐽𝑝 indices. At 461
some point the length of 𝐼𝑝 is greater than 𝑛𝑠 (the length of 𝐼𝑎), at which point it would be more efficient 462
to switch to the use of the 𝐽𝑝 indices. To implement this we also need an additional index vector 𝐽𝑦 to 463
expand 𝑦𝑖 at the time the switch is made. 464

The indexed EV function evaluation is described by the following pseudo-code: 465

 466

To illustrate the impact of this algorithm recall the numerical example given in the paper. Furthermore, 467
suppose that 𝑛 < 𝑛𝑎 < 𝑛2 and note that a strategy index has length 𝑛𝑠 = 𝑛3. The 𝐼𝑖 indices have sizes 468
𝑛𝑛𝑎 , 𝑛2𝑛𝑎 and 𝑛2𝑛𝑎. The crossover from 𝐼 to 𝐽 indexing would therefore occur in step 2. 469

𝑖 𝑦𝑖 𝑃𝑖 # of operations

1 𝑆3
+𝑆2

+𝑆1
+ 𝑆1

+𝑆1𝐴 𝑛4𝑛𝑎

2 𝑆3
+𝑆2

+𝑆1𝑆2𝑆3 𝑆2
+𝑆1𝑆2𝑆3 𝑛5

3 𝑆3
+𝑆1𝑆2𝑆3 𝑆3

+𝑆1𝑆2𝑆3 𝑛4

The total operation count is 𝑛4(𝑛𝑎 + 𝑛 + 1). If the full transition matrix is used by extracting the 470
appropriate columns of 𝑃: 𝑃[: , 𝐼𝑎] the operation requires 𝑛6 operations. 471

 472
 473

set 𝑦 = 𝑣

reshape 𝑦 to be ∏ 𝑛𝑗
𝑑
𝑗=2 × 𝑛1

set 𝑦 ← 𝑦 ∗ 𝑝1

set useI = true

loop from 𝑖 = 2 to 𝑖 = 𝑑

 if 𝑚𝑖 > 𝑛𝑠

 reshape 𝑦 to be (∏ 𝑛𝑗
𝑑
𝑗=𝑖+1) × 𝑛𝑖 × 𝑚𝑖−1

 and expand 𝑦(: , : , 𝑘) ← 𝑦 (: , : , 𝐽𝑦(𝐼𝑎(𝑘)))

set useI = false

 if useI=true

reshape 𝑦 to be (∏ 𝑛𝑗
𝑑
𝑗=𝑖+1) × 𝑛𝑖 × 𝑚𝑖−1

set 𝑦 ← 𝐼𝑀(𝑦, 𝐼𝑖
𝑦
, 𝑃𝑖, 𝐼𝑖

𝑝
)

 otherwise

set 𝑦 ← 𝐼𝑀 (𝑦, [], 𝑃𝑖, 𝐽𝑖
𝑝(𝐼𝑎))

return 𝑦

Supplemental Appendix 3: 474
Optimal preprocessing of CPTs 475

It can be advantageous to preprocess groups of state variables into joint CPTs, especially when the 476
variables in the group have similar sets of conditioning variables. The optimal grouping of operations can 477
be solved using an 𝑂(𝑑3) dynamic programming algorithm that is similar to the approach used to address 478
the well-known matrix chain multiplication problem. Given a variable order the cost of incorporating a 479

CPT that groups variables 𝑖 through 𝑗 ≥ 𝑖 is 𝐶𝑖𝑗 = 𝑝𝑖𝑚𝑗, where 𝑝𝑖 = ∏ 𝑛𝑘
𝑑
𝑘=𝑖 and 𝑚𝑗 is the number of 480

tuples of the parents of variables 1 through 𝑗. For each (𝑖, 𝑗) we can evaluate whether breaking the 481
grouped variables into two further groups results in a less costly set of operations: 482

𝑀𝑖𝑗 = min (𝐶𝑖𝑗 , min
 𝑘∈{0,…,𝑗−𝑖+1}

𝑀𝑖,𝑖+𝑘 + 𝑀𝑖+𝑘+1,𝑗) 485

The minimal cost grouping is given by 𝑀1𝑑 . This is optimal for a full evaluation. For an indexed 483
evaluation we could instead define 484

𝐶𝑖𝑗 = 𝑝𝑖 min (𝑚𝑗, 𝑛𝑠) 486

By storing where splits occur the optimal groupings can be determined. 487

	WP 18-018 Cover
	Stochastic dynamic programming without transition matrices

