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Financial and commodity-specific expectations in 

soybean futures markets1 

Abstract. We conceptualize the futures price of an agricultural commodity as an aggregate 

expectation for the spot price of a commodity. The market agents have divergent opinions 

about the price development and the price drivers, which initiates trading. In 

informationally efficient markets, the price will thus reflect expectations about its 

influencing variables. Using historical decompositions from an SVARX model, we analyze 

the contribution of financial and commodity- specific expectation shocks to changes in a 

trading-volume weighted price index for corn and soybean futures on the Chicago Board of 

Trade (CBOT) over the time period 2005- 2016. Financial expectations are instrumented 

with the DJ REIT Index, commodity demand expectations with the CNY/USD exchange 

rate and supply expectations with changes in the vapor pressure deficit. Results show that 

the price index was affected by cumulative shocks in the REIT index during the time of the 

food price crisis, but these shocks are only of small magnitude. Weather fluctuations have a 

minimal impact on the week-to-week fluctuation of the commodity price index. 

 

JEL classification: C32, C52, G15, Q02 

Key words: Structural Vector Autoregressive models with exogenous variables (SVARX); 

commodity markets; financialization; food price crisis 

1 Introduction 

Commodity market phenomena of the more recent past include peaking and plummeting 

prices and a surge in trading volume. The “food price crisis” in 2007/08 renewed interest in 

investigating the (short-run) price drivers of various agricultural commodity markets. But, as 

of today there is still a lack of consensus on the specific contribution of shocks to market 

fundamentals, especially weather patterns, and shocks resulting from a financialization of 

commodities. A related question is whether these patterns were different during and after the 

food price crisis compared to the years before. 

Structural simultaneous equation models are a good candidate to model the joint development 

and interaction of several endogenous variables. Such models have in the past been frequently 

applied in macroeconometrics. Recently, many methodological advances have been made in 

the subgroup of structural vector autoregressive models (SVARs). First proposed by Sims 

(1980), SVARs have since been further developed with a focus on addressing the challenge of 

finding credible identifying restrictions on the error covariance matrix. In the standard 

recursively identified models with short-run restrictions, emphasis is put on variable selection 

and careful economic argumentation to avoid the critique of atheoretical and therefore 

                                                 
1
 An earlier version of this paper was presented at the 15th EAAE congress in Parma, August 29 - September 1 
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incredible restrictions that the early SVAR literature had to face (e.g. (Kilian 2009)). SVAR 

models, under the name of Structural VARX or SVARX (Kilian and Lütkepohl 2016; 

Lütkepohl 2005; Ocampo and Rodríguez 2012, 2012), also permit the inclusion of fully 

exogenous variables. 

The objective of this paper is to assess the contribution of financial as well as commodity 

demand- and supply-specific expectation shocks to changes in the futures prices for soybeans 

on the Chicago Board of Trade (CBOT) over the weeks from 01/2005-11/2016. We choose a 

recursively identified SVARX model with short-run restrictions on the variance-covariance 

matrix of error terms. We put emphasis on the selection of variables that conform to the 

underlying economic model and instrument both commodity-specific and financial 

expectations with suitable variables. Historical decompositions then allow for assessing the 

response of one variable to cumulative shocks in another variable up to a specific point in 

time (Kilian and Lütkepohl 2016, pp. 117). 

To help variable selection and ultimately develop credible restrictions, we limit the market 

focus. The soybean market is particularly interesting due to its global importance and its 

unique demand side situation with 63% of global soybean imports going to China. On the 

other hand, from a financial perspective, soybeans have relatively high trading volumes on the 

Chicago Board of Trade (CBOT) and are included in important commodity indices such as 

the S&P GSCI. This paper contributes to the existing literature as there is a need to further 

explore the potential of SVAR framework to investigate the contribution of structural shocks 

in the development of prices for important agricultural commodities. And, historical 

decompositions, despite their advantage in assessing cumulative shock contributions to the 

development of one variable over time, are still underrepresented in present structural 

analyses. We also add another perspective to the discussion on the potential influence of 

weather variables and financialization effects on the price dynamics in agricultural futures 

markets. 

The remainder of the paper is structured as follows. The next section describes some 

theoretical assumptions underlying the model and the background of soybean market, both 

from fundamental and financial perspectives. In section 3 we present the economic concepts 

behind the variable choice and give an overview of SVARX methodology. Section 4 presents 

the empirical application and its results, section 5 concludes and gives an outlook on planned 

future extensions. 
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2 Conceptual framework and market background 

This section describes the foundation of our theoretical model. Later, we also provide a brief 

overview of soybean market both from a fundamental and a financial perspective. 

2.1 Conceptual framework 

Conceptually, the futures market is postulated to be a market for expectations of the future 

spot price. Agents exchange information on their price expectations by trading contracts. 

Thus, contract volume is a proxy for information influx into the market. Market agents are 

assumed to have heterogeneous priors and use different information sets. Heterogeneous 

priors as proposed by Morris (1995) imply that agents process even the same information 

differently. Thus, differences in opinion about the expected spot price do not automatically 

stem from different information sets, but may be a result of differences in agents’ prior beliefs 

concerning how to interpret a given information signal. This results in a “difference-in-

opinion” (DO) environment, where traders disagree with each other even when they have the 

same information. DO models can better explain soaring trading volumes, as experienced on 

agricultural commodity markets (Figure 1) – without having to resort to stochastic “noise 

traders” (Banerjee and Kremer 2010; Morris 1995). Models in this spirit have been applied in 

the financial market literature (e.g. Banerjee and Kremer (2010)) and, recently, also to derive 

market equilibria under hedging and speculation on agricultural futures markets (Fishe et al. 

2014). 

A typical example for differences in priors is expert versus non-expert traders. On the 

agricultural commodity markets, traditional market participants such as producers, processors 

or big commodity trading houses all have exposure to the physical commodity and are 

typically experts for specific commodity markets. Financial traders, on the other hand, have 

no exposure to the physical commodity and rather trade on the joint development of 

commodities in an index or on expected portfolio correlations. Even when all traders have 

access to the same (public) information, based on their status, they may interpret it differently 

when deciding on their trading activity. In informationally efficient markets, all information 

will be reflected in the price. Thus, c.p. an increased presence of financial traders should make 

the futures price more susceptible to shocks in variables that only these traders consider 

important enough to change the price. 

To determine whether the futures price is determined rather by commodity- specific 

fundamental shocks or by financial shocks, variable selection is crucial. An important point to 
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consider is that agents will not only formulate expectations about the development of the 

futures price, but also about the development of all variables that they include in their 

information set to determine the futures price, based on their prior (see Grosche (2014) for 

related arguments). Thus, in our empirical model we attempt to select variables that reflect 

expectations about a commodity-specific variable or a financial variable. 

As we seek to model short-term effects, we also select our model variables based on their 

importance for short-term (week-to-week) price fluctuations. On the demand side, we seek to 

instrument short-term shocks with the exchange rate between the Chinese Renminbi and the 

US Dollar. On the supply side, an important driver behind short-term variations in yield is the 

weather during the growing season, i.e. precipitation and temperature. While the exact 

relationship behind weather, technology and crop yields is complex, weather expectations can 

be assumed to influence agents’ expectations of yield and therefore also expectations about 

the future spot price. An example for an explicit incorporation of weather variables in 

econometric models for crop yields and prices is Roberts and Schlenker (2013) who use 

weather variables to instrument exogenous price effects in a structural model for supply and 

demand of four basic staple crops (corn, rice, soybeans, wheat). For the financial 

expectations, we seek a variable that has no or little fundamental connection to the 

agricultural commodity markets, but may reflect relevant financial expectations. 

2.2 Market background 

Fundamental perspective 

Soybeans are C3 oilseed crops, mostly used as animal protein feed and vegetable oil. The 

soybean market is strongly concentrated, both in terms of main producers/exporters and 

consumers/importers. On the supply side, according to USDA-FAS (2017), the top three 

producers (United States (US), Brazil, Argentina) produced a combined quantity of 280,708 

thousand metric tons in the year 2016/17, which is equivalent to 82.4% of global production. 

These countries also dominate exports by providing an equivalent of 88.7% of global exports. 

The number-one export destination for all countries is China, accounting for 57% of US, 68% 

of Brazilian, and 81% of Argentinian soybean exports in the period 2008/09 - 2012/13 (data 

taken from Global Trade Atlas cited in Meade et al. (2016)). In the year 2016/17, Chinese 

soybean imports account for 63% of total imports, followed by the EU (10%) (USDA-FAS 

2017). In the US, soybean production is concentrated in the center, mostly in the Heartland 

region. It encompasses Indiana, Illinois, Iowa, Minnesota, Missouri, Nebraska, South Dakota, 
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Kentucky and Ohio. The region is characterized by fertile, well-drained soil and moderate 

climate (Meade et al. 2016). According to USDA data, the Heartland states account for a 

combined share of 73% of US soybean production, on 2010-14 averages. Illinois and Iowa are 

the two largest contributors to national soybean production with a share of 14% each (USDA 

2017c). 

Most of the soybean demand is for crushing in order to produce soybean oil or soybean meal, 

which is then used e.g. as animal feed or for bioenergy. In 2016/17, out of the total production 

of about 341 m tons, 291.5 m tons are for crushing (86%). In the year 2016/17, Chinese 

crushing accounts for about 30% of total soybean crushing, followed by the US (18%), 

Argentina (15.5%), Brazil (14%) and the EU (5%). These countries together account for 82% 

of total crushing. Consequently, China is by far the biggest importer of soybeans for crushing, 

as all other major crushers are also major producers of soybeans. 

There is a fundamental connection between soybeans and corn. Both are used for animal feed 

and biofuels (corn for bioethanol and soybeans for biodiesel) and both require similar climatic 

conditions, even though corn is a C4 crop originating from a tropical environment (Hollinger 

and Angel 2009). In the US, both crops compete for land as both are grown in the Heartland 

region and have similar crop calendars. Soybeans are usually planted between May and mid-

June, corn is planted between April and May and both crops are harvested between mid-

September and early November (USDA 2017a,b). Producers in the Heartland region often 

grow both crops and have the opportunity to choose between soybean and corn plantings 

based on their price expectations and weather conditions by planting season. For example, 

Miao et al. (2015) note that in some years, corn was replaced by increases in soybean acreage 

in Midwest US due to excessive precipitation in spring. There is also a discussion that the US 

biofuel mandates initially triggered substitution away from soybeans in favor of corn. A case 

in point is in 2007/08, a 22% increase in the corn area in the US was accompanied by a 14% 

reduction in the soybean area (Headey 2011). 

Financial perspective 

In the years during and after the “food price crisis”, there has been an ongoing debate 

concerning the effects of “financialization” of commodities. While there is no formal 

definition, this term typically refers to the joint occurrence of the phenomena of an increased 

market presence of financial investors on commodity markets on the search for portfolio-

diversifying assets (cp. Fortenbery and Hauser (1990)), the creation of new commodity-linked 
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financial investment products and an increased trading activity on the derivative, especially 

futures, markets (cp. Silvennoinen and Thorp (2013)). While most of the financial investment 

in agricultural commodity markets is linked to the investment into broader commodity indices 

such as the S&P Goldman Sachs Commodity Index (S&P GSCI), replication of these indices 

will ultimately require some trading activity on the futures markets (Grosche 2014). 

 

Figure 1: Trading volume for CBOT corn and soybean active contracts 

Notes: Orange line represents CBOT corn contract and black line represents CBOT soybean contract trading 

volume 

Source: Bloomberg 

On the CBOT, the corn contract is the most liquid agricultural contract in terms of trading 

volume, soybeans and wheat have lower daily volumes, but are still liquid futures markets. 

Figure 1 shows the development of daily contracts traded for both the corn and soybean 

contract over the time period 01/2005-11/2016. 

3 The model 

In this section we present the motivation behind our variable choices. We also provide an 

overview of SVARX models and their application in the investigation of price drivers on 

agricultural markets 

3.1 An overview of SVARX model 

The development path of SVAR methodology 
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Dynamic Simultaneous Equation Models (DSEM) used to be predominant in 

macroeconometrics several decades ago. However, since the critique of Sims (1980) toward 

“incredible restrictions” which are prevailing in macroeconomics, the use of DSEMs has been 

declined, which gave rise to the classed of VAR models proposed by Sims. The core idea of 

the VAR approach is that all the variables in the system can be treated jointly endogenous, 

and thus there is no need for finding reliable exogenous variables for identification. VAR 

models have faced various critiques for their atheoretical approach with which structural 

shocks are identified. In this fashion, Choleski decomposition is applied on the variance-

covariance matrix of reduced-form residuals to orthogonalize the structural shocks without 

referring to the economic relationships among variables (Keating 1990). This has motivated 

the development of structural VAR models (SVARs), in which the focus is to find identifying 

restrictions that are connected to economic theories. A direct consequence from this 

development is that apart from the traditional short-run, recursive identification, there exist 

now many identification methods. For instance, non-recursive or overidentifying restrictions 

can be imposed to achieve theoretical consistency. It can also be that the model is not point-

identified, but rather partly-identified or set-identified, using inequality restrictions. 

Alternatively, restrictions might be placed on long-run instead of short-run responses, as 

proposed by Blanchard and Quah (1989). An excellent, thorough overview of these 

approaches is found in Kilian and Lütkepohl (2016). Nevertheless, to the scope of this study, 

the extension of SVAR model to incorporate exogenous variables is the most relevant, 

resulting in the class of SVARX models. As it will become clear below, this model has 

exactly the same set up as DSEMs. 

As an extension of VAR models, ( , )VARX p s  models still consist of a vector of K  

endogenous variables ty , plus a vector of M  exogenous variables tx . The structural form can 

be written as: 

* * * * * *

0 1 1 0 1 1t t p t p t t s t s tA y c A y A y B x B x B x w          , (1)   

where p  and s  are the numbers of lagged terms included in the model of ty  and tx , 

respectively. *c  is K-dimensional vector of intercept terms. *

iA , 1, ,i p   is a K K  matrix 

of autoregressive slope coefficients corresponding to lagged endogenous variables t iy  . 0A  

thereby collects the coefficients that depict the instantaneous effects among endogenous 

variables. Likewise, *

iB , 0,1, ,i s   is a K M  matrix of autoregressive slope coefficients 
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corresponding to current and lagged endogenous variables t ix  . The K-dimensional vector of 

white-noise error terms tw  contains mutually uncorrelated elements such that they can be 

interpreted as structural shocks (Kilian and Lütkepohl 2016, pp.171). Consequently, a 

structural VARX model can be viewed as a DSEM (see Lütkepohl (2005, pp. 388)).  

The methodology 

The reduced form of model (1) in lag-operator notation is given by equation 10.2.7, Lütkepohl 

(2005, pp. 391): 

   t t tA L y c B L x u   , (2)
 

where   1

p

K pA L I A L A L    and   0 1

s

sB L B B L B L   . 1 *

0c A c  is the reduced-

form intercept vector. Similarly, the matrices of reduced-form coefficients iA  and iB  are 

obtained by multiplying 1

0A  with their corresponding structural coefficient matrices *

iA  and 

*

iB . tu  is the vector of reduced-form residual with variance-covariance matrix Σu . This model 

can be estimated using Restricted Generalized Least Squared methods (see Lütkepohl (2005, 

section 10.3)), Maximum Likelihood (Kilian and Lütkepohl 2016, section 2.3.4) or Bayesian 

estimation (Ocampo and Rodríguez 2012). 

If all variables in the system are stationary processes which implies that  A L  is invertible, it 

is possible to obtain the final-form model: 

   
1

t t ty D L x A L u


   , (3) 

where  
1

A L c


  is the vector of deterministic terms and      
1

0

  i

i

i

D L A L B L D L






   

consists of   K M dynamic multiplier matrices iD . The elements of these matrices are 

interpreted as the marginal effects of the exogenous variables on endogenous variables, in an 

analogous way to the impulse response matrices of endogenous variables (i.e. those resulting 

matrices in  
1

A L


). 

Finally, it should be noted that the relationship between tw  and tu  remains the same as in 

SVAR models, which is: 1

0t tu A w . Hence, assuming that we can achieve identification for a 

unique matrix 0A , it must be the case that: 
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1 1

0t t ty D L x A L A w
    . (4) 

As all the elements of this equation are solved, the effects of both structural shocks in those 

endogenous variables and exogenous variables on the system become clear. 

To facilitate the historical decomposition that we use in the next section, we shall proceed 

from equation (4) the Structural Vector Moving Average (Structural VMAX) representation 

of the model. Define    
1 2

1 2KL A L I L L  


     , it follows directly that: 

1

0

0 0

t i t i i t i

i i

y D x A w 
 



 

 

    , (5) 

where i , 1,2, ,i     is the matrix of VMAX coefficient at lag i , taken from the 

polynomial  L . Using the same argument in Kilian and Lütkepohl (2016, pp.114), for a 

stationary VARX, equation (5) can be approximated to: 

1 1
1

0

0 0

t t

t i t i i t i

i i

y D x A w 
 



 

 

    .  (6) 

SVAR application to investigate agricultural commodity price drivers  

As said before, much of the work in applied SVAR modelling has been done in the area of 

macroeconometrics. For commodity price drivers, most works concern crude oil market.  

Examples include Kilian (2009) and Kilian and Murphy (2014). It was primarily in the 

aftermath of the food price crisis that SVAR models also started to be more frequently applied 

to investigate the structural relations between agricultural commodity prices and fundamental 

and financial variables.  Some applications of this model include McPhail et al. (2012), Enders 

and Holt (2014), Baumeister and Kilian (2014)  and Hausman et al. (2012). On the contrary, the 

use of SVARX is limited among applied VAR literatures. In macroeconomic it is due to the 

difficulty to find “true” exogenous variables (Kilian and Lütkepohl 2016, pp. 72). In the field of 

agricultural economics, Gutierrez et al. (2015) is one of the very rare VARX applications, in 

which country-specific VARX models are combined to a global VAR (GVAR) model to 

investigate price drivers on the global wheat market. 

3.2 Variable selection 

Corn-Soybean trading-volume-weighted price index 

Due to the connections between the soybean and corn markets from a fundamental and 

financial perspective, it is useful to consider both futures prices jointly. However, as we seek 
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to identify our structural model recursively, we do not consider both price series, but rather 

combine them into an index. As index weights, we use the annual average trading volume of 

the futures contracts. An advantage of this trading-volume-weighted price index is that it 

simultaneously considers the price development and the year-to-year development of trading 

volume, i.e. a proxy for the disagreement of traders and potential information influx. The 

index is computed as: 

, , 1 , , 1 ,Index t S T S t C T C tP w P w P   , (7) 

where 1, ...,12T   for the years from 2004 to 2015 and 1, ...,622t   for the weekly price 

observations. , 1S Tw   and , 1C Tw   denote the trading volume weights of soybean and corn, 

respectively, calculated based on the trading volume data of the year before
2
. ,S tP  and ,C tP  are 

weekly observations of corn and soybean closing prices on a certain weekday. 

CNY-USD exchange rate as a proxy for commodity-specific demand expectations 

As most of the soybeans are crushed before they are marketed, short-term demand side shocks 

will primarily stem from the expected demand of the crushing mills. As said, as of today 

China accounts for about 30% of global crushing and is the only major soybean crushing 

country that mostly crushes imported soybeans. Short-term effects on soybean demand for 

crushing may thus stem from the onshore exchange rate between the Chinese Renminbi 

(CNY) and the US Dollar (USD). For crushing mills the crush spread is a trading strategy that 

entails a long position in soybean futures contracts and short positions in soybean oil and 

meal contracts. The crush spread is the difference between the value of the soybeans contract 

and the combined value of the soybean oil (BO) and meal (SM) contracts, which measures the 

profit margin of the crushing mill. In percentage terms, each unit of soybeans traded on the 

CBOT produces 80% meal, 18.3% oil and 1.7% waste. For a US crushing mill, the crush 

spread would be calculated as  

0.8    0.183SM BO SP P P    ,  (8) 

where SMP , BOP , and SP  are the prices for CBOT soybean meal, soybean oil and soybean 

futures, respectively. 

A Chinese crushing mill would consider the US soybean contract but then use the Dalian 

Commodity Exchange (DCE) soybean oil and meal contracts and thus, apart from considering 

                                                 
2
 It is important to note that the weights are calculated based on the yearly-averaged trading volume of the 

before, because the volume on the exact last trading day of the year is often not reliable – author note. 
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differences in metric units and contract sizes, most importantly has to take into account the 

CNY/USD exchange rate (CME 2015). If the Renminbi depreciates against the US Dollar, the 

crush spread for Chinese crushers becomes smaller, potentially decreasing their soybean 

demand and also their hedging demand for soybean futures contracts. 

Historically, the CNY/USD exchange rate was fixed. In 2003, when the Renminbi appeared 

clearly undervalued, China was increasingly under pressure to end this fixed exchange rate 

regime. In 2005, China officially ended the pegging of the Renminbi and allowed it to 

fluctuate against a basket of currencies, but within a limited band. In 2007, the trading band of 

the Renminbi was expanded, but then limited again and in 2012 during the financial crisis, 

and expanded for another time in 2014. Nevertheless, as of today the Renminbi is likely not 

fully de-pegged. 

Daytime vapor pressure deficit (VPD) as a proxy for commodity-specific supply expectations 

There are a wide range of options for instrumenting the weather variable which based on 

minimum and/or maximum temperature, precipitation level, etc. In this first attempt to model 

weather effect on agricultural markets, we choose VPD as the starting point, due to its widely 

acknowledged relevance to plant growth rates. VPD measures atmospheric water demand, 

based on air temperature and humidity, and has been shown to be highly correlated with 

extreme heat conditions, which may cause serious water stress on plants (see Lobell et al. 

(2013; 2014) for detailed discussion). Without the presence of direct humidity measure, VPD 

is calculated as the difference between saturated vapor pressure (es) at minimum and 

maximum daily temperature:   ( )max minVPD es T es T  , where for a given temperature T : 

  0.6108*exp(17.269 ) / (237.3 )es T T T   . (9) 

Real estate price index as a proxy for financial expectations 

Commodities are, from a financial perspective, attractive portfolio-diversifying assets. They 

are perceived to offer protection against inflation and have low or negative correlations with 

other financial assets (e.g. Ankrim and Hensel (1993); Gorton and Rouwenhorst (2006)). And, 

like real estate, commodities are real assets. As described in Grosche and Heckelei (2016), 

tactical portfolio allocation may rebalance portfolio asset weights as a consequence of shocks 

in selected markets or due to cross-market arbitrage. During the subprime crisis, real estate 

assets depreciated in value and the markets were drained of liquidity. For financial investors 

looking for alternative real assets to place their liquidity, commodities would have been a 
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good candidate. Results in Grosche and Heckelei (2016) showed that indeed, volatility 

interdependence between soybean, corn, wheat markets and the Dow Jones Real Estate 

Investment Trust Index (DJ REIT) increased in the years during and after the financial crisis. 

From a fundamental perspective we see no short-term connection between markets for real 

estate assets and for agricultural commodities. We therefore postulate that real estate prices 

are a way to approximate financially motivated expectations on commodity markets. 

4 Empirical application 

For the empirical part, we first describe our dataset and the computation of the selected 

variables before we proceed with the estimation of the reduced form VARX model, the 

subsequent derivation of the coefficients for the restricted error covariance matrix for the 

SVARX model and the computation of historical decompositions.  In the final subsection we 

discuss our results. 

4.1 Data  

Data for daily corn and soybean futures prices and CNY/USD (on-shore) exchange rates are 

obtained from Bloomberg for the time period 01/2005-11/2016 and aggregated to weekly 

level, leading to 622 observations. The prices are closing prices for the active contracts, rolled 

over on the last trading day (relative to expiration). Trading volume for these contracts is also 

obtained from Bloomberg, for the time period 01/2004-11/2016. Following Grosche and 

Heckelei (2016), DJ Equity REIT index is selected to instrument financial expectations. The 

index reflects the value of all publicly traded real estate investment trusts in the Dow Jones 

U.S. stock universe (i.e. US publicly traded companies within Down Jones stocks indices that 

primarily own and operate income-producing real estate, and are classified and taxed as 

equity REITs). Data on end-of-day index quotes is also obtained for the time period 01/2005-

11/2016. 

Weather records are collected from USDA Weekly Weather and Crop Bulletin for the period 

01/2005-11/2016, which is released regularly on Tuesday by 4:00 p.m ET. Due to this 

reporting timing, we choose Wednesday as the weekly aggregating point for all price and 

price index series in the model, in order to capture any possible effect of the weather 

information contained in the report on the price index. The Bulletin comprises data of 

temperature and precipitation at 225 stations across 51 states of the US
3
. From this, we extract 

the data for 47 stations in 9 Heartland states where corn and soybean production is 

                                                 
3
 Data was extracted manually from pdf-formated reports, as none of such combined dataset is available online. 
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concentrated, namely Iowa, Illinois, Indiana, Kentucky, Minnesota, Missouri, Nebraska, Ohio 

and South Dakota. At each time t , simple average is used to aggregate minimum and 

maximum temperature data to state-level, before we compute weighted averages for the whole 

region. The weight allocated to each state is the simple average of corn and soybean 

production shares of that state, out of the total shares of the whole Heartland region in total 

US production. The VPD is then calculated for the whole region based on this final 

aggregated observation. 

To capture the week-to-week fluctuations, all the price indices, exchange rates and also VPD 

enter the model in form of returns, given by: 

1    ( / )t t tR ln P P ,  (10) 

leading to 621 observations for all returns series. Figure 2 shows the development of the 

variables over the time period of observation. 

 

Figure 2: Variables 

Source: Own calculation, Matlab 2017a 
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Augmented Dickey Fuller (ADF) tests  

ADF tests for unit roots have been performed to assess the stationarity of the model. For each 

series, ADF is carried out in two-step procedure: the first step is to select a proper number of 

lags to include in the testing model using general-to-specific approach, and the second step is 

to estimate the model with this lag length and evaluate the null hypotheses of unit roots. In the 

first step, we estimate AR and AR models with constant (drift) term for each lag length *p  

from 8 to 0, which for weekly series corresponds to about 2 months. For each of these 

equations, we use T-tests to check whether the last coefficient which is corresponding to lag 

*p  is significant from zero. As soon as the coefficient for the furthest lag in an equation 

becomes statistically significant from zero with at least 5% of significant level, then this lag 

length is used for evaluating the null hypotheses in the next step
4
. Using this procedure, the 

ADF tests reject the null for all variables at a level of significance of at least 5%.
5
 Hence we 

can conclude that our model is stationary, and therefore is valid for stationary SVARX 

inference presented in previous section. 

4.2 Model estimation and identification 

In a theory-oriented approach, we apply a fixed lag order selection based on knowledge about 

the markets as suggested by Kilian and Lütkepohl (2016, pp.60), rather than data-dependent 

procedures. We choose to include 8 lags – corresponding to 2 months – of endogenous 

variables ty  in the model, based on the observation that financial and commodity futures 

markets both can be assumed to be informationally efficient, with respect to short-term 

movements of relevant variables, and hence longer lag length would be implausible. To 

maintain generality in this first model, the same lag number is applied for tx  (i.e. 8)p s  , 

though given the stochastic nature of weather, a shorter lag length can be considered. 

Without loss of economic grounds, the choice of variables described in the previous section 

allows us to impose a Wold causal chain among the endogenous variables, which results in 

lower-triangular matrix of instantaneous effects 0A . The resulting vector ty  and tx  are: 

t

REI

y CNY

IND

 
 

 
 
  

;  and   tx VPD  , 

                                                 
4
 See Enders (2014, pp. 215 ff.) 

5
 Detailed results from the ADF tests are available from the authors on request. 
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where REI  is returns for REIT index, CNY  is returns for CNY/USD exchange rates, 

IND  is returns for Corn-Soybean price index and VPD  is the VDP difference term. 

Specifically, we postulate that REIT index returns is only instantaneously affected by its own 

shocks (i.e. real estate market shocks), returns on CNY/USD exchange rate can be 

instantaneously affected by both real estate market shocks and CNY/USD exchange rate 

shocks but not by shocks to soybean and corn markets. Finally, all those structural shocks in 

the model can have instantaneous impact on the Corn-Soybean price index. This is plausible 

because agriculture in general account for a very small share of global economic activities, 

therefore unlikely to affect real estate and foreign exchange markets contemporaneously. 

Furthermore, we argue that on weekly basic, Heartland VPD fluctuations are only relevant for 

commodity markets, as financial markets are unlikely affected by weather conditions in the 

short-run. This implies that all the autocorrelation coefficients of tx  and its lags in REI  and 

CNY  are restricted to zero. 

With these restrictions, restricted Generalized Least Squares is used to estimate a reduced-

form VARX model with intercept terms, following the algorithm described in Lütkepohl 

(2005, section 10.3.1). The inverse of matrix 0Â  is then obtained from the Choleski 

decomposition of variance-covariance matrix Σ̂u
 of reduced-form residuals. The estimated 

expression 1

0
ˆ ˆˆ

t tu A w  is given by: 

, ,

, ,

, ,

0.0371 0 0

0.0001 0.0027 0

0.0075 0.0035

ˆ ˆ

ˆ ˆ

ˆ 0.03 ˆ49

REI t REI t

CNY t CNY t

IND t IND t

u w

u w

u w

 

 

 

    
    

    
        

 (11) 

4.3 Historical decomposition 

Quite often in applied SVAR studies, conclusions are drawn upon structural impulse response 

functions (IRF) and/or forecast error variance decomposition (FEVD). It should be noted, 

however, that these measures only report the average effect of each one-time shock 

separately, which the shock being often normalized to a typical magnitude (e.g. one positive 

standard deviation). Though, at any given point of time, a certain variable can be affected by 

various shocks, of different magnitudes and occurring in many points of time in the past 

(Kilian and Lütkepohl 2016, pp. 117). To investigate the “actualized” role of each shocks in 

the development of a certain variable during the sample period, it is necessary to cross-

multiply these average effects with their corresponding shocks and cumulate them over the 
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given time horizon. Toward this end, we go beyond IRF and FEVD and conduct historical 

decompositions. 

We apply the algorithm described in Lütkepohl (2005, section 10.5.1) to calculate VMAX and 

structural VMAX coefficient matrices (i.e. ˆ
i  and 1

0
ˆˆ ˆ

i i A   ) respectively for the whole 

sample period. Following Kilian and Lütkepohl (2016, section 4.3), the cumulative effect of 

each structural shocks over the time on 3ty (i.e. IND ) is then calculated as follows: 

 
1

1

3 31, 1,

0

ˆ ˆˆ
t

t i t i

i

y w






  

 
1

2

3 32, 2,

0

ˆ ˆˆ
t

t i t i

i

y w






  (12) 

 
1

3

3 33, 3,

0

ˆ ˆˆ
t

t i t i

i

y w






 , 

where �̂�𝑗𝑘,𝑖 is the estimated response of variable j to shock k at horizon i and �̂�𝑘,𝑡 is the k
th

 

estimated structural shock at time t. 

The cumulative effect of the exogenous variable on the variable of interest is obtained 

analogously: 

 
1

3 3,

0

ˆˆ
t

x

t i t i

i

y d x






 . (13) 

Since we only have one exogenous variable, 3,
ˆ

id denotes the dynamic multiplier of VPD  on 

IND at horizon i. Note that because VDP variable enters the model in difference form, we 

can set the reference value for it equal to zero
6
. That said, any change in the from-week-to-

week VDP indicator (- i.e. the difference terms deviates from mean zero) may have an impact 

on the price index returns. Consequently, the historical decomposition of IND is: 

   
3

3 3 3

1

ˆ ˆ ˆn x

t t t

n

y y y


   . (15)     

The result of this procedure is plotted in figure 3. 

                                                 
6
 For the discussion about reference value of exogenous variable in SVARX historical decomposition, see 

Ocampo and Rodríguez (2012, section 5.2.2). 
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Figure 3: Historical decomposition of Corn-Soybean price index returns during (2005-

2016) 

Source: Own calculation, Matlab 2017a 

4.4 Discussion of results 

It is clear that the price index returns are mostly explained by own shocks. In terms of 

absolute contribution, cumulative shocks to the CNY/USD exchange rate index for the most 

part explain less than 1% and maximum 3% of the variation in the price index returns. It also 

appears that cumulative shocks to the REIT index explain at best only about 5% of the price 

index returns. However, the underlying dynamics do point to an increased response to 

cumulative REIT index return shocks during the time of the food price and financial crisis, 

giving some indication that purely financial expectations that had nothing to do with the 

market fundamentals did play a role in the market dynamics. However, with this short-term 

focus, even when considering cumulative rather than on-time shocks, there is no indication 

that these shocks had a marked influence on the absolute level of return variation on the corn 

and soybean markets. Fluctuations in VDP indicator are shown to have just very minimal 

effect on the change of the price index. There are two explanations for this. Firstly, it seems 

that the effect of weather variability is difficult to capture in such short-run models, and thus 

may need higher level of aggregation. Also, it could be that weather effect on market 
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expectations is non-linear. Secondly, it might be that the effect of weather shocks in form of 

VDP changes does not enter the information set which are used by traders for their 

expectation formulation, but rather in another form, such as precipitation or ad-hoc extreme 

weather events. 

Even though with the CNY/USD exchange rate and the DJ  REIT  index, we have attempted 

to include variables that will themselves also contain expectations, we cannot exclude that 

expectations about the future development of these variables are already contained in the 

futures prices. It is therefore likely that we only capture the response of the price variable to 

cumulative unexpected shocks in the other variables (see e.g. Kilian (2011) and Grosche 

(2014) for a discussion of problems related to expectations and forward-looking behavior in 

the data). 

5 Conclusion 

In this paper, we have attempted to investigate the role of commodity-specific and purely 

financial expectations in determining the price dynamics on the futures market for soybeans 

with help of a recursively estimated SVARX model. Conceptually, we view the futures price 

as an aggregate of expectations of the future spot price that will incorporate also expectations 

about potential price drivers. We deviate from the strict rational expectations assumptions and 

allow market participants to have heterogeneous priors and therefore to disagree and translate 

their disagreement into trading positions. In the empirical part, the main emphasis was on 

selecting adequate variables for both the commodity-specific and financial expectations. We 

have chosen the returns for the CNY/USD exchange rate for the fundamental demand side 

and VDP returns in the US Heartland region for the fundamental supply side, and  returns for 

the DJ REIT index for the financial side. Due to the linkage of soybean and corn markets, 

both from a fundamental and a financial perspective, we have decided to analyze these two 

markets jointly by constructing a trading-volume-weighted price index. Historical 

decompositions allow for assessing the contribution of cumulative structural shocks and 

exogenous variables in the development of endogenous variables over time. Compared to IRF 

and FVED analysis, this tool is relatively underrepresented in the literature on applied 

structural analysis in SVAR framework. But, they are well suited for our research question. 

Results from the historical decomposition show that the price index returns are primarily 

explained by own shocks. The magnitude of the effects of shocks to the REIT index returns 

the CNY/USD exchange rate returns or VDP returns is very low. Nevertheless, there is 

indication that primarily during the food price crisis, financial effects may have played a role 
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in the market dynamics. Due to the informational efficiency of financial markets also with 

respect to expectations, finding variables that capture new information for the market is, 

however, challenging. 

There are a range of possible strategies for further research. Within this model, given data 

availability, an idea would be to use the DCE/CBOT soybean crush spread instead of just the 

CNY-USD exchange rate. That might help addressing the issues of considerable periods with 

very little variation due to the pegging of the Renminbi to the US Dollar. Another idea would 

be to construct an exchange rate index taking into account also the Brazilian Real and the 

Argentinian Peso. Alternatively, one could also try to employ other weather variables that are 

more intuitively relevant to markets expectations and do not necessarily reflect the real 

technical relationship with the development of crops. For example, rainfall or extreme degree 

days can be the candidates. Nevertheless, as said, a week-to-week model is unlikely to capture 

the weather effect, and therefore should be replaced e.g. by longer time interval, for example 

monthly level. On the demand side a suggestion is to incorporate expectations on biofuel 

demand. Moving beyond SVARX model setting, a more complex way to incorporate weather 

in commodity market models would be to treat weather as a state in which the markets 

operates rather than a variable and allow for different regimes of model parameters in 

different states. An example of this is the Markov-Switching approach used in Busse et al. 

(2012) for analyzing biodiesel supply chain in Germany under changes in market conditions 

and policy frameworks. In investigate the effect of weather, the seasonal feature of crop 

production should also be considered, as the effect of weather shocks differs according to 

their timing with respect to the crop calendar. Another idea is to adjust the price variable to 

better reflect expectations, for example by adjusting for the risk premium as suggested in 

Baumeister and Kilian (2014). Very short-term effects of single (extreme) events could be 

best captured by complementary event-studies. They have the advantage that they can 

investigate short-term price movements directly around the specific event. Without any power 

for causal inference, they can nevertheless help to shed light on potential dynamics. Finally, 

one could follow the idea presented in Banerjee and Kremer (2010) and include trading 

volume in the model. 
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