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Abstract: Beginning in the 1960s, agricultural economists used mathematical programming 

(MP) methods to examine producer responses to policy changes. Today, positive mathematical 

programming (PMP) employs observed average costs and crop allocations to calibrate the 

parameters of an assumed nonlinear cost function, thereby modifying a linear objective function 

to a nonlinear one to replicate observed crop allocations exactly. The standard PMP approach 

takes into account producers‟ risk aversion, which is not a very satisfying outcome because it 

intricately entangles the cost parameters and the decision maker‟s attitudes – biophysical aspects 

of agricultural production and human behavior are intertwined so that one cannot study the 

impact of policy on one in the absence of the other. Several approaches that calibrate both the 

risk coefficient and cost function parameters have been proposed by different researchers. In this 

paper, we discuss two methods mentioned in literature – one based on assumed constant absolute 

risk aversion (and exponential utility function) and the other on decreasing absolute risk aversion 

(logarithmic utility function). We compare these methods to a more standard approach that 

employs maximum entropy (ME) method. Then we use crop insurance and historical data from a 

region in Alberta‟s southern grain belt to compare the different outcomes to which the three 

approaches lead. We find that the latter approach is robust and easier to employ.  

Key Words: Agricultural policy analysis; calibration of farm management models; expected 

utility; decreasing and constant absolute risk aversion. 
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1. Introduction 

Business risk management (BRM) is the most important component of Canada‟s agricultural 

policy strategy; federal expenditures or planned spending on BRM has exceeded half of Agriculture and 

Agri-Food Canada‟s (AAFC) total farm program outlays of $2.0 billion to $2.4 billion since 2013 

(AAFC 2016). Farmers face risk and uncertainty that threaten their livelihoods, the incomes of those 

working in input supply, transportation and downstream processing sectors, and, ultimately, Canada‟s 

trade balance. As Moschini and Hennessy (2001) point out:  

“Many distinct sources of risk may exist, and many discretionary actions may be available to the 

decision maker. Decisions and realizations of randomness may occur at several points in time. 

Further, actions may influence the distributions of yet-to-be-realized random variables, while the 

realizations of random variables may alter the consequences of subsequent actions. To represent such 

an intricate network of interactions is analytically very difficult, but insights are possible by focusing 

on simpler stylized models. … [T]he main risks that a typical farmer faces are due to the fact that 

output prices are not known with certainty while production decisions are made and that the 

production process contains inherent sources of uncertainty” (pp.96-97). 

Governments attempt to protect farmers against risk and uncertainty through various stabilization 

and agricultural support programs, but these often have unintended consequences that could increase 

uncertainty. Agricultural policies in rich countries, such as the EU, U.S. and Canada originally 

guaranteed producers price floors and insurance against production risk (e.g., low crop yields), and/or 

production quotas with tariff and non-tariff trade barriers to prevent imports (Barichello 1995; Schmitz 

et al. 2010). Farmers responded by increasing production; excess grain, milk powder and other products 

were disposed of through low domestic prices (with import restrictions if the price was below world 

price), export subsidies, and/or storage programs, with only the cost to the public purse varying 

according to how programs were implemented.  

Agricultural support programs incentivized production at the expense of the environment. 

Despite conservation compliance that required farmers to meet certain environmental standards to be 

eligible for program payments, and acreage reduction programs, government intervention changed 
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farmers‟ behaviour, at least partially cancelling out the stabilization effect of the policies. Therefore, 

discussions are ongoing about how to provide BRM programs without distorting farmers‟ production 

incentives – how to decouple production and corresponding adverse environmental and trade distortion 

from agricultural support.  

Many farm management models have been developed to study the efficacy of agricultural BRM 

policies in reducing farmers‟ exposure to risk, and the effect BRM programs have on land and input use, 

outputs and incomes. However, it has been challenging to calibrate models that maximize expected 

utility (EU) rather than expected gross margins when considering the impacts of risk explicitly. To be 

specific, farm management models often assume that a producer varies land uses or crop activities to 

maximize her expected utility, where utility is modelled as the expected gross margin minus its variance 

multiplied by a risk aversion parameter (denoted φ). Parameter φ is important for investigating farmers‟ 

economic decisions and evaluating the effectiveness of agricultural support programs, subject to 

technological and market constraints of course. Given its importance in these types of models, parameter 

φ must be calibrated along with the parameters of the cost functions before one can use the farm 

management model to examine the impact that a new policy might have (e.g., see Howitt 1995, 2005; 

Paris 2011). 

In this paper, we compare several methods of effectuating such a calibration. We begin in the 

next section by reviewing methods of model calibration and recent efforts to calibrate the risk aversion 

coefficient in farm BRM programming models using positive mathematical programming (PMP). In 

section 3, we discuss the models that we use to compare outcomes of three methods for calibrating the 

risk aversion coefficient. In particular, our objective is to compare specifications for calibrating risk 

aversion coefficients using an example from Canadian agriculture. Then, in section 4, we present the 

results of our comparative analysis using representative arable farms with mixed crop portfolios in 
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different Alberta regions. Some conclusions follow in section 5. 

2. Calibrating Agricultural Business Risk Management Models: Background 

The complexity of the programming problem poses a number of challenges. The main one 

relates to the calibration of agricultural BRM models. One early approach to calibration is referred to as 

the historic mixes approach (McCarl 1982; Önal and McCarl 1989, 1991). This method does not find the 

explicit economic cost function, but, rather, constrains future crop allocations so it resembles the historic 

mix. It assumes that observed past crop choices are optimal or else they would not have been chosen. 

Because solutions occur at extreme points or corners (viz., a simplex algorithm for solving LP problems), 

a linear combination of observed mixes is also optimal. A mathematical programming (MP) model 

would then take historical choices into account by constraining the current decision to be a weighted 

average of past decisions, with the weights determined endogenously within the MP model and the sum 

of the weights constrained to equal 1. Chen and Önal (2012) suggest an important extension of this 

approach to include new crops that have not previously been planted by adding synthetic (or simulated) 

mixes of the decision variables to the historical mixes. The optimization procedure then chooses the 

weights, which are constrained so the sum of the historic and synthetic weights equals 1. In this case, 

farmers‟ risk attitudes are implicitly addressed because the observed optimal crop portfolio chosen by 

farmers does not consist solely of a single crop – the one with the largest gross margin. 

Positive mathematical programming is now the preferred approach for calibrating farm 

management models. PMP was first developed by Howitt (1995) to address land-use allocation 

problems in agriculture (e.g., Röhm and Dabbert 2003), but has increasingly been adapted for use in 

trade modeling and other resource management settings (Weintraub et al. 2007; Paris et al. 2011; 

Heckelei et al. 2012; Mérel and Howitt 2014). PMP can be used to estimate crop-specific marginal cost 

functions and, thereby, replicate farmers‟ observed crop allocation decisions (Mérel and Bucaram 2010; 
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Mérel et al. 2011).  

While the calibration of crop-specific cost functions using PMP is generally considered to be 

straightforward, significant challenges remain (Heckelei and Wolff 2003; Heckelei et al. 2012). PMP 

usually requires specification of a strictly diagonal quadratic cost matrix, implying that there are no 

substitutionary or complementary effects among crops. Clearly, the assumption of a diagonal cost matrix 

may not be realistic. Thus, Heckelei and Wolff (2003) argue that, in some cases, PMP is inconsistent, 

because the derived marginal costs will not converge to the true MCs. They introduce a generalized 

maximum entropy (GME) approach in which the shadow prices associated with the calibration 

constraints of PMP and the parameters of the cost function are estimated simultaneously using 

mathematical programming, something they refer to as econometric programming. In essence, the 

method employs a standard Lagrangian with econometric criteria applied directly to the Karush-Kuhn-

Tucker (KKT) conditions. This permits prior information to influence the estimation results even in 

situations with limited data while ensuring computational stability. The PMP method has been extended 

by employing information theory and the principle of maximum entropy (ME) to obtain parameter 

estimates for the entire cost matrix (Paris and Howitt 1998; Buysee et al. 2007). The ME approach can 

be used in conjunction with PMP methods to reconstruct the parameters of the agricultural production 

function so as to duplicate the crop mixes historically observed, or the historic bilateral trade flows. 

A major issue with agricultural BRM models relates to the calibration of both crop-specific cost 

functions and a risk aversion coefficient for the decision maker if risk attitudes are to be explicitly 

included in the analysis. The challenge is to estimate the risk aversion coefficient and cost parameters 

simultaneously within the PMP calibration framework. Several approaches are used in the literature for 

the calibration of φ; these can be categorized into two groups based on different assumptions about the 

utility function (Louhichi et al. 2010; Jeder et al. 2011, 2014; Petsakos and Rozaki 2011, 2015; Severini 
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and Cortignani 2010, 2012).  

The first assumes that wealth W is normally distributed and that the utility function is a negative 

exponential function of W as follows: U(W)=1–e
–φW

. For this functional form, the constant absolute risk 

aversion coefficient (CARA) can simply be derived as –Uʹʹ(W)/Uʹ(W) = φ (McCarl and Spreen 2003). 

Then, maximizing the expectation of the negative exponential utility function is approximately 

equivalent to maximizing the certainty equivalent (CE) subject to technical constraints, where CE = μ – 

½ [Uʹʹ(W)/Uʹ(W)] σ
2
 = μ – ½ φσ

2
, and μ and σ

2
 are the mean and variance of the distribution of wealth. 

The second option assumes a logarithmic utility function with a decreasing absolute risk aversion 

(DARA) parameter that is a concave function of wealth. 

Most approaches are developed using an exponential utility function and thereby the CARA 

assumption. Within this framework, one method for deriving the risk aversion parameter is that 

employed in the EU‟s Farm System SIMulator (FSSIM). The approach used in FSSIM is to vary φ in an 

iterative fashion until the simulated land allocation comes closest to duplicating the observed crop 

allocation. If the calibration in the first step is not exact (which is highly unlikely to be the case because 

then only risk attitude explains crop choice), the value of φ determined in the first step is used to 

calibrate the cost function in a second step in the same way as the PMP method with elasticity 

adjustment (Louhichi et al. 2010; Jeder et al. 2011, 2014). However, because the marginal crop from the 

utility perspective may not be the least profitable crop in the expected utility framework, directly 

applying the standard PMP method cannot guarantee the perfect recovery of the observed land allocation 

(see Liu et al. 2018).  

Severini and Cortignani (2010, 2012) extend an ME approach proposed by Heckelei and Wolff 

(2003) to calibrate simultaneously all the parameters needed within a PMP framework, including the 

parameters of the quadratic cost functions and CARA coefficients. In their method, the objective 
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function is based on the error terms on the observed land allocations. The main drawback is that their 

approach requires prior information about the land supply elasticities for all crops. We do not consider 

their approach here because we lack a suite of supply price elasticities of land in crops for Alberta or 

even Canada, and the methods we discuss below overlap with those of Severini and Cortignani.  

Arata et al. (2014, 2017) propose to make use of the primal and dual specifications of the 

farmer‟s expected utility maximisation problem. They combine the 1
st
 and 2

nd
 steps of the standard PMP 

approach to derive the calibrated objective function and the constraints. Instead of ME estimation, their 

procedure includes a least squares estimator that is based on the errors on the marginal cost functions. 

Then they simultaneously calibrate the CARA coefficient, shadow prices of land and the parameters of 

the cost functions. This is explained further in the next section (see equations 10 through 14 below).   

Contrary to other approaches that seek to estimate a CARA coefficient, Petsakos and Rozakis 

(2011, 2015) apply an alternative ME method within the PMP framework by assuming linear cost 

functions and a logarithmic utility function, which leads to a decreasing absolute risk aversion (DARA) 

parameter that is a concave function of wealth. One drawback is that they require knowledge of the 

initial level of wealth so that the DARA parameter changes in response to the farmer‟s cropping choice. 

Further, the assumption that the cost functions are linear implies that the variability in land uses is 

entirely attributed to the farmer‟s risk attitude and is not affected by other factors, such as technology. 

In the remainder of this paper, three alternative PMP approaches for dealing with risk attitudes 

are compared using real-world data. First, we follow Petsakos and Rozakis‟s (2015) method and assume 

DARA, linear cost functions and a logarithmic utility function, and derive the value of the DARA 

coefficient and the values of the parameters of the unobserved part of the linear cost functions via the 

method of ME. Next, we assume an exponential utility function, CARA and quadratic cost functions. 

We then apply Arata et. al.‟s (2017) approach to calibrate the risk aversion coefficient and the 
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parameters for quadratic cost functions. Finally, retaining the same underlying assumptions, we propose 

to calibrate cost functions and CARA via Howitt‟s (1995) ME approach within the PMP framework. We 

conclude with a discussion of the results derived from the three models, the ability of these approaches 

to reflect decision makers‟ behaviour, and their limitations and applicability to different situations.  

3. Agricultural Business Risk Management Modeling 

In this section, we provide three models that we employ for addressing risk aversion on the part 

of agricultural decision makers and put them into two groups based on their assumptions about utility 

function and risk attitude.  

Logarithmic Utility Function and DARA 

The logarithmic utility function, U(W) = ln (W
0
 + 



K

k
kR

1

), has the DARA property although 

relative risk aversion remains invariant to wealth. For the logarithmic utility function, φ = 
)('

)(''

WU

WU
=









 



K

k

kREW
1

0

1
. Petsakos and Rozakis (2011, 2015) start with the nonlinear excepted utility 

maximization problem that is approximated by the following MP:  

Maximize CE = 

  
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Subject to: Xx
K

1k

k 


 [λ]  (2) 

xk ≤ xk
o
 + ε [λk], ∀k, and (3) 

xk ≥ 0, ∀k. (4)  
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E is the expectations operator and E[rk] is the farmer‟s expected overall gross margin ($/ac) from 

planting crop k, and   



















K

k

kkkk

K

k

k xcypErE
11

. There are K crops that can be planted in any 

period; xk denotes the number of acres allocated to produce crop k, and X represents the total area 

(acres) the farmer allocates to crop production. Further, pk and yk represent, respectively, the output price 

and yield for crop k; and ck is the observed per-unit-area variable cost of producing crop k. V(rk, ri) refers 

to the variance-covariance matrix of returns at the regional level, with rk and ri the realized per-acre 

gross margin from crops k and i, respectively. The optimal allocation of land to crops is endogenously 

determined. Constraint (2) restricts the farmer‟s cultivated area to that which is available. In constraint 

(3), x
o
 is a vector of observed crop plantings and ε is added to the calibration constraints to prevent 

degeneracy that could occur because constraints (2) and (3) are related. The shadow prices associated 

with the constraints are indicated in square brackets. Once the model is calibrated, observed land uses 

are reproduced by solving the problem given by (1), with the variance-covariance matrix of returns at 

the farm level subject to (2) and (4), that is, without the calibration constraint in (3). 

To calibrate the model, Petsakos and Rozakis (2011, 2015) first consider the FOCs associated 

with the above MP at the regional level: 

 
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    (5) 

Next, consider the cost and variance-covariance matrix at the farm level, denoted  o

kxc  and  ik rrS , , 

respectively, that lead precisely to the observed crop allocation. Since the model calibrates for those 

values, the FOCs equivalent to (5) are:  
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Upon setting (5) and (6) equal to each other because they both lead to the same solution according to the 

PMP procedure, we obtain (Petsakos and Rozakis 2015, p.539): 

 
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 (7) 

Then a maximum entropy approach is applied as described by Petsakos and Rozakis (2011, 2015) to 

obtain the values of the parameters that represent the unobserved part of the farm-level variable costs.  

To get the values of the parameters of the linear cost function and the DARA coefficient for one 

particular representative farm, the initial wealth level of the farm, and time series data of regional-level 

prices, yields and accounting variable costs for each crop are required. The calibrated model can only 

recover the observed land allocation across crops when the expected farm-level prices and yields derived 

from the calibration process, instead of original regional-level prices and yields, are used in the objective 

function (1).  

Expected exponential utility maximization and CARA 

A dual approach 

Arata et al. (2014, 2017) assume a farmer seeks to:
1
 

Maximize CE       
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ii,kkkkkkk x)r,r(Sx
2

xQx
2

1
xαyxpE


   (8) 

                                                 
1
 In the model described by Arata et al., the variance-covariance (VC) matrix S is based on farm-level 

prices, and xk represents the total yield of the k
th

 crop, which equals the crop yield per acre times the 

number of acres. The implication is that a farmer can choose each crop‟s output level. For comparison 

purposes, we adjust the model used here and define S as the VC matrix based on crops‟ gross margins 

per acre. Hence, a farmer chooses how to allocate land to maximize her utility. However, the calibration 

results differ for different S (based on prices versus based on gross margins) and related objective 

functions.  
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Subject to Xx
K

k

k 
1

 and xk ≥ 0, ∀k.           (9)  

when land is the only resource constraint; αk and Qk,i are the parameters of the quadratic cost function; 

and Qk,i is a symmetric matrix. The other variables are defined as previously. 

To calibrate the model given by (8) and (9) to the base year, Arata et al. construct the objective 

function for calibrating parameters by combining the primal and dual objective functions of a farm-level 

risk model that uses observed variable costs for linear cost functions and assumes a farmer with CARA 

seeks to maximize her expected utility. The related calibration constraints are based on the FOCs 

derived from both the first- and second-step PMP equations.  

While Petsakos and Rozakis use time-series regional-level data for the calibration, Arata et al. 

employ cross-sectional, farm-level data. The farms used for calibration share the same technology, 

which is represented by the Qk,i part in the quadratic cost function, but each farm has its own values of φ 

and α. Thus, the mathematical programming model needed to calibrate the parameters is as follows: 

Minimize 
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i,kQ  LDL′ (13) 

λf, λf,k, φf ≥ 0  (14) 

where the subscript f represents different farms; L and D are Cholesky decomposition matrices of Qk,i; λf 

represents the land shadow price for f
th

 farm; and λf,k is the shadow price for the k
th 

crop on the f
th

 farm. 
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Qk,i, λf, λf,k, φf and αf are to be simultaneously calibrated and implemented via the model described by 

equations (8) and (9).  

An ME approach
2
 

With this approach, the calibrated model for one representative farm will be used for future 

policy analysis. In this model, a farmer decides her land allocation by solving the following MP: 

 Maximize EU 
2
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 and xk ≥ 0, ∀k.    (16) 

 

To calibrate the model parameters, we implement the GME method to derive the values of the cost 

function parameters and CARA coefficient φ. Similar to Arata et al. (2017), we merge the first-order 

conditions from the 1
st
 and 2

nd
 steps of the standard PMP. The ME problem for estimation is: 
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ikkkk  


,0),cov(πzπz
1

Z

1z

zk,zk,

Z

1z

zk,zk,   (18) 

kxc kkk  


,πzπz
Z

1z

zk,zk,

Z

1z

zk,zk,   (19) 

，1π
Z

1z

zk, 


  ，1
Z

1z

zk, 


  παk,z, πβk,z, 


Z

1z

kzkzπz  ≥ 0 (20) 

                                                 
2
 ME is a special case of generalized maximum entropy (GME), which can be used to derive the values 

of parameters. If there is prior information on the range of the targeted parameters, the prior information 

is specified in the form of support values and a related discrete uniform probability distribution. Then, to 

estimate the parameters, the objective is to maximize the Shannon entropy (equation 17) subject to the 

known constraints (equations 18 and 19) and the available data for calculating the probabilities. Where a 

probability distribution is available, the expected values of estimates of parameters are used (i.e., for αs 

and βs in expressions within summations); but parameters such as λ are simply determined upon solving 

the MP.  
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Following the steps of the standard ME method, for each crop, we define discrete support vectors zαk 

and zβk for αk and βk, respectively. Accordingly, zαk,z and zβk,z are the z
th

 element of the support vectors, 

whose values are defined based on crops‟ gross margins and accounting variable costs; παk,z and πβk,z are 

the endogenous z
th

 element of the corresponding discrete probability distributions for the above support 

vectors. The values of pk, yk, ck, λk and xk are from the pre-defined base-case data. Constraints (18) and 

(19) are derived based on the first order conditions of the Lagrange functions for the PMP‟s first and 

second step. After obtaining the values of all παk,z and πβk,z, 


Z

1z

zk,zk, πz   and 


Z

1z

zk,zk, πz b are 

calculated as the expected estimation of α and β. No prior information regarding elasticity is required. 

4. Agricultural Business Risk Management: An Application to Alberta 

For the current application, we identify one representative arable grain farm in Vulcan County 

located in South Central Alberta (Figure 1). Seventy municipalities in Alberta have cropland, among 

which Vulcan County had 608 farms, 1.067 million acres of cropland, and a population of 3,984 

(Government of Alberta 2017). This municipality has the largest area of cropland, the second largest 

number of cropland acres per person and the third largest average acres per farm. Farmers in Vulcan 

County mainly produce barley, durum, canola, peas and wheat, which cover the most important crops in 

Alberta. Therefore, it is well representative of large farms in Alberta.  

To facilitate the presentations and discussion, we will refer to the Petsakos and Rozakis approach 

as model PRD (D referring to DARA), the model proposed by Arata et al. as model AC (C referring to 

CARA), and our proposed approach as BC. To calibrate the base-case crop allocation model for the 

representative farm, the following data are required: product prices, yields, production variable costs, 

land allocations and the variance-covariance matrix of realized returns per acre among crops.  
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Figure 1: Vulcan County in Alberta, Canada 

Source: Government of Alberta (2017) 

Yearly crop prices in Alberta are obtained by taking the average of monthly crop prices available 

from Statistics Canada (2017a). Alberta‟s Agricultural Financial Services Corporation (AFSC 2016) 

provided municipal-level data on average yields, the number of farms and total insured acres of cropland, 

which are used to calculate yields per acre and the land allocations for all crops for each year. The time 

series data we use are for years 2008 through 2016 and are shown in Table 1. Total variable cost of 

production per acre is obtained from Alberta Agriculture & Forestry (2014) and assumed constant across 

time. Olympic averages of the prices and yields are used in the base case. The data for the base case for 

models PRD and BC are summarized in Table 2. Also for model PRD, the value of the initial wealth 

level W
0
 is set at the average 2015 net worth for farms in the region, namely $3,490,636 (Statistic 

Canada 2017b). Because cross-sectional farm-level data are not available, for model AC we use instead 
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township-level data on yields and land allocations provided by AFSC (2016). Further, since durum is 

counted under wheat and not listed separately at the township level, weighted price and production costs 

caculated according to the land allocations of durum and wheat are used. For calibration, only the 

townships that have insured area data for all crops are included. The data required for the calibrating 

model AC are provided in Table 3. 

Table 1: Time series data for prices and yields, 2008-2016  

Year 

Price ($/bu)   Yield (bu/acre) 

Barley Canola Durum Peas Wheat 

 

Barley Canola Durum Peas Wheat 

2008 4.34 11.18 11.03 8.53 7.95 

 

58.76 35.27 43.78 35.79 41.45 

2009 3.33 9.93 6.69 6.16 5.97 

 

43.85 28.63 34.43 21.68 31.39 

2010 3.01 9.46 5.11 5.36 5.51 

 

67.05 42.14 47.39 49.64 47.70 

2011 3.80 12.02 6.49 7.74 6.38 

 

71.21 40.78 48.33 51.76 46.35 

2012 4.66 12.81 7.45 8.65 6.99 

 

65.42 33.24 48.80 47.15 45.60 

2013 5.21 13.03 6.85 8.30 7.38 

 

80.04 42.80 55.13 54.68 56.17 

2014 3.78 10.02 6.68 6.49 5.66 

 

64.22 35.12 45.94 40.75 44.40 

2015 4.76 10.40 9.48 8.36 6.06 

 

68.06 40.34 45.83 36.93 47.76 

2016 4.70 10.71 8.05 9.87 6.25   72.21 50.35 41.79 35.31 48.85 

 

Table 2: Base-case information regarding the representative farm 

  Barley Canola Durum Peas Wheat 

Price ($/bu) 4.18 11.06 7.54 7.72 6.46 

Yield (bu/acre) 65.65 38.74 45.71 41.52 45.52 

Variable cost ($/acre) 110.49 172.70 138.15 135.63 138.15 

Gross margin ($/acre) 163.67 255.88 206.36 184.80 155.96 

Land (%) 17.7% 24.9% 11.0% 14.9% 31.6% 

Land (acre) 311.2  436.6  192.6  261.2  554.4  

Farm size (acre) 1756 

Region South Central 

Soil Zone Dark Brown 

 

Because models PRD and AC use different datasets, model BC will be applied to both for 

comparison. We derive farm-level average prices and yields based on the time-series data for model 

PRD and report them in Table 4; the base-case data are included for reference. The calibrated values of 

the parameters for models PRD and BC are provided in Table 5. For models AC and BC, it is difficult to 
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directly compare the cost functions because PRD derives different intercept parts for each farm but 

employs the same cost matrix for all farms, while BC leads to different cost functions for each farm; 

therefore, we just report the values of the risk aversion coefficients and land shadow prices in Table 6. 

Table 3: Township-level data of yields and land allocations in Vulcan County, 2016 

No 

Yield (bu/acre)   Land allocation (%)   Farm 

size 

(acre) Barley Canola Peas Wheat 

 

Barley Canola Peas Wheat 

 1 70.71 51.96 39.29 58.59 

 

14.8% 20.6% 18.8% 45.7% 

 

1828  

2 38.37 53.53 33.52 38.57   9.4% 25.3% 19.8% 45.5%   2407  

3 36.42 47.75 18.43 28.36 

 

17.5% 20.7% 26.9% 34.9% 

 

1635  

4 60.54 50.94 37.56 47.66   8.9% 23.7% 23.5% 43.9%   1850  

5 66.06 47.87 45.89 50.00 

 

16.5% 42.2% 18.8% 22.5% 

 

1696  

6 105.18 59.62 49.13 51.31   26.6% 26.3% 32.1% 14.9%   1792  

7 81.31 50.99 34.20 50.52 

 

24.5% 34.2% 14.6% 26.7% 

 

1396  

8 70.61 52.99 50.97 57.72   19.7% 25.3% 20.0% 34.9%   1426  

9 75.73 56.13 48.09 59.69 

 

18.7% 31.9% 17.6% 31.7% 

 

1334  

10 73.65 56.61 43.47 49.30   10.5% 22.8% 19.5% 47.2%   2024  

11 92.52 60.45 48.21 69.01 

 

27.0% 23.4% 18.0% 31.6% 

 

1183  

12 88.90 51.92 54.46 66.47   17.6% 27.6% 19.0% 35.8%   2053  

13 77.75 52.10 43.86 50.77 

 

19.0% 24.0% 28.3% 28.7% 

 

1420  

14 68.62 43.74 41.70 50.07   10.7% 20.7% 26.3% 42.4%   1430  

15 81.32 55.99 43.28 53.01 

 

10.9% 24.1% 29.1% 35.8% 

 

2266  

16 83.80 48.07 46.82 54.00   18.9% 20.2% 12.3% 48.6%   2356  

Price 4.18 11.06 7.72 6.74 

 

($/bu) 
     Cost 110.49 172.70 138.15 135.63   ($/acre)           

 

 

Table 4: Derived average farm-level prices and yields from Model PRD vs base-case data 

  Price ($/bu) Yield (bu/ac) 

  Farm-level price Base case Farm-level yield Base case 

Barley 4.19 4.18 67.14 65.65 

Canola 11.07 11.06 38.81 38.74 

Durum 7.55 7.54 46.12 45.71 

Peas 7.74 7.72 42.16 41.52 

Wheat 6.50 6.46 46.96 45.52 
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Table 5 Calibrated parameters from PRD and BC models 

  PRD BC 

Risk aversion coefficient DARA CARA 

    2.66E-07 6.805E-08 

Farm-level variance 1.65E+10 1.39E+10 

Land shadow price 154.26 155.40 

Cost  Linear cost function Diagonal cost matrix 

 
Barley =128.61 x =102.7 x + ½ 0.049 x

2
 

  Canola =273.08 x =91.54 x + ½ 0.414 x
2
 

 
Durum =190.87 x =87.83 x + ½ 0.523 x

2
 

  Peas =169.48 x =106.69 x + ½ 0.221 x
2
 

  Wheat =149.69 x =61.39 x + ½ 0.138 x
2
 

 

Table 6: Calibrated λ and φ from AC and BC models
a
 

  
Risk aversion 

coefficient   Land shadow price 

Farm AC BC 

 

AC BC 

1 

 

2.28E-08 
 

 165.04    165.06  

2 6.70E-07 2.03E-08     14.77    49.71  

3 

 

1.18E-07 
 

  4.06     3.75  

4   2.86E-08    130.11    142.32  

5 3.03E-05 
  

 

  165.64  

6   1.42E-07    203.87    209.66  

7 2.17E-05 8.52E-08 
 

  41.40    120.44  

8   2.40E-07    184.41    183.69  

9 

 

6.11E-07 
 

 205.80    203.78  

10   2.35E-08    156.95    196.60  

11 

 

1.67E-07 
 

 260.65    233.50  

12 3.40E-05 1.71E-07       260.39  

13 

 

1.12E-07 
 

 200.31    199.98  

14   3.76E-08    176.10    176.05  

15 1.09E-05 5.03E-08 
 

  57.75    195.68  

16 9.81E-06 1.93E-08     58.44    223.00  
a
 A blank cell indicates that no value was obtained. 

Comparing the data from model PRD with the base-case data in Table 4, we find that all derived 

prices and yields are larger than the original data, as is the related variance (see Table 5). As indicated in 

Table 6, we cannot always guarantee that we can obtain a value for the risk aversion coefficient in 
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models AC and BC. It might mean that a farmer is risk neutral in some cases, although further 

investigation into why this might be the case is required. Furthermore, the values of φ derived from 

model BC are obviously smaller than those of the other two models, which may be sensitive to the data 

and the choices of support vectors used for calibration.  

5. Discussion and Conclusion 

In this study, three approaches for explicitly calibrating the risk aversion coefficient for an 

agricultural BRM model were compared. The mathematical, farm management programming model 

seeks to maximize expected utility subject to biophysical and economic constraints, and, once calibrated, 

could be used for analyzing the effect of new policy initiatives. When applied to farmers in southern 

Alberta, Canada, the results from the three models led to several observations. First, Petsakos and 

Rozakis (2011, 2015) used a logarithmic utility function (and thus DARA) and linear cost function – 

model PRD, while that of Arata et al. (2017) employed an exponential utility function (CARA), 

quadratic cost function and primal/dual approach – model AC. The calibrated PRD model provided a 

better fit to the available regional-level time-series data than the AC model, which performed better 

when farm-level, cross-sectional data were available.  

In contrast, our PMP approach, which used a maximum entropy method to estimate the 

parameters of a quadratic cost function and a CARA coefficient, relied on a representative farm and 

base-case data (namely, information averaged across farms for a base year) – the BC model. Model PRD 

and AC have the advantage that they use historical information in the calibration process, while model 

BC‟s advantage is that it can be applied to time-series data and cross-sectional data on a case-by-case 

base. As to the limitations, the PRD model assumes linear cost functions, which is not realistic because 

it implies that a crop‟s margin cost always equals its average cost. In addition, the PRD model cannot 

calibrate back to the observed land allocation with regional-level data, while the derived farm-level 
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average prices and yields are not real farm-level data. The AC model, on the other hand, can lead to 

different calibrated values of the CARA coefficient and the intercept component of the cost functions for 

the observed farms even though they share the same technology; the differences are hard to interpret, 

which makes it difficult to set up a representative farm for a region. The BC model also has a major 

drawback: it restricts the cost matrix to a diagonal form, which is not very realistic; moreover, it 

employs just one observation for calibration and the values of CARA coefficients are quite small. 

Further, research into the BC model is required to determine how this „diagonal restriction‟ on the cost 

matrix might be addressed, and how one would incorporate more historical data for calibration in the 

future. 
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