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1 Introduction

Fraud is a major problem in all lines of insurance because it has the potential to signifi-

cantly reduce the monetary returns from providing insurance coverage (i.e., it reduces the po-

tential underwriting gains that insurance providers can receive). For government-subsidized

insurance programs, like U.S. crop insurance, fraud issues are also of critical importance es-

pecially because the government does not want the public to view them as mismanaging the

taxpayer dollars used to help support these programs. Hence, the Risk Management Agency

(RMA) of the U.S. Department of Agriculture (USDA), the government agency in charge of

administering the US crop insurance program, developed and implemented the “Spot Check

List” (SCL) approach in 2001 as part of its efforts to minimize fraud, waste, and abuse in

the Federal crop insurance program (USDA-RMA, 2006).

The RMA and their partners use complex algorithms to analyze their large data ware-

house, which contains extensive crop insurance-related data records and information from

other related databases collected over time (i.e., weather data and/or other administrative

data from other USDA agencies), with the aim of detecting individual producers whose

claims behaviors demonstrate atypical patterns indicative of potentially fraudulent activity.

One of the main outputs from this process is the SCL, a list of insured farmers that inves-

tigators believe have a higher probability of engaging in crop insurance fraud and abuse,

which may then warrant an on-site inspection during the following season.

The SCL is generated by first computing a fraud probability score for each insured pro-

ducer. The score is relative to other producers for the same crop, type, and practice within

the same county and is automatically adjusted to compensate for years with few losses and

years with large losses. A cutoff point is then established and producers with a score above

the cutoff point are put into a pool of potential targets for the SCL. In addition, several

other potential fraud scenarios are analyzed to identify producers that appear to demon-

strate behavior suggestive of fraud, waste, and abuse. For example, the additional scenarios
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analyzed may pertain to finding producers that have large multi-year losses that are anoma-

lous (i.e., consistently higher than their peers in a county) or finding producers that have

large indemnity claims for several years in a row.

Results of the scoring exercise and the scenario analysis are then used to carefully create

an initial pool of producers that can be included in the SCL. This initial pool is then

forwarded to RMA Regional Compliance Offices for further review (i.e., the regional office

can suggest producers that can be added or removed from the initial pool based on “on-

the-ground” experience). After this careful regional assessment, a final SCL is created. All

producers included in the SCL for a particular crop year (say, in 2017, where data through

December 2017 is analyzed) are then typically notified of their inclusion in the list by the

middle of the following year (e.g. June 2018) via a formal hard copy letter. The final

SCL information is also forwarded to the local USDA county offices (i.e., the Farm Service

Agency (FSA) offices) and these county-offices are tasked to send out agents to perform on-

site inspections of selected producers in the SCL (i.e., not all SCL producers are inspected).

In light of this SCL procedure, the main objective of this paper is to determine the

effect of the SCL program on claims behavior of insured producers and to provide some

insights on whether or not the SCL program indeed helps reduce fraud, waste, and abuse

in the US crop insurance program. Finding an effective way to reduce fraud, waste, and

abuse is critical for the sustainability of the crop insurance program, and, consequently, to

the continued vitality of the US agricultural and food system. Thus, carefully evaluating

whether or not the SCL program is effective in reducing crop insurance fraud (and abuse)

has important public policy implications. If the SCL program is found to be effective in

reducing exaggerated claims, then more public funding should be devoted to expand the

scale and the scope of the program. On the other hand, if the program is found to be not as

effective, then effort should be devoted to searching for other strategies that can help reduce

insurance fraud and abuse.

Numerous studies in the literature have examined how the actuarial performance of the
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U.S. crop insurance program can be improved either through better rate-making procedures

(i.e., to address adverse selection) or contract parameter modifications (i.e., to address ex

ante moral hazard). For example, see the studies of Knight and Coble (1999), Borman and

Goodwin (2013), and Knight et al. (2010), among others, where different approaches to

improve the U.S. crop insurance rate-making process were explored to help address adverse

selection problems. The study of Turvey (2012), on the other hand, is an example of one

study that explores alternative contract mechanisms that can help curb ex ante moral hazard.

Only a few studies have examined fraud behavior in crop insurance (i.e., also called ex post

moral hazard, since this act is typically done after the insured outcome has occurred). One

example is the study of Rejesus (2004) where he found evidence of collusion by insurance

agents, adjusters, and producers in the crop insurance program. The study of Atwood,

Robison-Cox, and Shaik (2006) also examined the possible existence of yield switching fraud

in crop insurance (i.e., where farmers switch yields reported across insured fields so as to

increase guaranteed yields and increase the likelihood of losses).

However, to the best of our knowledge, there has been no study that carefully examined

the economic effectiveness of fraud mitigation policies in crop insurance. This study will

contribute to the literature in this regard. Note that USDA-RMA’s Program Compliance

and Integrity Annual Reports, which were submitted to Congress from 2004 to 2006, all

indicated that the SCL approach is an effective method to discourage misrepresentation of

crop insurance claim amounts and other types of insurance fraud (USDA-RMA, 2004 to

2006). However, this conclusion was solely based on simple “before-&-after” comparisons

of claims behavior (i.e., indemnity amounts before and after receipt of SCL letter), without

controlling for possible confounding factors that could have also affected the observed claims

behavior (e.g. weather conditions, production inputs, etc.). In addition, these reports also

did not address endogeneity issues with respect to the variable that represents inclusion in the

SCL due to unobserved heterogeneity. Therefore, in this study, we employ static and dynamic

panel data econometric models that can help overcome these issues (i.e., controlling for
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observable confounding factors and endogeneity due to unobservables), and more accurately

identify the effect of the SCL fraud-mitigation procedure on insureds’ actuarial performance.1

The paper is organized as follows. In the next section, we present a conceptual framework

that provides testable hypotheses about the effects of the SCL on insurance claims behavior.

In section 3, we describe the proprietary county-level data (and variables) used in our em-

pirical analysis. In section 4, we discuss the econometric model developed to account for the

econometric issues above. In section 5, main findings from our estimations are discussed. In

section 6, we conduct robustness checks to examine the sensitivity of our results when using

alternative specifications. Concluding comments and policy implications are provided in the

final section.

2 Conceptual Framework

In the theoretical insurance literature, two paradigms have been widely used to analyze

the ex post moral hazard or insurance fraud behavior by an insured (Rejesus, 2003; Picard,

2013; Vercammen and van Kooten, 1994). The first framework is the so-called costly state

verification paradigm, attributed to Townsend (1979). In this type of models, the insured

knows the actual magnitude of the loss, there is no cost for the insured to file a falsified

claim, and the insurer can learn the true loss by incurring a fixed auditing cost. The second

framework is the costly state falsification paradigm, attributed to Lacker and Weinberg

(1989). In this second type of model, it is assumed that the insured is able to manufacture

an observed claim that exceeds the loss actually suffered, by incurring a resource cost. It is

also assumed that there is no way for the insurer to learn the true loss.

Crop insurance has features of both models. On one hand, there are some costs for the

insured to file a falsified claim. The insured probably needs to incur costs to further damage

the crop or bribe the adjuster from the insurance company to help exaggerate his loss. In

1As discussed further below, there is also left-censoring in the main SCL variable used in our empirical
analysis due to government data reporting rules (i.e., related to privacy laws). Hence, our panel data
econometric models also accounted for this issue.
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addition, there is a nonzero probability that he will be caught and in that case, he will be

banned from participating in any federal programs in the future. On the other hand, with

some costs, the insurance company and the government can probably know fairly well the true

loss of the producer through a careful audit. In several high-profile real-life cases, charged

producers or insurance agents either pleaded guilty to or were convicted of crop insurance

fraud after criminal investigations by the authorities. Because of these characteristics, our

model below incorporates features from both paradigms.

Formally, assume that a producer participates in the crop insurance program. The insur-

ance contract specifies that the indemnity payment schedule is t(x), where x is the claimed

loss at the end of the production season. Due to the large number of producers who purchase

crop insurance and the relatively small number of staff at the insurance companies and RMA,

each filed claim is only audited with a probability p(x), with p
′
(x) > 0 , which means that

claims with larger losses are more likely to be audited. Further assume that the producer

needs to incur a falsification cost of C(y − x) if his true realized loss is x, but instead he

files a claim of y greater than x. To exaggerate his loss, a producer needs to further damage

his crops, or falsify yield records, or simply bribe the insurance adjuster/agent. All these

activities are costly. Also, we assume that if he is caught, there is a penalty of f(y − x).

This function captures the fact that if his fraud behavior is caught, not only does he need

to pay back the exaggerated part of his claim, he also faces the possibility of going to prison

or being banned from participating in any federal programs in the future. This is likely

to be very costly for the insured producer. We further assume that both
∂C(y − x)

∂(y − x)
> 0

and
∂f(y − x)

∂(y − x)
> 0, which means both the falsification cost and the penalty are increas-

ing in the amount of the exaggerated claim. For simplicity, we can use the specification

C(y − x) =
γ

2
(y − x)2 and f(y − x) =

δ

2
(y − x)2, where γ > 0 and δ > 0 are the cost

parameters. With these assumptions, the producer’s objective function can be written as

follows,
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π =
[
1− p(y)

]
· U
[
t(y)− C(y − x)

]
+ p(y) · U

[
t(x)− C(y − x)− f(y − x)

]
, (1)

where U(·) is a twice differentiable von Neumann-Morgenstern utility function with U
′
(·) > 0

and U
′′
(·) < 0.

[
t(y) − C(y − x)

]
is the producer’s return if he files an exaggerated loss of

y and he is not audited. In this case, he will get the indemnity payment of t(y) and pay

no fine. The term [t(x)− C(y − x)− f(y − x] is the producer’s return if he is audited and

caught cheating. In this case, his indemnity payment is t(x) and he pays a fine of f(y − x).

The producer’s maximization problem is to maximize (1) with respect to y, the amount of

loss to claim. The first-order necessary condition for maximization is:

− p′
(y) · U [t(y)− γ

2
(y − x)2] + [1− p(y)] · U ′

[t(y)− γ

2
(y − x)2] · [t′(y)− γ(y − x)]

+ p
′
(y) · U [t(x)− γ

2
(y − x)2 − δ

2
(y − x)2]

+ p(y) · U ′
[t(x)− γ

2
(y − x)2 − δ

2
(y − x)2] · [−γ(y − x)− δ(y − x)] = 0.

(2)

To guarantee that the solution to (2) is the maximum, we also need to impose the following

second-order sufficient condition: FOCy < 0, where FOC(·) is the left hand side of (2) and

FOCy is the derivative of FOC(·) with respect to y.

The SCL program increases the producer’s falsification cost, which corresponds to the γ

parameter in our model. Once a producer is on the SCL, the insurance company or USDA

field offices can conduct an on-site inspection during the proceeding production season. The

on-site inspection will give the insurance company or USDA-RMA fairly good information on

how much the producer has actually planted and the status of his production. This will make

it more difficult or more costly for the producer to exaggerate his loss when filing insurance

claims. To see the effect of such an increase in falsification cost on the amount of loss to file,

we derive the comparative statics of y with respect to γ in our model. Total differentiation of

(2) with respect to the two variables yields FOCydy+FOCγdγ = 0 where FOCγ is the first
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derivative of FOC(·) with respect to γ. Therefore, we have
dy

dγ
= −FOCy

FOCγ
. Since FOCy < 0

is the second-order sufficient condition required for the existence of the maximum, the sign of

dy

dγ
is determined by the sign of FOCγ. From (2), it is straightforward to obtain as follows,

FOCγ = p
′
(y) · U ′

[
t(y)− γ

2
(y − x)2

]
· (y − x)2

2

−
[
1− p(y)

]
· U ′′

[
t(y)− γ

2
(y − x)2

]
· (y − x)2

2
·
[
t
′
(y)− γ(y − x)

]
−
[
1− p(y)

]
· U ′
[
t(y)− γ

2
(y − x)2

]
· (y − x)

− p′
(y) · U ′

[
t(x)− γ

2
(y − x)2 − δ

2
(y − x)2

]
· (y − x)2

2

+ p(y) · U ′′
[
t(x)− γ

2
(y − x)2 − δ

2
(y − x)2

]
· (y − x)2

2
(y − x)(γ + δ)

− p(y) · U ′
[
t(x)− γ

2
(y − x)2 − δ

2
(y − x)2

]
· (y − x).

(3)

With the assumptions made above, it is clear that the first term of (3) is positive, the sign

of the second term is unclear and the third, fourth, fifth, and sixth terms are all negative.

Therefore, if the sum of the first two terms in (3) is negative, then this is a sufficient condition

for
dy

dγ
< 0. A weaker sufficient condition is simply that (3) is negative. Whether or not

these sufficient conditions hold depends on the specifications of p(·), U(·), and t(·), as well

as the magnitudes of γ and (y − x). In the special case of a linear utility function with

U
′
(·) = 1 and U

′′
(·) = 0, (3) is reduced to be −(y − x) and is negative for sure. This leads

to one testable hypothesis: Producers who are on the Spot Check List (SCL) files smaller

claims than what they would have if they were not on the Spot Check List (SCL).

We note, however, that this testable hypothesis can only be empirically validated if

one has access to: (i) individual-producer data on whether or not he is on the SCL at a

particular point in time, and (ii) the associated claims behavior data over time (preferably

claims behavior when the insured was not on the SCL and after he has been put in the

SCL (and/or inspected)). Due to the confidentiality reasons explained in more detail below,

individual-producers’ data relating to our variables of interest (i.e., being on the SCL list,
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and claims behavior) are not easily accessible. As such (and as discussed further below), only

county-level data about SCL listings and claims filing behavior are the only data accessible

to us at the moment, and this is the type of data set we use below to test our hypotheses.

Therefore, given the county-level data available, the more “aggregate-level” testable hy-

pothesis that naturally follow from the individual-producer level hypothesis above is as fol-

lows: all other things being equal, a county with more producers in the SCL would likely

have smaller claims relative to other counties with less (or no) SCL producers.

3 Data

The data used in our study come from several different sources. Each data source is

explained in turn below with a focus on the variables used in the econometric estimation.

Since the SCL program started in 2001, we restrict our analysis to data from 2001 to 2015.

Also, we only focus on yield-based and revenue-based individual policies, the two major crop

insurance policies2 for the following five major US row crops included in our data set: corn,

soybeans, wheat, cotton, and tobacco. Therefore, our data still include 78.04% of all crop

insurance policies for which acreage has been reported to USDA-RMA from 2001 to 2015.

These data come from 2,194 counties across all U.S. states, except in Alaska, Hawaii, and

Rhode Island.3

The county-level measures of claims behavior used in our study are: (1) the loss ratio

(LR), (2) the subsidy adjusted loss ratio (LRsubsidy) and (3) the loss cost ratio (LCR).These

are standard measures of actuarial performance and serve as the dependent variables con-

sidered in our regression analysis. LR is defined as the ratio between total indemnity and

premiums, while LRsubsidy is defined as the ratio of total indemnity and producer paid

premiums (total premiums minus government subsidy). Finally, LCR is defined as the ra-

2Only Yield-Protection (YP) and Revenue Protection (RP) policies (as these policies are called today)
are included in the analysis. Thus, other “less-popular” plans like the Area Risk Protection Insurance (ARPI)
and Whole Farm Revenue Protection (WFRP) Insurance policies are not considered in this study.

3Crop insurance policies sold from 2001 to 2015 were distributed in 2,832 counties across all 50 U.S.
states.
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tio between total indemnity and liability. County-level crop insurance experience data such

as total insurance premium, indemnity, subsidy, and liability are publicly available from

USDA-RMA,4 and we use this information to compute LR, LRsubsidy, and LCR.

As for the explanatory variables in our regression analysis, the key variable of interest

in this study is the number of producers on the SCL in each county (SCL). We obtained

this proprietary data from USDA-RMA through a special agreement. Due to government

regulations regarding data confidentiality, the number of SCL producers in a county is only

reported in our data set if the county has at least four producers on the SCL. We therefore

cannot exactly identify the number of producers on the SCL in a county when the number

of producers on the SCL is less than 4 (i.e., we only know that the number can be 0, 1, 2, or

3). Therefore, our empirical specification below is designed to accommodate this important

data feature. The numbers of counties with more than 3 SCL producers from 2001 to 2015

are presented in Table 1. The numbers ranged from 72 to 186 during the sample period. On

average, 123 counties had at least four SCL producers in a particular year and these counties

had approximately 7 SCL producers every year. Table 2 summarizes the detailed frequency

distribution of counties with each number of SCL producers by year. Figure 1 provides the

spatial distribution of the total number of SCL producers from 2001 to 2015 by county.5 We

note that counties with SCL producers are scattered throughout the continental U.S. with

some clustering in the upper Midwest, the Dakotas, the Plains (i.e., Kansas, Nebraska and

the Texas Panhandle), and the Southeastern States (i.e., North Carolina, South Carolina,

Georgia, and Florida). When the SCL program started in 2001, the Dakotas and the Plains

were the center of intensive investigation, but the clusterings had gradually disappeared

during the 10-year period from 2001 to 2010 as seen in Figure 2. Figure 3 presents the

spatial distributions of the number of SCL producers from 2012 to 2015. It appears that

for these four years, SCL had been concentrated in a new region including Iowa, Missouri,

4See: https://www.rma.usda.gov/data/sob/scc/index.html.
5Given the limitation on the number of SCL producers reported in our data, if the number of SCL

producers in a year was less than four for a county, then the number of SCL producers in this figure is coded
as zero.
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Illinois, and Kansas. Figure 4 also demonstrates how indemnities in counties had changed

for 3 years since they had at least four producers on the SCL. In most years, there had

been a steady decrease in total indemnities paid to counties after they had at least four

producers on the SCL. However, in some years, particularly from 2005 to 2010, there had

been increases. Indemnities for these years probably were also impacted by worse weather

conditions (e.g. severe nationwide drought). The same trend can be seen for LR (Figure 5),

LRsubsidy (Figure 6) and LCR (Figure 7).

In addition to the main variable of interest above, claims behavior at the county level

is also influenced by characteristics of the insurance policies that farmers in the county

purchase. For this reason, we also include the following county-level control variables in

our regressions: average number of acres insured per unit insured (Unit Size), the ratio

of revenue-based relative to yield-based policies (Insurance Type), the ratio of buy-up rel-

ative to catastrophic coverage (Coverage Type), and the average coverage level (Coverage

Level) weighted by the number of policies at each level. Specifically, producers can pur-

chase minimum catastrophic coverage (CAT) that will protect up to 50% of their expected

yield/revenue (at 55% of the price), if a loss occurs. Producers can buy-up to higher levels

of coverage with the option to insure up to 85% of the expected yield/revenue. We include

the average coverage level for each county and year to take into account the effect of cover-

age levels on claims. We obtained data on these variables from USDA-RMA’s summary of

business.6

Weather is also an important determinant of agricultural yields and, consequently, the

resulting crop insurance claims (or loss) amounts. For this reason, we collected weather

data from several sources. First, based on the work of Schlenker and Roberts (2009) and

available data from PRISM,7 we collected monthly county level data on average (averaged

across different days in a month as well as different places in a county) precipitation (mm),

minimum temperature (◦C), maximum temperature (◦C), and total degree days above 30 ◦C

6See: https://www.rma.usda.gov/data/sob/scc/index.html.
7See: http://www.prism.oregonstate.edu.

11



for the growing months.8 Monthly total degree days are defined as the sum of degrees above a

certain threshold during a given month.9 Specifically, Annan and Shenkler (2015) use degree

days above 30 ◦C as a measure of extreme heat because the threshold can be considered

harmful for most U.S. field crops. In addition, to take drought and flood conditions into

account (i.e., extremely dry and extremely wet conditions), we also collected data on the

state-level Palmer Drought Severity Index (PDSI) (also called the Palmer Z index) from

the National Oceanic and Atmospheric Administration (NOAA). For ease of interpretation,

we constructed two variables based on the PDSI, one that represent dryness (or drought

conditions) and the other for wetness (or flood conditions).10

Another important determinant of agricultural yields and resulting claims amounts is

the production inputs used by insured farmers. Thus, we collected county-level expenditure

data on seed, fertilizer and chemicals, labor, and other production expenses, from Bureau

of Economic Analysis (BEA).11 We then divided the expenditure data by the number of

acres planted in the county to get the per acre expenditure data.12 Land rental values for

agricultural land per acre are used as the measure of capital cost, and state-level data on

this variable was collected from USDA Quick Stats.13

Table 3 lists the variables used in our regression analysis below and the corresponding

data sources. The summary statistics for these variables are displayed in Table 4.

8According to USDA(2010), March to November are the growing months for these five crops.
9Ritchie and NeSmith (1991) argue that the most simple and useful definition of thermal time (td) is

td =
∑n

i=1max{(T i − Tb), 0}, where T i is the daily average temperature, Tb is the threshold temperature,
and n is the number of days. For details of how this variable was constructed, see Schlenker and Roberts
(2006), Schlenker, Hanemann, and Fisher (2007), and SI Appendix of Schlenker and Roberts (2009).

10County level data for this index are not publicly available. The Palmer Z index is a short-term drought
index that measures the dryness of a region for a particular month. It does not take into account drought
conditions in the previous months.

11See: https://www.bea.gov/regional/.
12The county-level crop acreage planted was approximated by dividing crop acreage insured reported in

USDA-RMA’s summary of business by the state level percentage of insured acreage as reported by USDA-
NASS. Therefore, there could be approximation error if the percentage of acres insured in a county is very
different from the state average.

13See: http://quickstats.nass.usda.gov/.
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4 Empirical Strategy

Since we have a county-level panel data set, we first employ a static linear panel data

model with fixed effects to investigate the SCL effects as follows,

yit = f(SCLi,t−1, ..., SCLi,t−J) + γ ·Xit + λt + δ · t+ µi + εit, (4)

where yit is the logarithm of LR (or LRsubsidy or LCR) in county i and year t,14 and

SCLi,t−j (j = 1, ..., J) are the number of SCL producers in county i in year t−j (j = 1, ..., J).

The SCL variables are our main variables of interest and meant to capture the effects of the

SCL program on farmers’ claims filing behavior. Since farmers put on the SCL in year t− 1

are inspected in year t, we did not include SCLi,t in the model. Further lags of the SCL

variable beyond the first lag are included to allow for lagged effects of the SCL program on

farmers’ claims filing behavior. The empirical specification in (4) also includes Xit, a vector

of time-varying, county-level control variables such as characteristics of the crop insurance

policies sold, weather variables, and production inputs; λt, the year fixed effects, to control

for effects from macro level variables that do not vary across counties; t, a linear time trend;

µi, the county fixed effects to control for time-invariant county level factors that influence

claims behavior, and εit, the idiosyncratic error for county i in year t. We estimate (4) using

the standard fixed effects regression method.

In addition to the static model (4) above, since farmers’ claims filing behavior may exhibit

state dependence, we also employ a dynamic linear panel data model with fixed effects as

follows,

yit =
J∑
j=1

αjyi,t−j + f(SCLi,t−1, ..., SCLi,t−J) + γ ·Xit + λt + δ · t+ µi + εit. (5)

14For the LR and LCR variables, 513 observations out of 30,457 have a zero value and these observations
were dropped from the analysis. For the LRsubsidy variable, 537 observations were dropped since 454
observations have a zero value and the total premiums of 83 additional observations were completely covered
from subsidy. In addition, 16 observations which have LCR > 1 were also excluded.
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To estimate (5), we first difference (5) to remove the county fixed effects,

∆yit =
J∑
j=1

αj∆yi,t−j + ∆f(SCLi,t−1, ..., SCLi,t−J) + γ ·∆Xit + ∆λt + δ + ∆εit. (6)

By construction, the ∆yi,t−1(= yi,t−1− yi,t−2) variable in (6) is endogenous as it is correlated

with ∆εit(= εit− εit−1). Therefore, we use the GMM estimator of Arellano and Bond (1991)

to estimate (6). We use three sets of instruments to account for the endogeneity in this

specification. First, as suggested by Arellano and Bond (1991), we use the second and

feasible higher-order lags of the dependent variable, i.e., yi,t−2, yi,t−3, ..., yi,t−14
15. Suppose J

in (6) is chosen to be 3 and hence observations in the first three years of our data (2001, 2002,

and 2003) cannot be used in estimation, this first set of instruments generate the following

set of 88 moment conditions as,

E
(
yi,t−2 ·∆εit

)
= 0, for t = 2005, 2006, 2007, · · · , 2015

E
(
yi,t−3 ·∆εit

)
= 0, for t = 2005, 2006, 2007, · · · , 2015

E
(
yi,t−4 ·∆εit

)
= 0, for t = 2005, 2006, 2007, · · · , 2015

E
(
yi,t−5 ·∆εit

)
= 0, for t = 2006, 2007, · · · , 2015

E
(
yi,t−14 ·∆εit

)
= 0, for t = 2015.

15As we have 15 years of data, we can only use 14 lags at most.
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In a matrix form, we can stack these moment conditions as,

E





yi2003 0 0 · · · 0

yi2002 0 0 · · · 0

yi2001 0 0 · · · 0

0 yi2004 0 · · · 0

0 yi2003 0 · · · 0

0 yi2002 0 · · · 0

0 yi2001 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · yi2001



×



∆εi2005

∆εi2006

∆εi2007
...

∆εi2015





=



0

0

0

0

0

0

0

...

0



, (7)

which can be written succinctly as E(ZDi · ∆Ei) =
−→
0 , where ∆Ei =

[∆εi2005,∆εi2006, · · · ,∆εi2015]T and

ZDi =



yi2003 0 0 · · · 0

yi2002 0 0 · · · 0

yi2001 0 0 · · · 0

0 yi2004 0 · · · 0

0 yi2003 0 · · · 0

0 yi2002 0 · · · 0

0 yi2001 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · yi2001



.

Second, we can use the differenced explanatory variables to form a second set of moment

conditions E(∆Xit · ∆εit) =
−→
0 , as proposed by Arellano and Bond (1991). In our spec-

ification, 78 (or 84 in the case of using SCL grouping dummies) covariates are used and

therefore, there are 78 (or 84) moment conditions in this set.
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Lastly, following Arellano and Bover (1995), Blundell and Bond (1998), and Blundell,

Bond, and Windmeijer (2000), we can also interact the lagged first differenced dependent

variable ∆yi,t−1 with the error term in the level equation (5) εit to form the third set of

moment conditions E(∆yi,t−1εit) = 0 for t = 2004, ..., 2015. This yields another 12 moment

conditions.

We then stack all three sets of moment conditions together and estimate the model

using a two-step optimal GMM method. A total of 178 (or 184 in the case of using SCL

grouping dummies) moments conditions are used to estimate 81 (or 87) unknown parameters

in (5). Arellano and Bond (1991) suggest that the standard errors estimated by the two-

step GMM may be biased downward. Therefore, we follow Windmeijer (2005) to obtain the

bias-corrected robust standard errors after estimation.

To complete our empirical specifications, f(SCLi,t−1, ..., SCLi,t−J) needs to be specified.

As mentioned above, the SCL variable has been censored at three because of confidentiality

reasons. To accommodate this data feature, we consider two alternative ways of defining

the SCL variables used in estimation. The first one is the linear specification. We simply

set each SCLi,t−j at its observed value and if it is censored, it is set to be 0. As a result,

f(SCLi,t−1, ..., SCLi,t−J) is specified to be,

f(SCLi,t−1, ..., SCLi,t−J) = β0 + β1SCLi,t−1 + β2SCLi,t−2 + · · ·+ βJSCLi,t−J .

Clearly, there are measurement errors for the SCL variables created using this specifica-

tion as those SCLi,t−js taking values between 1 and 3 are wrongly set to be 0. Our second

specification avoids this problem by creating several group dummy variables for the number

of SCL producers based on the SCL frequency distribution table (Table 2). Specifically,

we create four SCL dummy variables to represent 4 groups of counties: SCL03i,t−j = 1 if

county i had 0-3 SCL producers in year t − j and 0 otherwise; SCL456i,t−j = 1 if county i

had 4-6 SCL producers in year t − j and 0 otherwise; SCL789i,t−j = 1 if county i had 7-9
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SCL producers in year t− j and 0 otherwise; SCL10Plusi,t−j = 1 if county i had 10 or more

SCL producers in year t − j and 0 otherwise. With this method, f(SCLi,t−1, ..., SCLi,t−J)

becomes,

f(SCLi,t−1, ..., SCLi,t−J)

= β0 + β456
1 · SCL456i,t−1 + β456

2 · SCL456i,t−2 + · · ·+ β456
J · SCL456i,t−J

+ β789
1 · SCL789i,t−1 + β789

2 · SCL789i,t−2 + · · ·+ β789
J · SCL789i,t−J

+ β10Plus
1 · SCL10Plusi,t−1 + β10Plus

2 · SCL10Plusi,t−2 + · · ·+ β10Plus
J · SCL10Plusi,t−J ,

with SCL03 as the omitted category. Compared with the linear specification, one disadvan-

tage of the group dummy method is that with group dummies, we can no longer examine the

marginal effect of having one more SCL producer on the claims filing behavior of the farm-

ers. Instead, we can only examine the effect on claims when the number of SCL producers

changes from one category to another.

5 Results

The estimation results from the static models are presented in Tables 5 and 6. Table 5

collects the results where the linear specification is used for the SCL variables while Table

6 collects the results where SCL group dummies are used. The regressions include all the

variables listed in Table 4, but the coefficients for the weather variables are not reported

for brevity. The full results are reported in Tables A.1 and A.2 in the appendix. Also, J

is chosen to be 3 in these regressions. In Table 5, we first note that the SCL program has

strong deterrence effect. When there are more SCL producers in the county, producers file

less claims. For example, having one more producer on the SCL last year decreases the loss

ratio (LR), the subsidy adjusted loss ratio (LRsubsidy) and the loss cost ratio (LCR) in

the current year by 1.3%, 1.5% and 1.2%, respectively and these effects are all statistically

significant at the 1% significance level. In the case when group dummies of SCL are used
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(Table 6), we also identify strong negative and significant results for the SCL dummies. More

importantly, the magnitudes of the negative effects also become larger (in absolute values) as

the number of SCL producers increases from a low to a high category. For example, counties

with 4-6 SCL producers last year have lower subsidy adjusted loss ratio (LRsubsidy) by 8.8%

while counties with 7-9 and 10 or more SCL producers have lower subsidy adjusted loss ratio

by 12.6% and 22.0%, respectively.

Some results associated with control variables are also worth discussing. Regarding the

insurance policy characteristics variables, our results show that counties with larger insured

units on average have lower LR and LCR. This result is consistent with the empirical regu-

larity in crop insurance where larger insured units tend to have lower risk or more aggregated

insured areas tend to have lower variability. Larger insured units have a higher chance of a

“portfolio” effect where the part of a large unit with a loss tends to be compensated with

another area within the unit that has no loss (see, for example, Knight et al., 2010 and Marra

and Schurle, 1994). Moreover, results indicate that counties with higher ratios of revenue-

based relative to yield-based insurance policies have lower loss ratio, subsidy adjusted loss

ratio and loss cost ratio, which is consistent with the inherent “natural hedge” between

prices and yields when revenue is insured instead of just yields. Lastly, counties with pro-

ducers purchasing more of buy-up coverage (relative to CAT) and counties where producers

buy more coverage have higher LRs, LRsubsidys and LCRs, which simply indicates that

likelihood of losses increases as insurance coverage increases.

Next, with regards to the production inputs, results show that per acre rent and other

expenses than seed, fertilizers and labor have a positive effect on claims filed. This implies

that farmers with higher costs on these two items are more likely to file for indemnity

payments. However, higher per acre fertilizer, chemicals, and labor costs have a negative

effect on claims filed. This may be due to the fact that with more fertilizer, chemicals, and

labor, yields are likely to be higher and losses are less likely.

We now turn to the dynamic models. The first set of moment conditions above, E(ZDi ·
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∆Ei) =
−→
0 , is valid only if there is no second-order autocorrelation in the first-differenced

idiosyncratic error term ∆εit.
16 Therefore, before we present and discuss our estimation

results from the dynamic models, we first test for autocorrelation in ∆εit. This is feasible

after estimation since an estimate for ∆εit can be recovered from (6) using the data and the

parameter estimates. The test results are reported in Table 7. The results clearly reject

the null hypothesis that there is no first-order autocorrelation in ∆εit and fail to reject the

hypothesis that there is no second-order autocorrelation in ∆εit, which lend support to our

empirical specification.

The estimation results from the dynamic models are presented in Tables 8 and 9. Table

8 collects the results where the linear specification is used for the SCL variables while Table

9 collects those where SCL group dummies are used. Again, the coefficients for the weather

variables are not reported and the full results are reported in Tables A.3 and A.4 in the

appendix. Several results are worth discussing. First, our estimation results clearly show

that there is persistence in the LR and LRsubsidy (LCR) variables for at least two (one)

years. Tables 8 and 9 indicate that LR and LRsubsidy (LCR) values in the past two (one)

years have a positive and statistically significant effect on the LR and LRsubsidy (LCR)

values in the current year, with the effect from the last year being larger in magnitude than

the effect from two years ago. This result may be capturing state-dependence in losses where

unobservable time-varying conditions (like slowly-evolving states of soil nutrient levels and

climate trends) have some persistent effects on yield outcomes. This result also shows the

importance of using a dynamic specification and including the lagged dependent variables

in the empirical model.

Second, with regards to our main SCL variables of interest, we identify stronger deterrence

effect compared to the results from the static models. Based on the parameter estimates in

Table 8, an additional SCL producer last year decreases this year’s LR, LRsubsidy, and LCR

by 5.3%, 5.6%, and 4.9%, respectively. These estimated effects are four times larger than

16By construction, the first differenced error term is first-order autocorrelated.
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those from the static models reported in Table 5. These effects are statistically significant at

the 1% significance level. Furthermore, coefficients associated with the SCL group dummies

(Table 9) reveal more clear-cut evidence that more SCL producers in a county lead to a

much larger reduction in the claims filed. For example, compared with counties with 0-3

SCL producers last year, a county with 4-6, 7-9, and 10 or more SCL producers last year have

a LR 32.1%, 49.8%, and 62.2% lower this year, respectively. These effects are again three

or four times larger than those from the static models (Table 6) showing the importance

of controlling for lagged dependent variables in identifying the SCL effects. There is also

evidence that the SCL effects can last for several years. For example, compared with counties

with 0-3 SCL producers, a county with 7-9 SCL producers last year has a subsidy adjusted

loss cost ratio (LRsubsidy) 50.8% lower this year, 26.2% lower next year, and 25.0% lower

two years later, respectively. These results show that the SCL program has strong deterrence

effect, i.e., when there are more SCL producers within the same county, producers file much

less claims.

Finally, regarding the control variables, the results are almost identical to those from the

static models with only a few differences. First, expenses on petroleum products such as

gasoline have positive and statistically significant effects on claims filed. Second, expenses

on fertilizers, chemicals, and other things no longer have statistically significant effects on

claims filed.

6 Robustness Checks

In the analysis so far, we have chosen the lag-depth J in our empirical models to be 3. In

this section, we examine different lag-depth specifications and see whether our main results

above are robust to alternative lag-depth specifications. We start with J = 1 and then go

up to J = 4 using the logarithm of the loss ratio (LR) as the dependent variable.

Table 10 collects the regression results using the linear SCL specification and alternative
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lap-depths from J = 1 to J = 4. The left four columns present the estimation results from

the static model and the last four ones come from the dynamic model. For the purpose of

brevity, we only report the coefficient estimates for the SCL and lagged dependent variables

here.17 We first note that our main findings continue to hold, both in terms of the signs of

the estimates and their statistical significance (except J = 1 in the static model). Regarding

the magnitudes of the estimates, it is also apparent that the coefficient estimates of the first

lagged SCL variable are almost the same across lag-depth specifications: i.e., for the static

model, -1.1% for J = 2, -1.3% for J = 3, and -1.2% for J = 4; for the dynamic model, -5.3%

for J = 2, -5.3% for J = 3, and -5.6% for J = 4.

We present the regression results using the SCL group dummies specification and al-

ternative lap-depths from J = 1 to J = 4 in Table 11. In the left four columns for the

static model, the finding that the SCL effects become larger for the group dummies that

represent more SCL producers still holds across different lag-depth specifications. Regarding

the dynamic model, our results show that the loss ratios are persistent over two years. The

last three columns of Table 11 show that as long as we specify at least two lagged dependent

variables in our dynamic model, the coefficient estimates for the first year deterrence effects

across different group dummies are remarkably unchangeable compared to our baseline re-

sults. These coefficients are all statistically significant at the 1% level. In sum, we conclude

that our results are robust to alternative specifications of the lag-depth J .

Furthermore, we also tried to use different sets of SCL dummies to check how the results

change across different specifications of SCL groupings. In particular, we used finer group-

ings as follows: SCL03i,t−j = 1 if SCLi,t−j is between 0 and 3 and 0 otherwise; SCL4i,t−j = 1

if SCLi,t−j = 4 and 0 otherwise; SCL5i,t−j = 1 if SCLi,t−j = 5 and 0 otherwise; and so on.

We do not present the results here, but the main implications from the estimation results

remain the same as those from the coarser groupings of the SCL numbers in section 5.

17Full results are available from the authors upon request.
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7 Conclusions

Curbing the incidence of fraud, waste, and abuse is a major concern in the U.S. crop

insurance program. Reducing the incidence of fraud improves the financial viability of the

program (e.g. for participating private insurance providers, as well as the government),

and is key to maintaining the integrity and stability of this center-piece U.S. farm safety-net

policy. Recognizing this, the USDA-RMA has implemented the SCL approach to help detect

producers potentially engaging in these fraudulent activities, and consequently discourage

other producers from engaging in this behavior. The SCL fraud-mitigation process was

developed with the hope that it reduces incidence of fraud (i.e., leading to more prosecutions

and cost avoidance), as well as reduce misrepresentation (or exaggeration) of claimed losses

(i.e., encourage truthful revelation).

However, even with the important role that the SCL plays in maintaining the integrity

of the U.S. crop insurance program, there have been no rigorous econometric studies that

have carefully examined the effectiveness of this fraud-mitigation approach. This study is

the first attempt at evaluating the effect of the SCL process on producers’ claims behavior.

Using proprietary county-level SCL data and controlling for confounding factors that can

also influence claims behavior, our econometric analyses over the 2001-2015 period provide

strong evidence that the SCL process does indeed statistically affect claims behavior in the

counties with SCL producers. Counties with more than three producers listed in the SCL

tend to have lower LRs, LRsubsidys, and LCRs in the year the SCL producers are notified

about their listing, as compared to counties with less than three (or no) producers included

in the SCL. These results suggest that the SCL process may have helped facilitate reduction

of potentially fraudulent or exaggerated claims (at least at the county-level). Hence, there

is empirical support to the notion that the SCL approach is effective in influencing producer

claims behavior.

Given the results in this paper, the SCL approach shows promise as an effective fraud-

22



mitigation tool in U.S. crop insurance. One important policy implication is the need for

continued budgetary support for this program. In particular, more resources are needed

for conducting more in-season inspections (after notification of SCL listing) in order for

producers to believe that USDA-RMA can “credibly” pursue further investigations after

SCL listing (thereby improving effectiveness). This will assist in further encouraging truthful

claims behavior. Moreover, providing resources to improve the statistical algorithms used

for scoring and, ultimately, detecting producers to be included in the SCL also seem to be

warranted.

Lastly, even though this article provides important advances to assessing the effectiveness

of the SCL fraud-mitigation approach, further research in a couple of dimensions are still

needed. First, more accurate inferences about the effectiveness of the SCL can be made

if individual level SCL information is analyzed. Availability of this data will allow one to

assess whether the SCL notification process actually influences individual farmer behavior.

Another direction for further research may be to examine whether the link between people

in the SCL directly relates to individuals actually prosecuted for crop insurance fraud in

the past. This type of analysis will provide insight on whether the SCL approach at least

captures anomalous behavior of those actually prosecuted of crop insurance fraud and can

shed light on the effectiveness of SCL as a fraud-detection tool. This kind of research may

require linking individual-level SCL data and lawsuit information.
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Table 1: Number of Counties with more than 3 SCL Producers

Year County Mean Std. Dev. Max

2001 186 14.15 18.25 134
2002 135 7.95 5.00 31
2003 138 7.30 4.47 28
2004 114 7.28 4.04 23
2005 84 6.83 4.29 21
2006 72 6.61 3.93 26
2007 155 5.95 2.65 18
2008 151 5.80 2.19 16
2009 126 5.83 2.22 19
2010 90 5.72 2.18 18
2011 102 5.65 2.29 13
2012 96 5.45 2.13 11
2013 157 5.80 2.03 11
2014 146 6.18 2.14 11
2015 89 5.10 1.64 10

Table 2: The Frequency distribution Table for SCL Counties by Year

Number of SCL producers
Year ≤ 3 4 5 6 7 8 9 10 11-20 21-30 >30

2001 1864 48 21 17 7 10 9 8 33 11 22
2002 1902 43 17 14 8 10 6 1 32 3 1
2003 1894 51 16 18 7 13 5 2 25 1 0
2004 1914 37 22 7 3 13 8 5 18 1 0
2005 1926 34 15 10 3 5 3 1 12 1 0
2006 1957 26 19 5 4 3 2 2 10 1 0
2007 1867 62 27 26 9 6 9 7 9 0 0
2008 1872 60 29 19 10 12 9 9 3 0 0
2009 1890 41 31 18 14 9 6 4 3 0 0
2010 1906 30 26 13 4 7 5 4 1 0 0
2011 1910 49 18 9 7 5 2 7 5 0 0
2012 1943 50 17 8 5 4 2 5 5 0 0
2013 1897 60 30 23 8 12 11 11 2 0 0
2014 1906 47 23 22 10 18 8 16 2 0 0
2015 1968 50 14 10 5 4 3 3 0 0 0

Total 28616 688 325 219 104 131 88 85 160 18 23
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Table 3: List of Variables used in Estimation and their Sources

Variables Description and Sources

1. Crop Insurance dataa

Average Unit size Total acres insured/ number of units

Insurance Type Ratio of revenue-based relative to yield-based policies

Coverage Type Ratio of buy-up relative to catastrophic type policies

Coverage Level Avg. coverage level weighted by the number of policies

2. Monthly weather data

County levelb

Precipitation Precipitation (mm), Jan-Dec

tMin, tMax Averages of Min. (Max.) temperatures (Celsius), Jan-Dec

dday30C Total degree days above 30 ◦C (Celsius and days), Jan-Dec

State levelc

Drought Palmer Z index for drought level

Wetness Palmer Z index for wetness level

3. Land datad

Rent Rent per acre

4. Expenses datae

Seed Seed expenditure per acref

Petroleum Products Petroleum products expenditure per acre

Fertilizer and Chemicals Fertilizer and chemicals expenditure per acre

Hired Labor Hired labor expenditure per acre

All Other Expenses Expenditure per acre for Machinery, Interest, Tax, etc.

a. Reproduced from Summary of Business (USDA-RMA, County level).

b. Reproduced based on Schlenker and Roberts (2009) and PRISM.

c. Reproduced from Palmer Z Index of NOAA (National Oceanic and Atmospheric Administration).

d. USDA Quick Stats (State level).

e. BEA (Bereau of Economic Analysis): CA45 Farm income and expenses (County level).

f. Reproduced from Summary of Business (USDA-RMA) and USDA-NASS (County level).
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Table 4: Summary Statistics

Variable Mean Std. Dev. Min. Max.

Loss (Cost) Ratio
LR .85 .96 5.75 ∗ 10−4 11.90
LRsubsidy 2.31 2.66 2.45 ∗ 10−3 64.28
LCR .12 .15 5.95 ∗ 10−5 1.00
Crop Insurance
UnitSize 99.61 67.07 2.16 1113.48
InsuranceType .60 .25 .00 1.00
CoverageType .87 .16 .00 1.00
CoverageLevel .67 .06 .50 .83
Precipitation
Mar precipitation 68.43 49.17 1.08 359.64
Apr precipitation 88.82 56.43 .63 584.87
May precipitation 101.84 59.73 .51 550.42
Jun precipitation 107.90 62.52 .22 728.44
Jul precipitation 93.83 54.46 .37 428.86
Aug precipitation 89.45 56.69 .29 489.99
Sep precipitation 80.99 59.01 .66 509.47
Oct precipitation 78.25 56.19 1.20 552.78
Nov precipitation 62.81 52.63 1.10 379.47
Temperature
Mar tMin .07 5.50 -18.40 17.55
Apr tMin 5.30 4.41 -8.38 20.81
May tMin 10.90 4.00 -1.42 22.78
Jun tMin 16.05 3.66 3.34 24.98
Jul tMin 18.03 3.20 6.80 28.05
Aug tMin 17.13 3.51 5.22 27.22
Sep tMin 13.06 3.91 .46 24.37
Oct tMin 6.57 4.00 -5.18 21.56
Nov tMin .52 4.53 -13.45 16.75
Mar tMax 12.94 6.43 -6.04 30.86
Apr tMax 19.04 4.80 1.54 34.31
May tMax 24.05 3.84 11.38 37.88
Jun tMax 28.75 3.49 17.91 42.16
Jul tMax 30.82 3.00 21.17 43.30
Aug tMax 30.17 3.24 20.24 43.47
Sep tMax 26.63 3.44 16.39 40.10
Oct tMax 19.83 4.54 6.26 34.21
Nov tMax 12.97 5.33 -3.24 28.03
Mar dday30C .02 .29 .00 15.97
Apr dday30C .30 1.38 .00 35.70
May dday30C 2.08 4.67 .00 72.28
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Table 4: : Continued

Variable Mean Std. Dev. Min. Max.

Jun dday30C 9.36 13.47 .00 137.99
Jul dday30C 16.65 18.81 .00 182.70
Aug dday30C 14.79 19.32 .00 179.97
Sep dday30C 4.67 7.93 .00 109.20
Oct dday30C .45 1.56 .00 37.20
Nov dday30C .01 .11 .00 4.04
Drought
Mar Drought .96 1.13 .00 5.00
Apr Drought .66 .95 .00 4.30
May Drought .83 1.12 .00 4.66
Jun Drought .84 1.18 .00 5.85
Jul Drought .77 1.17 .00 5.47
Aug Drought .72 1.05 .00 5.10
Sep Drought .81 1.08 .00 4.56
Oct Drought .44 .73 .00 3.98
Nov Drought .71 .88 .00 3.69
Wetness
Mar Wetness .52 .95 .00 6.79
Apr Wetness .95 1.45 .00 8.67
May Wetness 1.08 1.70 .00 9.17
Jun Wetness 1.21 1.72 .00 6.95
Jul Wetness .98 1.48 .00 7.99
Aug Wetness .96 1.39 .00 9.99
Sep Wetness .85 1.49 .00 9.09
Oct Wetness 1.32 1.88 .00 10.86
Nov Wetness .70 1.24 .00 6.84
Land ($/acre)
Rent 93.33 55.64 23.00 329.00
Expenses ($/acre)
Seed 81.29 160.07 .05 6474.83
PetroleumProducts 104.43 233.69 .90 8905.72
AllOtherExpenses 963.94 2426.51 7.25 62968.68
FertilizerChemicals 168.39 314.69 .12 14946.22
HiredLabor 232.70 813.25 1.24 34295.06

Note: The total number of observations in the estimation sample is 23,331 from

2,099 counties and years 2001-2015. When using LRsubsidy as the dependent

variable, 8 additional observations were dropped since their total premiums

were completely covered from subsidy (i.e., 23,323 observations from 2,098

counties).
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Table 5: Estimation Results for Static Models with Linear Specification for SCL Variables

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

SCLProducerCount
L1. −.013∗∗∗ −.015∗∗∗ −.012∗∗∗

(.004) (.005) (.004)
L2. .001 .000 .001

(.004) (.004) (.004)
L3. −.003 −.003 −.003

(.003) (.003) (.003)
Crop Insurance
ln(UnitSize) −.295∗∗∗ −.043 −.362∗∗∗

(.046) (.045) (.046)
InsuranceType −.979∗∗∗ −.861∗∗∗ −.397∗∗∗

(.120) (.119) (.123)
CoverageType .854∗∗∗ .331 .440∗∗

(.204) (.211) (.202)
CoverageLevel 5.866∗∗∗ 5.253∗∗∗ 5.627∗∗∗

(.712) (.709) (.726)
Land ($/acre)
ln(Rent) .224∗∗ .207∗∗ .181∗

(.109) (.105) (.106)
Expenses ($/acre)
ln(Seed) .010 −.009 −.003

(.052) (.052) (.051)
ln(PetroleumProducts) .040 .063 .044

(.069) (.069) (.068)
ln(AllOtherExpenses) .221∗∗∗ .178∗∗∗ .147∗∗

(.068) (.067) (.067)
ln(FertilizerChemicals) −.152∗∗ −.124∗ −.153∗∗

(.068) (.067) (.066)
ln(HiredLabor) −.112∗∗ −.106∗∗ −.072

(.049) (.048) (.048)

Obs. 23331 23323 23331
Counties 2099 2098 2099

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: county-level clustered

robust standard errors, c. Parameter estimates for weather variables, year dummies, and

year trend are omitted for the sake of brevity. See appendix table A.1 for full estimation

results.
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Table 6: Estimation Results for Static Models with Group Dummies for SCL Variables

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

SCL456
L1. −.074∗∗ −.088∗∗∗ −.062∗∗

(.029) (.029) (.029)
L2. .043 .035 .045

(.032) (.032) (.031)
L3. −.097∗∗∗ −.103∗∗∗ −.085∗∗∗

(.032) (.032) (.032)
SCL789
L1. −.104 −.126∗ −.094

(.066) (.066) (.066)
L2. −.056 −.067 −.043

(.060) (.061) (.060)
L3. −.194∗∗∗ −.200∗∗∗ −.168∗

(.068) (.068) (.067)
SCL10Plus
L1. −.198∗∗ −.220∗∗ −.211∗∗

(.092) (.092) (.090)
L2. −.028 −.032 −.042

(.086) (.086) (.085)
L3. −.049 −.053 −.058

(.065) (.064) (.063)
Crop Insurance
ln(UnitSize) −.301∗∗∗ −.049 −.367∗∗∗

(.046) (.045) (.046)
InsuranceType −.977∗∗∗ −.859∗∗∗ −.395∗∗∗

(.120) (.119) (.123)
CoverageType .828∗∗∗ .302 .420∗∗

(.204) (.211) (.202)
CoverageLevel 5.994∗∗∗ 5.394∗∗∗ 5.731∗∗∗

(.713) (.711) (.727)
Land ($/acre)
ln(Rent) .224∗∗ .207∗∗ .181∗

(.108) (.105) (.106)
Expenses ($/acre)
ln(Seed) .009 −.010 −.003

(.052) (.052) (.051)
ln(PetroleumProducts) .039 .062 .043

(.069) (.068) (.068)
ln(AllOtherExpenses) .220∗∗∗ .178∗∗∗ .146∗∗

(.068) (.067) (.068)
ln(FertilizerChemicals) −.152∗∗ −.124∗ −.154∗∗

(.068) (.067) (.066)
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Table 6: : Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

ln(HiredLabor) −.110∗∗ −.104∗∗ −.071
(.049) (.048) (.048)

Obs. 23331 23323 23331
Counties 2099 2098 2099

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: county-level

clustered robust standard errors, c. Parameter estimates for weather variables, year

dummies, and year trend are omitted for the sake of brevity. See appendix table

A.2 for full estimation results.

Table 7: Arellano-Bond Test Results for Autocorrelation after Dynamic Model Estimation

Order
ln(LR) ln(LRsubsidy) ln(LCR)

z p-value z p-value z p-value

SCL linear specification
1 -25.160 .000 -25.257 .000 -24.910 .000
2 -1.296 .195 -1.060 .289 -.969 .332

SCL group dummies specification
1 -25.138 .000 -25.226 .000 -24.887 .000
2 -1.262 .207 -1.027 .304 -.925 .355
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Table 8: Estimation Results for Dynamic Models with Linear Specification for SCL Variables

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

Lagged dependent variable (α̂)
L1. .083∗∗∗ .076∗∗∗ .063∗∗∗

(.014) (.014) (.015)
L2. .041∗∗∗ .031∗∗ .015

(.013) (.013) (.014)
L3. .004 −.004 −.013

(.011) (.011) (.012)
SCLProducerCount
L1. −.053∗∗∗ −.056∗∗∗ −.049∗∗∗

(.009) (.009) (.008)
L2. −.011 −.012 −.009

(.008) (.008) (.008)
L3. .000 .000 .002

(.005) (.005) (.005)
Crop Insurance
ln(UnitSize) −.241∗∗ −.014 −.160

(.095) (.095) (.098)
InsuranceType −1.826∗∗∗ −1.666∗∗∗ −1.098∗∗∗

(.298) (.297) (.295)
CoverageType 1.661∗∗∗ .611 1.367∗∗

(.578) (.580) (.557)
CoverageLevel −1.581 −2.628 −4.006∗∗

(1.799) (1.764) (1.769)
Land ($/acre)
ln(Rent) .513∗∗∗ .466∗∗∗ .206

(.151) (.148) (.149)
Expenses ($/acre)
ln(Seed) .163 .199∗ .082

(.107) (.109) (.108)
ln(PetroleumProducts) .658∗∗∗ .727∗∗∗ .711∗∗∗

(.154) (.156) (.152)
ln(AllOtherExpenses) −.238 −.273∗ −.126

(.163) (.162) (.160)
ln(FertilizerChemicals) .158 .222 .124

(.170) (.167) (.167)
ln(HiredLabor) −.552∗∗∗ −.608∗∗∗ −.592∗∗∗

(.112) (.111) (.109)

Obs. 22836 22832 22836
Counties 2073 2072 2073

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: Windmeijer (2005)

bias-corrected robust standard errors, c. Parameter estimates for weather variables, year

dummies, and year trend are omitted for the sake of brevity. See appendix table A.3 for full

estimation results.
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Table 9: Estimation Results for Dynamic Models with Group Dummies for SCL Variables

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

Lagged dependent variable (α̂)
L1. .085∗∗∗ .077∗∗∗ .065∗∗∗

(.014) (.014) (.015)
L2. .042∗∗∗ .033∗∗ .017

(.013) (.013) (.014)
L3. .007 .000 −.009

(.011) (.011) (.012)
SCL456
L1. −.321∗∗∗ −.333∗∗∗ −.304∗∗∗

(.056) (.056) (.054)
L2. −.098∗ −.108∗ −.078

(.058) (.058) (.057)
L3. −.055 −.062 −.057

(.058) (.058) (.058)
SCL789
L1. −.498∗∗∗ −.508∗∗∗ −.440∗∗∗

(.134) (.134) (.131)
L2. −.259∗∗ −.262∗∗ −.216∗

(.121) (.120) (.116)
L3. −.259∗∗ −.250∗∗ −.172

(.128) (.127) (.123)
SCL10Plus
L1. −.622∗∗∗ −.650∗∗∗ −.564∗∗∗

(.151) (.149) (.145)
L2. −.197 −.213 −.169

(.154) (.150) (.147)
L3. −.013 −.022 .012

(.130) (.127) (.124)
Crop Insurance
ln(UnitSize) −.246∗∗∗ −.020 −.165∗

(.095) (.094) (.098)
InsuranceType −1.799∗∗∗ −1.643∗∗∗ −1.089∗∗∗

(.297) (.296) (.294)
CoverageType 1.630∗∗∗ .582 1.352∗∗

(.577) (.579) (.556)
CoverageLevel −1.479 −2.509 −3.944∗∗

(1.797) (1.761) (1.768)
Land ($/acre)
ln(Rent) .511∗∗∗ .462∗∗∗ .209

(.151) (.148) (.149)
Expenses ($/acre)
ln(Seed) .150 .187∗ .073
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Table 9: : Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

(.107) (.109) (.108)
ln(PetroleumProducts) .655∗∗∗ .726∗∗∗ .709∗∗∗

(.154) (.156) (.153)
ln(AllOtherExpenses) −.231 −.265 −.122

(.163) (.162) (.159)
ln(FertilizerChemicals) .159 .222 .127

(.170) (.167) (.167)
ln(HiredLabor) −.545∗∗∗ −.604∗∗∗ −.587∗∗∗

(.112) (.111) (.110)

Obs. 22836 22832 22836
Counties 2073 2072 2073

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: Windmeijer (2005)

bias-corrected robust standard errors, c. Parameter estimates for weather variables, year

dummies, and year trend are omitted for the sake of brevity. See appendix table A.4 for full

estimation results.
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Table 10: Robustness Check: SCL linear specification

Dependent variable: ln(Loss Ratio)
Static model Dynamic model

Variable J = 1 J = 2 J = 3 J = 4 J = 1 J = 2 J = 3 J = 4

Lagged dependent variable (α̂)
L1. .069∗∗∗ .079∗∗∗ .083∗∗∗ .092∗∗∗

(.012) (.012) (.014) (.016)
L2. .034∗∗∗ .041∗∗∗ .031∗∗

(.012) (.013) (.014)
L3. .004 .010

(.011) (.012)
L4. .033∗∗∗

(.012)
SCLProducerCount
L1. −.002 −.011∗∗∗ −.013∗∗∗ −.012∗∗ −.029∗∗∗ −.053∗∗∗ −.053∗∗∗ −.056∗∗∗

(.002) (.004) (.004) (.005) (.007) (.008) (.009) (.009)
L2. −.001 .001 .002 −.007 −.011 −.019∗∗

(.002) (.004) (.004) (.005) (.008) (.008)
L3. −.003 −.010∗∗ .000 −.012∗

(.003) (.004) (.005) (.007)
L4. −.001 .001

(.003) (.004)

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: robust standard errors, c.
Parameter estimates for covariates, year dummies, and year trend are omitted for the sake of brevity.
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Table 11: Robustness Check: SCL group dummies specification

Dependent variable: ln(Loss Ratio)
Static model Dynamic model

Variable J = 1 J = 2 J = 3 J = 4 J = 1 J = 2 J = 3 J = 4

Lagged dependent variable (α̂)
L1. .072∗∗∗ .080∗∗∗ .085∗∗∗ .092∗∗∗

(.012) (.012) (.014) (.016)
L2. .034∗∗∗ .042∗∗∗ .032∗∗

(.012) (.013) (.014)
L3. .007 .010

(.011) (.012)
L4. .034∗∗∗

(.013)
SCL456
L1. −.062∗∗ −.069∗∗ −.074∗∗ −.089∗∗∗ −.276∗∗∗ −.326∗∗∗ −.321∗∗∗ −.325∗∗∗

(.027) (.028) (.029) (.031) (.052) (.052) (.056) (.056)
L2. .035 .043 .022 −.064 −.098∗ −.121∗∗

(.030) (.032) (.032) (.055) (.058) (.060)
L3. −.097∗∗∗ −.090∗∗∗ −.055 −.104∗

(.032) (.033) (.058) (.059)
L4. −.116∗∗∗ −.063

(.035) (.064)
SCL789
L1. −.070 −.084 −.104 −.108 −.401∗∗∗ −.481∗∗∗ −.498∗∗∗ −.499∗∗∗

(.061) (.063) (.066) (.069) (.119) (.130) (.134) (.137)
L2. −.072 −.056 −.096 −.116 −.259∗∗ −.238∗

(.057) (.060) (.060) (.109) (.121) (.124)
L3. −.194∗∗∗ −.188∗∗ −.259∗∗ −.174

(.068) (.074) (.128) (.122)
L4. −.125∗∗ −.007

(.064) (.123)
SCL10Plus
L1. −.092 −.195∗∗ −.198∗∗ −.159∗ −.472∗∗∗ −.600∗∗∗ −.622∗∗∗ −.572∗∗∗

(.068) (.081) (.092) (.094) (.125) (.143) (.151) (.165)
L2. −.027 −.028 .007 −.128 −.197 −.234

(.068) (.086) (.083) (.130) (.154) (.156)
L3. −.049 −.017 −.013 −.114

(.065) (.078) (.130) (.138)
L4. .004 .059

(.068) (.112)

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis: robust standard errors, c. Parameter
estimates for covariates, year dummies, and year trend are omitted for the sake of brevity.
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Figure 1: Spatial Distribution: Total Number of SCL Producers from 2001 to 2015
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Figure 2: Spatial Distributions of Number of SCL Producers for Selected Years between 2001 and 2010



Figure 3: Spatial Distributions of Number of SCL Producers from 2012 to 2015



Figure 4: Indemnity Trend for Counties over 3 years after Having at least 4 SCL Producers

Figure 5: LR Trend for Counties over 3 years after Having at least 4 SCL Producers
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Figure 6: LRsubsidy Trend for Counties over 3 years after Having at least 4 SCL Producers

Figure 7: LCR Trend for Counties over 3 years after Having at least 4 SCL Producers
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Appendix

Table A.1: Full Estimation Results for Table 5

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

SCLProducerCount
L1. −.013∗∗∗ −.015∗∗∗ −.012∗∗∗

(.004) (.005) (.004)
L2. .001 .000 .001

(.004) (.004) (.004)
L3. −.003 −.003 −.003

(.003) (.003) (.003)
Crop Insurance
ln(UnitSize) −.295∗∗∗ −.043 −.362∗∗∗

(.046) (.045) (.046)
InsuranceType −.979∗∗∗ −.861∗∗∗ −.397∗∗∗

(.120) (.119) (.123)
CoverageType .854∗∗∗ .331 .440∗∗

(.204) (.211) (.202)
CoverageLevel 5.866∗∗∗ 5.253∗∗∗ 5.627∗∗∗

(.712) (.709) (.726)
Precipitation
ln(Mar precipitation) −.044∗∗ −.041∗∗ −.053∗∗∗

(.017) (.017) (.017)
ln(Apr precipitation) −.067∗∗∗ −.074∗∗∗ −.070∗∗∗

(.020) (.020) (.020)
ln(May precipitation) .074∗∗∗ .076∗∗∗ .086∗∗∗

(.021) (.021) (.021)
ln(Jun precipitation) .100∗∗∗ .097∗∗∗ .102∗∗∗

(.023) (.022) (.023)
ln(Jul precipitation) −.120∗∗∗ −.115∗∗∗ −.113∗∗∗

(.020) (.020) (.020)
ln(Aug precipitation) −.060∗∗∗ −.065∗∗∗ −.054∗∗∗

(.018) (.018) (.018)
ln(Sep precipitation) .112∗∗∗ .112∗∗∗ .108∗∗∗

(.016) (.016) (.016)
ln(Oct precipitation) .031∗ .028∗ .026

(.017) (.017) (.017)
ln(Nov precipitation) −.134∗∗∗ −.131∗∗∗ −.122∗∗∗

(.017) (.017) (.017)
Temperature
Mar tMin .019∗∗ .017∗ .013

(.010) (.009) (.009)
Apr tMin −.019∗ −.012 −.022∗∗

(.011) (.011) (.010)
May tMin −.080∗∗∗ −.075∗∗∗ −.094∗∗∗

(.011) (.011) (.011)
Jun tMin −.076∗∗∗ −.082∗∗∗ −.055∗∗∗
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Table A.1: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

(.016) (.016) (.016)
Jul tMin .107∗∗∗ .104∗∗∗ .117∗∗∗

(.015) (.015) (.015)
Aug tMin −.119∗∗∗ −.121∗∗∗ −.113∗∗∗

(.013) (.013) (.013)
Sep tMin .018∗ .016 .032∗∗∗

(.011) (.011) (.011)
Oct tMin −.016 −.017 −.012

(.011) (.011) (.011)
Nov tMin .037∗∗∗ .039∗∗∗ .037∗∗∗

(.010) (.010) (.010)
Mar tMax −.032∗∗∗ −.029∗∗∗ −.028∗∗∗

(.008) (.008) (.008)
Apr tMax −.056∗∗∗ −.058∗∗∗ −.062∗∗∗

(.008) (.008) (.008)
May tMax −.007 −.005 −.005

(.012) (.012) (.011)
Jun tMax .057∗∗∗ .063∗∗∗ .041∗∗∗

(.014) (.014) (.014)
Jul tMax .052∗∗∗ .052∗∗∗ .048∗∗∗

(.016) (.016) (.016)
Aug tMax .129∗∗∗ .125∗∗∗ .130∗∗∗

(.014) (.014) (.014)
Sep tMax .046∗∗∗ .045∗∗∗ .048∗∗∗

(.010) (.010) (.010)
Oct tMax .032∗∗∗ .034∗∗∗ .025∗∗

(.010) (.010) (.010)
Nov tMax −.064∗∗∗ −.065∗∗∗ −.063∗∗∗

(.009) (.009) (.009)
Mar dday30C .215∗∗∗ .208∗∗∗ .208∗∗∗

(.061) (.059) (.060)
Apr dday30C −.019∗ −.019∗ −.023∗

(.011) (.011) (.012)
May dday30C .051∗∗∗ .049∗∗∗ .054∗∗∗

(.005) (.005) (.005)
Jun dday30C .012∗∗∗ .010∗∗∗ .013∗∗∗

(.002) (.002) (.002)
Jul dday30C .005∗∗∗ .005∗∗∗ .006∗∗∗

(.002) (.002) (.002)
Aug dday30C .003 .003∗∗ .003

(.002) (.002) (.002)
Sep dday30C −.012∗∗∗ −.012∗∗∗ −.010∗∗∗

(.002) (.002) (.002)
Oct dday30C .063∗∗∗ .055∗∗∗ .069∗∗∗

(.015) (.015) (.016)
Nov dday30C .231∗∗ .257∗∗∗ .193∗

(.099) (.083) (.112)
Drought
Mar Drought −.052∗∗∗ −.053∗∗∗ −.066∗∗∗
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Table A.1: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

(.010) (.010) (.010)
Apr Drought −.007 −.003 −.007

(.014) (.013) (.014)
May Drought −.024∗∗ −.021∗∗ −.017

(.011) (.011) (.011)
Jun Drought .197∗∗∗ .194∗∗∗ .198∗∗∗

(.014) (.014) (.014)
Jul Drought .194∗∗∗ .187∗∗∗ .186∗∗∗

(.012) (.012) (.012)
Aug Drought .021∗∗ .024∗∗ .021∗∗

(.010) (.010) (.010)
Sep Drought .048∗∗∗ .048∗∗∗ .048∗∗∗

(.010) (.010) (.010)
Oct Drought −.026∗ −.026∗ −.027∗

(.015) (.015) (.015)
Nov Drought .111∗∗∗ .116∗∗∗ .097∗∗∗

(.014) (.014) (.014)
Wetness
Mar Wetness −.044∗∗∗ −.043∗∗∗ −.044∗∗∗

(.010) (.010) (.010)
Apr Wetness .037∗∗∗ .039∗∗∗ .035∗∗∗

(.007) (.007) (.007)
May Wetness .109∗∗∗ .110∗∗∗ .112∗∗∗

(.006) (.006) (.006)
Jun Wetness .133∗∗∗ .132∗∗∗ .129∗∗∗

(.006) (.006) (.006)
Jul Wetness .025∗∗∗ .024∗∗∗ .025∗∗∗

(.008) (.008) (.008)
Aug Wetness .001 .001 .001

(.008) (.008) (.008)
Sep Wetness .047∗∗∗ .046∗∗∗ .053∗∗∗

(.006) (.006) (.006)
Oct Wetness .008 .011∗ .008

(.006) (.006) (.006)
Nov Wetness −.020∗∗ −.020∗∗ −.029∗∗∗

(.009) (.009) (.009)
Land ($/acre)
ln(Rent) .224∗∗ .207∗∗ .181∗

(.109) (.105) (.106)
Expenses ($/acre)
ln(Seed) .010 −.009 −.003

(.052) (.052) (.051)
ln(PetroleumProducts) .040 .063 .044

(.069) (.069) (.068)
ln(AllOtherExpenses) .221∗∗∗ .178∗∗∗ .147∗∗

(.068) (.067) (.067)
ln(FertilizerChemicals) −.152∗∗ −.124∗ −.153∗∗

(.068) (.067) (.066)
ln(HiredLabor) −.112∗∗ −.106∗∗ −.072
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Table A.1: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

(.049) (.048) (.048)
Year

Year2005 −.898∗∗∗ −.860∗∗∗ −.923∗∗∗
(.059) (.059) (.058)

Year2006 −.851∗∗∗ −.834∗∗∗ −.760∗∗∗
(.060) (.060) (.060)

Year2007 −.787∗∗∗ −.792∗∗∗ −.702∗∗∗
(.059) (.059) (.059)

Year2008 −.244∗∗∗ −.243∗∗∗ −.099∗∗
(.051) (.051) (.050)

Year2009 −.069 −.029 .132∗∗
(.054) (.054) (.055)

Year2010 −.674∗∗∗ −.625∗∗∗ −.595∗∗∗
(.054) (.054) (.054)

Year2011 −1.194∗∗∗ −1.146∗∗∗ −1.099∗∗∗
(.063) (.062) (.062)

Year2012 −.836∗∗∗ −.835∗∗∗ −.725∗∗∗
(.071) (.073) (.070)

Year2013 −.371∗∗∗ −.346∗∗∗ −.390∗∗∗
(.042) (.042) (.042)

Year2014 (omitted) (omitted) (omitted)

Year2015 −.334∗∗∗ −.360∗∗∗ −.309∗∗∗
(.064) (.064) (.064)

Trend −.011 .000 −.025∗∗∗
(.009) (.009) (.009)

Constant 12.453 −7.880 39.533∗∗
(17.649) (17.389) (17.712)

Obs. 23331 23323 23331
Counties 2099 2098 2099

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis:
county-level clustered robust standard errors.
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Table A.2: Full Estimation Results for Table 6

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

SCL456
L1. −.074∗∗ −.088∗∗∗ −.062∗∗

(.029) (.029) (.029)
L2. .043 .035 .045

(.032) (.032) (.031)
L3. −.097∗∗∗ −.103∗∗∗ −.085∗∗∗

(.032) (.032) (.032)
SCL789
L1. −.104 −.126∗ −.094

(.066) (.066) (.066)
L2. −.056 −.067 −.043

(.060) (.061) (.060)
L3. −.194∗∗∗ −.200∗∗∗ −.168∗

(.068) (.068) (.067)
SCL10Plus
L1. −.198∗∗ −.220∗∗ −.211∗∗

(.092) (.092) (.090)
L2. −.028 −.032 −.042

(.086) (.086) (.085)
L3. −.049 −.053 −.058

(.065) (.064) (.063)
Crop Insurance
ln(UnitSize) −.301∗∗∗ −.049 −.367∗∗∗

(.046) (.045) (.046)
InsuranceType −.977∗∗∗ −.859∗∗∗ −.395∗∗∗

(.120) (.119) (.123)
CoverageType .828∗∗∗ .302 .420∗∗

(.204) (.211) (.202)
CoverageLevel 5.994∗∗∗ 5.394∗∗∗ 5.731∗∗∗

(.713) (.711) (.727)
Precipitation
ln(Mar precipitation) −.044∗∗ −.041∗∗ −.053∗∗∗

(.017) (.017) (.017)
ln(Apr precipitation) −.067∗∗∗ −.074∗∗∗ −.070∗∗∗

(.020) (.020) (.020)
ln(May precipitation) .073∗∗∗ .075∗∗∗ .086∗∗∗

(.021) (.021) (.021)
ln(Jun precipitation) .099∗∗∗ .095∗∗∗ .101∗∗∗

(.022) (.022) (.023)
ln(Jul precipitation) −.120∗∗∗ −.115∗∗∗ −.113∗∗∗

(.020) (.020) (.020)
ln(Aug precipitation) −.060∗∗∗ −.064∗∗∗ −.053∗∗∗

(.018) (.018) (.018)
ln(Sep precipitation) .111∗∗∗ .112∗∗∗ .108∗∗∗

(.016) (.016) (.016)
ln(Oct precipitation) .032∗ .029∗ .026

(.017) (.017) (.017)
ln(Nov precipitation) −.133∗∗∗ −.131∗∗∗ −.122∗∗∗
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Table A.2: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

(.017) (.017) (.017)
Temperature
Mar tMin .019∗∗ .018∗ .013

(.010) (.009) (.009)
Apr tMin −.019∗ −.012 −.021∗∗

(.011) (.011) (.010)
May tMin −.079∗∗∗ −.075∗∗∗ −.093∗∗∗

(.011) (.011) (.011)
Jun tMin −.074∗∗∗ −.080∗∗∗ −.053∗∗∗

(.016) (.016) (.016)
Jul tMin .105∗∗∗ .102∗∗∗ .116∗∗∗

(.015) (.015) (.015)
Aug tMin −.120∗∗∗ −.121∗∗∗ −.114∗∗∗

(.013) (.013) (.013)
Sep tMin .018∗ .016 .032∗∗∗

(.011) (.011) (.011)
Oct tMin −.016 −.017 −.011

(.011) (.011) (.011)
Nov tMin .036∗∗∗ .039∗∗∗ .037∗∗∗

(.010) (.010) (.010)
Mar tMax −.033∗∗∗ −.029∗∗∗ −.029∗∗∗

(.008) (.008) (.008)
Apr tMax −.055∗∗∗ −.058∗∗∗ −.062∗∗∗

(.008) (.008) (.008)
May tMax −.007 −.005 −.005

(.012) (.012) (.011)
Jun tMax .056∗∗∗ .062∗∗∗ .040∗∗∗

(.014) (.014) (.014)
Jul tMax .052∗∗∗ .053∗∗∗ .049∗∗∗

(.016) (.016) (.016)
Aug tMax .128∗∗∗ .123∗∗∗ .129∗∗∗

(.014) (.014) (.014)
Sep tMax .046∗∗∗ .044∗∗∗ .048∗∗∗

(.010) (.010) (.010)
Oct tMax .032∗∗∗ .033∗∗∗ .025∗∗

(.011) (.010) (.010)
Nov tMax −.064∗∗∗ −.065∗∗∗ −.063∗∗∗

(.009) (.009) (.009)
Mar dday30C .217∗∗∗ .210∗∗∗ .210∗∗∗

(.061) (.059) (.060)
Apr dday30C −.020∗ −.020∗ −.024∗∗

(.011) (.011) (.012)
May dday30C .052∗∗∗ .050∗∗∗ .054∗∗∗

(.005) (.005) (.005)
Jun dday30C .011∗∗∗ .010∗∗∗ .013∗∗∗

(.002) (.002) (.002)
Jul dday30C .005∗∗∗ .005∗∗∗ .006∗∗∗

(.002) (.002) (.002)
Aug dday30C .003∗ .004∗∗ .003
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Table A.2: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

(.002) (.002) (.002)
Sep dday30C −.012∗∗∗ −.012∗∗∗ −.010∗∗∗

(.002) (.002) (.002)
Oct dday30C .063∗∗∗ .055∗∗∗ .069∗∗∗

(.015) (.014) (.015)
Nov dday30C .229∗∗ .255∗∗∗ .192∗

(.100) (.084) (.113)
Drought
Mar Drought −.052∗∗∗ −.052∗∗∗ −.066∗∗∗

(.010) (.010) (.010)
Apr Drought −.007 −.003 −.007

(.014) (.013) (.014)
May Drought −.024∗∗ −.021∗∗ −.017

(.011) (.011) (.011)
Jun Drought .198∗∗∗ .194∗∗∗ .198∗∗∗

(.014) (.014) (.014)
Jul Drought .193∗∗∗ .187∗∗∗ .185∗∗∗

(.012) (.012) (.012)
Aug Drought .020∗∗ .023∗∗ .020∗∗

(.010) (.010) (.010)
Sep Drought .048∗∗∗ .048∗∗∗ .048∗∗∗

(.010) (.010) (.010)
Oct Drought −.026∗ −.026∗ −.028∗

(.015) (.015) (.015)
Nov Drought .112∗∗∗ .117∗∗∗ .098∗∗∗

(.014) (.014) (.014)
Wetness
Mar Wetness −.044∗∗∗ −.043∗∗∗ −.045∗∗∗

(.010) (.010) (.010)
Apr Wetness .037∗∗∗ .038∗∗∗ .035∗∗∗

(.007) (.007) (.007)
May Wetness .110∗∗∗ .111∗∗∗ .112∗∗∗

(.006) (.006) (.006)
Jun Wetness .133∗∗∗ .132∗∗∗ .130∗∗∗

(.006) (.006) (.006)
Jul Wetness .025∗∗∗ .025∗∗∗ .025∗∗∗

(.008) (.008) (.008)
Aug Wetness .000 .001 .001

(.008) (.008) (.008)
Sep Wetness .047∗∗∗ .046∗∗∗ .053∗∗∗

(.006) (.006) (.006)
Oct Wetness .008 .010∗ .008

(.006) (.006) (.006)
Nov Wetness −.019∗∗ −.019∗∗ −.028∗∗∗

(.009) (.009) (.009)
Land ($/acre)
ln(Rent) .224∗∗ .207∗∗ .181∗

(.108) (.105) (.106)
Expenses ($/acre)
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Table A.2: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

ln(Seed) .009 −.010 −.003
(.052) (.052) (.051)

ln(PetroleumProducts) .039 .062 .043
(.069) (.068) (.068)

ln(AllOtherExpenses) .220∗∗∗ .178∗∗∗ .146∗∗
(.068) (.067) (.068)

ln(FertilizerChemicals) −.152∗∗ −.124∗ −.154∗∗
(.068) (.067) (.066)

ln(HiredLabor) −.110∗∗ −.104∗∗ −.071
(.049) (.048) (.048)

Year

Year2005 −.891∗∗∗ −.852∗∗∗ −.917∗∗∗
(.059) (.059) (.058)

Year2006 −.844∗∗∗ −.826∗∗∗ −.754∗∗∗
(.060) (.060) (.060)

Year2007 −.779∗∗∗ −.783∗∗∗ −.695∗∗∗
(.059) (.059) (.059)

Year2008 −.238∗∗∗ −.236∗∗∗ −.094∗
(.051) (.051) (.051)

Year2009 −.067 −.027 .134∗∗
(.054) (.054) (.055)

Year2010 −.666∗∗∗ −.616∗∗∗ −.590∗∗∗
(.054) (.054) (.054)

Year2011 −1.184∗∗∗ −1.134∗∗∗ −1.091∗∗∗
(.063) (.063) (.063)

Year2012 −.825∗∗∗ −.823∗∗∗ −.716∗∗∗
(.071) (.073) (.070)

Year2013 −.367∗∗∗ −.342∗∗∗ −.387∗∗∗
(.042) (.042) (.042)

Year2014 (omitted) (omitted) (omitted)

Year2015 −.336∗∗∗ −.362∗∗∗ −.311∗∗∗
(.064) (.064) (.064)

Trend −.011 .000 −.025∗∗∗
(.009) (.009) (.009)

Constant 12.122 −8.421 39.429∗∗
(17.635) (17.370) (17.705)

Obs. 23331 23323 23331
Counties 2099 2098 2099

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis:
county-level clustered robust standard errors.
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Table A.3: Full Estimation Results for Table 8

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

Lagged dependent variable (α̂)
L1. .083∗∗∗ .076∗∗∗ .063∗∗∗

(.014) (.014) (.015)
L2. .041∗∗∗ .031∗∗ .015

(.013) (.013) (.014)
L3. .004 −.004 −.013

(.011) (.011) (.012)
SCLProducerCount
L1. −.053∗∗∗ −.056∗∗∗ −.049∗∗∗

(.009) (.009) (.008)
L2. −.011 −.012 −.009

(.008) (.008) (.008)
L3. .000 .000 .002

(.005) (.005) (.005)
Crop Insurance
ln(UnitSize) −.241∗∗ −.014 −.160

(.095) (.095) (.098)
InsuranceType −1.826∗∗∗ −1.666∗∗∗ −1.098∗∗∗

(.298) (.297) (.295)
CoverageType 1.661∗∗∗ .611 1.367∗∗

(.578) (.580) (.557)
CoverageLevel −1.581 −2.628 −4.006∗∗

(1.799) (1.764) (1.769)
Precipitation
ln(Mar precipitation) −.010 −.013 −.016

(.027) (.027) (.027)
ln(Apr precipitation) −.130∗∗∗ −.131∗∗∗ −.127∗∗∗

(.032) (.032) (.032)
ln(May precipitation) .087∗∗ .076∗∗ .097∗∗∗

(.036) (.036) (.035)
ln(Jun precipitation) .115∗∗∗ .115∗∗∗ .120∗∗∗

(.037) (.037) (.036)
ln(Jul precipitation) −.040 −.046 −.020

(.031) (.031) (.031)
ln(Aug precipitation) −.018 −.023 −.007

(.029) (.029) (.028)
ln(Sep precipitation) .113∗∗∗ .122∗∗∗ .103∗∗∗

(.029) (.029) (.028)
ln(Oct precipitation) .049∗ .050∗ .065∗∗

(.027) (.027) (.026)
ln(Nov precipitation) −.125∗∗∗ −.116∗∗∗ −.128∗∗∗

(.027) (.028) (.026)
Temperature
Mar tMin .017 .013 .011

(.014) (.014) (.013)
Apr tMin .002 −.001 −.001

(.015) (.016) (.015)
May tMin −.096∗∗∗ −.090∗∗∗ −.084∗∗∗
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Table A.3: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

(.019) (.019) (.019)
Jun tMin −.097∗∗∗ −.086∗∗∗ −.080∗∗∗

(.025) (.025) (.025)
Jul tMin .169∗∗∗ .164∗∗∗ .165∗∗∗

(.021) (.021) (.020)
Aug tMin −.075∗∗∗ −.069∗∗∗ −.088∗∗∗

(.021) (.021) (.021)
Sep tMin −.036∗∗ −.036∗∗ −.013

(.017) (.017) (.016)
Oct tMin .056∗∗∗ .048∗∗∗ .048∗∗∗

(.017) (.016) (.017)
Nov tMin .063∗∗∗ .058∗∗∗ .066∗∗∗

(.015) (.016) (.015)
Mar tMax −.056∗∗∗ −.051∗∗∗ −.053∗∗∗

(.012) (.012) (.011)
Apr tMax −.072∗∗∗ −.070∗∗∗ −.077∗∗∗

(.013) (.013) (.013)
May tMax .041∗∗ .035∗ .031∗

(.018) (.018) (.018)
Jun tMax .069∗∗∗ .072∗∗∗ .060∗∗∗

(.023) (.023) (.023)
Jul tMax .039∗ .036 .046∗∗

(.024) (.023) (.023)
Aug tMax .161∗∗∗ .159∗∗∗ .161∗∗∗

(.024) (.024) (.023)
Sep tMax .050∗∗∗ .046∗∗∗ .051∗∗∗

(.015) (.015) (.014)
Oct tMax −.060∗∗∗ −.050∗∗∗ −.053∗∗∗

(.016) (.016) (.016)
Nov tMax −.061∗∗∗ −.055∗∗∗ −.067∗∗∗

(.014) (.014) (.014)
Mar dday30C .342∗∗ .311∗∗ .333∗∗

(.150) (.128) (.156)
Apr dday30C −.057∗∗∗ −.058∗∗∗ −.068∗∗∗

(.021) (.020) (.021)
May dday30C .046∗∗∗ .047∗∗∗ .057∗∗∗

(.009) (.009) (.010)
Jun dday30C .018∗∗∗ .015∗∗∗ .014∗∗∗

(.004) (.004) (.004)
Jul dday30C .003 .003 .005∗

(.003) (.003) (.003)
Aug dday30C .003 .003 .005∗

(.003) (.003) (.003)
Sep dday30C −.013∗∗∗ −.012∗∗∗ −.011∗∗∗

(.003) (.003) (.003)
Oct dday30C .031 .026 .035

(.027) (.027) (.027)
Nov dday30C .245 .282 .342

(.196) (.184) (.248)
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Table A.3: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

Drought
Mar Drought −.043∗∗ −.040∗∗ −.041∗∗

(.017) (.018) (.017)
Apr Drought −.002 −.011 −.011

(.022) (.022) (.021)
May Drought −.097∗∗∗ −.093∗∗∗ −.084∗∗∗

(.018) (.018) (.017)
Jun Drought .175∗∗∗ .185∗∗∗ .202∗∗∗

(.023) (.023) (.023)
Jul Drought .227∗∗∗ .220∗∗∗ .194∗∗∗

(.020) (.020) (.020)
Aug Drought .004 .002 .003

(.016) (.016) (.016)
Sep Drought .088∗∗∗ .093∗∗∗ .091∗∗∗

(.017) (.017) (.017)
Oct Drought .022 .023 .041∗

(.023) (.023) (.022)
Nov Drought .142∗∗∗ .134∗∗∗ .130∗∗∗

(.022) (.022) (.022)
Wetness
Mar Wetness −.028∗ −.020 −.030∗

(.017) (.017) (.016)
Apr Wetness .008 .008 .008

(.011) (.012) (.011)
May Wetness .107∗∗∗ .109∗∗∗ .105∗∗∗

(.010) (.010) (.010)
Jun Wetness .145∗∗∗ .142∗∗∗ .149∗∗∗

(.010) (.010) (.010)
Jul Wetness .029∗∗ .030∗∗ .030∗∗

(.013) (.013) (.012)
Aug Wetness .006 .009 .017

(.012) (.012) (.012)
Sep Wetness .075∗∗∗ .073∗∗∗ .075∗∗∗

(.010) (.010) (.010)
Oct Wetness −.008 −.003 −.011

(.010) (.010) (.010)
Nov Wetness −.011 −.015 −.007

(.014) (.014) (.014)
Land ($/acre)
ln(Rent) .513∗∗∗ .466∗∗∗ .206

(.151) (.148) (.149)
Expenses ($/acre)
ln(Seed) .163 .199∗ .082

(.107) (.109) (.108)
ln(PetroleumProducts) .658∗∗∗ .727∗∗∗ .711∗∗∗

(.154) (.156) (.152)
ln(AllOtherExpenses) −.238 −.273∗ −.126

(.163) (.162) (.160)
ln(FertilizerChemicals) .158 .222 .124
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Table A.3: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

(.170) (.167) (.167)
ln(HiredLabor) −.552∗∗∗ −.608∗∗∗ −.592∗∗∗

(.112) (.111) (.109)
Year
Year2005 −1.005∗∗∗ −1.059∗∗∗ −1.012∗∗∗

(.081) (.083) (.080)
Year2006 −1.027∗∗∗ −1.085∗∗∗ −.949∗∗∗

(.085) (.085) (.085)
Year2007 −.901∗∗∗ −1.001∗∗∗ −.893∗∗∗

(.088) (.087) (.088)
Year2008 −.621∗∗∗ −.717∗∗∗ −.512∗∗∗

(.085) (.087) (.084)
Year2009 −.415∗∗∗ −.411∗∗∗ −.188∗∗

(.078) (.078) (.079)
Year2010 −.925∗∗∗ −.929∗∗∗ −.881∗∗∗

(.073) (.073) (.073)
Year2011 −1.589∗∗∗ −1.563∗∗∗ −1.506∗∗∗

(.095) (.096) (.094)
Year2012 −1.187∗∗∗ −1.139∗∗∗ −1.118∗∗∗

(.093) (.093) (.089)
Year2013 −.646∗∗∗ −.627∗∗∗ −.648∗∗∗

(.059) (.060) (.057)
Year2014 (omitted) (omitted) (omitted)

Year2015 −.208∗∗∗ −.174∗∗ −.213∗∗∗
(.073) (.073) (.071)

Trend −.004∗∗∗ −.003∗∗∗ −.004∗∗∗
(.001) (.001) (.001)

Obs. 22836 22832 22836
Counties 2073 2072 2073

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis:
Windmeijer (2005) bias-corrected robust standard errors.
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Table A.4: Full Estimation Results for Table 9

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

Lagged dependent variable (α̂)
L1. .085∗∗∗ .077∗∗∗ .065∗∗∗

(.014) (.014) (.015)
L2. .042∗∗∗ .033∗∗ .017

(.013) (.013) (.014)
L3. .007 .000 −.009

(.011) (.011) (.012)
SCL456
L1. −.321∗∗∗ −.333∗∗∗ −.304∗∗∗

(.056) (.056) (.054)
L2. −.098∗ −.108∗ −.078

(.058) (.058) (.057)
L3. −.055 −.062 −.057

(.058) (.058) (.058)
SCL789
L1. −.498∗∗∗ −.508∗∗∗ −.440∗∗∗

(.134) (.134) (.131)
L2. −.259∗∗ −.262∗∗ −.216∗

(.121) (.120) (.116)
L3. −.259∗∗ −.250∗∗ −.172

(.128) (.127) (.123)
SCL10Plus
L1. −.622∗∗∗ −.650∗∗∗ −.564∗∗∗

(.151) (.149) (.145)
L2. −.197 −.213 −.169

(.154) (.150) (.147)
L3. −.013 −.022 .012

(.130) (.127) (.124)
Crop Insurance
ln(UnitSize) −.246∗∗∗ −.020 −.165∗

(.095) (.094) (.098)
InsuranceType −1.799∗∗∗ −1.643∗∗∗ −1.089∗∗∗

(.297) (.296) (.294)
CoverageType 1.630∗∗∗ .582 1.352∗∗

(.577) (.579) (.556)
CoverageLevel −1.479 −2.509 −3.944∗∗

(1.797) (1.761) (1.768)
Precipitation
ln(Mar precipitation) −.010 −.013 −.015

(.027) (.027) (.027)
ln(Apr precipitation) −.129∗∗∗ −.130∗∗∗ −.127∗∗∗

(.032) (.032) (.032)
ln(May precipitation) .088∗∗ .077∗∗ .097∗∗∗

(.036) (.036) (.035)
ln(Jun precipitation) .114∗∗∗ .114∗∗∗ .119∗∗∗

(.037) (.037) (.036)
ln(Jul precipitation) −.040 −.047 −.020

(.031) (.031) (.031)
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Table A.4: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

ln(Aug precipitation) −.018 −.023 −.007
(.029) (.029) (.028)

ln(Sep precipitation) .112∗∗∗ .121∗∗∗ .102∗∗∗
(.029) (.029) (.028)

ln(Oct precipitation) .051∗ .051∗ .066∗∗
(.027) (.027) (.026)

ln(Nov precipitation) −.125∗∗∗ −.117∗∗∗ −.129∗∗∗
(.027) (.028) (.026)

Temperature
Mar tMin .017 .013 .011

(.014) (.014) (.013)
Apr tMin .003 .000 −.001

(.015) (.016) (.015)
May tMin −.096∗∗∗ −.090∗∗∗ −.083∗∗∗

(.019) (.019) (.019)
Jun tMin −.098∗∗∗ −.087∗∗∗ −.081∗∗∗

(.025) (.025) (.025)
Jul tMin .167∗∗∗ .161∗∗∗ .164∗∗∗

(.021) (.021) (.020)
Aug tMin −.074∗∗∗ −.069∗∗∗ −.088∗∗∗

(.021) (.021) (.021)
Sep tMin −.035∗∗ −.035∗∗ −.012

(.017) (.017) (.016)
Oct tMin .057∗∗∗ .049∗∗∗ .049∗∗∗

(.017) (.016) (.017)
Nov tMin .062∗∗∗ .058∗∗∗ .065∗∗∗

(.015) (.016) (.015)
Mar tMax −.057∗∗∗ −.051∗∗∗ −.054∗∗∗

(.012) (.012) (.011)
Apr tMax −.072∗∗∗ −.070∗∗∗ −.077∗∗∗

(.013) (.013) (.013)
May tMax .040∗∗ .034∗ .031∗

(.018) (.018) (.018)
Jun tMax .069∗∗∗ .073∗∗∗ .060∗∗∗

(.023) (.023) (.023)
Jul tMax .040∗ .037 .046∗∗

(.023) (.023) (.023)
Aug tMax .159∗∗∗ .157∗∗∗ .159∗∗∗

(.024) (.024) (.023)
Sep tMax .049∗∗∗ .045∗∗∗ .049∗∗∗

(.015) (.015) (.014)
Oct tMax −.060∗∗∗ −.051∗∗∗ −.053∗∗∗

(.016) (.016) (.016)
Nov tMax −.061∗∗∗ −.055∗∗∗ −.067∗∗∗

(.014) (.014) (.014)
Mar dday30C .346∗∗ .314∗∗ .337∗∗

(.150) (.128) (.156)
Apr dday30C −.058∗∗∗ −.060∗∗∗ −.069∗∗∗

(.021) (.020) (.021)
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Table A.4: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

May dday30C .046∗∗∗ .048∗∗∗ .057∗∗∗
(.009) (.009) (.010)

Jun dday30C .018∗∗∗ .015∗∗∗ .014∗∗∗
(.004) (.004) (.004)

Jul dday30C .003 .003 .005∗
(.003) (.003) (.003)

Aug dday30C .003 .003 .005∗
(.003) (.003) (.003)

Sep dday30C −.013∗∗∗ −.012∗∗∗ −.011∗∗∗
(.004) (.003) (.003)

Oct dday30C .031 .025 .035
(.027) (.026) (.027)

Nov dday30C .246 .278 .343
(.197) (.185) (.249)

Drought
Mar Drought −.043∗∗ −.039∗∗ −.040∗∗

(.017) (.018) (.017)
Apr Drought −.001 −.010 −.012

(.022) (.022) (.021)
May Drought −.097∗∗∗ −.093∗∗∗ −.084∗∗∗

(.018) (.018) (.017)
Jun Drought .175∗∗∗ .184∗∗∗ .202∗∗∗

(.023) (.023) (.023)
Jul Drought .227∗∗∗ .221∗∗∗ .194∗∗∗

(.020) (.020) (.020)
Aug Drought .004 .002 .004

(.016) (.016) (.016)
Sep Drought .088∗∗∗ .093∗∗∗ .092∗∗∗

(.017) (.017) (.017)
Oct Drought .021 .022 .040∗

(.023) (.023) (.022)
Nov Drought .142∗∗∗ .134∗∗∗ .130∗∗∗

(.022) (.022) (.022)
Wetness
Mar Wetness −.028∗ −.020 −.030∗

(.017) (.017) (.016)
Apr Wetness .008 .008 .008

(.011) (.012) (.011)
May Wetness .107∗∗∗ .109∗∗∗ .105∗∗∗

(.010) (.010) (.010)
Jun Wetness .145∗∗∗ .142∗∗∗ .149∗∗∗

(.010) (.010) (.010)
Jul Wetness .029∗∗ .031∗∗ .031∗∗

(.013) (.013) (.012)
Aug Wetness .006 .009 .017

(.012) (.012) (.012)
Sep Wetness .075∗∗∗ .074∗∗∗ .075∗∗∗

(.010) (.010) (.010)
Oct Wetness −.009 −.004 −.012
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Table A.4: Continued

Dependent Variable
Variable ln(LR) ln(LRsubsidy) ln(LCR)

(.010) (.010) (.010)
Nov Wetness −.011 −.014 −.007

(.014) (.014) (.014)
Land ($/acre)
ln(Rent) .511∗∗∗ .462∗∗∗ .209

(.151) (.148) (.149)
Expenses ($/acre)
ln(Seed) .150 .187∗ .073

(.107) (.109) (.108)
ln(PetroleumProducts) .655∗∗∗ .726∗∗∗ .709∗∗∗

(.154) (.156) (.153)
ln(AllOtherExpenses) −.231 −.265 −.122

(.163) (.162) (.159)
ln(FertilizerChemicals) .159 .222 .127

(.170) (.167) (.167)
ln(HiredLabor) −.545∗∗∗ −.604∗∗∗ −.587∗∗∗

(.112) (.111) (.110)
Year

Year2005 −1.001∗∗∗ −1.053∗∗∗ −1.007∗∗∗
(.081) (.083) (.080)

Year2006 −1.022∗∗∗ −1.081∗∗∗ −.946∗∗∗
(.084) (.085) (.084)

Year2007 −.898∗∗∗ −.996∗∗∗ −.893∗∗∗
(.087) (.087) (.087)

Year2008 −.614∗∗∗ −.709∗∗∗ −.506∗∗∗
(.085) (.087) (.084)

Year2009 −.406∗∗∗ −.401∗∗∗ −.183∗∗
(.078) (.078) (.079)

Year2010 −.907∗∗∗ −.911∗∗∗ −.866∗∗∗
(.074) (.074) (.074)

Year2011 −1.574∗∗∗ −1.547∗∗∗ −1.494∗∗∗
(.096) (.096) (.095)

Year2012 −1.171∗∗∗ −1.122∗∗∗ −1.106∗∗∗
(.093) (.093) (.090)

Year2013 −.641∗∗∗ −.621∗∗∗ −.644∗∗∗
(.060) (.060) (.058)

Year2014 (omitted) (omitted) (omitted)

Year2015 −.202∗∗∗ −.168∗∗ −.207∗∗∗
(.073) (.073) (.071)

Trend −.004∗∗∗ −.003∗∗∗ −.004∗∗∗
(.001) (.001) (.001)

Obs. 22836 22832 22836
Counties 2073 2072 2073

Notes: a. *** : p < 0.01, ** : p < 0.05, * : p < 0.10, b. Parenthesis:
Windmeijer (2005) bias-corrected robust standard errors.
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