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Abstract: 

Food insecurity, child malnutrition, and land degradation remain persistent problems in sub-Saharan 
Africa. Agricultural sustainable intensification (SI) has been proposed as a possible solution to 
simultaneously address these challenges. Yet there is little empirical evidence on if SI do indeed improve 
child nutrition. To begin to fill this gap, we use Tanzania National Panel Survey data to analyze the child 
nutrition effects of rural households’ adoption of farming practices that contribute to the SI of maize 
production. We group households into four categories based on their use of three soil fertility management 
practices on maize plots: “Non-adoption”; “Intensification” (use of inorganic fertilizer); “Sustainable” 
(use of organic fertilizer, maize-legume intercropping, or both); and “SI” (joint use of inorganic fertilizer 
with organic fertilizer and/or maize-legume intercropping). The full-sample results from multinomial 
endogenous treatment effects models suggest that adoption of all three categories improves children’s 
height-for-age z-score (HAZ) relative to “Non-adoption”, while only the “SI” category enhances 
children’s weight-for-age z-score (WAZ). Since children are largely breastfed until age 2, we re-estimate 
the models using children age 25-59 months, which suggests that adoption of “Sustainable” and “SI” 
categories increases HAZ by 0.44 and 0.38 units, respectively, and WAZ by 0.29 and 0.52 units, 
respectively.  
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Does sustainable intensification of maize production enhance child nutrition? 

Evidence from rural Tanzania 

1. Introduction 

Food insecurity and malnutrition continue to be urgent global problems. Although increases in 

agricultural productivity have dramatically improved food and nutrition security in many parts of the 

world over the past five decades, approximately 795 million people worldwide remain undernourished 

and most of them live in developing countries (FAO 2015). Child malnutrition is an especially serious 

problem in sub-Saharan Africa (SSA). Globally, about 155 million children under age five suffer from 

stunting, and more than one third of these children live in SSA (UNICEF, WHO, and World Bank 

Group 2017). In addition, approximately 45% of global deaths of children under age five are linked to 

malnutrition, and the mortality rate of children in SSA is the highest in the world (Black et al. 2013). 

Agriculture and nutrition are closely linked because the majority of undernourished people still 

live in rural areas and many of them are smallholder farmers (Sibhatu et al. 2015; Pinstrup-Andersen 

2007). Agriculture can affect the level of nutrition of smallholder farming households in primarily two 

ways: (1) through production of food crops in different quantities and qualities, and at different levels of 

diversity that households then consume directly; and (2) through the sale of agricultural outputs that 

influence household incomes and therefore food purchases and consumption (Jones et al. 2014; Hawkes 

and Ruel 2006). In addition to these main pathways, household incomes may affect women’s time and 

workloads, and the time they devote to child care (Jones et al. 2012). Households with additional income 

may also raise their expenditures on nutrition-relevant non-food items such as healthcare, sanitation, 

water, and housing (Shively and Sununtnasuk 2015). 

These agriculture-nutrition linkages imply that the adoption of improved farm inputs and 

management practices at the household level may significantly affect nutritional status of nutritionally 

vulnerable members, including infants and young children. For the past several decades, the adoption of 

inputs associated with conventional agricultural intensification such as high-yielding crop varieties and 

inorganic fertilizer substantially contributed to reductions of food insecurity and poverty in SSA by 

increasing agricultural productivity (Godfray et al. 2010; Pingali 2012). However, the conventional 

intensification of agricultural systems might not be sufficient to sustainably raise agricultural 

productivity and could have negative environmental consequences (Pingali 2012; Kassie et al. 2015a). 

Moreover, in many parts of SSA, rapidly growing populations and a lack of new land to farm has led to 

continuous cultivation of plots and reduced fallowing, thereby degrading soils and adversely affecting 

crop yields (Kassie et al. 2013). In this context, agricultural sustainable intensification (SI) has been 

drawing attention as a possible solution to simultaneously address nutrition/food security and 

environmental security challenges (Petersen and Snapp 2015). At the core of SI is the goal of 

“producing more food from the same area of land while reducing the environmental impacts” (Godfray 

et al. 2010, p. 813). But more recently, broader definitions of SI extend beyond environmental 

sustainability to encompass the complex social dimensions of sustainability such as human well-being, 

including nutritional status and food security (Zurek et al. 2015; Musumba et al. 2017).1 It is an open 

                                                           
1. Loos et al. (2014) argue that narrow definitions of SI are potentially misleading because they inadequately address some 

central tenets of sustainability such as human well-being. In addition, Musumba et al. (2017) established five domains 

(productivity, economic, environment, human condition, and social) to assess the degree of sustainability of agricultural 

intensification. The domain of human condition includes, inter alia, individuals’ and households’ nutritional status and food 

security. Similarly, Zurek et al. (2015) present the key SI domains (production, food security, environmental sustainability, 

and income) and provide a tool to visualize trade-offs between SI domains. 
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question, however, whether agricultural management practices and inputs that contribute to SI from an 

environmental standpoint do indeed improve the nutrition/food security dimension of SI. Of particular 

interest in this study are effects on child nutrition. Understanding these relationships for maize 

production-related inputs and management practices is particularly important in eastern and southern 

Africa, where maize is the main staple food and is grown by large numbers of smallholder farm 

households. For example, in Tanzania – the focal country of this study –75% of the total area under 

cultivation in the country is planted to maize (Tanzania National Bureau of Statistics 2014). 

Although SI of maize production has considerable potential to reduce child malnutrition in SSA, 

there are limited empirical studies that have quantified these relationships. To our knowledge, only 

Manda et al. (2016a) and Zeng et al. (2017) have empirically estimated the effects of technology 

adoption associated with SI of maize production on child nutrition, and both studies analyze only the 

adoption of improved maize varieties. Yet there are numerous other agricultural practices that can 

contribute to the SI of maize production, and potentially affect child nutrition. This study extends the 

existing literature by considering three soil fertility management (SFM) practices: the use of inorganic 

fertilizer, the use of organic fertilizer, and maize-legume intercropping. Given these practices (alone and 

in combination), we group households into four SI categories for the empirical analysis: “Non-adoption”; 

“Intensification” (use of inorganic fertilizer only); “Sustainable” (use of organic fertilizer, maize-legume 

intercropping, or both); and “SI” (joint use of inorganic fertilizer with organic fertilizer and/or maize-

legume intercropping). Using nationally representative household panel survey data from Tanzania, we 

estimate how the adoption of these SI categories affects child nutrition outcomes under age 5 in maize-

growing households: height-for-age z-score (HAZ) and weight-for-age z-score (WAZ). 

This study further contributes to the existing literature in the following ways. First, to our 

knowledge it is the first empirical investigation of the impacts of technology adoption on child nutrition 

in a simultaneous adoption decision framework, which allows us to analyze how combinations of 

farming practices affect child nutrition. This is based on the observation that farmers are more likely to 

adopt multiple technologies simultaneously as complements or substitutes rather than adopting them 

individually (Kassie et al. 2013; Teklewold et al. 2013a; Kassie et al. 2015a). Second, a multinomial 

endogenous treatment effects model is applied for analysis, which allows us to control for selection bias 

stemming from both observed and unobserved heterogeneity and to assess the differential impacts of the 

adoption of single practices versus various combinations of practices (Deb and Trivedi 2006a). Finally, 

we use panel data whereas the two previous studies most closely related to the current study (Manda et 

al. 2016a and Zeng et al. 2017) both use cross-sectional data. This enables us to further control for time-

invariant unobserved household-level heterogeneity and improve the internal validity of our results, 

where correlated random effects (CRE)/Mundlak-Chamberlain device techniques are used. 

Results suggest that among children aged 0-59 months, adoption of all three SI categories has a 

positive impact on children’s HAZ, while only the “SI” category improves the WAZ in comparison with 

those in the “Non-adoption” group. The results from regressions with a sub-sample of children beyond 

breast-feeding age (i.e., those age 25-59 months) further suggest that given the sub-sample means of 

HAZ and WAZ (i.e., -1.77 and -0.98, respectively), the adoption of the “Sustainable” and “SI” 

categories increase children’s HAZ by 0.44 and 0.38, respectively, and WAZ by 0.29 and 0.52, 

respectively, on average. The impacts of adoption of the “Intensification” category differ across the 

samples and nutritional outcome variables. 

The remainder of the study is organized as follows. The next section provides background 

information on sustainable intensification of maize production in Tanzania. Section 3 outlines empirical 

approaches. Section 4 describes the data and variable specifications, followed by section 5, which 

presents the empirical results. The last section provides conclusions and implications.  
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2. Sustainable intensification of maize production in Tanzania 

SI focuses on improving the efficient use of resources for agriculture, with the goal of enhancing 

productivity from the same amount of land while reducing or minimizing the negative environmental 

impacts. A variety of technologies to support SI have been defined and examined in SSA (Droppelmann 

et al. 2017; Kassie et al. 2013; Kassie et al. 2015a, b; Manda et al. 2016a; Rusinamhodzi et al. 2012; 

Teklewold et al. 2013a, b). These include conservation tillage, maize-legume intercropping or rotation, 

improved crop varieties, animal manure, soil and water conservation, inorganic fertilizer, residue 

retention as well as their combinations.  

In this paper, we analyze three soil fertility management (SFM) practices (alone and in 

combination) that have the potential to contribute to SI in maize-based systems: (1) inorganic fertilizer, 

(2) organic fertilizer, and (3) maize-legume intercropping. These practices can be divided into two broad 

categories: “Intensification” (inorganic fertilizer) and “Sustainable” (organic fertilizer and maize-legume 

intercropping) (Table 1). Application of inorganic fertilizer is one of the major practices representing 

conventional agricultural intensification and it has contributed substantially to the tremendous increase 

in food production globally over the past 50 years (Crews and Peoples 2005; Pingali 2012). However, it 

is now clear that conventional agricultural intensification can result in negative consequences, such as 

over-reliance on fossil fuels, reduced biodiversity, and pollution of ground and surface water (Matson et 

al. 1997; Pingali 2012; Kassie et al. 2015a; Petersen and Snapp 2015). In particular, chemical fertilizer 

application without the use of complementary soil building practices may lead to a decrease in soil pH, 

soil organic carbon (SOC), soil aggregation, and microbial communities (Bronick and Lal 2005). This 

study classifies the sole application of inorganic fertilizer as a practice associated with “Intensification” 

alone, not SI. 

Organic fertilizer in the form of manure or compost is categorized as a “Sustainable” practice 

because it can be produced in a renewable manner, locally, and enhances soil structure and water 

retention capacity, encourage the growth of beneficial micro-organisms and earthworms, and decrease 

bulk density (Chen 2006; Bronick and Lal 2005). However, there are often limitation in terms of locally 

sourcing large quantities, it has a long-time horizon for observed benefits, and the application of organic 

fertilizer alone is often not sufficient to substantially raise productivity. Further, it requires investments 

in livestock as well as labor to recycle organic nutrients (Bandyopadhyay et al. 2010).  

Finally, maize-legume intercropping is also categorized as a “Sustainable” practice because it is 

a local and renewable source of fertility. Moreover, compared to continuous sole-cropped maize, it can 

improve soil properties for nutrient and moisture holding capacity, and reduce weeds, pests, and diseases 

(Snapp et al. 2010; Woodfine 2009). Legumes can also benefit household nutrition, providing needed 

protein and micronutrients such as iron, zinc, or vitamin A (Messina 1999). Because of these benefits, 

some authors consider maize-legume intercropping to be an SI practice (SIP) (Rusinamhodzi et al. 2012); 

however, maize yields in certain contexts may be negatively affected by intercropping (Agboola and 

Fayemi 1971; Waddington et al. 2007) and intercrop systems generally require complementary 

investments in order to support high crop yields. Relatedly, Dwivedi et al. (2015) suggest that selection 

of legume crops with different growth durations as well as decisions on when to plant and at what 

density are essential for an efficient intercropping system. In this study, we consider not specific 

legumes but all legume crops that are intercropped with maize in Tanzania. Data limitations prevent us 

from considering planting time and crop density. For all of these reasons, we categorize maize-legume 

intercropping as a “Sustainable” practice but not sufficient to sustainably intensify maize production. 

The three practices considered in this study generate eight possible combinations at the maize 

plot level and then we group these cases into four categories: “Non-adoption”, “Intensification”, 
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“Sustainable”, and “SI”, where “SI” refers to the combined use of “Intensification” (inorganic fertilizer) 

and at least one of the practices in the “Sustainable” group (organic fertilizer and maize-legume 

intercropping). For the empirical approach used here (a multinomial endogenous treatment effects 

model), we need to use the plot-level SI category information to define a household-level SI category 

variable. This is because multinomial endogenous treatment effects models require that the ‘treatment’ 

variable be a mutually exclusive categorical variable. To aggregate the plot-level SI category variable to 

a household level one, we calculate the household’s maize area cultivated under each SI category and 

then choose the SI category that has the largest area. Table 1 shows the prevalence of these cases and 

various SI categories on maize plots in Tanzania. Out of 6,383 maize plots pooled across three rounds of 

survey data, about 38% fall in the “Sustainable” category. The “Intensification” and “SI” categories are 

much less prevalent, at 7% and 8% of maize plots, respectively. The remaining 47% of maize plots fall 

in the “Non-adoption” category. Table 1 also shows that the adoption rates of these different categories 

at the household level are very close to those at the plot level. Approximately 64% of the total maize 

farmers across the three rounds have only one maize plot, and most maize farmers in Tanzania use the 

same technologies on all of their maize plots. In fact, 87% of the total maize plots are defined as the 

same SI category at both the plot and household levels. Among the individual farming practices, maize-

legume intercropping is the most common practice used by maize farmers in Tanzania at 38% and 47% 

at the maize plot and household levels, respectively. The adoption rates of inorganic fertilizer and 

organic fertilizer are 15% (16%) and 14% (18%), respectively, at the plot level (household level). 

 

Table 1. SI of maize production categories and prevalence on maize plots and among maize-growing 

households in Tanzania 

Case 
Inorganic 

fertilizer 

Organic 

fertilizer 

Maize-legume 

intercropping 

% of 

maize plots 
SI category 

% 

Plot level HH level 

1    46.5 Non-adoption 46.5 44.3 

2 √   7.3 Intensification 7.3 6.1 

3  √  6.3 

Sustainable 38.1 40.8 4   √ 26.8 

5  √ √ 5.0 

6 √ √  1.7 

SI 8.1 8.8 7 √  √ 5.2 

8 √ √ √ 1.2 

Use of inorganic fertilizer 15.4 16.1 

Use of organic fertilizer 14.2 18.1 

Use of maize-legume intercropping 38.2 46.6 

Note: Figures in the plot level column are based on all maize plots (n=6,383) cultivated by rural households pooled 

across the three waves of the Tanzania National Panel Survey (2008/09, 2010/11, and 2012/13). Figures in the 

HH level column are based on the total number of maize growers (n=4,269) in rural areas across these surveys. 

Legume crops for maize-legume intercropping system are beans, soyabeans, groundnut, cowpeas, pigeonpeas, 

chickpeas, field peas, green gram, bambara nuts, and fiwi. 

Source: Authors’ calculations.  
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3. Empirical approaches 

This study assumes that farmers are more likely to adopt a combination of technologies as opposed to a 

single technology to deal with agricultural production constraints such as low crop productivity, 

droughts, weeds, pests, and diseases. This assumption is more plausible because decision-makers, in 

reality, are faced with technology alternatives, where one technology can be used as a substitute, 

complement, or supplement for the other (Kassie et al. 2013; Kassie et al. 2015a). Therefore, ignoring 

possible inter-relationships between the various practices may under- or over-estimate the influences of 

various factors on adoption decisions (Wu and Babcock 1998). In addition, farmers may endogenously 

self-select themselves into an adopter or non-adopter category. If these decisions are influenced by 

unobservable characteristics (e.g., innate managerial skills and motivation), then endogeneity problems 

may arise because these unobservable factors may also be correlated with the outcomes of interest 

(Manda et al. 2016a; Kassie et al. 2015b).  

In the literature associated with technology adoption and its impacts, there are several 

approaches to control selection bias: (1) Zeng et al. (2017) used Instrumental Variable (IV) methods to 

analyze that adoption of improved maize varieties enhances child nutritional outcomes in Ethiopia but 

one of the limitations of the IV methods is to impose a linear functional form assumption, indicating the 

estimated coefficients on the control variables have the same impact for adopters and non-adopters (Ali 

and Abdulai 2010; Manda et al. 2016a). (2) Another econometric approach to deal with the sample 

selection bias is propensity score matching (PSM) which requires the strong assumption of 

unconfoundedness that after observed characteristics are controlled, technology adoption is random and 

uncorrelated with the outcomes (Abdulai and Huffman 2014). However, systematic differences between 

outcomes of adopters and non-adopters may still exist even after conditioning observables if the 

selection depends on unobserved factors (Smith and Todd 2005). To effectively estimate the adoption 

and impact of SI categories in a multiple adoption setting, we apply the multinomial endogenous 

treatment effects model proposed by Deb and Trivedi (2006a, b). This model allows us to evaluate 

alternative combinations of practices as well as individual practices. This framework also captures both 

self-selection bias and the interdependence of the adoption decisions (Wu and Babcock 1998; Manda et 

al. 2016b). In addition, correlated random effects (CRE)/Mundlak-Chamberlain device techniques are 

used to deal with the issue of time-invariant unobserved household-level heterogeneity that may be 

correlated with observed covariates. To do this, we follow Wooldridge (2010) and include the mean 

value of time-varying household-level explanatory variables on the right-hand side of each equation. 

The multinomial endogenous treatment effects model involves two steps. In the first stage, an 

individual household i chooses one of the four alternatives in the SI category defined in section 2. 

Following Deb and Trivedi (2006a, b), let 𝐸𝑉𝑖𝑗
∗  denote the indirect utility obtained by household i from 

selecting the jth alternative, 𝑗 = 0, 1, 2, … , 𝐽 (i.e., 𝐽 = 3 for this study): 

𝐸𝑉𝑖𝑗
∗ = 𝒛𝑖

′𝜶𝑗 + 𝛿𝑗𝑙𝑖𝑗 + 𝜂𝑖𝑗                                                                    (1) 

𝒛𝑖 is a vector of exogenous covariates such as household characteristics, social capital, agricultural 

characteristics, and input and output prices with associated parameters, 𝜶𝑗, to be estimated. 𝜂𝑖𝑗 are 

independently and identically distributed error terms. 𝑙𝑖𝑗 is the latent factor which denotes unobserved 

characteristics common to household i’s adoption of the jth alternative and outcome variables (child 

nutritional status) such as innate managerial skills in understanding new technologies and motivation. 

Without loss of generality, let j=0 denote the control group (“Non-adoption”) and 𝐸𝑉𝑖𝑗
∗ = 0. 
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 𝐸𝑉𝑖𝑗
∗  is not directly observed but we observe a binary variable, 𝑑𝑗, representing treatment choice 

of the SI categories and then let 𝒅𝑖 = (𝑑𝑖1, 𝑑𝑖2, … , 𝑑𝑖𝑗). Similarly, let 𝒍𝑖 = (𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖𝐽), then the 

probability of treatment can be expressed as  

Pr(𝒅𝑖|𝒛𝑖 , 𝒍𝑖) = 𝒈(𝒛𝑖
′𝜶1 + 𝛿1𝑙𝑖1, 𝒛𝑖

′𝜶2 + 𝛿2𝑙𝑖2, … , 𝒛𝑖
′𝜶𝐽 + 𝛿𝐽𝑙𝑖𝐽)                                (2) 

where 𝒈 is an appropriate multinomial probability distribution. Following Deb and Trivedi (2006b), we 

assume that 𝒈 has a mixed multinomial logit (MMNL) structure defined as 

Pr(𝒅𝑖|𝒛𝑖 , 𝒍𝑖) =
exp (𝒛𝑖

′𝜶𝑗 + 𝛿𝑗𝑙𝑖𝑗)

1 + ∑ exp (𝒛𝑖
′𝜶𝑘 + 𝛿𝑘𝑙𝑖𝑘)𝐽

𝑘=1

                                               (3) 

 In the second stage of the model, we estimate the impact of the adoption of SI categories on two 

indicators of child nutritional status: height-for-age z-score (HAZ) and weight-for-age z-score (WAZ) 

using ordinary least squares (OLS) with a selectivity correction term from the first stage. The expected 

outcome equation is written as 

𝐸(𝑦𝑖,𝑛|𝒅𝑖 , 𝒙𝑖, 𝒍𝑖) = 𝒙𝑖
′𝜷 + ∑ 𝛾𝑗𝑑𝑖𝑗

𝐽

𝑗=1

+ ∑ 𝜆𝑗𝑙𝑖𝑗

𝐽

𝑗=1

                                            (4) 

where 𝑦𝑖,𝑛 is the nutrition indicator of interest for child n in household i. 𝒙𝑖 is a set of exogenous 

covariates including child n’s characteristics (e.g., gender of child and age in months) with associated 

parameter vector 𝜷. Parameters 𝛾𝑗 denote the treatment effects relative to the control group (“Non-

adoption”). The expected outcome equation 𝐸(𝑦𝑖,𝑛|𝒅𝑖 , 𝒙𝑖, 𝒍𝑖) is a function of each of the latent factors 𝑙𝑖𝑗; 

that is, the outcome variable is influenced by unobserved characteristics that also affect selection into 

treatment. If 𝜆𝑗, known as the factor-loading parameter, is positive (negative), treatment and outcome are 

positively (negatively) associated with unobserved variables; that is, there is positive (negative) 

selection, with 𝛾 and 𝜆 the associated parameter vectors, respectively. This study assumes that the 

outcome variables (z-scores) that are continuous follow a normal distribution. The model is estimated 

using a Maximum Simulated Likelihood (MSL) approach.2 

 In principle, the parameters of the semi-structural model through nonlinear functional forms are 

identified even if all the variables in the adoption equations are identical to those included in the 

outcome equation; i.e., 𝒛𝑖 = 𝒙𝑖. However, including some variables in 𝒛𝑖 that do not enter in 𝒙𝑖 is the 

preferred approach for more robust identification (Deb and Trivedi 2006a, b). Therefore, we use 

traditional exclusion restrictions by specifying instrumental variables in the adoption decision model that 

are excluded from the outcome equation. This study uses both community level and household level 

information as instrumental variables: the existence of farmer’s cooperatives within the community for 

the community level information; and access to agricultural advice from various sources 

(government/NGO, cooperatives/large scale farmers), access to agricultural prices from different sources 

(government/NGO, cooperatives/large scale farmers, radio/TV/publication, neighbor), and input subsidy 

voucher of inorganic fertilizers for the household level information. All of these variables are likely to 

encourage the adoption of SI categories because they can improve households’ access to inputs and 

                                                           
2 The model was estimated using the Stata command mtreatreg and 500 simulation draws were used. 



 
7 

 

information on the SFM practices but are unlikely to have any direct effect on child nutritional outcomes. 

Recent studies also found that these information sources are important drivers of adoption decisions and 

have used them as instrumental variables in technology adoption studies (Di Falco et al. 2011; Di Falco 

and Veronesi 2013; Manda et al. 2016a, b). Although there is no formal test for the validity of exclusion 

restrictions in a nonlinear setting (Deb and Trivedi 2006a), we follow Di Falco et al. (2011) in 

establishing admissibility of these instruments by performing a simple falsification test, where we 

anticipate that these variables are likely to be correlated with the adoption of SI categories but is 

unlikely to affect nutritional outcomes of children among households in the “Non-adoption” group using 

CRE pooled ordinary least squares regression. 
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4. Data 

The data used for this study come from Tanzania National Panel Survey (TNPS), which is a nationally 

representative household survey that contains detailed information on the living standards of the 

population including socioeconomic characteristics, consumption, agricultural production, and non-farm 

income generating activities. The TNPS is a four-wave panel survey conducted in 2008/09, 2010/11, 

2012/13, and 2014/15 but the data from first three rounds are used for empirical analysis because the 

sample in the fourth wave was refreshed for future rounds. The TNPS is based on a stratified, multi-

stage cluster sample design and the clusters within each stratum are randomly selected as the primary 

sampling units, where there are four different strata: Dar es Salaam, other urban areas on mainland 

Tanzania, rural mainland Tanzania, and Zanzibar. The TNPS baseline sample of 3,265 households in the 

first round (TNPS 2008/09) is clustered in 409 enumeration areas. 

Our analytical sample consists of rural maize-growing households with children under age 5 (0-

59 months). There are 2,242 total household observations meeting these criteria across the three waves 

of the TNPS (617 observations in 2008/09, 691 in 2010/11, and 934 in 2012/13) and total 3,449 of 

children under age 5 are included in these households (923 observations in 2008/09, 1,042 in 2010/11, 

and 1,484 in 2012/13). Table 2 shows child nutritional status under age 5 in our sample and by survey 

round, where normal status indicates that HAZ (stunting) or WAZ (underweight) are above -2, while 

moderate or severe status implies that these z-scores are below -2. Out of 3,449 children in our sample, 

about 42% exhibit stunted growth, while 14% were underweight. 

 

Table 2. Child nutritional status under age 5 in the sample 

 
TNPS 2008/09 TNPS 2010/11 TNPS 2012/13 Total 

HAZ (%) WAZ (%) HAZ (%) WAZ (%) HAZ (%) WAZ (%) HAZ (%) WAZ (%) 

Normal 

(z-score > -2) 

478 

(51.8) 

769 

(83.3) 

609 

(58.4) 

883 

(84.7) 

898 

(60.5) 

1,311 

(88.3) 

1,985 

(57.6) 

2,963 

(85.9) 

Moderate or severe 

(z-score < -2) 

445 

(48.2) 

154 

(16.7) 

433 

(41.6) 

159 

(15.3) 

586 

(39.5) 

173 

(11.7) 

1,464 

(42.4) 

486 

(14.1) 

No. of children 

under age 5 
923 1,042 1,484 3,449 

 

As mentioned in section 2, although maize growers may have multiple maize plots and employ 

different sets of SFM practices across plots, the multinomial endogenous treatment effects model 

requires that we assign each household to a single SI category. This is done by calculating the share of 

the household’s total maize area under each SI category, and then assigning the household to the 

category that accounts for the largest share of their maize area cultivated. Table 3 shows the prevalence 

of these household-level SI categories in our sample overall and by survey wave. Of the 2,242 

households engaged in maize production pooled over the three rounds, 1,027 households (45.8%) were 

classified as Non-adoption. The households who use “Sustainable” SI category defined as single or joint 

use of organic fertilizer and maize-legume intercropping account for 39.9% of the sample. Compared to 

these two SI categories, the adoption rates of both Intensification (sole use of inorganic fertilizer) and SI 

(combined use of “Intensification” and “Sustainable” practices) are relatively low, accounting for 6.7% 

and 7.5% of the observations, respectively. These adoption rates by SI category are similar over time. 

 

 

 



 
9 

 

Table 3. SI categories adopted by rural maize growers in the sample 

SI category 
TNPS 

2008/09 (%) 

TNPS 

2010/11 (%) 

TNPS 

2012/13 (%) 
Total (%) 

Non-adoption 291 (47.16) 334 (48.34) 402 (43.04) 1,027 (45.81) 

Intensification 37   (6.00) 46   (6.66) 67   (7.17) 150   (6.69) 

Sustainable 248 (40.19) 249 (36.03) 399 (42.72) 896 (39.96) 

SI 41   (6.65) 62   (8.97) 66   (7.07) 169   (7.54) 

No. of maize growers 617 691 934 2,242 

Note: No. of maize growers refers to the total number of the households with children under age 5 in each wave. 

 

The control variables used in the analysis were selected based on careful reviews of the 

technology adoption and child nutrition literatures (e.g., Zeng et al. 2017; Manda et al. 2016a, b; Masiye 

et al. 2010; Alderman et al. 2006; Shively and Sununtnasuk 2015; Apodaca 2008; Teklewold et al. 2013; 

Kassie et al. 2015a, b; Ndiritu et al. 2014; Falconnier et al. 2016). According to this literature, this study 

includes child characteristics (age and gender of child, whether or not the child had diarrhea in the past 2 

weeks); household characteristics (age and gender of the household head, education level of the 

household head and female adults, family labor, number of female adults/elderly/child/siblings in the 

household, marital status of the household head, off-farm income, access to safe drinking water and 

basic sanitation (toilet)); agricultural characteristics (total cultivated land, own plot, distance to the 

nearest market, total assets of farm equipment owned by households, livestock ownership); input and 

output prices (the unit price of inorganic fertilizer paid by farmers and unit market prices of maize, bean, 

and groundnut); community characteristics (whether or not government health center/hospital is 

available within the community); and instrumental variables.3  

  

                                                           
3 The summary statistics of the control variables used in the analysis are not reported to conserve space, but are available 

from the authors upon request. 
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5. Empirical results 

Factors explaining the adoption of SI categories4 

To conserve space, we briefly discuss the key factors explaining the adoption of various SI categories, 

which is the first stage regression of the multinomial endogenous treatment effects model. The results 

suggest that the education level of the household head, access to off-farm income, more secure land 

tenure, greater farm assets, livestock owned, market price of maize, (and market distance) are 

significantly and positively (negatively) correlated with all or some SI categories, which is fairly 

consistent with previous studies on the adoption of SFM practices/agricultural practices related to SI 

(Pender and Gebremedhin 2007; Kassie et al. 2013; Kassie et al. 2015a; Manda et al. 2016b; Teklewold 

et al. 2013a).5 

As mentioned in Section 3, we performed a simple falsification test to examine the validity of the 

exclusion restrictions for the instrumental variables. The result suggests that all of the instrumental 

variables considered in analysis can be validly excluded from the child nutrition outcome equations. 

More specifically, it shows that the instrumental variables do not affect child nutritional outcomes, both 

HAZ and WAZ, in households in the “Non-adoption” category. On the other hand, the relevance of the 

instrumental variables to SI adoption decisions is evident, where all of the instrumental variables are 

statistically significant determinants of adoption for one or more of the SI categories. 

Average treatment effects of the adoption of SI category 

The estimates for the average treatment effects of the adoption of the various SI categories on child 

nutrition outcomes are presented in Table 4. The results are based on the second stage of the 

multinomial endogenous treatment effects model; the full second stage regression results are reported in 

the appendix (Table A1). 

The full sample results in the upper panel of Table 4 suggest that the child nutrition impacts of 

adoption of the various SI categories differ across outcome variables. The estimated effects of the 

“Intensification”, “Sustainable” and “SI” categories in the HAZ outcome equation are positive and 

statistically significant, while the only the “SI” category is statistically significant and positive in the 

WAZ outcome equation. In addition, there is evidence of selection on unobserved characteristics. The 

coefficients on the latent factors, 𝜆𝑆 and 𝜆𝑆𝐼, are negative and statistically significant in both the HAZ 

and WAZ equations, suggesting that unobserved factors that increase the likelihood of adopting the 

practices in the “Sustainable” and “SI” categories, respectively, are associated with lower levels of child 

nutritional outcomes. On the other hand, the latent factor, 𝜆𝐼, is positively and statistically significant in 

the WAZ equation, implying that unobserved variables increasing the likelihood of adopting inorganic 

fertilizers only (“Intensification”) is associated with higher levels of WAZ. 

The estimated coefficients in the multinomial endogenous treatment effects model can be 

interpreted as changes in the mean outcomes in comparison with those of base category. The results in 

Table 4 show that, on average, the adoption of inorganic fertilizer only (“Intensification”) increases 

children’s HAZ by 0.40 units compared to those in non-adopting households. A similar result is 

observed for the “SI” group, which consists of joint use of practices in the “Intensification” and 

“Sustainable” groups. More specifically, adoption of the “SI” increases children’s HAZ by 0.34 units 

                                                           
4 The first stage regressions in the multinomial endogenous treatment effects model and falsification test results are not 

reported to conserve space, but are available from the authors upon request. 
5 The base category is “Non-adoption” and results in each category are compared with this base category. 
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relative to “Non-adoption”. These are substantial increases given that the sample mean of HAZ is -1.61. 

The adoption of practices in the “Sustainable” group also positively influences children’s HAZ, 

suggesting this adoption leads to an increase in their HAZ by 1.00 units; however, the magnitude of this 

effect is very large (perhaps implausibly large), so further analysis is needed. For WAZ, only adoption 

of “SI” has a statistically significant effect on children’s WAZ. On average, adopting the practices in the 

“SI” group results in a 0.63 unit increase in WAZ for children in these households relative to those in 

non-adopting households. This is also a large effect given that the average WAZ in the sample is -0.86. 

In addition to the full sample analysis (children 0-59 months), we also estimate the models for 

the sub-sample of children aged 25-59 months. The rationale for the sub-sample analysis is that 

according to the World Health Organization (WHO 2017), exclusive breastfeeding is recommended up 

to 6 months of age, with continued breastfeeding along with appropriate complementary/weaning foods 

up to two years of age. This implies that children age two and under may not be as responsive to food 

intake because they are exclusively or partially breastfed (Zeng et al. 2017). Re-estimating the models 

for the sub-sample of children aged 25-59 months enables us to test whether adoption of the various SI 

categories has different effects on these children than on the broader group of children that includes 

those that may still be breastfed.6 The full regression results for the second stage of the sub-sample 

analysis are presented in the appendix (Table A1) and the main estimates of interest are reported in 

Table 4. The sub-sample analysis results in Table 4 suggest that adoption of the packages in the 

“Sustainable” and “SI” categories increases children’s HAZ by 0.44 and 0.38 units, respectively, and 

raises the WAZ by 0.29 and 0.52 units, respectively. These changes are against sub-sample mean HAZ 

and WAZ values of -1.77 and -0.98, respectively. Adoption of “Intensification” has no statistically 

significant effect on HAZ or WAZ in the sub-sample. These findings are fairly consistent with the 

regression results for the full sample except for the “Intensification” category, and provide a more 

plausible estimate of the positive effect of the “Sustainable” category on HAZ. 

The positive effects of “Sustainable” and “SI” adoption on HAZ and WAZ may be explained by 

two factors. First, the legume crops produced through adoption of maize-legume intercropping, which is 

included in both the “Sustainable” and “SI” categories, may directly affect the diet composition of 

adopting households by providing needed protein and micronutrients such as iron, zinc, or Vitamin A 

(Messina 1999); this, in turn, may positively affect child nutritional outcomes. Second, farmers who 

adopt two or more practices at once (as is the case for farmers in the “SI” group and some in the 

“Sustainable” group) might achieve higher maize yields and/or household income than those who do not 

adopt or that adopt only a single practice (Ndiritu 2014; Manda et al. 2016b; Teklewold et al. 2013b). 

The increased production and/or income in the households who adopt “Sustainable” and “SI” practices 

may improve the food availability of the households, food expenditure on high-calorie and protein-rich 

foods, or non-food expenditures on health services and therefore can enhance child nutrition of the 

households. On the other hand, a possible explanation for the findings that the adoption of 

“Intensification” has no statistically significant effects on HAZ and WAZ is that the application of the 

inorganic fertilizer only (“Intensification”) does not involve nutritious legumes suggesting simply 

producing more maize may not be enough to enhance child nutrition. In addition, although 

“Intensification” may raise household incomes through increased maize yields, smallholder farmers may 

still have difficulty directly purchasing legumes on the market because the market prices of legumes 

such as bean and groundnut are more than three times those of the maize market price. These reasons, 

therefore, may result in no effects of “Intensification” on HAZ and WAZ.  

                                                           
6 Ideally, we would also want to estimate the models for the sub-sample of children age 0-24 months; however, there are 

insufficient observations for such an analysis and the models do not converge.  
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Table 4. CRE multinomial endogenous treatment effects model estimates: impacts of the adoption of 

each SI category on child nutritional outcomes 

Variables HAZ WAZ 
   

Full sample (n=3,449)   

Intensification 0.398** -0.191 

 
(0.197) (0.182) 

Sustainable 0.999*** 0.054 

 
(0.252) (0.122) 

SI 0.337** 0.631*** 

 
(0.183) (0.134) 

   

        Selection terms(𝜆)   

Intensification (𝜆𝐼) -0.339 0.333* 

 (0.223) (0.199) 

Sustainable (𝜆𝑆) -1.120*** -0.035 

 (0.126) (0.135) 

SI (𝜆𝑆𝐼) 0.327 -0.641*** 

 (0.220) (0.160) 
   

Sub-sample: child age > 24 months (n=2,072)  

Dependent variable HAZ WAZ 

Intensification -0.208 -0.088 

 (0.159) (0.141) 

Sustainable 0.441** 0.289** 

 (0.192) (0.141) 

SI 0.384** 0.523*** 

 (0.154) (0.120) 

Notes: 500 simulation draws were used. Base category is “Non-adoption”. ***, **, and * denote statistical 

significance at the 1%, 5%, and 10% levels, respectively. Robust standard errors are in parentheses. The 

selection terms (𝜆) for the sub-sample analysis are excluded to conserve space. 
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6. Conclusion and implications 

In many developing countries including Tanzania, food insecurity, child malnutrition, and land 

degradation are serious problems. Agricultural sustainable intensification (SI) has been proposed as a 

possible solution to address these challenges. Narrowly defined, SI involves increasing agricultural 

productivity from the same area of land while minimizing or reducing negative environmental impacts. 

But more recently, broader definitions of SI also include enhancement of human well-being such as 

nutritional status and food security. Yet there is little empirical evidence on how agricultural 

technologies that contribute to SI from an environmental perspective affect the human well-being 

dimensions of SI. Given high rates of child malnutrition in Tanzania and the central role of maize in 

Tanzanian diets and agricultural systems, we focus here on the relationships between maize soil fertility 

management practices and child nutritional outcomes. Using rural Tanzania as a case study, we estimate 

the effects on child malnutrition of the adoption of three SFM practices (i.e., inorganic fertilizer, organic 

fertilizer, and maize-legume intercropping, alone and in combination) that can promote SI of maize 

production. In the analysis, we group the combinations of these practices into four SI categories: “Non-

adoption”, “Intensification”, “Sustainable”, and “SI”, where “Intensification” is defined as use of 

inorganic fertilizer only; “Sustainable” is defined as use of organic fertilizer only, maize-legume 

intercropping only, or their combined use; and “SI” is defined as the combined use of inorganic fertilizer 

and at least one of the practices in the “Sustainable” group. 

 Results based on CRE multinomial endogenous treatment effects models suggest that for the full 

sample of children under age 5 (0-59 months), adoption of all treatment groups (i.e., the 

“Intensification”, “Sustainable”, and “SI” categories) raises children’s HAZ compared to the “Non-

adoption” group, while only the adoption of “SI” raises children’s WAZ. Results based on the sub-

sample of children aged 25-59 months (who are less likely to be breastfed and may be more directly 

affected by household diet changes associated with changes in agricultural practices and production) 

also suggest positive effects of the “Sustainable” and “SI” categories on HAZ and WAZ. However, 

adoption of “Intensification” (use of inorganic fertilizer without organic fertilizer and/or maize-legume 

intercropping) is found to have no statistically significant effects on HAZ and WAZ in this sub-sample. 

These findings may be because both the “Sustainable” and “SI” categories include maize-legume 

intercropping, and this may increase the intake of legumes by children in adopting households. On the 

other hand, while “Intensification” may raise maize yields, increased maize production alone appears to 

be insufficient to enhance the nutritional outcomes of children beyond breastfeeding age.  

 Overall, the results suggest that the adoption of maize-legume intercropping, organic fertilizer, or 

their use in conjunction with inorganic fertilizer on maize plots can substantially enhance child nutrition 

in rural Tanzania. Our results have several implications for agricultural policy. First, it is important for 

policy makers to find effective ways to increase adoption of these practices by Tanzanian maize farmers. 

At present, Tanzania has much lower adoption rates of inorganic fertilizer, organic fertilizer, and maize-

legume intercropping than other countries in eastern and southern Africa such as Kenya, Malawi, and 

Ethiopia (Kassie et al. 2015a). Our results suggest that agricultural extension through both governmental 

and non-governmental organizations (e.g., farmers’ cooperatives) and input subsidies may be effective 

strategies to promote and disseminate information about these practices. In addition, the significance of 

the household head’s education in SI adoption decisions suggests that promoting education may be one 

mechanism to increase SI in maize-based systems and to reduce child malnutrition.   



 
14 

 

References 

Abdulai, A., W. Huffman. 2014. “The adoption and impact of soil and water conservation technology: 

an endogenous switching regression application.” Land Economics 90(1), 26-43. 

Agboola, A.A., and A.A. Fayemi. 1971. “Preliminary trials on the intercropping of maize with different 

tropical legumes in Western Nigeria.” The Journal of Agricultural Science 77(2), 219-225. 

Alderman, H., H. Hoogeveen, and M. Rossi. 2006. “Reducing child malnutrition in Tanzania combined 

effects of income growth and program interventions.” Economics and Human Biology 4:1-23 

Ali, A., and A. Abdulai. 2010. “The adoption of genetically modified cotton and poverty reduction in 

Pakistan.” Journal of Agricultural Economics 61(1), 175-192. 

Apodaca, C. 2008. “Preventing child malnutrition: Health and agriculture as determinants of child 

malnutrition.” Journal of Children and Poverty 14(1):21-40 

Bandyopadhyay, K. K., A. K. Misra, P. K. Ghosh, and K. M. Hati. 2010. “Effect of integrated use of 

farmyard manure and chemical fertilizers on soil physical properties and productivity of 

soybean.” Soil and Tillage Research 110:115-125 

Black, R. E., C. G. Victora, S. P. Walker, Z. A. Bhutta, P. Christian, M. De Onis, ..., and R. Uauy. 2013. 

“Maternal and child undernutrition and overweight in low-income and middle-income 

countries.” The lancet 382(9890):427-451 

Bronick, C. J., and R. Lal. 2005. “Soil structure and management: a review.” Geoderma 124(1):3-22 

Chen, J. 2006. “The combined use of chemical and organic fertilizers and/or biofertilizer for crop 

growth and soil fertility.” Presented at International workshop on sustained management of the 

soil-rhizosphere system for efficient crop production and fertilizer use, Bangkok, Thailand, 16-

26 October. 

Crews, T. E. and M. B. Peoples. 2005. “Can the synchrony of nitrogen supply and crop demand be 

improved in legume and fertilizer-based agroecosystems? A review.” Nutrient Cycling in 

Agroecosystems 72(2):101-120 

Deb, P., and P. K. Trivedi. 2006a. “Specification and simulated likelihood estimation of a non-normal 

treatment-outcome model with selection: Application to health care utilization.” The 

Econometrics Journal 9(2):307-331 

Deb, P., and P. K. Trivedi. 2006b. “Maximum simulated likelihood estimation of a negative binomial 

regression model with multinomial endogenous treatment.” Stata Journal 6:246-255 

Di Falco, S., and M. Veronesi. 2013. “How can African agriculture adapt to climate change? A 

counterfactual analysis from Ethiopia.” Land Economics 89(4):743-766 

Di Falco, S., M. Veronesi, and M. Yesuf. 2011. “Does adaptation to climate change provide food 

security? A micro-perspective from Ethiopia.” American Journal of Agricultural Economics 

93:829-846 

Droppelmann, K. J., S. S. Snapp, and S. R. Waddington. 2017. “Sustainable intensification options for 

smallholder maize-based farming systems in sub-Saharan Africa.” Food Security 9(1):133-150 



 
15 

 

Dwivedi, A. I. Dev, V. Kumar, R. S. Yadav, M. Yadav, D. Gupta, A. Singh, and S. S. Tomar. 2015. 

“Potential role of maize-legume intercropping systems to improve soil fertility status under 

smallholder farming systems for sustainable agriculture in India.” International Journal of Life 

Sciences Biotechnology and Pharma Research 4(3):145-157 

Falconnier, G. N., K. Descheemaeker, T. A. Van Mourik, and K. E. Giller. 2016. “Unravelling the 

causes of variability in crop yields and treatment responses for better tailoring of options for 

sustainable intensification in southern Mali.” Field Crops Research 187:113-126 

Food and Agriculture Organization of the United Nations. 2015. The State of Food Insecurity in the 

World 2015. Rome: FAO. 

Godfray, H. C. J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. 

Robinson, S. M. Thomas, and C. Toulmin. 2010. “Food security: the challenge of feeding 9 

billion people.” Science 327(5967):812-818. 

Hawkes, C., and M.T. Ruel. 2006. Understanding the links between agriculture and health. 2020 Vision 

Focus 13 (IFPRI: Washington, DC, 2006) 

Jones, A.D., A. Shrinivas, and R. Bezner-Kerr. 2014. “Farm production diversity is associated with 

greater household dietary diversity in Malawi: Findings from nationally representative data.” 

Food Policy 46:1-12 

Jones, A., Y. C. Agudo, L. Galway, J. Bentley, and P. Pinstrup-Andersen. 2012. “Heavy agricultural 

workloads and low crop diversity are strong barriers to improving child feeding practices in the 

Bolivian Andes.” Social Science & Medicine 75:1673-1684 

Kassie, M., H. Teklewold, M. Jaleta, P. Marenya, and O. Erenstein. 2015a. “Understanding the adoption 

of a portfolio of sustainable intensification practices in eastern and southern Africa.” Land Use 

Policy 42:400-411 

Kassie, M., H. Teklewold, P. Marenya, M. Jaleta, and O. Erenstein. 2015b. “Production risks and food 

security under alternative technology choices in Malawi: Application of a multinomial 

endogenous switching regression.” Journal of Agricultural Economics 66(3):640-659 

Kassie, M., M. Jaleta, B. Shiferaw, F. Mmbando, and M. Mekuria. 2013. “Adoption of interrelated 

sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania.” 

Technological Forecasting & Social Change 80:525-540 

Loos, J., D. J. Abson, M. J. Chappell, J. Hanspach, F. Mikulcak, and M. Tichit. 2014. “Putting meaning 

back into sustainable intensification.” Frontiers in Ecology and the Environment 12:356-361 

Manda, J., C. Gardebroek, M. G. Khonje, A. D. Alene, M. Mutenje, and M. Kassie. 2016a. 

“Determinants of child nutritional status in the eastern province of Zambia: the role of 

improved maize varieties.” Food Security 8(1):239-253  

Manda, J., A. D. Alene, C. Gardebroek, M. Kassie, and G. Tembo. 2016b. “Adoption and impacts of 

sustainable agricultural practices on maize yields and incomes: evidence from rural Zambia.” 

Journal of Agricultural Economics 67(1):130-153 

Masiye, F., C. Chama, B. Bona, and D. Jonsson. 2010. “Determinants of child nutritional status in 

Zambia: an analysis of a national survey.” Zambia Social Science Journal 1(1):29-42 



 
16 

 

Matson, P. A., W. J. Parton, A. G. Power, and M. J. Swift. 1997. “Agricultural intensification and 

ecosystem properties.” Science 277(5325):504-509 

Messina, M. J. 1999. “Legumes and soybeans: overview of their nutritional profiles and health effects.” 

The American Journal of Clinical Nutrition 70(3):439-450 

Musumba, M., P. Grabowski, C. Palm, and S. Snapp. 2017. “Guide for the sustainable intensification 

assessment framework.” Draft working paper. University of Florida and Michigan State 

University. 

Ndiritu, S. W., M. Kassie, and B. Shiferaw. 2014. “Are there systematic gender differences in the 

adoption of sustainable agricultural intensification practices? Evidence from Kenya.” Food 

Policy 49:117-127 

Pender, J., and B. Gebremedhin. 2007. “Determinants of agricultural and land management practices 

and impacts on crop production and household income in the highlands of Tigray, Ethiopia.” 

Journal of African Economies 17(3):395-450 

Petersen, B., and S. Snapp. 2015. “What is sustainable intensification? Views from expert.” Land Use 

Policy 46:1-10 

Pingali, Prabhu L. 2012. “Green revolution: impacts, limits, and the path ahead.” Proceedings of the 

National Academy of Sciences 109(31):12302-12308 

Pinstrup-Andersen, P. 2007 “Agricultural research and policy for better health and nutrition in 

developing countries: a food systems approach.” Agricultural Economics 37:187-198. 

Rusinamhodzi, L., M. Corbeels, J. Nyamangara, and K. E. Giller. 2012. “Maize-grain legume 

intercropping is an attractive option for ecological intensification that reduces climatic risk for 

smallholder farmers in central Mozambique.” Field Crops Research 136:12-22 

Shively, G., and C. Sununtnasuk. 2015. “Agricultural diversity and child stunting in Nepal.” The Journal 

of Development Studies 51(8):1078-1096 

Sibhatu, K. T., V. V. Krishna, and M. Qaim. 2015. “Production diversity and dietary diversity in 

smallholder farm households.”  Proceedings of the National Academy of Sciences 

112(34):10657-10662. 

Smith, J., and P. Todd. 2005. “Does matching overcome LaLonde’s critique of nonexperimental 

estimators?” Journal of Econometrics 125, 305-353. 

Snapp, S. S., M. J. Blackie, R. A. Gilbert, R. Bezner-Kerr, and G. Y. Kanyama-Phiri. 2010. 

“Biodiversity can support a greener revolution in Africa.” Proceeding of the National Academy 

of Sciences 107(48):20840-20845 

Tanzania National Bureau of Statistics (NBS). 2014. Tanzania National Panel Survey Report (NPS) – 

Wave 3, 2012-2013, Dar es Salaam, Tanzania, NBS. 

Teklewold, H., M. Kassie, and B. Shiferaw. 2013a. “Adoption of multiple sustainable agricultural 

practices in rural Ethiopia.” Journal of Agricultural Economics 64:597-623 



 
17 

 

Teklewold, H., M. Kassie, B. Shiferaw, and G. Köhlin. 2013b. “Cropping system diversification, 

conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, 

agrochemical use and demand for labor.” Ecological Economics 93:85-93 

UNICEF, WHO, World Bank Group. 2017. Levels and trends in child malnutrition – Joint child 

malnutrition estimates 2017 edition 

Waddington, S.R., M. Mekuria, S. Siziba, and J. Karigwindi. 2007. “Long-term yield sustainability and 

financial returns from grain legume-maize intercrops on a sandy soil in subhumid north central 

Zimbabwe.” Experimental agriculture 43(3):489-503 

Woodfine, A. 2009. Using sustainable land management practices to adopt to and mitigate climate 

change in sub-Saharan Africa. Resource Guide Version 1. Accessed June 14, 2017 

Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data. MIT press, 2010 

Wu, J. J. and B. A. Babcock. 1998. “The choice of tillage, rotation, and soil testing practices: economic 

and environmental implications.” American Journal of Agricultural Economics 80(3):494-511 

Zeng, D., J. Alwang, G. W. Norton, B. Shiferaw, M. Jaleta, and C. Yirga. 2017. “Agricultural 

technology adoption and child nutrition enhancement: improved maize varieties in rural 

Ethiopia.” Agricultural Economics:1-14 

Zurek, M., P. Keenlyside, and K. Brandt. 2015. Intensifying agricultural production sustainably: A 

framework for analysis and decision support. Amsterdam, The Netherlands: International Food 

Policy Research Institute (IFPRI); Climate Focus. 

  



 
18 

 

Appendix 

Table A1. Second stage estimates for child nutritional outcomes 

Variables 
Full sample (0-59 months) Sub-sample (25-59 months) 

HAZ WAZ HAZ WAZ 

Child characteristics     

Child age (months) 

 

-0.016*** -0.012*** 0.010*** -0.007*** 

(0.002) (0.001) (0.003) (0.002) 

Child gender (1=male) 

 

-0.201*** -0.061 -0.137** 0.011 

(0.054) (0.040) (0.059) (0.046) 

Diarrhea (1=yes) 

 

-0.329*** -0.180*** -0.274** -0.105 

(0.085) (0.064) (0.111) (0.095) 

Household characteristics     

Head gender (1=male) 

 

0.275* 0.094 0.413** 0.186 

(0.159) (0.117) (0.184) (0.128) 

Head age (years) 

 

0.004 0.005 0.012 0.013 

(0.011) (0.009) (0.011) (0.010) 

Head education (years) 

 

0.008 0.009 0.005 0.006 

(0.009) (0.006) (0.009) (0.008) 

Female education (years) 

 

-0.001 -0.002 0.015 0.005 

(0.009) (0.007) (0.010) (0.008) 

Family labor 

 

-0.030 -0.008 0.005 -0.039 

(0.056) (0.028) (0.057) (0.031) 

No. of female adults 

 

0.016 -0.016 0.018 -0.064 

(0.106) (0.078) (0.108) (0.091) 

No. of elderly 

 

0.216 -0.073 -0.108 -0.150 

(0.292) (0.239) (0.350) (0.266) 

No. of child 

 

0.047 0.033 0.017 0.046 

(0.059) (0.041) (0.059) (0.049) 

No. of siblings 

 

0.182 0.209* 0.248 0.161 

(0.172) (0.125) (0.199) (0.140) 

Head marital status (1=yes) 

 

-0.145 -0.017 -0.273 -0.120 

(0.154) (0.114) (0.182) (0.122) 

Off-farm income (1=yes) 

 

-0.013 0.027 0.084 0.143 

(0.126) (0.101) (0.143) (0.124) 

Safe drinking water (1=yes) 

 

0.049 0.049 0.069 0.001 

(0.066) (0.048) (0.073) (0.054) 

Sanitation (toilet) (1=yes) 

 

-0.186** -0.039 -0.240*** -0.126** 

(0.073) (0.053) (0.079) (0.061) 

Agricultural characteristics     

Total cultivated land (acres) 

 

-0.001 -0.002 -0.005 -0.009 

(0.007) (0.005) (0.007) (0.007) 

Own plot (1=yes) 

 

-0.012 -0.047 0.039 0.117 

(0.111) (0.079) (0.116) (0.106) 
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Table A1. (Continued) 

Variables 
Full sample (0-59 months) Sub-sample (25-59 months) 

HAZ WAZ HAZ WAZ 

Market distance (kms) 

 

0.001 0.001 0.002 0.001 

(0.002) (0.001) (0.002) (0.002) 

Farm assets (1,000 TSh) -0.000 -0.000 -0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) 

Livestock (1=yes) 

 

-0.007 0.097** -0.012 -0.006 

(0.062) (0.047) (0.071) (0.053) 

Input and output prices     

Maize price (TSh/kg) 

 

0.000 0.000 0.001*** 0.000 

(0.000) (0.000) (0.000) (0.000) 

Bean price (TSh/kg) 

 

0.000 0.000 -0.000 0.000 

(0.000) (0.000) (0.000) (0.000) 

Groundnut price (TSh/kg)  

 

0.000*** -0.000 0.000 -0.000 

(0.000) (0.000) (0.000) (0.000) 

Inorganic fertilizer price (TSh/kg) 

 

-0.000 -0.000 -0.000* -0.000 

(0.000) (0.000) (0.000) (0.000) 

Community characteristics     

Gov. health/hospital (1=yes) 

 

-0.047 0.006 -0.023 -0.012 

(0.054) (0.040) (0.060) (0.048) 

SI category     

Intensification 0.398** -0.191 -0.208 -0.088 

 (0.197) (0.182) (0.159) (0.141) 

Sustainable 0.999*** 0.054 0.441** 0.289** 

 (0.117) (0.122) (0.192) (0.141) 

SI 0.377** 0.631*** 0.384** 0.523*** 

 (0.183) (0.134) (0.154) (0.120) 

Selection terms     

Intensification (𝜆𝐼) -0.339 0.333* 0.239** 0.131 

 (0.223) (0.199) (0.097) (0.093) 

Sustainable (𝜆𝑆) -1.120*** -0.035 -0.474** -0.331* 

 (0.126) (0.135) (0.221) (0.177) 

SI (𝜆𝑆𝐼) 0.327 -0.641*** -0.644*** -0.783*** 

 (0.220) (0.160) (0.185) (0.151) 

Constant 

 

-2.205*** -1.166*** -3.163*** -1.383*** 

(0.247) (0.179) (0.284) (0.233) 

Observations 3,449 3,449 2,072 2,072 

Notes: Sample size is 3,449 individuals for the full sample (2,072 individuals for the sub-sample) and 500 

simulation draws were used. For correlated random effects (CRE)/Mundlak-Chamberlain device 

techniques, time-averages of household level variables to control for time-constant unobserved 

heterogeneity were included in the model but not reported in Table A1. Base category is “Non-adoption”. 

***, **, and * denote statistically significance at the 1%, 5%, and 10% levels, respectively. Robust 

standard errors are in parentheses.  

 




