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Abstract: 

This study examines the empirical importance of the effects of the risk environment on the impacts of climate 
change on farm land allocations and consequent effect on agricultural output in Zambia. We use a discrete-
choice model consistent with a mean-variance utility function to model farm-level land allocations among 
alternative crops. Results indicate that risk-reducing decisions reinforce the trend to shift away from maize 
production in response to climate change impacts on mean temperatures and precipitation. The opportunity 
cost of these decisions is explored through a simulation scenario in which yield variability is reduced to 
zero. Important conclusions can be derived from this analysis. First, when the economic effects of climate 
change are considered, decision-making under uncertainty and risk should be at the forefront of the 
problems that issues that need to be addressed. Second, concentrating on farm-level effects of responses to 
climate change is not sufficient. To understand the economy wide consequences of climate change, the 
aggregate effects of individual decisions should be assessed. Third, results indicate that increased efforts 
in risk management and in policies aiming at reducing risk can lead to significant positive outcomes.  
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Introduction 

Climate disruptions to agricultural production have increased over the past 40 years and are projected 

to become more frequent over the next 25 years (Hartfield et al. 2015).  Farmers in many agricultural 

regions already appear to have experienced declines in crop and livestock production because of climate 

change-induced stress (Lobell and Field 2007).   Up to now, the effects of changes in mean temperatures 

and precipitations have been the main focus of discussions about climate change impacts on agriculture 

and of the quantitative modelling analyses of those impact.  The effects of climate change on the 

volatility of agricultural production, crop and livestock prices, and longer term producer responses to 

the associated increased risk have received much less attention. This study therefore examines the 

importance of the risk environment on the impacts of climate change on farm land allocations and 

consequent agricultural output at the country level. The empirical question that motivates this paper is 

whether or not modeling farmers’ responses to climate change requires accounting for risk attitudes.  Is 

risk only a second-order effect of negligible importance or, alternatively, does accounting for risk in 

empirical models result in quantitatively and statistically significant different results about the effects of 

climate change on agricultural production and food systems?   



Economists have long been aware of the potential importance and role of risk in farmers’ decisions-

making.   In empirical climate change studies, however, in practice risk-aversion is generally assumed 

away even though the economic literature has emphasized the potential effects of price and yield 

volatility on farmers’ production decisions.  The results of this study indicate that omitting effects 

associated with risk attitudes can hide farmers’ actions that are consistent with short-term adaptation, 

can lead to the formulation of poorly targeted polices and insidiously affect a country’s production of 

food.  Farmers are likely to make production decisions that reduce their households’ vulnerability to 

climate change and a portion of the land reallocation strategy they choose is driven by risk 

considerations. We find that even if a relatively small fraction of the change is attributable to risk 

avoidance, the aggregate effects of small changes in land allocations at the farm level compounded with 

changes in crop-growing conditions caused by climate change may adversely affect overall production at 

the country level. These findings also indicate the potential importance of innovations that mitigate the 

risk effects of climate change (e.g., investments in developing drought tolerant crop varieties, irrigation 

systems, etc.) and providing farmers with access to efficient risk management tools.  

A Model of Land Use Choices 

Economists often estimate multi-crop econometric models derived under the assumption of profit 

maximization with land as an allocable fixed input to explain land use decisions by farmers (Chambers 

and Just 1989, Moore and Negri 1992; Oude Lansink and Peerlings 1996; Fezzi and Bateman 2011).  An 

alternative approach is to model land allocation decisions using a discrete choice setting because it leads 

to conveniently tractable empirically relevant model specifications (Wu and Segerson, 1995; Miller and 

Plantinga, 1999; Livingston et al., 2008). More recently, Carpentier and Letort (2013) have shown that, 

under reasonable assumptions, discrete choice models (and specifically multinomial logit models) can be 

interpreted as solutions to a farm’s land use optimization problem.  However, as originally pointed out 



by Just, Zilberman, and Hochman (1983), three assumptions generally guide the representation of 

multioutput production: 1) inputs are allocated to specific crop production activities; 2) production is 

technically non-joint so that the allocation of inputs uniquely determines crop-specific output levels; and 

3) a series of fixed inputs (e.g. land, machineries,) that can be allocated across production activities. 

Assumptions 1 and 2 allow for the existence of separate restricted profit functions for each crop, taking 

land allocations as given. Assumption 3 is responsible for jointness in farmer’s multicrop profit 

maximizing decisions. As Carpentier and Letort state: “the multinomial logit framework imposes non-

jointness restrictions of the multicrop technology in variable inputs, in outputs and in acreages.” A direct 

consequence of these restrictions is that the non-jointness of the quasi-fixed input requirements with 

respect to variable input uses can only hold in the neighborhood of the current level of input usage. 

Therefore, the multinomial logit model framework, including Carpentier and Letort’s extension, cannot 

be used to make long-term projections regarding crop allocation shares.  

In this paper, we use this model not to make precise predictions about future land use patterns in 

Zambia but to gain an insight into how existing farmers would respond when exposed to climate change.   

While our underlying behavioral model follows Chavas and Holt (1990), the model estimation is based 

on a small modification of the approach used by Wu and Segerson (1995) to allow for risk-aversion.  

We consider an agricultural production system in which crops are non-joint in production and compete 

for shares of a fixed area of land.  A household is assumed to face a one period consumption budget   

in which: 

  eq. 1 



where  indicates household wealth, and  is the area allocated to the  crop.  Thus  is 

the size of the farm controlled by the household.  In addition,  indicates the output (i.e., yield per unit 

area) of the crop,  its market price and  the cost of producing that crop per unit area. 

The household maximizes expected utility derived from farming available land holdings by allocating 

to each available crop : 

  eq. 2 

where  is a utility function describing the attractiveness of net revenues  conditioned on monetary 

( ) and land ( ) endowments.  is a function of , , and  which are respectively vectors of output 

prices, yields and crop production costs, the latter two are functions of a vector of biophysical 

characteristics at location  ( ) and of a vector of characteristics for the  household ( ). Revenues, 

, are stochastic because output prices and yields have some distribution with finite means and 

variances and , respectively, and their realized values are not known by farmers 

when land allocation decisions are made. Conversely, input prices and production costs, are assumed 

to be known with certainty by households at that time.  

For each crop  the household’s optimal area allocation choice  depends on its wealth, expected net 

revenues,  second and, potentially, higher moments of the distribution of the expected net crop 

revenues, , and farm size . Thus, the direct area allocation by crop  is the area 

allocation choice that solves the utility maximization problem. We assume that  



can be expressed as  where  is now the per-hectare net revenue. Thus for each 

crop  there is an optimal share allocation function1: 

  eq. 3 

Farm-level area allocations are observed in the household survey described in the next section. These 

allocations depend on a crop’s risk/returns profile relative to all other crops.  The probability that a 

farmer chooses to grow a particular crop  is given by  and the expected area 

allocated to that crop is given by  * . Therefore, the expected share  of farmland allocated to crop  

is . This means that the share allocated to a crop is equal to its 

probability  to be chosen by a farmer. Acknowledging that  where  represents a knowable-

by-all component of the utility function while   is known to the farmer but unobserved by the 

researcher and assuming that  has an iid Type 1 EV distribution, then: 

  eq. 4 

We then can rewrite the optimal share allocation function for a crop as:  

  eq. 5 

Equation 3 explicitly accounts for the influence of net revenue variability on land allocation decisions by 

farmers who account for both expected returns and the volatility of those returns in their land use 

                                                           
1  Wu and Segerson (1995) assume that their land use function is linear homogenous of degree one in area and therefore the function 

can be written removing area itself as a potential determinant of land allocation decisions and impose constant returns to acreages.  

However, removing area from the function arguments is not necessary except as a convenience. In fact, the homogeneity of degree 

one assumption could be dropped altogether.  Retaining total farm size among the arguments of the optimal share function can 

account for differences in fixed costs of multiple activities or risk-spreading decisions available to farmers that manage farms of 

different sizes. 

  



decisions. The variable  is constructed to provide a crop specific measure of net revenue variability 

based on the product of the two stochastic variables yield and price: 

  eq. 6 

Wu and Segerson (1995) and Holt and Kaminsky et al (2013) assume that the optimal share function is 

linear in parameters while Chavas and Holt (1990) use a first order expansion to linearize the optimal 

acreage function.  Following this literature, we assume that the optimal share function for each crop can 

be approximated by a linear in parameters combination of explanatory variables  such that 

, where and are vectors and the subscript  in  indicates a reference crop 

and  identifies the household. 

The parameters are estimated using two models. The first is a standard multinomial logit model; the 

second is a two-level nested multinomial logit model (see Figure 1). In both models, the probability of a 

crop being chosen is interpreted as the share of the available land to be allocated to the crop (Theil 

1969, Berry 1994, Greene 2003). Nested multinomial logit models are estimated under assumptions 

analogous to the multinomial logit model with respect to , but with the error terms for crop shares 

correlated within each nest but uncorrelated among nests.  The explanatory variables are partitioned 

with some used to choose among the nests and the others to choose among the options within each 

nest. 

 



 

Figure 1: Structure of the Nested Multinomial Logit Model 

 

Under these assumptions, the probability that household n chooses alternative j ( ) can be derived 

from the product of two multinomial logit probabilities (McFadden 1977, Train 2003); that is, 

, where 

  eq. 7 

and  is a vector of household-specific characteristics such as off farm wages and household size, is 

vector of coefficients for , and where 

  eq. 8 

and  is a vector of location-specific variables influencing crop suitability like weather conditions and 

soil characteristics and  is a vector of coefficient parameters specific to crop j.  often referred to 

the inclusive value of nest k, is defined as . 2 Equation 7 defines the 

marginal probability of choosing any alternative in nest k and equation 8 the conditional probability of 

                                                           
2  is called the inclusive value or inclusive utility for alternative k in the first level. The inclusive value links the two levels of the 

nested logit model by bringing information from the bottom level into the upper level. In essence, measures the expected 

value or utility to individual n of the alternatives available in particular nest. 



choosing alternative j given that any alternative in nest k is chosen. We refer to the marginal probability 

as the upper-level model and to the conditional probability as the lower-level model, reflecting their 

relative positions in the hierarchy structure in Figure 1.  

The Data  

The data used to estimate the land use models are obtained from several sources and include nation-

wide survey information on individual farm households, province level information on crop prices, 

simulation-based information on crop yields, biophysical information, and weather data.   

Household Data 

Cross section data on farm practices and household characteristics of a country-wide stratified sample 

of 5319 smallholder farmers were obtained from the 2004 Zambia Rural Income and Livelihoods Survey. 

This is a country-scale smallholder farmer survey designed and administered by the Central Statistical 

Office (CSO) of the government of Zambia (Central Statistical Office, 2012).  The 2004 CSO survey 

sampled households from 72 districts.   The survey provides information for the 2003-2004 crop year on 

land allocations among crops, information on households’ crop-specific revenues but limited 

information about costs of production. Six crops were selected to be modeled (Table 1) while all land 

allocated to other crops, including land in fallow, were grouped in a category called “others”. Land 

reported as fallow accounts for approximately 58 percent of the “others” category.   

Table 1: Land allocation by crop in Zambia as reported by household survey 

Crop Maize Millet Sorghum Cassava Groundnuts Beans Others 

Share 0.36 0.03 0.02 0.12 0.07 0.03 0.38 

 



Crop prices 

The 2004 Zambia Rural Income and Livelihoods Survey reports crop yields and crop specific revenues 

from which it is possible to derive crop market prices. However, this information is insufficient to derive 

a measure of price variability, which is required to compute  as defined in equation 6 above.  

Therefore, time series data on crop prices for maize, millet, cassava, beans, sorghum, and groundnuts at 

the province level were obtained from the CSO (Central Statistical Office, 2014) for the period 1994 to 

2012.  Within each province, prices were reported for major market towns and/or districts. Province 

wide crop prices in a given year are computed as the simple arithmetic average of the crop prices from 

the three major towns or districts in each of the Zambian nine provinces that existed prior to 20113. 

These data are used to compute alternative estimates of price volatility for each crop, including simple 

“raw” estimates of crop price standard deviations computed using nominal prices and standard 

deviations estimates based on de-trended prices. The assumption is that, even though some prices 

included in the estimates of standard deviations are observed after the cross-sectional household 

sample was collected in 2004, the volatility reflected in those prices reflects the crop price data 

generating process extant in 20044.  

Crop Yields  
The 2004 national smallholder survey reports household yields for each crop only for the 2003-2004 

crop year.  Estimates of the volatility of crop yields for farms in any given location therefore have to be 

based on other information. The approach we follow is to combine information on weather variables, 

and soil type at the district level to generate yield distributions for each crop using the Decision Support 

                                                           
3 In 2011, provincial boundaries were redefined and ten provinces were established. 

4  We estimated alternative land use models using several different measures of price volatility, including estimates based on 

deviations from in sample price predictions obtained from linear and semi-log models in which prices are a function of time.  

However, results are reported only for models that use estimates of the simple standard deviations of crop prices. The signs of the 

parameter estimates did not vary across alternative measure of price volatility, but models utilizing simple standard deviations as 

measures of price volatility were consistently preferred when log-likelihood values were compared across models. 



System for Agrotechnology Transfer (DSSAT). Specifically, we directly modeled the following crops under 

rainfed conditions: beans, cassava, groundnuts, maize, millet, and sorghum.  

Crop yields are obtained using historical daily weather in DSSAT.  A representation of future weather 

under the climate of the mid-twenty-first century was constructed by applying climate change patterns 

extracted from MIROC-ESM-CHEM under RCP 8.5 (Wantanabe, et al., 2011) to the historical daily 

weather.  

Weather and climate 

The baseline weather data used to represent the situation in 2004 consist of historical climate 

information reconstructed by the NCEP model covering the years 1950-2010 (Kalnay et al., 1996). The 

daily precipitation values were refined to match the data gathered by the GPCC project at the monthly 

level, since they are believed to be more reliable (Schneider, et al., 2011; Schneider, et al., 2013; Rudolf, 

et al., 2005; Rudolf and Schneider, 2005; Rudolf, et al. 1994; Rudolf, et al. 2003; Back, Grieser, and 

Rudolf, 2005). Future climate (in the middle of the century) is obtained using an adjusted version of the 

historical weather. First, raw climate change data were obtained from the Potsdam Climate Institute 

(PIK). In those data, the daily raw GCM outputs were spatially resampled to a half-arc-degree grid and 

then debiased to match appropriate historical benchmarks (Hempel, Frieler, Warszawski, Schewe, and 

Piontek, F., 2013; Piani, Haerter, and Coppola, 2010.; Müller and Robertson, 2014; Weedon, et al, 2011).  

Production Cost data 

As discussed above, the household survey provides limited information about crop-specific production 

costs. The survey reports district-level wages and unit cost of fertilizer but other factors that influence 

production costs are nor reported in the household survey (for example, field operations like sowing, 

harvesting, processing, transportation and the use of other chemical inputs like pesticides). Therefore, 

we include elevation in our data set (using the GLOBE 1km dataset, National Geophysical Data Center, 

1999) and a cost-of-access measure based on time to the nearest city of 20,000 people (Nelson, 2008).  



 

A complete list of variables and variable definitions together with data on sample means, ranges, and 

(where relevant) standard deviations for each variable is presented in Table 2. 

Table 2: Variable Sample Means, Ranges and Other Descriptive Statistics 

 
Mean Std.Deviation Notes 

Precipitation  1,042.83 274.52 Millimeters  

Precipitation inner quartile range  14.93 17.48 Millimeters 

Temperature  178.80 21.71 Degree Celsius 

Temperature innerquartile range  16.66 12.71 Degree Celsius 

Cost of access  5.90 0.51 ln(Travel time in minutes) 

Cost of access innerquartile range  1.03 0.27 ln(Travel time in minutes) 

Elevation  1,066.98 258.52 Meters 

Elevation innerquartile range  206.27 161.32 Meters 

Revenue maize  318,624.0 15,509.20 Kwacha ha-1 

Revenue millet  279,297.5 27,552.66       Kwacha ha-1 

Revenue sorghum  180,277.2 11,029.49 Kwacha ha-1 

Revenue cassava  139,837.9 77,470.27      Kwacha ha-1 

Revenue groundnuts 736,941.5 26,579.24 Kwacha ha-1 

Revenue beans  509,114.6 11,868.22 Kwacha ha-1 

Maize net-revenue variability  77.81 10.29  

Millet net-revenue variability  29.84 14.27  

Sorghum net-revenue variability  24.38 13.88  

Cassava net-revenue variability  17.79 9.44  

Groundnuts net-revenue variability  97.86 67.37  

Beans net-revenue variability  82.72 55.84  

Off-farm cost of labor  40.59 8.14 
Off-farm payments for one day’s work in 

Kwacha day-1 

Fertilizers price  1,859.52 214.24 Kwacha kilogram-1 

Farm size  2.37 2.80 Hectares 

Education level of head of household  5.27 3.91 Years 



Gender head of household  0.22 0.42 Dummy variable (1 = female) 

Value of assets  43.46 277.19 Kwacha 

Number of head of livestock  2.52 13.88  

 

Estimation Models and Estimation Results  

We estimate several alternative discrete choice land use models. Parameter estimates are reported in  

Table 4 andTable 3 for four models that are representative of the results we obtain5.  The first is a 

multinomial logit model that imposes the IIA (independence of irrelevant alternatives) assumption 

which implies that error terms for the equations explaining all choices are uncorrelated with one 

another. The multinomial logit includes all the variables used in the nested logit model that performs 

best according to a likelihood ratio test, including the variables that account for the variability of crop 

revenues. The second is a nested logit model (as described in figure 1) that relaxes the IIA assumption 

and includes the same set of explanatory variables as the multinomial logit.  Likelihood ratio tests 

indicated that a nested logit model is preferred to a multinomial model.    

The third and fourth empirical models are estimated to examine whether the inclusion of a range of 

explanatory variables is warranted. Model three is a nested logit model that excludes explanatory 

variables that account for risk but otherwise has an identical set of explanatory variables. Finally, model 

four is also a nested logit but omits temperature and rainfall, two of the explanatory variables that 

attempt to control for production costs.6  

Log-likelihood ratio tests indicate that that a nested logit model that includes the risk related variables 

and the variables to control for costs of production is to be preferred to the others.   In all nested logit 

                                                           
 

6 Yields capture the productivity effects of temperature and rainfall but our insights into production costs are very limited and the use 

of temperature and precipitation in the set of explanatory variables can potentially help in controlling for the field operation costs 

that are affected by weather conditions. 



models, other variables generally have the same signs.  One difference is that in the model that includes 

the risk related variables, more of the parameter estimates for crop price variables are statistically 

significant, while retaining the same signs which accord with prior expectations.  

An increase in the volatility of net revenues for a crop is expected to reduce the amount of land 

allocated to that crop, other things being equal.  The signs of the estimated parameters corresponding 

to the risk related variables included in both the nested logit and the multinomial logit model are as 

expected (that is, negative, which indicates that an increase in risk decreases the attractiveness of that 

crop or nest being chosen) with one exception (the risk related variable for maize in the multinomial 

logit model and in the nested logit without controls for costs).  In the nested logit model, the estimated 

risk related variable parameters are also statistically significant for all crops except maize and cassava.  

The results also indicate that including farm size as a determinant of land allocation in crop share 

models may be important. The parameter estimates for farm size in the nested logit model suggest that 

as farm size increases, a greater share of available farm-land is allocated to group-one crops.   That 

group includes maize and the “others” category.  The nested logit model, however, cannot indicate 

whether within that group, a larger share of land is being allocated to both maize and the “others” 

category or only one of the two land uses.  The parameter estimates for farm size in the multinomial 

logit suggest the increased share of land allocated to group one crops will be concentrated on the 

“others” crops. All farm size parameter estimates are negative, indicating that all crops become less 

attractive than reference category crops (“others”) as farm area increases. It is useful to remember that 

the “others” category includes two cash crops, sugarcane and cotton, along with fallow which suggests 

that at the farm householder level larger land holdings may lead to crop diversification and risk 

management. 



Among the household demographic variables included in the nested logit model, gender and education 

levels appear to affect land allocation decisions.  Households headed by women tend to allocate less 

land to group 2 crops, which include cassava, millet and sorghum, and more land to group 1 crops 

(maize and “others”) and group 3 crops (beans and groundnuts) which are protein crops7.  Farms with 

more well educated heads of household also allocate less land to group 2 crops.  The off farm wage 

variable (wage) also has a similar effect; higher off farm wages reduce the amount of land allocated to 

group 2 crops.   Households with more assets also are likely to allocate less land to group 2 crops and 

more land to group 1 and 3 crops.  Parameter estimates also suggest that higher fertilizer prices reduce 

the amount of land allocated to group 1 crops (which include maize) and increase the amount of land 

allocated to crops in the other two groups.   

The results also indicate that as average rainfall increases and the interquartile range for rainfall 

increases, land is reallocated from the “others” category to maize, millet, cassava, sorghum, groundnuts 

and beans.  As average temperatures and the interquartile of temperatures increase, land is reallocated 

to the “others” category from maize, millet, cassava, sorghum, groundnuts and beans.  Similar results 

are obtained with respect to average elevation within a district and its interquartile range.  These results 

are as expected.      

Table 3: Parameter estimates for the Multinomial Logit model specification 

 

Labor Costs 
Multinomial Logit (reference category “Others”)   

Maize 0.008621 

Millet 0.007941 

Cassava -0.022497*** 

Sorghum 0.006618 

Groundnuts 0.026739*** 

                                                           
7 This result is consistent with anecdotal evidence, also observed in the field by the authors, that traditionally and culturally men 

favor the production of maize while women allocate the land they control to vegetables and legumes.  



Beans -0.004750 

Fertilizer  Price 
 

Maize -0.00063 

Millet 0.002347* 

Cassava 0.003558*** 

Sorghum 0.000571 

Groundnuts -4.12E-05 

Beans -0.00014 

Farm Size 
 

Maize -0.148493*** 

Millet -0.181044*** 

Cassava -0.301199*** 

Sorghum -0.282901*** 

Groundnuts -0.132275*** 

Beans -0.096306** 

Education 
 

Maize 0.031215*** 

Millet -0.035080 

Cassava -0.020642 

Sorghum -0.005389 

Groundnuts 0.021020 

Beans 0.021693 

Female Head HH 
 

Maize -0.042397 

Millet -0.359645 

Cassava -0.275900 

Sorghum 0.166792** 

Groundnuts 0.180988 

Beans 0.058495 

Assets 
 

Maize 0.000345** 

Millet -0.005625 

Cassava -0.001648 

Sorghum 0.000140 

Groundnuts 0.000270 

Beans 0.000228 

Livestock 
 

Maize 0.004754 

Millet 0.009663 



Cassava -0.005019 

Sorghum -0.003508 

Groundnuts 0.006654 

Beans 0.005100 

Rain Median 
 

Maize 
0.000666*** 

Millet 
-0.00074 

Cassava 
-0.00104*** 

Sorghum 
-0.00112 

Groundnuts 
0.000202 

Beans 
-0.00018 

Rain Inner Quartile Spread  

Maize 
-0.00111* 

Millet 
-0.00256* 

Cassava 
0.003104*** 

Sorghum 
-0.00313 

Groundnuts 
0.001205 

Beans 
0.004935*** 

Temp. Median 
 

Maize 
-0.02534*** 

Millet 
0.008999*** 

Cassava 
-0.00175 

Sorghum 
-0.02326 

Groundnuts 
0.009665 

Beans 
-0.01737 

Temp. Inner Quartile Spread 
 

Maize 
-0.00164 

Millet 
0.036019** 

Cassava 
-0.0475*** 

Sorghum 
0.032948** 

Groundnuts 
-0.01572 

Beans 
-0.00379 

Elevation median   
Maize -0.00273***  

Millet -0.00164  

Cassava -0.000609  

Sorghum -0.00069  

Groundnuts 0.000869  

Beans -0.00394**  

Elevation Inner Quartile   
Maize -0.00266***  

Millet 0.00378  



Cassava -0.00385***  

Sorghum -0.00073  

Groundnuts -0.0006  

Beans -0.000966  

Distance median   
Maize -0.168221*  

Millet -0.906247***  

Cassava -0.900635***  

Sorghum -1.3278  

Groundnuts -0.07486  

Beans -0.121728  

Distance Inner Quartile   
Maize 0.217916  

Millet 1.14634**  

Cassava -0.98228***  

Sorghum 2.17095***  

Groundnuts 1.1487  

Beans 0.421764  

Revenue 
  

Maize 0.000344*  

Millet 0.000046**  

Cassava -0.000437  

Sorghum 0.000202  

Groundnuts 0.000049*  

Beans 0.000124  

Revenue Volatility 
  

Maize 
0.000620  

Millet 
-0.001041*  

Cassava 
-0.003579**  

Sorghum 
-0.000391  

Groundnuts 
-0.000051*  

Beans 
-0.000134  

Log-Likelihood - 5594.625  

 

Table 4: Parameter estimates for three Nested Logit model specifications 

 
Nested Logit with risk and 
controls for costs 

Nested Logit with controls for 
costs but without risk variables 

Nested Logit without controls for 
costs but with risk 

Upper Nest (reference category: Group 1, maize and “others”) 
  

 

Labor Costs    



Group 2 -0.024275*** -0.024275** -0.036283*** 

Group 3 0.009777 * 0.009777 ** 0.0123783 

Fertilizer Price    
Group 2 0.000269  0.000269  0.000880*** 

Group 3 -0.001204 *** -0.001204 *** 9.23E-05 

Farm Size    
Group 2 -0.153443 *** -0.153443 *** -0.193421*** 

Group 3 -0.053611 ** -0.053611 ** -0.042722* 

Education    
Group 2 -0.030827 *** -0.030827 ** -0.030349** 

Group 3 0.003266 0.003266 0.008858 

Female Head HH    
Group 2 -0.213764 ** -0.213764 ** -0.160669 

Group 3 0.135199 0.135199 0.201159 

Assets    
Group 2 -0.005579 *** -0.005579 *** -0.002226*** 

Group 3 -9.66E-05 -9.66E-05 3.12E-05 

Livestock    
Group 2 -0.019909*** -0.019909** -0.003442 

Group 3 -0.002386 -0.002384 0.001011 

Lower Nest (reference category: “others”) 
  

 

Rain median    
Maize 0.000655*** 0.000582*** - 

Millet 0.049750** 0.041326 - 

Cassava 0.052387*** 0.044157 - 

Sorghum 0.047599** 0.039569 - 

Groundnuts 0.008927** 0.001237*** - 

Beans 0.007999*** 0.000244* - 

Rain Inner Quartile Spread    
Maize 0.000593* 0.000733** - 

Millet 0.070298*** 0.069502 - 

Cassava 0.076341 0.075912 - 

Sorghum 0.068161* 0.068089* - 

Groundnuts 0.008032 0.001062 - 

Beans 0.014539** 0.002112* - 

Temp. median    
Maize -0.021756*** -0.021994*** - 

Millet -0.873497 -0.799480 - 

Cassava -0.882187 -0.803358 - 

Sorghum -0.922685* -0.840691 - 



Groundnuts -0.146151* -0.022175** - 

Beans -0.169935*** -0.031379*** - 

Temp. Inner Quartile Spread    
Maize -0.016554*** -0.018140*** - 

Millet -0.388266 -0.297328 - 

Cassava -0.406741 -0.331363 - 

Sorghum -0.412721 -0.330990 - 

Groundnuts -0.100938 -0.016730 - 

Beans -0.110131* -0.005679 - 

Elevation median    
Maize -0.003076 *** -0.002881 *** -0.000819*** 

Millet 0.005670*** 0.005601 0.005123** 

Cassava 0.003817** 0.003860 0.002545 

Sorghum 0.000768** 0.000783 0.003268 

Groundnuts 0.000327 * 0.000269  -0.000841 

Beans 0.005765 *** 0.006693 0.005183 

Elevation Inner Quartile    
Maize -0.000241 *** -0.000203 ** -0.001250** 

Millet 0.002633 0.000271 0.004660 

Cassava -0.000646 * -0.001435 * 0.000606 

Sorghum -0.001234 -0.001373 0.001099 

Groundnuts 0.001106 0.001151 -7.80E-05 

Beans 0.001096 ** 0.001340 0.002577* 

Distance median    
Maize 0.167631 0.117253 * -0.067982 

Millet 0.908551 * 0.498201 0.824505 

Cassava 0.700175 0.749880 0.407358** 

Sorghum 1.375820 * 1.377460 1.383040 

Groundnuts -0.272172 * -0.287786 -0.391187 

Beans -0.085024 0.047049 -0.253748 

Distance Inner Quartile    
Maize 0.491206 *** 0.428927 ** 0.478249* 

Millet 0.872536 0.425615 -0.542959 

Cassava 0.525384 0.579727 -0.317602 

Sorghum 0.891878 0.921008 1.402770 

Groundnuts -1.242590 ** -1.211640 ** -1.156690* 

Beans -0.364122 ** -0.491562 ** -0.659957 

Revenue    
Maize 0.000159  0.000009*** -0.000364 



Millet 0.000352 ** 0.000052 0.000035** 

Cassava 0.000209 -0.000074 0.001106** 

Sorghum 0.000518 *** 0.000499 0.000100 

Groundnuts 0.000240 *** 0.000240** 0.000002 

Beans 0.000338 * 0.000468* 0.000120 

Revenue Volatility    
Maize -0.000579  - 0.001097 

Millet -0.001397 *** - -0.001641** 

Cassava -0.002660 - -0.002614*** 

Sorghum -0.000075 ** - -0.000061 

Groundnuts -0.000013 *** - -0.000089* 

Beans -0.000165 * - -0.000274** 

Inclusive Value Parameters   
Group 1 3.6996*** 1.1381*** 0.868592 

Group 2 0.0946 0.8456 0.883843 

Group 3 0.6812** 1.1457** 0.990369 

Log-Likelihood - 5591.242 - 5602.246 -5690.143 

 

Simulation Results 

Overall effects of climate change on farm-land allocations and country production 

The same comparative statics approach can be used to simulate the cumulative, country-level effects of 

climate change on land allocations by aggregating the decisions made at the farm-level in response to 

changes in temperatures, precipitation, yield and yield variability projected for 2050.  Prices and price 

volatility are kept constant at the 2004 level, implicitly assuming that climate change will not have an 

appreciable effect on relative crop prices and that future price variability remains the same as the one 

historically recorded. Furthermore, because of the limitation of the nested logit modeling approach, we 

simulate farm household responses in terms of farmland shares as represented in the 2004 household 

survey. Thus, the simulation results reported in this study should not be interpreted as a forecast of 

what farms in Zambia will look like in 2050. These findings, however, are directly relevant to our 



understanding of the effects of climate-induced changes in yield volatility and the role of risk in relation 

to those impacts.  

Table 5 reports average temperatures and precipitations in Zambia for the two time periods.  As 

discussed above, changes in growing conditions also affect yields and the variability of net crop revenues 

through changes in yield variability.  Changes in yields and the variability of net revenues for each crop 

are also reported in Table 5.  Growing conditions deteriorate for all crops but lower rainfall and higher 

temperatures have different plant growth impacts for each crop.  Thus different climate change impacts 

on crop specific yield distributions result in different relative effects for crop specific net revenue 

variability. Net revenues become more variable for maize, millet, groundnuts, and beans but less 

variable for cassava and sorghum. Yields of all crops are negatively affected except for sorghum which is 

projected to experience an increase in yields by 10%. 



Table 5: Changes in average rainfall, temperature and net revenue variability induced by climate change 

 Climate Average Net Revenue Variability Average Yields 

Year 

Average 

Rainfall 

(mm) 

Average 

Temperature 

(°C) 

 

Maize 

 

Millet 

 

Sorghum 

 

Cassava 

 

Groundnuts 

 

Beans 

 

 

Maize 

(Kg Ha-1) 

Millet 

(Kg Ha-1) 

Sorghum 

(Kg Ha-1) 

Cassava 

(Kg Ha-1) 

Groundnuts 

(Kg Ha-1) 

Beans 

(Kg Ha-1) 

2005 1042.8 14.9 77.8 29.8 24.4 17.8 97.9 82.7 1,558.8 3,289.1 753.3 5,195.8 5,952.7 1,674.0 

2050 961.8 17.7 89.8 31.0 19.7 13.7 110.3 101.0 1,452.7 3,101.6 842.1 4,936.8 5,732.8 1,549.3 

Change -74.6 +2.8  +13% +4% -16% -18% +11% +19% -7.3% -6.0% +10.6% -5.2% -3.8% -8.1% 



Table 6 provides information on the average change in land allocations among crops at the farm 

household level for the sample of 5319 farms included in the 2004 CSO household survey caused by the 

shift to 2050 climate conditions.  In the sample, average farm size is approximately one and a half 

hectares and at the farm level the projected average changes in land use are relatively small. The most 

important change appears to be a transition away from maize in favor of all other crops, particularly 

cassava. For maize the median change is a reduction of 0.33 hectares and for cassava an increase of 0.15 

hectares.  

Table 6: Projected farm-area changes caused by changing climatic conditions 

Crop Maize Millet Sorghum Cassava Beans Groundnuts Other 

Median (Ha) -0.33 0.06 0.00 0.15 0.02 0.00 -0.01 

Upper and lower quartiles 

of predicted changes in 

planted area 

1.29 / - 0.67 1.01 / 0.02 1.10 / - 0.02 6.71 / 0.05 1.34 / - 0.02 12.67 / - 0.01 7.64 / - 0.15 

 

To understand the regional and country wide impacts of the relatively small land reallocations that occur 

at the farm level, those household level effects are combined with the biophysical characteristics of the 

locations where the land use changes are taking place. The cultivation of a given crop seems likely to 

shift toward areas where growing conditions become more favorable as climate conditions change. 

These locational shifts in the production of a crop may be important for total country wide production 

and are driven by the relative changes in growing conditions vis a vis local biophysical characteristics.  

To evaluate climate change impacts on crop production at the country level, we aggregate projected 

household level decisions and, for each province,8 calculate the changes in shares allocated to each 

                                                           
8 It is worth recalling that the household survey is statistically significant at the provincial level. 



crop.  Total output effects are computed using the projected provincial shares and DSSAT-derived 

changes in yields given 2050 climate conditions.  

Results are reported in Figure 2 where baseline production (Baseline – 2004 Yields), production under 

the 2050 climate but no changes in land allocations (Baseline – 2050 Yields) and production under the 

2050 climate compounded with shifting land allocations (2050 Yields and Full Volatility) are displayed. At 

the national level, deteriorating growing conditions lead to a significant reduction in output of most 

crops even without changes in land allocations. These reductions are exacerbated by farmers’ responses 

in the case of maize (output is reduced by approximately 380 million tons dry matter per year9) and 

beans (output decreases by 36 million tons per year). These losses are compensated by increases in the 

output of sorghum (16 million tons per year), millet (37 million tons per year), cassava (125 million tons 

per year), and groundnuts (104 million tons per year) when land use reallocations are simulated. 

Interestingly, since changing climate conditions induce a reduction in yields for groundnuts and millet 

but the average effect on land allocations are effectively zero (Table 6), the increase in total output is 

due to increases in productivity for these crops at the locations to which production has shifted. The net 

effect of land reallocation is a reduction in total dry-matter yearly output of 137 million tons compared 

to the 2004 baseline but an increase of some 190 million tons compared to production if land allocations 

had not changed.  

We can obtain insights about the effects of farmers’ responses to increased risk by comparing the 

simulated land allocation using the model that accounts for the volatility in net revenues with the 

simulated land allocation impacts using the same model when yield volatility is reduced to zero leaving 

                                                           
9 We report dry matter values to be consistent with the crop models output and reduce the possibility of errors in properly accounting 

for moisture content. 



price volatility unchanged (displayed in Figure 2 as 2050 Yields; Yield Volatility Reduced). While this is an 

admittedly unrealistic scenario, it provides an upper-bound for the effect of reducing yield volatility10. 

Land still transitions away from maize but the transition is mitigated when risk is reduced.  In addition, 

instead of a significant increase in cassava production, cassava production actually declines.  Under 2050 

climate conditions, reducing net crop revenue volatility as a result of setting yield variance to zero leads 

to an increase in production of millet, sorghum, and groundnuts.  However, cassava and bean 

production decrease. In this simulation, land reallocations lead to an increase in annual total dry-matter 

production, aggregated across all crops, of 40 million tons. These results indicate the potentially 

important benefits of mitigating the effects of climate change on crop yield distributions. It is important 

to note that the projections with reduced volatility (2050 Yields; Yield Volatility Reduced) are 

qualitatively similar to those obtained using a model specification that does not account for net revenue 

volatility and does not include the risk variables like the one reported in Table 411. This provides an 

indication of the potentially significant errors that could occur if the risk effects of climate change on 

land allocation decisions were not taken into account.  

                                                           
10 Many possible alternative scenarios can be constructed in which volatility (in net-revenues, or in prices) can be reduced in total or 

by a fraction. Some of these were explored but not reported because they do not change qualitatively the results and do not provide 

additional general insights.   

11
 The nested logit model that does not include the net revenue variability explanatory variables returns 

different parameter estimates and differs from the others in its estimation of the effects of temperatures 

and precipitations on land allocations ( 

Table 4). We explored the crop production outcomes using this model. While there are some differences in the magnitude of the 

projected changes, they are qualitatively similar to the model that reduces yield volatility to 0.  



 

Figure 2: Comparison of projected future production with no land use change and with land use change 

and full and reduced yield volatility (ignoring moisture) 

Conclusions 

It is well known that price and yield volatility and more generally risk matter in farmers’ decisions and 

many studies have evaluated the effects of risk on decision processes at the farm level. Here we have 

examined some of the potential effects that climate change may have on farm-land allocations by taking 

into account farmers’ risk and risk-avoidance preferences. Further, this study examines the aggregate 

country wide effects of individual farmers’ decisions and the potential implication for total production 

and nutrient availability under the 2050 climate regime.  

While the results of this study should not be interpreted as explicit forecasts of what production and 

land use will look like in Zambia in 2050, they demonstrate that climate change impacts on the risk 



environment in which farmers operate have substantial and quantitatively important effects on their 

production decisions.   

The empirical results confirm our expectations about the likely strategies to be followed by farmers to 

mitigate the additional risks caused by climate change. Farmers shift land from higher-risk crops toward 

lower-risk crops. In Zambia, this shift is away from maize production towards cassava, millet, sorghum 

and groundnuts whose “riskiness” appears to decrease relative to maize in the 2050 climate regime.  

The findings also indicate that farm size could play a potentially important role in climate change related 

risk management. Larger farms seem to be able to allocate more land to cash crops like sugar cane, 

cotton, and vegetables and therefore take advantage of multiple markets (e.g. cash crops like sugar cane 

and cotton). Also, they can devote more land to fallow, a practice that restore soil fertility and improve 

soil water retention.   

The yearly cumulative country wide output of the crops included in the analysis, measured in dry 

matter, is estimated to decrease by 137 million tons, mainly because of the projected decrease in maize 

production.   

This result highlights the importance of accounting for the cumulative effects of individual decisions vis a 

vis the spatial characteristics of the location where production takes place. The simulations based on 

reducing crop yield volatility also provide insights about the opportunity costs of farmers’ choices driven 

by their risk-averse behavior.  The results indicate that there may be substantial overall benefits from 

innovations in crop varieties that reduce yield volatility and increase crop resilience to adverse, climate 

change induced growing conditions.  Policies directed to those objectives, such as improved varieties, 

new agronomic practices and technologies, effective public investments in irrigation and flood control 

systems, may also generate substantial social returns. 



Farmers’ actual responses to climate change are likely to evolve over time as crop growing conditions 

change incrementally from one year to the next and deteriorate at certain locations and for certain 

crops. Therefore, policy-makers at both the global and country level have the opportunity to develop 

responses the enable agricultural producers to mitigate these impacts.  These responses include 

facilitating the development and introduction of new production technologies and varieties, and the use 

of information and communication technologies that provide timely and accurate weather forecasts and 

input/output price information.   All these options require that policy-makers be aware and understand 

the importance of managing the new and exacerbated risks brought about by climate change.   
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