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Abstract:

This study examines the empirical importance of the effects of the risk environment on the impacts of climate
change on farm land allocations and consequent effect on agricultural output in Zambia. We use a discrete-
choice model consistent with a mean-variance utility function to model farm-level land allocations among
alternative crops. Results indicate that risk-reducing decisions reinforce the trend to shift away from maize
production in response to climate change impacts on mean temperatures and precipitation. The opportunity
cost of these decisions is explored through a simulation scenario in which yield variability is reduced to
zero. Important conclusions can be derived from this analysis. First, when the economic effects of climate
change are considered, decision-making under uncertainty and risk should be at the forefront of the
problems that issues that need to be addressed. Second, concentrating on farm-level effects of responses to
climate change is not sufficient. To understand the economy wide consequences of climate change, the
aggregate effects of individual decisions should be assessed. Third, results indicate that increased efforts
in risk management and in policies aiming at reducing risk can lead to significant positive outcomes.
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The Role of Risk in the Context of Climate
Change, Land Use Choices and Crop

Production: Evidence from Zambia.

Introduction

Climate disruptions to agricultural production have increased over the past 40 years and are projected
to become more frequent over the next 25 years (Hartfield et al. 2015). Farmers in many agricultural
regions already appear to have experienced declines in crop and livestock production because of climate
change-induced stress (Lobell and Field 2007). Up to now, the effects of changes in mean temperatures
and precipitations have been the main focus of discussions about climate change impacts on agriculture
and of the quantitative modelling analyses of those impact. The effects of climate change on the
volatility of agricultural production, crop and livestock prices, and longer term producer responses to
the associated increased risk have received much less attention. This study therefore examines the
importance of the risk environment on the impacts of climate change on farm land allocations and
consequent agricultural output at the country level. The empirical question that motivates this paper is
whether or not modeling farmers’ responses to climate change requires accounting for risk attitudes. Is
risk only a second-order effect of negligible importance or, alternatively, does accounting for risk in
empirical models result in quantitatively and statistically significant different results about the effects of

climate change on agricultural production and food systems?



Economists have long been aware of the potential importance and role of risk in farmers’ decisions-
making. In empirical climate change studies, however, in practice risk-aversion is generally assumed
away even though the economic literature has emphasized the potential effects of price and yield
volatility on farmers’ production decisions. The results of this study indicate that omitting effects
associated with risk attitudes can hide farmers’ actions that are consistent with short-term adaptation,
can lead to the formulation of poorly targeted polices and insidiously affect a country’s production of
food. Farmers are likely to make production decisions that reduce their households’ vulnerability to
climate change and a portion of the land reallocation strategy they choose is driven by risk
considerations. We find that even if a relatively small fraction of the change is attributable to risk
avoidance, the aggregate effects of small changes in land allocations at the farm level compounded with
changes in crop-growing conditions caused by climate change may adversely affect overall production at
the country level. These findings also indicate the potential importance of innovations that mitigate the
risk effects of climate change (e.g., investments in developing drought tolerant crop varieties, irrigation

systems, etc.) and providing farmers with access to efficient risk management tools.

A Model of Land Use Choices

Economists often estimate multi-crop econometric models derived under the assumption of profit
maximization with land as an allocable fixed input to explain land use decisions by farmers (Chambers
and Just 1989, Moore and Negri 1992; Oude Lansink and Peerlings 1996; Fezzi and Bateman 2011). An
alternative approach is to model land allocation decisions using a discrete choice setting because it leads
to conveniently tractable empirically relevant model specifications (Wu and Segerson, 1995; Miller and
Plantinga, 1999; Livingston et al., 2008). More recently, Carpentier and Letort (2013) have shown that,
under reasonable assumptions, discrete choice models (and specifically multinomial logit models) can be

interpreted as solutions to a farm’s land use optimization problem. However, as originally pointed out



by Just, Zilberman, and Hochman (1983), three assumptions generally guide the representation of
multioutput production: 1) inputs are allocated to specific crop production activities; 2) production is
technically non-joint so that the allocation of inputs uniquely determines crop-specific output levels; and
3) a series of fixed inputs (e.g. land, machineries,) that can be allocated across production activities.
Assumptions 1 and 2 allow for the existence of separate restricted profit functions for each crop, taking
land allocations as given. Assumption 3 is responsible for jointness in farmer’s multicrop profit
maximizing decisions. As Carpentier and Letort state: “the multinomial logit framework imposes non-
jointness restrictions of the multicrop technology in variable inputs, in outputs and in acreages.” A direct
consequence of these restrictions is that the non-jointness of the quasi-fixed input requirements with
respect to variable input uses can only hold in the neighborhood of the current level of input usage.
Therefore, the multinomial logit model framework, including Carpentier and Letort’s extension, cannot

be used to make long-term projections regarding crop allocation shares.

In this paper, we use this model not to make precise predictions about future land use patterns in

Zambia but to gain an insight into how existing farmers would respond when exposed to climate change.

While our underlying behavioral model follows Chavas and Holt (1990), the model estimation is based

on a small modification of the approach used by Wu and Segerson (1995) to allow for risk-aversion.

We consider an agricultural production system in which crops are non-joint in production and compete
for shares of a fixed area of land. A household is assumed to face a one period consumption budget (z

in which:

G=W+3X_pye-3%_ cqa ca-1



where W indicates household wealth, and @; is the area allocated to the jth crop. Thus Ej:.:la}- =4Ais
the size of the farm controlled by the household. In addition, y; indicates the output (i.e., yield per unit

area) of the j*"crop, p; its market price and ¢; the cost of producing that crop per unit area.

The household maximizes expected utility derived from farming available land holdings by allocating

a; to each available crop [:

me_lx{EU[G(HﬂW,A]} eq. 2

where U7 is a utility function describing the attractiveness of net revenues Il conditioned on monetary
(W) and land (4) endowments. Il is a function of p, ¥, and ¢ which are respectively vectors of output
prices, yields and crop production costs, the latter two are functions of a vector of biophysical
characteristics at location ! (B;) and of a vector of characteristics for the n** household (H,,). Revenues,

X.;p;¥;a;, are stochastic because output prices and yields have some distribution with finite means and

variances (;EJ-J ﬂ::;) and (;Fj-:,ﬂ}ﬁ

), respectively, and their realized values are not known by farmers
when land allocation decisions are made. Conversely, input prices and production costs, C;,are assumed

to be known with certainty by households at that time.

For each crop j the household’s optimal area allocation choice aj-‘ depends on its wealth, expected net

revenues, I1, second and, potentially, higher moments of the distribution of the expected net crop

revenues, f1, and farm size A. Thus, the direct area allocation by crop aj-‘ = F[H}-J W, A4, ﬂ}-] is the area

allocation choice that solves the utility maximization problem. We assume that a} = [1'[ W, A, ﬂ}]

7



can be expressed as aj-‘ =4 = f[*rrjj W, A4, ﬂ}-] where T is now the per-hectare net revenue. Thus for each

crop j there is an optimal share allocation function™:

af
T
s;="=flmwan] eq. 3

Farm-level area allocations are observed in the household survey described in the next section. These
allocations depend on a crop’s risk/returns profile relative to all other crops. The probability that a

farmer chooses to grow a particular crop j is given by F; = P‘r{Uj =UVj+# i} and the expected area

allocated to that crop is given by A * F;. Therefore, the expected share s of farmland allocated to crop j

is 5; = i [A # P'*r"'[.l'_{1 =UVj=# 1}] This means that the share allocated to a crop j is equal to its
probability F; to be chosen by a farmer. Acknowledging that I = V' + & where V' represents a knowable-

by-all component of the utility function while & is known to the farmer but unobserved by the

researcher and assuming that £ has an jid Type 1 EV distribution, then:

_ exp {E[v;]} eq. 4
] E;-r:isx'p {Elv;1} .
We then can rewrite the optimal share allocation function for a crop as:
exp [S‘{‘l‘[ Llw.a n }]
s’ . / eq. 5

(A E;-r:i exp[s(n;().w.4, 0;)]

Equation 3 explicitly accounts for the influence of net revenue variability on land allocation decisions by

farmers who account for both expected returns and the volatility of those returns in their land use

! Wu and Segerson (1995) assume that their land use function is linear homogenous of degree one in area and therefore the function
can be written removing area itself as a potential determinant of land allocation decisions and impose constant returns to acreages.
However, removing area from the function arguments is not necessary except as a convenience. In fact, the homogeneity of degree
one assumption could be dropped altogether. Retaining total farm size among the arguments of the optimal share function can
account for differences in fixed costs of multiple activities or risk-spreading decisions available to farmers that manage farms of
different sizes.



decisions. The variable {1; is constructed to provide a crop specific measure of net revenue variability

based on the product of the two stochastic variables yield and price:
0; = E(y?) «E(p7)— [E(yp)] + Cov(y?p})  eq.6

Wu and Segerson (1995) and Holt and Kaminsky et al (2013) assume that the optimal share function is
linear in parameters while Chavas and Holt (1990) use a first order expansion to linearize the optimal
acreage function. Following this literature, we assume that the optimal share function for each crop can

be approximated by a linear in parameters combination of explanatory variables (X such that

In %) = B;jX;, + &y, Where ;and Xj;are vectors and the subscript 0 in s indicates a reference crop

and n identifies the n® household.

The parameters f#; are estimated using two models. The first is a standard multinomial logit model; the
second is a two-level nested multinomial logit model (see Figure 1). In both models, the probability of a
crop being chosen is interpreted as the share of the available land to be allocated to the crop (Theil
1969, Berry 1994, Greene 2003). Nested multinomial logit models are estimated under assumptions
analogous to the multinomial logit model with respect to &, but with the error terms for crop shares
correlated within each nest but uncorrelated among nests. The explanatory variables are partitioned
with some used to choose among the nests and the others to choose among the options within each

nest.



Decision Maker
(Household)
Crop-group 1 Crop-group 2 Crop-group 3
\
|
{Maize} [Others] [Cassava] [Millet} [Sorghum} [Beans} [Groundnuts]

Figure 1: Structure of the Nested Multinomial Logit Model

Under these assumptions, the probability that household n chooses alternative j (j € k) can be derived
from the product of two multinomial logit probabilities (McFadden 1977, Train 2003); that is,
Pnj = Ppg * Ppyjlx, Where

_ exp(BpXy+iging)
Pﬂk I
I, exp(BrXn+Axing)

eq. 7/
and X,, is a vector of household-specific characteristics such as off farm wages and household size, § is

vector of coefficients for X,,, and where

P _ EKP{JERJXH}-"I-HR:]
kil g exp (Br X Ar)

eq. 8

and X,,; is a vector of location-specific variables influencing crop suitability like weather conditions and
soil characteristics and fiy; is a vector of coefficient parameters specific to crop j. I,;4, often referred to

the inclusive value of nest k, is defined as I,; = 111(EJ1-E;< exp(,ﬁ'k}-xn}-f,lk]}. ? Equation 7 defines the

marginal probability of choosing any alternative in nest k and equation 8 the conditional probability of

2 I is called the inclusive value or inclusive utility for alternative k in the first level. The inclusive value links the two levels of the
nested logit model by bringing information from the bottom level into the upper level. In essence, A;.I,,;; measures the expected
value or utility to individual n of the alternatives available in particular nest.



choosing alternative j given that any alternative in nest k is chosen. We refer to the marginal probability
as the upper-level model and to the conditional probability as the lower-level model, reflecting their

relative positions in the hierarchy structure in Figure 1.

The Data

The data used to estimate the land use models are obtained from several sources and include nation-
wide survey information on individual farm households, province level information on crop prices,

simulation-based information on crop yields, biophysical information, and weather data.
Household Data

Cross section data on farm practices and household characteristics of a country-wide stratified sample
of 5319 smallholder farmers were obtained from the 2004 Zambia Rural Income and Livelihoods Survey.
This is a country-scale smallholder farmer survey designed and administered by the Central Statistical
Office (CSO) of the government of Zambia (Central Statistical Office, 2012). The 2004 CSO survey
sampled households from 72 districts. The survey provides information for the 2003-2004 crop year on
land allocations among crops, information on households’ crop-specific revenues but limited
information about costs of production. Six crops were selected to be modeled (Table 1) while all land
allocated to other crops, including land in fallow, were grouped in a category called “others”. Land
reported as fallow accounts for approximately 58 percent of the “others” category.

Table 1: Land allocation by crop in Zambia as reported by household survey

Crop Maize Millet  Sorghum Cassava Groundnuts Beans Others

Share 0.36 0.03 0.02 0.12 0.07 0.03 0.38




Crop prices

The 2004 Zambia Rural Income and Livelihoods Survey reports crop yields and crop specific revenues
from which it is possible to derive crop market prices. However, this information is insufficient to derive

a measure of price variability, which is required to compute {); as defined in equation 6 above.

Therefore, time series data on crop prices for maize, millet, cassava, beans, sorghum, and groundnuts at
the province level were obtained from the CSO (Central Statistical Office, 2014) for the period 1994 to
2012. Within each province, prices were reported for major market towns and/or districts. Province
wide crop prices in a given year are computed as the simple arithmetic average of the crop prices from
the three major towns or districts in each of the Zambian nine provinces that existed prior to 2011°.
These data are used to compute alternative estimates of price volatility for each crop, including simple
“raw” estimates of crop price standard deviations computed using nominal prices and standard
deviations estimates based on de-trended prices. The assumption is that, even though some prices
included in the estimates of standard deviations are observed after the cross-sectional household
sample was collected in 2004, the volatility reflected in those prices reflects the crop price data

generating process extant in 2004",

Crop Yields
The 2004 national smallholder survey reports household yields for each crop only for the 2003-2004

crop year. Estimates of the volatility of crop yields for farms in any given location therefore have to be
based on other information. The approach we follow is to combine information on weather variables,

and soil type at the district level to generate yield distributions for each crop using the Decision Support

% In 2011, provincial boundaries were redefined and ten provinces were established.

* We estimated alternative land use models using several different measures of price volatility, including estimates based on
deviations from in sample price predictions obtained from linear and semi-log models in which prices are a function of time.
However, results are reported only for models that use estimates of the simple standard deviations of crop prices. The signs of the
parameter estimates did not vary across alternative measure of price volatility, but models utilizing simple standard deviations as
measures of price volatility were consistently preferred when log-likelihood values were compared across models.



System for Agrotechnology Transfer (DSSAT). Specifically, we directly modeled the following crops under
rainfed conditions: beans, cassava, groundnuts, maize, millet, and sorghum.

Crop yields are obtained using historical daily weather in DSSAT. A representation of future weather
under the climate of the mid-twenty-first century was constructed by applying climate change patterns
extracted from MIROC-ESM-CHEM under RCP 8.5 (Wantanabe, et al., 2011) to the historical daily

weather.

Weather and climate
The baseline weather data used to represent the situation in 2004 consist of historical climate

information reconstructed by the NCEP model covering the years 1950-2010 (Kalnay et al., 1996). The
daily precipitation values were refined to match the data gathered by the GPCC project at the monthly
level, since they are believed to be more reliable (Schneider, et al., 2011; Schneider, et al., 2013; Rudolf,
et al., 2005; Rudolf and Schneider, 2005; Rudolf, et al. 1994; Rudolf, et al. 2003; Back, Grieser, and
Rudolf, 2005). Future climate (in the middle of the century) is obtained using an adjusted version of the
historical weather. First, raw climate change data were obtained from the Potsdam Climate Institute
(PIK). In those data, the daily raw GCM outputs were spatially resampled to a half-arc-degree grid and
then debiased to match appropriate historical benchmarks (Hempel, Frieler, Warszawski, Schewe, and

Piontek, F., 2013; Piani, Haerter, and Coppola, 2010.; Miiller and Robertson, 2014; Weedon, et al, 2011).

Production Cost data

As discussed above, the household survey provides limited information about crop-specific production
costs. The survey reports district-level wages and unit cost of fertilizer but other factors that influence
production costs are nor reported in the household survey (for example, field operations like sowing,

harvesting, processing, transportation and the use of other chemical inputs like pesticides). Therefore,
we include elevation in our data set (using the GLOBE 1km dataset, National Geophysical Data Center,

1999) and a cost-of-access measure based on time to the nearest city of 20,000 people (Nelson, 2008).



A complete list of variables and variable definitions together with data on sample means, ranges, and

(where relevant) standard deviations for each variable is presented in Table 2.

Table 2: Variable Sample Means, Ranges and Other Descriptive Statistics

Precipitation

Precipitation inner quartile range
Temperature

Temperature innerquartile range
Cost of access

Cost of access innerquartile range
Elevation

Elevation innerquartile range
Revenue maize

Revenue millet

Revenue sorghum

Revenue cassava

Revenue groundnuts

Revenue beans

Maize net-revenue variability
Millet net-revenue variability
Sorghum net-revenue variability
Cassava net-revenue variability
Groundnuts net-revenue variability

Beans net-revenue variability

Off-farm cost of labor

Fertilizers price

Farm size

Education level of head of household

Mean
1,042.83
14.93
178.80
16.66
5.90

1.03
1,066.98
206.27
318,624.0
279,297.5
180,277.2
139,837.9
736,941.5
509,114.6
77.81
29.84
24.38
17.79
97.86

82.72

40.59

1,859.52

2.37

5.27

Std.Deviation
274.52
17.48
21.71
12.71
0.51

0.27
258.52
161.32
15,509.20
27,552.66
11,029.49
77,470.27
26,579.24
11,868.22
10.29
14.27
13.88
9.44
67.37

55.84

8.14

214.24

2.80

3.91

Notes

Millimeters

Millimeters

Degree Celsius

Degree Celsius

In(Travel time in minutes)
In(Travel time in minutes)
Meters

Meters

Kwacha ha™

Kwacha ha™

Kwacha ha™

Kwacha ha™

Kwacha ha™

Kwacha ha™

Off-farm payments for one day’s work in
Kwacha day™
Kwacha kilogram™

Hectares

Years



Gender head of household 0.22 0.42 Dummy variable (1 = female)
Value of assets 43.46 277.19 Kwacha

Number of head of livestock 2.52 13.88

Estimation Models and Estimation Results

We estimate several alternative discrete choice land use models. Parameter estimates are reported in

Table 4 andTable 3 for four models that are representative of the results we obtain®. The firstis a
multinomial logit model that imposes the lIA (independence of irrelevant alternatives) assumption
which implies that error terms for the equations explaining all choices are uncorrelated with one
another. The multinomial logit includes all the variables used in the nested logit model that performs
best according to a likelihood ratio test, including the variables that account for the variability of crop
revenues. The second is a nested logit model (as described in figure 1) that relaxes the IIA assumption
and includes the same set of explanatory variables as the multinomial logit. Likelihood ratio tests

indicated that a nested logit model is preferred to a multinomial model.

The third and fourth empirical models are estimated to examine whether the inclusion of a range of
explanatory variables is warranted. Model three is a nested logit model that excludes explanatory
variables that account for risk but otherwise has an identical set of explanatory variables. Finally, model
four is also a nested logit but omits temperature and rainfall, two of the explanatory variables that

attempt to control for production costs.®

Log-likelihood ratio tests indicate that that a nested logit model that includes the risk related variables

and the variables to control for costs of production is to be preferred to the others. In all nested logit

® Yields capture the productivity effects of temperature and rainfall but our insights into production costs are very limited and the use
of temperature and precipitation in the set of explanatory variables can potentially help in controlling for the field operation costs
that are affected by weather conditions.



models, other variables generally have the same signs. One difference is that in the model that includes
the risk related variables, more of the parameter estimates for crop price variables are statistically

significant, while retaining the same signs which accord with prior expectations.

An increase in the volatility of net revenues for a crop is expected to reduce the amount of land
allocated to that crop, other things being equal. The signs of the estimated parameters corresponding
to the risk related variables included in both the nested logit and the multinomial logit model are as
expected (that is, negative, which indicates that an increase in risk decreases the attractiveness of that
crop or nest being chosen) with one exception (the risk related variable for maize in the multinomial
logit model and in the nested logit without controls for costs). In the nested logit model, the estimated

risk related variable parameters are also statistically significant for all crops except maize and cassava.

The results also indicate that including farm size as a determinant of land allocation in crop share
models may be important. The parameter estimates for farm size in the nested logit model suggest that
as farm size increases, a greater share of available farm-land is allocated to group-one crops. That
group includes maize and the “others” category. The nested logit model, however, cannot indicate
whether within that group, a larger share of land is being allocated to both maize and the “others”
category or only one of the two land uses. The parameter estimates for farm size in the multinomial
logit suggest the increased share of land allocated to group one crops will be concentrated on the
“others” crops. All farm size parameter estimates are negative, indicating that all crops become less
attractive than reference category crops (“others”) as farm area increases. It is useful to remember that
the “others” category includes two cash crops, sugarcane and cotton, along with fallow which suggests
that at the farm householder level larger land holdings may lead to crop diversification and risk

management.



Among the household demographic variables included in the nested logit model, gender and education
levels appear to affect land allocation decisions. Households headed by women tend to allocate less
land to group 2 crops, which include cassava, millet and sorghum, and more land to group 1 crops
(maize and “others”) and group 3 crops (beans and groundnuts) which are protein crops’. Farms with
more well educated heads of household also allocate less land to group 2 crops. The off farm wage
variable (wage) also has a similar effect; higher off farm wages reduce the amount of land allocated to
group 2 crops. Households with more assets also are likely to allocate less land to group 2 crops and
more land to group 1 and 3 crops. Parameter estimates also suggest that higher fertilizer prices reduce
the amount of land allocated to group 1 crops (which include maize) and increase the amount of land

allocated to crops in the other two groups.

The results also indicate that as average rainfall increases and the interquartile range for rainfall
increases, land is reallocated from the “others” category to maize, millet, cassava, sorghum, groundnuts
and beans. As average temperatures and the interquartile of temperatures increase, land is reallocated
to the “others” category from maize, millet, cassava, sorghum, groundnuts and beans. Similar results
are obtained with respect to average elevation within a district and its interquartile range. These results

are as expected.

Table 3: Parameter estimates for the Multinomial Logit model specification

Multinomial Logit (reference category “Others”
Labor Costs git ( gory )

Maize 0.008621
Millet 0.007941
Cassava -0.022497***
Sorghum 0.006618
Groundnuts 0.026739***

" This result is consistent with anecdotal evidence, also observed in the field by the authors, that traditionally and culturally men
favor the production of maize while women allocate the land they control to vegetables and legumes.



Beans -0.004750

Fertilizer Price

Maize -0.00063
Millet 0.002347*
Cassava 0.003558%***
Sorghum 0.000571
Groundnuts -4.12E-05
Beans -0.00014
Farm Size

Maize -0.148493***
Millet -0.181044***
Cassava -0.301199***
Sorghum -0.282901***
Groundnuts -0.132275%**
Beans -0.096306**
Education

Maize 0.031215***
Millet -0.035080
Cassava -0.020642
Sorghum -0.005389
Groundnuts 0.021020
Beans 0.021693

Female Head HH

Maize -0.042397
Millet -0.359645
Cassava -0.275900
Sorghum 0.166792**
Groundnuts 0.180988
Beans 0.058495
Assets

Maize 0.000345**
Millet -0.005625
Cassava -0.001648
Sorghum 0.000140
Groundnuts 0.000270
Beans 0.000228
Livestock

Maize 0.004754

Millet 0.009663



Cassava -0.005019
Sorghum -0.003508
Groundnuts 0.006654

Beans 0.005100

Rain Median

Maize 0.000666***
Millet -0.00074
Cassava -0.00104%**
Sorghum -0.00112
Groundnuts 0.000202
Beans -0.00018

Rain Inner Quartile Spread

Maize -0.00111*
Millet -0.00256*
Cassava 0.003104***
Sorghum -0.00313
Groundnuts 0.001205
Beans 0.004935%**
Temp. Median

Maize -0.02534%**
Millet 0.008999***
Cassava -0.00175
Sorghum -0.02326
Groundnuts 0.009665
Beans -0.01737

Temp. Inner Quartile Spread

Maize -0.00164

Millet 0.036019%*
Cassava -0.0475%**
Sorghum 0.032948**
Groundnuts -0.01572

Beans -0.00379
Elevation median

Maize -0.00273%**
Millet -0.00164
Cassava -0.000609
Sorghum -0.00069
Groundnuts 0.000869
Beans -0.00394**
Elevation Inner Quartile

Maize -0.00266***
Millet 0.00378



Cassava -0.00385***
Sorghum -0.00073
Groundnuts -0.0006
Beans -0.000966
Distance median

Maize -0.168221*
Millet -0.906247***
Cassava -0.900635***
Sorghum -1.3278
Groundnuts -0.07486
Beans -0.121728
Distance Inner Quartile

Maize 0.217916
Millet 1.14634**
Cassava -0.98228***
Sorghum 2.17095***
Groundnuts 1.1487
Beans 0.421764
Revenue

Maize 0.000344*

Millet 0.000046**
Cassava -0.000437
Sorghum 0.000202
Groundnuts 0.000049*

Beans 0.000124

Revenue Volatility

Maize 0.000620

Millet -0.001041*
Cassava -0.003579%*
Sorghum -0.000391
Groundnuts -0.000051*

Beans -0.000134
Log-Likelihood - 5594.625

Table 4: Parameter estimates for three Nested Logit model specifications

Nested Logit with risk and

controls for costs

Nested Logit with controls for
costs but without risk variables

Nested Logit without controls for
costs but with risk

Upper Nest (reference category: Group 1, maize and “others”)

Labor Costs



Group 2 -0.024275*** -0.024275** -0.036283***
Group 3 0.009777 * 0.009777 ** 0.0123783
Fertilizer Price

Group 2 0.000269 0.000269 0.000880***
Group 3 -0.001204 *** -0.001204 *** 9.23E-05
Farm Size

Group 2 -0.153443 *** -0.153443 *** -0.193421***
Group 3 -0.053611 ** -0.053611 ** -0.042722*
Education

Group 2 -0.030827 *** -0.030827 ** -0.030349**
Group 3 0.003266 0.003266 0.008858
Female Head HH

Group 2 -0.213764 ** -0.213764 ** -0.160669
Group 3 0.135199 0.135199 0.201159
Assets

Group 2 -0.005579 *** -0.005579 *** -0.002226***
Group 3 -9.66E-05 -9.66E-05 3.12E-05
Livestock

Group 2 -0.019909*** -0.019909** -0.003442
Group 3 -0.002386 -0.002384 0.001011

Lower Nest (reference category: “others”)

Rain median

Maize 0.000655*** 0.000582*** -
Millet 0.049750** 0.041326 -
Cassava 0.052387*** 0.044157 -
Sorghum 0.047599** 0.039569 -
Groundnuts 0.008927** 0.001237%** -
Beans 0.007999*** 0.000244* -
Rain Inner Quartile Spread

Maize 0.000593* 0.000733** -
Millet 0.070298*** 0.069502 -
Cassava 0.076341 0.075912 -
Sorghum 0.068161* 0.068089* -
Groundnuts 0.008032 0.001062 -
Beans 0.014539** 0.002112* -
Temp. median

Maize -0.021756*** -0.021994*** -
Millet -0.873497 -0.799480 -
Cassava -0.882187 -0.803358 -
Sorghum -0.922685* -0.840691 -



Groundnuts -0.146151* -0.022175** -
Beans -0.169935%** -0.031379%** -
Temp. Inner Quartile Spread

Maize -0.016554*** -0.018140*** -
Millet -0.388266 -0.297328 -
Cassava -0.406741 -0.331363 -
Sorghum -0.412721 -0.330990 -
Groundnuts -0.100938 -0.016730 -
Beans -0.110131* -0.005679 -

Elevation median

Maize -0.003076 *** -0.002881 *** -0.000819***
Millet 0.005670*** 0.005601 0.005123**
Cassava 0.003817** 0.003860 0.002545
Sorghum 0.000768** 0.000783 0.003268
Groundnuts 0.000327 * 0.000269 -0.000841
Beans 0.005765 *** 0.006693 0.005183
Elevation Inner Quartile

Maize -0.000241 *** -0.000203 ** -0.001250**
Millet 0.002633 0.000271 0.004660
Cassava -0.000646 * -0.001435 * 0.000606
Sorghum -0.001234 -0.001373 0.001099
Groundnuts 0.001106 0.001151 -7.80E-05
Beans 0.001096 ** 0.001340 0.002577*
Distance median

Maize 0.167631 0.117253 * -0.067982
Millet 0.908551 * 0.498201 0.824505
Cassava 0.700175 0.749880 0.407358**
Sorghum 1.375820 * 1.377460 1.383040
Groundnuts -0.272172 * -0.287786 -0.391187
Beans -0.085024 0.047049 -0.253748
Distance Inner Quartile

Maize 0.491206 *** 0.428927 ** 0.478249*
Millet 0.872536 0.425615 -0.542959
Cassava 0.525384 0.579727 -0.317602
Sorghum 0.891878 0.921008 1.402770
Groundnuts -1.242590 ** -1.211640 ** -1.156690*
Beans -0.364122 ** -0.491562 ** -0.659957
Revenue

Maize 0.000159 0.000009*** -0.000364



Millet 0.000352 ** 0.000052 0.000035**
Cassava 0.000209 -0.000074 0.001106**
Sorghum 0.000518 *** 0.000499 0.000100
Groundnuts 0.000240 *** 0.000240** 0.000002
Beans 0.000338 * 0.000468* 0.000120
Revenue Volatility

Maize -0.000579 - 0.001097
Millet -0.001397 *** - -0.001641**
Cassava -0.002660 - -0.002614***
Sorghum -0.000075 ** - -0.000061
Groundnuts -0.000013 *** - -0.000089*
Beans -0.000165 * - -0.000274**
Inclusive Value Parameters

Group 1 3.6996%** 1.1381%** 0.868592
Group 2 0.0946 0.8456 0.883843
Group 3 0.6812** 1.1457** 0.990369
Log-Likelihood - 5591.242 - 5602.246 -5690.143

Simulation Results

Overall effects of climate change on farm-land allocations and country production

The same comparative statics approach can be used to simulate the cumulative, country-level effects of

climate change on land allocations by aggregating the decisions made at the farm-level in response to

changes in temperatures, precipitation, yield and yield variability projected for 2050. Prices and price

volatility are kept constant at the 2004 level, implicitly assuming that climate change will not have an

appreciable effect on relative crop prices and that future price variability remains the same as the one

historically recorded. Furthermore, because of the limitation of the nested logit modeling approach, we

simulate farm household responses in terms of farmland shares as represented in the 2004 household

survey. Thus, the simulation results reported in this study should not be interpreted as a forecast of

what farms in Zambia will look like in 2050. These findings, however, are directly relevant to our



understanding of the effects of climate-induced changes in yield volatility and the role of risk in relation

to those impacts.

Table 5 reports average temperatures and precipitations in Zambia for the two time periods. As
discussed above, changes in growing conditions also affect yields and the variability of net crop revenues
through changes in yield variability. Changes in yields and the variability of net revenues for each crop
are also reported in Table 5. Growing conditions deteriorate for all crops but lower rainfall and higher
temperatures have different plant growth impacts for each crop. Thus different climate change impacts
on crop specific yield distributions result in different relative effects for crop specific net revenue
variability. Net revenues become more variable for maize, millet, groundnuts, and beans but less
variable for cassava and sorghum. Yields of all crops are negatively affected except for sorghum which is

projected to experience an increase in yields by 10%.



Table 5: Changes in average rainfall, temperature and net revenue variability induced by climate change

Climate Average Net Revenue Variability Average Yields
Average Average
Rainfall Temperature Maize | Millet | Sorghum | Cassava |Groundnuts| Beans Maize Millet Sorghum Cassava |Groundnuts| Beans
Year (mm) (°c) (KgHa) | (KgHa) (Kg Ha™) (Kg Ha™) (Kg Ha™) (Kg Ha™)
2005 1042.8 14.9 77.8 | 29.8 24.4 17.8 97.9 82.7 1,558.8 3,289.1 753.3 5,195.8 5,952.7 1,674.0
2050 961.8 17.7 89.8 | 31.0 19.7 13.7 110.3 101.0 1,452.7 3,101.6 842.1 4,936.8 5,732.8 1,549.3
Change -74.6 +2.8 +13% | +4% | -16% -18% +11% +19% -7.3% -6.0% +10.6% -5.2% -3.8% -8.1%




Table 6 provides information on the average change in land allocations among crops at the farm
household level for the sample of 5319 farms included in the 2004 CSO household survey caused by the
shift to 2050 climate conditions. In the sample, average farm size is approximately one and a half
hectares and at the farm level the projected average changes in land use are relatively small. The most
important change appears to be a transition away from maize in favor of all other crops, particularly
cassava. For maize the median change is a reduction of 0.33 hectares and for cassava an increase of 0.15

hectares.

Table 6: Projected farm-area changes caused by changing climatic conditions

Crop Maize Millet Sorghum Cassava Beans Groundnuts Other

Median (Ha) -0.33 0.06 0.00 0.15 0.02 0.00 -0.01

Upper and lower quartiles
of predicted changes in 1.29/-0.67 1.01/0.02 1.10/-0.02 6.71/0.05 1.34/-0.02 12.67 /-0.01 7.64 /-0.15

planted area

To understand the regional and country wide impacts of the relatively small land reallocations that occur
at the farm level, those household level effects are combined with the biophysical characteristics of the
locations where the land use changes are taking place. The cultivation of a given crop seems likely to
shift toward areas where growing conditions become more favorable as climate conditions change.
These locational shifts in the production of a crop may be important for total country wide production

and are driven by the relative changes in growing conditions vis a vis local biophysical characteristics.

To evaluate climate change impacts on crop production at the country level, we aggregate projected

household level decisions and, for each province,8 calculate the changes in shares allocated to each

8 It is worth recalling that the household survey is statistically significant at the provincial level.



crop. Total output effects are computed using the projected provincial shares and DSSAT-derived

changes in yields given 2050 climate conditions.

Results are reported in Figure 2 where baseline production (Baseline — 2004 Yields), production under
the 2050 climate but no changes in land allocations (Baseline — 2050 Yields) and production under the
2050 climate compounded with shifting land allocations (2050 Yields and Full Volatility) are displayed. At
the national level, deteriorating growing conditions lead to a significant reduction in output of most
crops even without changes in land allocations. These reductions are exacerbated by farmers’ responses
in the case of maize (output is reduced by approximately 380 million tons dry matter per year®) and
beans (output decreases by 36 million tons per year). These losses are compensated by increases in the
output of sorghum (16 million tons per year), millet (37 million tons per year), cassava (125 million tons
per year), and groundnuts (104 million tons per year) when land use reallocations are simulated.
Interestingly, since changing climate conditions induce a reduction in yields for groundnuts and millet
but the average effect on land allocations are effectively zero (Table 6), the increase in total output is
due to increases in productivity for these crops at the locations to which production has shifted. The net
effect of land reallocation is a reduction in total dry-matter yearly output of 137 million tons compared
to the 2004 baseline but an increase of some 190 million tons compared to production if land allocations

had not changed.

We can obtain insights about the effects of farmers’ responses to increased risk by comparing the
simulated land allocation using the model that accounts for the volatility in net revenues with the

simulated land allocation impacts using the same model when yield volatility is reduced to zero leaving

® We report dry matter values to be consistent with the crop models output and reduce the possibility of errors in properly accounting
for moisture content.



price volatility unchanged (displayed in Figure 2 as 2050 Yields; Yield Volatility Reduced). While this is an

admittedly unrealistic scenario, it provides an upper-bound for the effect of reducing yield volatility™.

Land still transitions away from maize but the transition is mitigated when risk is reduced. In addition,
instead of a significant increase in cassava production, cassava production actually declines. Under 2050
climate conditions, reducing net crop revenue volatility as a result of setting yield variance to zero leads
to an increase in production of millet, sorghum, and groundnuts. However, cassava and bean
production decrease. In this simulation, land reallocations lead to an increase in annual total dry-matter
production, aggregated across all crops, of 40 million tons. These results indicate the potentially
important benefits of mitigating the effects of climate change on crop yield distributions. It is important
to note that the projections with reduced volatility (2050 Yields; Yield Volatility Reduced) are
qualitatively similar to those obtained using a model specification that does not account for net revenue
volatility and does not include the risk variables like the one reported in Table 4. This provides an
indication of the potentially significant errors that could occur if the risk effects of climate change on

land allocation decisions were not taken into account.

10 Many possible alternative scenarios can be constructed in which volatility (in net-revenues, or in prices) can be reduced in total or
by a fraction. Some of these were explored but not reported because they do not change qualitatively the results and do not provide
additional general insights.

! The nested logit model that does not include the net revenue variability explanatory variables returns
different parameter estimates and differs from the others in its estimation of the effects of temperatures

and precipitations on land allocations (

Table 4). We explored the crop production outcomes using this model. While there are some differences in the magnitude of the
projected changes, they are qualitatively similar to the model that reduces yield volatility to 0.
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Figure 2: Comparison of projected future production with no land use change and with land use change

and full and reduced yield volatility (ignoring moisture)

Conclusions

It is well known that price and yield volatility and more generally risk matter in farmers’ decisions and
many studies have evaluated the effects of risk on decision processes at the farm level. Here we have
examined some of the potential effects that climate change may have on farm-land allocations by taking
into account farmers’ risk and risk-avoidance preferences. Further, this study examines the aggregate
country wide effects of individual farmers’ decisions and the potential implication for total production

and nutrient availability under the 2050 climate regime.

While the results of this study should not be interpreted as explicit forecasts of what production and

land use will look like in Zambia in 2050, they demonstrate that climate change impacts on the risk



environment in which farmers operate have substantial and quantitatively important effects on their

production decisions.

The empirical results confirm our expectations about the likely strategies to be followed by farmers to
mitigate the additional risks caused by climate change. Farmers shift land from higher-risk crops toward
lower-risk crops. In Zambia, this shift is away from maize production towards cassava, millet, sorghum

and groundnuts whose “riskiness” appears to decrease relative to maize in the 2050 climate regime.

The findings also indicate that farm size could play a potentially important role in climate change related
risk management. Larger farms seem to be able to allocate more land to cash crops like sugar cane,
cotton, and vegetables and therefore take advantage of multiple markets (e.g. cash crops like sugar cane
and cotton). Also, they can devote more land to fallow, a practice that restore soil fertility and improve

soil water retention.

The yearly cumulative country wide output of the crops included in the analysis, measured in dry
matter, is estimated to decrease by 137 million tons, mainly because of the projected decrease in maize

production.

This result highlights the importance of accounting for the cumulative effects of individual decisions vis a
vis the spatial characteristics of the location where production takes place. The simulations based on
reducing crop yield volatility also provide insights about the opportunity costs of farmers’ choices driven
by their risk-averse behavior. The results indicate that there may be substantial overall benefits from
innovations in crop varieties that reduce yield volatility and increase crop resilience to adverse, climate
change induced growing conditions. Policies directed to those objectives, such as improved varieties,
new agronomic practices and technologies, effective public investments in irrigation and flood control

systems, may also generate substantial social returns.



Farmers’ actual responses to climate change are likely to evolve over time as crop growing conditions
change incrementally from one year to the next and deteriorate at certain locations and for certain
crops. Therefore, policy-makers at both the global and country level have the opportunity to develop
responses the enable agricultural producers to mitigate these impacts. These responses include
facilitating the development and introduction of new production technologies and varieties, and the use
of information and communication technologies that provide timely and accurate weather forecasts and
input/output price information. All these options require that policy-makers be aware and understand

the importance of managing the new and exacerbated risks brought about by climate change.
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