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Is There Too Much History in Historical Yield Data

Abstract

County crop yield data from United States Department of Agriculture - National Agricultural Statis-
tics Service (USDA-NASS) has and continues to be extensively used in the literature as well as practice.
The most notable example is crop insurance; the Risk Management Agency (RMA) uses the data to set
guarantees, estimate premium rates, and calculate indemnities for their area programs. Examples from the
literature include investigation of rating methodologies, issues related to land use, modeling the climate-yield
relationship, and supply analysis. In many of these applications, and certainly with respect to RMA and
the crop insurance literature, yield data are detrended and adjusted for possible heteroskedasticity and then
assumed to be independent and identically distributed. For most major crop-region combinations, county
yield data exist from 1955 onwards and reflect very significant innovations in both seed and farm manage-
ment technologies. Despite correcting for movements in the first two moments of the yield data generating
process (DGP), these innovations have likely moved mass all around the support of the yield distribution rai-
sing doubt regarding the identically distributed assumption. This manuscript considers the rather nebulous
question of how much historical yield data should be used in empirical analyses. The answer is obviously
dependent on the empirical application, crop-region combination, econometric methodology, and chosen loss
function. Nonetheless, we attempt to tackle this question in three ways using county-level yield data for
corn, soybean, and winter wheat. First, we use distributional tests to assess if and when the adjusted yield
data may result from different DGPs. Second, we consider the application to crop insurance by using an
out-of-sample rating game -- commonly employed in the literature -- to compare rates from the full versus
restricted data sets. Third, we estimate flexible time-varying DGPs and then simulate to quantify the additi-
onal error when the identically distribution assumption is imposed. Overall, the results indicate that despite
accounting for time-varying movements in the first two moments, using yield data more than 30 years old
can substantially increase estimation error. Given that discarding data is unappetizing, particularly so in
applications with relatively small T, we investigate three methodologies that can re-incorporate the discar-
ded data while both explicitly acknowledging the unknown DGPs are different and not requiring knowledge
about the extent or form of those differences. Our results suggest gains in efficiency can be realized by
using these methodologies. While our results are most applicable to the crop insurance literature, we cer-
tainly feel they suggest proceeding with caution when using historical yield data in other applications as well.

Some key words: NASS yield data, changing technology, borrowing information, crop insurance
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Introduction

County crop yield data from United States Department of Agriculture - National Agricultural Statistics

Service (USDA-NASS) has and continues to be extensively used in the literature as well as practice. The

most notable example is crop insurance; the Risk Management Agency (RMA) uses the data to set insurance

guarantees, estimate premium rates, and calculate indemnities for their area programs. Examples from the

literature include investigation of rating methodologies, issues related to land use, modeling the climate-

yield relationship, and supply analysis. In many of these applications, and certainly with respect to RMA

and the crop insurance literature, yield data are detrended and adjusted for possible heteroskedasticity and

then assumed to be independent and identically distributed. For most major crop-region combinations,

county yield data exist from 1955 onwards and reflect a number of significant innovations in both seed and

farm management technologies. Despite correcting for changes in the first two moments of the yield data

generating process (DGP), these innovations have likely moved mass all around the support of the yield

distribution raising doubt regarding the identically distributed assumption. This assumption is employed

in not only the literature, but in the RMA rating methodology for their area yield and revenue programs.

However, it is difficult to conceive that yield losses in the 1950s, 1960s, and even 1970s can inform anything

about losses in 2018. Quite interestingly, RMA uses NASS data from 1955 and onwards to estimate premium

rates for their area yield and revenue products but instead use data from 1991 and onwards to rate the newer

area-based shallow loss products.1

To the best of our knowledge, the literature has used the entire series of yield data dating back to the

1950s in their empirical analyses. However, there has been a multitude of significant changes in the seed

technology, farm management, and even climate. According to Reilly and Fuglie (1998); Fernandez-Cornejo

et al. (2004); Duvick (2005); Egli (2008); Fernandez-Cornejo et al. (2014); Assefa et al. (2017); Egli (2017),

average per acre yields for corn, soybean and wheat in the United States have more than doubled from 1950

to mid-1990s. More than half of average yield gains are attributed to genetic improvements and the other

half have come from improved agronomic practices and other factors. At the same time, the intertwined

combination of these factors, especially the changing climate, also increased the crop yields variability over

time. Naylor, Falcon, and Zavaleta (1997) found that there were large and significant variations of corn yields

in U.S. during the past decades. They also found that after reaching the yield ceiling, which was driven

by the technological advancement in seeds and farming practice, poor weather were more likely to lead to

significant yields loss. Reilly et al. (2003) found an increasing trend in yield variability from 1950 to 1994.

The results from Kucharik and Ramankutty (2005) agreed with the increasing variability since 1950, although

they found that county level yield variability has once again decreased since the mid-1980s. Challinor et al.

(2014) pointed out that global crop yields variations are likely to increase in the near future. Leng (2017)

found that the climate variability dominates the change of corn yield variability in the U.S. Midwest Corn

1RMA aggregates their individual farm data to the county level to construct a county yield series rather than use NASS yield

data.
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Belt from 1981-2010, and the yield variation was decreasing for some areas while increasing for others. All

these findings are implying there are variations more than the first moment of yield distribution over time.

Meanwhile, GM technology have widely adopted by the farmers since 1996. The Genetically Modified

crops (GMCs, GM crops, or biotech crops) are plants used in agriculture, the DNA of which has been

modified using genetic engineering methods. In most cases, the aim is to introduce a new trait to the plant,

which does not occur naturally in the species. Examples in food crops include resistance to certain pests,

diseases, or environmental conditions, reduction of spoilage, or resistance to chemical treatments. In the

US, by 2014, 94% of the planted area of soybeans, 96% of cotton and 93% of corn were genetically modified

varieties (USDA, 2016).

A meta-analysis (Klümper and Qaim, 2014) considered all publications of the agronomic and economic

impacts between 1995 and March 2014 for three major GM crops: corn, soybean and cotton. The study

found that herbicide-tolerant crops have lower production costs, while for insect-resistant crops the reduced

pesticide use was offset by higher seed prices, leaving overall production costs about the same. For example,

corn and some other crops have been engineered to express genes encoding for insecticidal proteins from

Bacillus thuringiensis (Bt). The introduction of Bt crops during the period between 1996 and 2005 has been

estimated to have reduced the total volume of insecticide active ingredient use in the United States by over

100 thousand tons. This represents a 19.4% reduction in insecticide use (Naranjo et al., 2008). In the United

States, corn with stacked Bt traits were planted on 140 million hectares in 29 different countries by 2010

(Barrows, Sexton, and Zilberman, 2014). The advantage of Bt corn over conventional seed has became more

and more obvious over the time, providing a 2.3% increase in net returns on average and even more when

the pest pressure is high (Fernandez-Cornejo et al., 2014).

With these advancements of seeds technology, combining with the general improvements in farming ma-

nagement and climate changes, it is hardly convincing that the conditional yield densities of major crops are

stay invariable, even after some technical adjustment. The changes in the higher moments of yield DGPs

through time draws attention since it may have significant impacts on the results of related research topics

such as crop insurance, climate-yield relationship and so on. It is not surprising as technological advances

shift probability mass in a variety of ways, not simply uniformly upwards, thereby suggesting that not all

historical yield data should be used in empirical analyses. For example, with respect to crop insurance appli-

cations, it is hard to imagine that losses from the 1950s and 1960s can inform losses today to the anywhere

near the same extent as losses in the 2000s.

The purpose of this manuscript is to consider the question of how much historical yield data should be

used in empirical analyses. The answer is obviously dependent on the empirical application, crop-region

combination, econometric methodology, and chosen loss function. Nonetheless, we attempt to tackle this

question in three ways using county-level yield data for corn, soybean, and winter wheat. First we use

distributional tests to assess if and when the adjusted yield data may result from different DGPs. Second,

we consider the application to crop insurance by using an out-of-sample rating game -- commonly employed
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in the literature -- to compare rates from the full versus restricted data sets. Third, we estimate flexible

time-varying DGPs and then simulate to quantify the additional error when the identically distribution

assumption is imposed.

A secondary purpose of this manuscript is to investigate methodologies that can re-incorporate any discar-

ded historical data while: (i) explicitly acknowledging the unknown DGPs are different across time periods;

and (ii) not requiring knowledge about the extent or form of those differences. Recall, T (the length of the

data) is already quite small of which some may be discarded. Therefore, we investigate methodologies that

may re-incorporate this data in alternative ways such that efficiency is increased relative to discarding. We

consider three methods: incorporating the discarded data to reduce bias; incorporating the discarded data

to reduce variance smoothing; and incorporating the discarded data to reduce variance via Bayesian model

averaging. Our results suggest gains in efficiency can be realized by using these methodologies. While our

results are most applicable to the crop insurance literature, we certainly feel they suggest proceeding with

caution when using historical yield data in other applications as well.

Literature Review

In the agricultural economics literature, county crop yield data from USDA-NASS database have been

used to evaluate alternative rating methodologies for crop insurance, to model the climate-yield relationship,

to forecast the effects of a changing climate on yields and land-use, and, to assess productivity efficiencies.

In the past twenty years in excess of 100 American Journal of Agricultural Economics (AJAE ) articles make

reference to the NASS data set and at least thirty fundamentally use it in their empirical analyses. For most

county-crop combinations, this data set is available dating back to 1955 and thus provides a relatively rich

set of data to do empirical analyses and test hypotheses. Given the lack of alternatives, we expect this data

will continue to be extensively used. In most applications, the data generating process of yields is assumed

to change over time only by its location (mean) and scale (variance).

With respect to rating methodologies for crop insurance, the NASS data have been used by Goodwin and

Ker (1998); Ker and Goodwin (2000); Ramirez, Misra, and Field (2003); Ker and Coble (2003); Norwood,

Roberts, and Lusk (2004); Harri et al. (2011); Woodard and Sherrick (2011); Claassen and Just (2011);

Koundouri and Kourogenis (2011); Annan et al. (2013); Tolhurst and Ker (2015); Goodwin and Hungerford

(2015); Ker, Tolhurst, and Liu (2016); Yvette Zhang (2017). In these articles, the general treatment of NASS

yield data is first to detrend the data then adjust for heteroskedasticity if necessary. After the adjustment,

the data are assumed to be identically distributed. In trend estimation, various trend functions are utilized,

such as linear (Woodard and Sherrick, 2011), ARIMA (Goodwin and Ker, 1998), polynomial (Ramirez,

Misra, and Field, 2003), one-knot or two-knot spline (Ker and Coble, 2003; Harri et al., 2011), noparametric

local regression (Claassen and Just, 2011; Goodwin and Hungerford, 2015). The adjustment measures of

the second moment (heteroskedasticity adjustment) generally assume constant variance or variance being

proportional to the time. Some assume homoskedasticity (Woodard and Sherrick, 2011) and some ignore
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the issue (Koundouri and Kourogenis, 2011; Goodwin and Hungerford, 2015). Except for Tolhurst and Ker

(2015); Ker, Tolhurst, and Liu (2016), few researchers take into account the changing variations on the higher

moments.

With respect to other issues of crop insurance, the NASS data has been used by Goodwin, Vandeveer,

and Deal (2004); Deng, Barnett, and Vedenov (2007); Woodard et al. (2012); Woodard and Verteramo-Chiu

(2017); Claassen, Langpap, and Wu (2017). In these articles, yield data are used as dependent variable or

independent variable in regression models, which generally contain time trend. Although in the regression

setting, the main interest lies on the conditional mean, therefore heteroskedasticity may not strongly influence

the estimation results, but it may affect the standard error in the estimation and has impact on some

simulation results such as generating pseudo yield from the assumed distribution.

Moreover, NASS yield data set was applied to modeling the climate-yield relationship Ortiz-Bobea and

Just (2013); Roberts, Schlenker, and Eyer (2013); Miao, Khanna, and Huang (2016); Cooper, Nam Tran,

and Wallander (2017), agricultural policy analysis Goodwin and Mishra (2006); Goodwin (2009), land using

Wu et al. (2004); Claassen, Hellerstein, and Kim (2013), supply function analysis Hendricks, Smith, and

Sumner (2014) and commodity pricing Cooper (2010).

The majority of these research follow the common practice with detrending and adjusting heteroskedas-

ticity if necessary. Others embed time trend in regression setting to deal with the changing first moment.

Few researchers considered the yields variation of higher moment more than the first two. However, Tack,

Harri, and Coble (2012), Tolhurst and Ker (2015), and Ker, Tolhurst, and Liu (2016) found higher moments

in yield distributions are also changing through time. This is not surprising as technological advances shift

probability mass in a variety of ways, not simply uniformly upwards, thereby suggesting that not all historical

yield data should be used in empirical analyses. For example, with respect to crop insurance applications,

it is hard to imagine that losses from the 1950s and 1960s can inform losses today to the anywhere near the

same extent as losses in the 2000s. The objective of this manuscript is to provide some guidance as to how

far back one should use the historical data in empirical analyses. We also consider some of the methodologies

that borrow information from like (not identical) data generating processes (DGP) to increase estimation

efficiency. These have been used in the crop insurance literature to borrow information across space from

like DGP and we adapt to include them as borrowing information across time.

Tests of Distributional Changes

Before assuming the yield data are independently and identically distributed (i.i.d.) draws from the

underlying distribution, common practice in the literature is to adjust the yield data to account for the

technological advances and other variations over time. The adjustment approach is first to estimate a

trend function, linear or non-linear, which explains the variations of the first moment of yield distribution

over time. After the trend estimation, the detrended data are adjusted for prevailing heteroskedasticity,

which account for the variations of the second moment of yield distribution over time. After these two
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steps, detrended and heteroskedasticity adjusted data are employed as i.i.d.s from the constant distribution

without further inquiry. Question arises that if the two-step approach is fully account for the complete

impacts of technological advances on different moments of yield distribution. After all, it is hard to believe

the intricate technological changes over the past half century only shift the first two moments of the yield

DGP. A solution to clarify the above concern is to test if there are still structural or distributional changes

remaining in the data after the adjustment of first two moments. However, these structural or distributional

tests are generally of low power for testing changes in higher moments. That is, if there are still structural or

distributional changes in the higher moments, these tests may not be able to reject the false null correctly,

committing type II errors. One may argue that these changes in the higher moments have trivial impact

on the research result. However, our study shows the opposite. Especially, for research related to crop

insurance, the main interest lies on the lower tail of yield distribution. To demonstrate these higher moment

(more than the first two) changes have strong impact on the premium rate of crop insurance, we design a

simulation study to show that small changes in the higher moments could have significant impacts on the

premium rate while keeping undetected by the conventional structural and distributional tests. The details

of this simulation study are shown in the Appendix.

The crop yield data we use in this manuscript are chosen for corn, soybean and winter wheat. Specifically,

we use county level yield data of Illinois and Iowa for corn and soybean; Kansas, Oklahoma for winter wheat.

In total, we have data from 171, 181 and 71 counties for corn, soybean and winter wheat respectively. These

county level yield data are chosen on the basis that they are from the major crop-producing states of each

individual crop in U.S.. All historical yield data, with length of 61 years from 1955 to 2015, are obtained

from NASS website.

Before testing the distributional changes in historical yield data over time, the yield data were first

detrended with four different trend functions including linear regression (L2), median regression (L1), non-

parametric local smoothing and RMA methodology 2. Although there are other detrending methodologies

used in the literature, these four methods cover the majority of usages in the literature. After detrending,

the yields are adjusted for heteroskedasticity following Harri et al. (2011), which is common used in the

literature.

We choose the Kolmogorov-Smirnov (KS) test 3 for the structural changes in the detrended and hetero-

skedasticity adjusted yield by splitting the sample into two segments with different length of historical time.

The KS test is a nonparametric test of the equality of continuous, one-dimensional probability distributions.

Its statistic quantifies a distance between the empirical distribution functions of two samples. The test

statistic for two-sample test is

2The RMA detrending methodology is mainly one or two-knot linear spline based on AIC or BIC.
3The Chow test, Bai-Perron breaking points test, etc are not appropriate for what we are testing, because the distributional

assumptions of these tests are Normal and don’t hold for our study.
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(1) Dn,m = sup
x
| F1,n(x)− F2,m(x) |,

where F1,n and F2,m are the empirical distribution functions of the first and the second sample respectively,

and sup is the supremum function. The null is rejected at level α when

(2) Dn,m > c(α)

√
n+m

nm
,

where c(α) is calculated from the Kolmogorov distribution.

The test results of split adjusted residuals from different detrending methodologies are showing in Table

1. Although the KS test is fairly low power (under-reject) in samples with size in our test, it still shows

notable structural changes in our tests with multiple splits. The results in Table 1 are rather consistent across

different detrending methodologies. For corn, there are sizable rejections around 25 to 40 years splits through

all four detrending methods. With RMA detrending method, corn shows the most structural changes with

81 of all 171 counties; soybean shows changes with 51 of all 181 counties and winter wheat with 24 of all 71

counties, indicating non-negligible structural changes remaining in the adjusted historical crop yields.

To investigate how these embedded structural changes would impact the premium rate, and further affect

the viability of area-type crop insurance program, we conduct an out-of-sample rating game, where the two

players using different length of historical yield data, to examine the effect. The out-of-sample rating game

we conducted was first proposed by Ker and McGowan (2000) and used by Ker and Coble (2003), Racine

and Ker (2006), Harri et al. (2011), Annan et al. (2013), Tolhurst and Ker (2015) and Ker, Tolhurst, and

Liu (2016).

The game is inspired by the design of U.S. crop insurance program that the RMA sets the premium rate

for each insurance contract, while the contracts are delivered by the private insurance companies to the crop

producers. In this design, RMA sets the premium rates and the private companies sell the policies, conduct

claims, and asymmetrically share in the underwriting gains and losses with RMA. Standard Reinsurance

Agreement (SRA) dictates how underwriting gains and losses are shared between funds and lays out the

reimbursement, and private insurance companies must sell all available policies in a state. In the rating

game, the companies could make their own decisions to keep the contract or cede it to the government.

An underwriting gain could be achieved when the indemnities are less than the premiums paid by the

producers. On the other hand, a loss could occur when the indemnities are greater than the paid premiums.

An interesting feature of this design is that if the private companies have a different rating methodology,

therefore resulting different premium rates from the government’s, the companies may achieve more gains

and suffer less losses by the first-move advantage of keeping or ceding the contracts. For instance, for a

specific private company, if its own pre-calculated premium rate is higher than the government’s, it implies

that its anticipated future indemnity is higher its income (premium set by the government and paid by

the producer). The reasonable choice is to cede the contract to the government to avoid the anticipated
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Table 1. Rejections of KS Test Results for The Adjusted Residuals

Corn Soybean Winter Wheat

Illinois Iowa Illinois Iowa Kansas Oklahoma

n County 76 95 85 96 50 21

RMA Detrending
10 vs 50 2 6 0 6 5 9
15 vs 45 2 3 2 9 4 2
20 vs 40 4 10 5 5 2 1
25 vs 35 6 10 2 0 2 6
30 vs 30 11 9 7 0 1 7
35 vs 25 11 9 8 3 0 5
40 vs 20 10 7 2 3 3 3
45 vs 15 13 7 0 4 7 7
50 vs 10 11 31 6 11 4 2
Total Rejections 29 52 24 27 14 10

L2 Detrending
10 vs 50 2 5 0 6 4 11
15 vs 45 1 5 1 9 3 1
20 vs 40 3 11 4 5 0 0
25 vs 35 5 10 2 0 1 1
30 vs 30 11 14 7 0 0 0
35 vs 25 12 14 9 3 0 1
40 vs 20 10 13 3 3 4 2
45 vs 15 11 11 1 4 16 1
50 vs 10 8 21 7 12 11 2
Total Rejections 28 53 23 27 20 11

L1 Detrending
10 vs 50 3 6 0 7 6 12
15 vs 45 3 5 2 7 7 2
20 vs 40 10 10 5 1 1 0
25 vs 35 7 8 2 1 0 1
30 vs 30 15 11 2 1 0 0
35 vs 25 10 11 3 1 2 0
40 vs 20 7 6 1 1 6 1
45 vs 15 4 1 4 1 14 1
50 vs 10 2 12 4 10 10 1
Total Rejections 27 35 13 21 22 12

Nonparametric Detrending
10 vs 50 1 3 0 3 1 2
15 vs 45 1 2 0 5 0 0
20 vs 40 4 10 3 4 0 0
25 vs 35 3 7 2 0 0 0
30 vs 30 5 3 2 0 0 0
35 vs 25 1 3 2 2 0 0
40 vs 20 1 2 0 1 0 0
45 vs 15 7 2 0 2 5 0
50 vs 10 6 24 4 8 1 0
Total Rejections 20 43 13 20 6 2
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loss. If its own rate is less than the governments, keeping the contract would induce more income since its

anticipated future indemnity is less than the income.

The rating game starts from using all or partial of the yield data from 1955-1995 to estimate the premium

rate of 1996. We repeated this process to estimate the premium rates of 1997, ... , 2015 within 20-year

game length by using the all or partial of the yield data from 1955-1996, ... , 1955-2014. The decision rule

for using all or partial of the yield data is based on the KS test results. The historical yield data are first

detrended with RMA methodology then adjusted for the heteroskedasticity following Harri et al. (2011).

For detrended and adjusted yield data using in each year of the game, we first run the KS test following

the above mentioned split method and identify the time-point where the rejection happens. If there is no

rejection, the current contract would be ignored. If there are multiple rejections, we choose the time-point

where the most recent one occurs. For all the contracts with identified time-point of structural changes, the

RMA calculates the premium rates using all the yield starts from 1955, while the private company decides

the rates using the data starts from the identified time-point. For example, if the KS test identifies that the

most recent structural change happens at 1981, the private uses yield data from 1981-1995 to calculate the

premium rate of 1996 while the RMA using all the data from 1955-1995. For both players, the 90% premium

rate are calculated by estimate the yield density non-parametrically, where the smoothing parameter h is

chosen by likelihood cross-validation (LCV).

Table 2. Out-Of-Sample Rating Game, Cut-off from KS Rejection

Retained by Loss Ratio Loss Ratio
Crop-State Private (%) Government Private p-value 1 p-value 2

Corn
Illinois (202) 39.1 1.972 0.812 0.0040 0.0059
Iowa (390) 67.9 0.825 0.368 0.0032 0.0059

Soybean
Illinois (89) 41.6 2.805 1.090 0.0258 0.0577
Iowa (106) 49.1 1.119 0.452 0.0530 0.0013

Winter Wheat
Kansas (112) 53.6 1.266 0.708 0.0774 0.0577
Oklahoma (105) 12.4 2.083 1.518 0.1552 0.2517

The game results in Table 2 show that the private company who is using partial of the yield data have

lower loss ratios in all six crop-state combinations. In Table 2, the total number of contracts with KS

rejections is shown in the parentheses after the state name. p-value 1 is derived from randomization test. In

the test, the same number of contracts as those retained by the private company under its decision rule are

randomly selected and the corresponding loss ratio is calculated. This procedure is repeated for 5000 times

and the loss ratio under the decision rule are compared with those 5000 loss ratios to derive the p-value 1

under the null that the decision rule is equivalent to random selection.
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Table 3. Out-Of-Sample Rating Game, Fixed Cut-off vs Full Sample

Retained by Loss Ratio Loss Ratio
Crop-State Private (%) Government Private p-value 1 p-value 2

20-year Cut-off

Corn
Illinois (76× 20) 51.4 0.906 0.825 0.2878 0.0207
Iowa (95× 20) 49.5 0.551 0.399 0.0286 0.2517

Soybean
Illinois (85× 20) 48.2 1.885 0.835 0.0000 0.0207
Iowa (96× 20) 33.3 1.078 0.458 0.0000 0.1316

Winter Wheat
Kansas (50× 20) 19.8 1.364 1.134 0.1176 0.7483
Oklahoma (21× 20) 17.9 1.811 1.468 0.1230 0.1316

25-year Cut-off

Corn
Illinois (76× 20) 44.1 1.281 0.488 0.0000 0.0002
Iowa (95× 20) 39.8 0.542 0.370 0.0114 0.7483

Soybean
Illinois (85× 20) 35.4 1.793 0.682 0.0000 0.0207
Iowa (96× 20) 30.4 0.947 0.606 0.0018 0.2517

Winter Wheat
Kansas (50× 20) 25.1 1.447 1.009 0.0074 0.2517
Oklahoma (21× 20) 32.1 1.954 1.343 0.0072 0.2517

30-year Cut-off

Corn
Illinois (76× 20) 41.8 1.214 0.518 0.0000 0.0000
Iowa (95× 20) 44.6 0.568 0.364 0.0042 0.7483

Soybean
Illinois (85× 20) 28.2 1.720 0.584 0.0000 0.0002
Iowa (96× 20) 35.3 1.021 0.516 0.0000 0.1316

Winter Wheat
Kansas (50× 20) 37.9 1.596 0.973 0.0002 0.5881
Oklahoma (21× 20) 49.0 2.003 1.501 0.0200 0.5881

35-year Cut-off

Corn
Illinois (76× 20) 49.3 1.208 0.591 0.0000 0.0013
Iowa (95× 20) 54.1 0.798 0.257 0.0000 0.1316

Soybean
Illinois (85× 20) 27.9 1.580 0.820 0.0000 0.0002
Iowa (96× 20) 46.6 0.946 0.691 0.0078 0.2517

Winter Wheat
Kansas (50× 20) 44.7 1.502 1.139 0.0220 0.4119
Oklahoma (21× 20) 59.5 1.884 1.656 0.1826 0.5881
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As mentioned above, the private insurance company could have a first-move advantage that it chooses to

retain or cede the contract first. To cancel out this advantage and present the real efficacy of its decision

rule, we derive p-value 2 from an efficacy test developed by Ker, Tolhurst, and Liu (2016), in which the null

is that both methodologies from the RMA and the private insurance company are equally efficient.

Aside from examining the contracts with KS rejections, we also examine all the contracts available by

running the games assuming the private insurance company uses only recent yield data with fixed cut-off

versus the RMA uses the full set of yield data. We choose fixed time cut-offs as recent 20, 25, 30 and 35

years. The results are shown in the Table 3.

In Table 3, the values of p-value 1 suggest that economically and statistically significant monies can be

made restricting the use of historical data for 5 out of 6 state-crop combinations. The values of p-value 2

suggest that restricting the data leads to more accurate rates for 5 out of 6 state-crop combinations with

the exception of Oklahoma winter wheat. In Table 3, all values of p-value 1 from 25 and 30 years cutoffs

are statistically significant. Overall, results are fairly consistent between 20, 25, 30, and 35 years cut-offs for

p-value 1, less so for p-value 2.

Although there is no clear sign to show how long the recent yield data should be used from these games,

above results show evidences that using less and more recent yield data could greatly improve the efficiency

of rating crop insurance contract. The results are consistent with our conjecture that there are significant

structural changes in the historical crop yield caused by the technological advances in seeds and farming

management.

Estimating and Simulating DGPs of Yields Overtime

Since common structural and distributional tests do not perform well on detecting the possible underlying

structural changes in higher moments of yield density, we propose a different approach to examine the impacts

of these changes by estimating the yield distribution with a flexible and accountable modeling method as a

start. We propose a Normal mixture estimator with time-varying parameters to model the county level crop

yield, which has the following distributional form

(3) yt ∼
n∑

k=1

λtkN(αk + βkt, γk + δkt),

where yt is the yield of year t, n is the number of Normal components, λtk is weight parameter of Normal

component k of year t, satisfying
∑n

k=1 λtk = 1; αk +βkt is time-varying mean parameter and γk + δkt being

time-varying variance parameter for each Normal component of year t. Although the choice of the number of

components n could be arbitrary, we find that two component (n = 2) mixture model is the optimal choice

for all crop yields we choose by the measurement of Bayesian Information Criterion (BIC). Throughout this

manuscript, we fix our model choice as two components Normal mixture.
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Normal mixture model can approximate many distributional structures associated with yield densities,

such as asymmetric, skewed, bimodal and long-tailed. In fact, the Normal mixture can be used to approx-

imate any continuous distribution to an arbitrarily small difference (Everitt and Hand, 1981). With extra

time-varying settings on the mean and variance parameters, this estimator can model crop yield in a more

realistic and reasonable way with the relaxed restrictions on the first two moment parameters over time.

Figure 1 shows examples of real and simulated county yields of three crops. Visual inspection shows that

the red dots, representing simulated yields, match the real yields in blue pretty well.

The advantages of employing this time-varying Normal mixture model are in two folds. First, it is flexible

on the changes in mean and variance of yield distribution over time, which captures the typical manner of

real world crop yields. Simulation results show that it can mimic the real world yield pretty well and capture

its characteristics such as increasing mean and variance over time. Second, and more important, using this

Normal mixture estimator with time-varying parameters enables us to establish the “true” data generating

process (DGP) for each crop-producing county, which allows us to be able to evaluate the performance

of different estimators for crop yield densities using different efficiency criteria, and test related hypothesis

while avoiding likely type II errors. Admittedly, the legitimacy of this paper is conditional on the assumption

that crop yield data are truly generated from above Normal mixture model. Since there is no way to really

identify the “true” yield density, our simulation approach provides a practical way to investigate the crop

yield DGPs while avoiding the above mentioned type II errors.

Table 4

Mean Parameters of Mixture Model by Crop

Corn Soybean Winter Wheat

n Counties 171 181 71

λ̄ 0.48 0.49 0.52
a1 0.48 0.49 0.47
b1 0.00 0.00 0.00

α1 55.67 22.81 22.19
β1 1.68 0.40 0.22
γ1 146.51 10.62 23.48
δ1 11.27 0.51 1.05

α2 64.62 24.99 26.73
β2 1.95 0.47 0.27
γ2 44.50 3.73 28.17
δ2 1.74 0.10 0.39

Note: Counties with incomplete yield histories are excluded. Unit is bushel per acre.

Assuming county level yield data are generated from time-conditional Distribution (3), the parameters

of each individual crop producing county yield distribution can be estimated by using EM algorithm. The

details of this EM algorithm are referred to Tolhurst and Ker (2015). Table 4 presents the mean values
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Figure 1. Real & Simulated Crop Yields

of parameters from proposed two-component Normal mixture model for three crops. With these time-

conditional parameters produced by EM algorithm, the simulated yield samples can be drawn from the

estimated distribution with a “true” yield DGP in hand. With enough simulated yield data, we can examine

and compare the performances of chosen estimators by using simulated yields with different time length,

which equivalently answers our research questions that how long we should use the historical data optimally.

To examine the performance of the estimator we proposed under the proposed mixture model, we draw

500 samples with size of 61 (representing historical yield of 61 years) from each crop-county combination.

For each sample, we detrend the sample data with former mentioned four different trend functions, then

adjust the detrended data for the heteroskedasticity. The estimation starts with utilizing only the recent 10

years data, then incrementally expanding the data utilized with 5 more years sample dating back in each

step, until using the full data set. This strategy is applied to all estimators using in this manuscript. As

mentioned previously, our argument is that technological advances may have changed the higher moments

of yield distribution, therefore the i.i.d. assumption may not hold even if we have adjusted the first two
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moments of the distribution. The implication is that the performance of estimator may not necessarily

achieve the best efficiency by using the full dataset, since the adjusted data from early stage may have

different higher moments from the recent ones. Intuitively, the changes in the higher moments would have

negative impact on the efficiency of estimator when using such “contaminated” dataset.

For each estimate, we calculate the mean integrated squared error (MISE) by comparing the estimated

density with the “true” density, through which we can observe the overall performance of the estimator used.

To specifically examine the lower tail performance, which is crucial for crop insurance, we also recover the

premium rate of 90% coverage level for the estimator. These premium rates are compared with the “true”

premium rates with root-mean-square error (RMSE) criterion.
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Figure 2. MISE, h by LCV

We first examine the performance of standard kernel estimator under different detrending methods, where

the smoothing parameter h of is chosen by the criterion of maximizing the likelihood of cross-validation (LCV)

4. Figure 2 presents the average MISE across state-wide for three crop-state combinations. As the sample size

4The results of using h chosen by the criterion of minimizing the integrated squared error (ISE) are provided in the Appendix.
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increasing, the MISE decreases drastically, which is as expected that more sample implies more information,

therefore reduces the estimation error. However, what is interesting that draws our attention is that the MISE

starts to increase or flatten out as the sample size increases. In Figure 3, the average RMSE of 90% premium

rate across state for three crop-state combination also show the similar first decreasing them increasing or

flattening out situations. These U shaped or alike graphs evidently show the implication that more data

does not necessarily lead to more efficiency for yield density estimation in each crop-state combination. On

the contrary, the more “outdated” data used, the less or no efficiency gains in the estimation after a certain

historical time point. At this moment, for the application purpose, it seems the reasonably choice is to

discard the data older than the year that the minimum MISE hits and using the left “recent” data for the

estimation. Nevertheless, discarding data is not a pleasant choice for practitioner since there is still more

or less useful information within the outdated data. To exploit this usefulness requires treatments that are

more sophisticated. There is a balance need to strike between using all but possibly contaminated data and

less but more likely following i.i.d. assumption data. To solve this dilemma, we propose an approach that

goes beyond simply discarding data by using estimators that can borrow information from like (but not the

same) DGPs. The borrowing-information estimators are introduced in the following section.

Incorporating Data from Like DGPs

The purpose of proposed methodologies is that we can use data from possibly like DGPs to improve

estimation efficiency so we do not necessarily discard historical yield data. We consider three borrowing-

information methods: Possibly Similar method, Bayesian Model Averaging (BMA) method, Li and Racine

method. These borrowing information estimators can make use of the extraneous data if they are sufficiently

like, while not significantly compromised if they are not sufficiently like. Here, the definition of likeness is

purposely vague, that is, we make no assumptions as to the degree and form of likeness. These estimators

are only trivially compromised by correlated data with an unknown correlation structure.

Possibly Similar method is a non-parametric estimator that uses extraneous data to reduce estimation

bias. When estimating a set of densities thought to be similar it may be more efficient to pool the data and

estimate a single estimate 5 and then non-parametrically correct it for each individual density estimate. The

Possibly Similar estimator has the form

(4) f̃i(x) = ĝ(x)r̂i(x) =

n∑
j=1

(1/n)Kh(x−Xij)
ĝ(x)

ĝ(Xij)
,

where ĝ is the start estimate, which in our study is the kernel estimate based on the full historical data

and requires smoothing parameter hp; h is the smoothing parameter for the individual correction function,

which corresponds to the partial data of recent; Xij is the sample from density i. The intuition is to reduce

the global curvature of the underlying function being estimated thereby reducing bias. The correction factor

5The efficient estimator if the densities considered were identical would be the one to pool the data.
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Figure 3. RMSE of 90% Premium Rate , h by LCV

will have less global curvature if the start estimate is sufficiently close to the unknown density of interest.

The estimator is consistent and does not require assumptions about the form or extent of likeness between

DGPs. It performs well in small samples for like densities and no worse for unlike densities (e.g., test densities

from Marron and Wand (1992)). It’s weakness is that it assumes independence, therefore correlation effects

the pooled estimate through hp. Also, it may cause over or under smoothing of the start estimate. A

possible solution is to correct the start by block cross-validation. Overall, Possibly Similar estimator is naive

(ignorant) in that it treats all other extraneous data equally. Since bias is a function of the curvature, we

can often reduce curvature using a better start than a random pick. In this paper, we use the historical data

as our start for the current period. We refer to Hjort and Glad (1995) and Ker (2016) for more details.

Bayesian Model Averaging has been widely used in the literature to deal with model uncertainty. For a

comprehensive introduction, we refer to Hoeting et al. (1999). However, we use BMA in a novel and different

way in this manuscript. Rather than assuming the same data set are generated from different candidate

models, we construct the set of candidate models from the set of densities estimates based on extraneous
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data. The BMA estimator has the form

(5) f̃i =

Q∑
j=1

ωi
j f̂j ,

where

(6) ωi
j =

exp
{
− 1

2BICi
j

}
∑Q

q=1 exp
{
− 1

2BICi
q

} ,
BICi

j is the Bayesian information criterion (BIC) of model f̂j with data from experimental unit i, f̂j are

the set of density estimates across experimental units. The BMA estimator assumes uniform prior across

models and a mixture of Normals for fj for above form. The weight ωi
j assigned to extraneous data (i.e.

estimated models) is determined by likelihood the data of interest comes from that estimated model, where

the likelihood is represented by the BICi
j . In this manuscript, we estimate f̂j using standard kernel method,

and obtain BIC value by interpreting the standard kernel estimator as mixture of Normals. Details are

referred to Ker and Liu (2016). Naturally, own unit receives maximum weight in parametric framework, but

may not necessarily be true in nonparametric case. For a parametric framework of this BMA estimator, we

refer to Ker, Tolhurst, and Liu (2016). The advantage of this estimator is that it converges to individual

kernel estimate and does not require assumptions about form or extent of similarity between densities. It is

not naive in that it does not necessarily treat all other extraneous data equally. It performs well in small

samples for like densities and no worse for unlike densities. Nonetheless, its estimates are based on the

independent data and then mixing may be impacted by correlation.

Li-Racine method is to smooth across mixed data-types. Its continuous component is the random variable

of interest and the discrete component is the different time periods. It has the following form

(7) f̂ = (nhC)−1


n1∑
l=1

(1− λ)K

(
x−XCj

l

hC

)
︸ ︷︷ ︸

Current data

+

n2∑
l=1

λK

(
x−XC−j

l

hC

)
︸ ︷︷ ︸

Historical data

 .
Essentially, Li-Racine estimator smooths across all data but weights the data in the current period higher

than that from the historical data. It reduces variance while increases bias for the estimate. The two

smoothing parameters, hC and λ in above equation could be chosen by cross-validation. The estimator is

consistent and requires no assumptions about form or extent of similarity between DGPs. Correlation may

affect smoothing parameter λ. The estimator is naive in a sense that it treats all other extraneous data

equally and could change with additional smoothing parameters. More details about Li-Racine estimator

can be obtained from Li and Racine (2003); Racine and Li (2004); Li, Simar, and Zelenyuk (2016).
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Games and Estimations Revisited

We use these three borrowing-information estimators to re-run the contracting games, assuming the

private insurance company employs these estimators for rating the premium rates while the RMA still

rates the contracts using the standard kernel estimator with full data set. For the following games, we

use the standard RMA detrending methodology because the results are rather consistent through different

detrending methodologies. For borrowing estimators, the private insurance company uses the same cut-off

time as previously identified for standard kernel estimator , but would treat the adjusted yields earlier than

the cut-off time as the reference data to “borrow” information from.

Table 5. Results of Out-of-Sample Rating Game, Cut-off from KS Rejection

Retained by Loss Ratio Loss Ratio
Crop-State Private (%) Government Private p-value 1 p-value 2

Corn Illinois (202)

Standar Kernel 39.1 1.972 0.812 0.0040 0.0059
Possibly Similar 79.7 1.667 1.409 0.2844 0.0207
Li-Racine 39.1 1.953 0.829 0.0036 0.0059
BMA 39.1 1.972 0.812 0.0022 0.0059

Corn Iowa (390)

Standar Kernel 67.9 0.825 0.368 0.0032 0.0059
Possibly Similar 85.1 0.834 0.442 0.0190 0.0002
Li-Racine 54.6 0.633 0.416 0.0806 0.0013
BMA 66.9 0.800 0.373 0.0024 0.0059

Soybean Illinois (89)

Standard Kernel 41.6 2.805 1.090 0.0258 0.0577
Possibly Similar 73.0 3.733 1.467 0.0246 0.0207
Li-Racine 40.4 2.798 1.038 0.0194 0.0577
BMA 40.4 2.685 1.146 0.0362 0.0577

Soybean Iowa (106)

Standard Kernel 49.1 1.119 0.452 0.0530 0.0013
Possibly Similar 86.8 1.737 0.601 0.0268 0.0000
Li-Racine 35.8 0.887 0.571 0.2322 0.0013
BMA 48.1 1.112 0.448 0.0504 0.0013

Wheat Kansas (112)

Standard Kernel 53.6 1.266 0.708 0.0774 0.0577
Possibly Similar 90.2 1.400 0.891 0.1698 0.1316
Li-Racine 50.0 1.247 0.689 0.0746 0.0577
BMA 53.6 1.266 0.708 0.0736 0.0577

Wheat Oklahoma (105)

Standard Kernel 12.4 2.083 1.518 0.1552 0.2517
Possibly Similar 32.4 2.075 1.881 0.3054 0.1316
Li-Racine 13.3 2.088 1.519 0.1438 0.0577
BMA 12.4 2.083 1.518 0.1598 0.2517
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From the results in Table 5, p-value 1 suggest that economically and statistically significant monies can

be made using alternative means to incorporate some of the historical data for all state-crop combinations.

p-value 2 suggest that using alternative means to incorporate some of the data leads to more accurate rates

for all crops and regions. Specifically, results suggest that the Possibly Similar estimator leads to statistically

significant more accurate rates in 3 of the 6 state-crop combinations, while the rest 3 cases are ambiguous.

For the Li-Racine estimator, it produces statistically significant more accurate rates in 1 of the 6 state-crop

combinations. The other 5 cases are ambiguous. The BMA estimator leads to statistically significant more

accurate rates in 2 of the 6 state-crop combinations. The other 2 cases are ambiguous.

Now we revisit the performance of estimators we proposed, the standard kernel and three borrowing-

information estimators under the mixture model from the Distribution 3. The graphs of MISE for under

each estimator using RMA detrending methodology are shown in Figure 4. The figures of RMSE of 90%

premium rate are shown in Figure 5. The MISE and RMSE using other detrending methodologies are shown

in the Appendix. Overall, MISE and RMSE results are fairly consistent across detrending methodologies.

For the same estimator, the MISE and RMSE are minimized below full data set. Estimators with smoothing

parameter h known (optimal h by minimizing integrated squared errors) use less historical data to reach their

minimum MISE and RMSE values. The borrowing estimators minimize error with less historical data and

perform better than standard kernel estimator. Specifically, possibly similar method tends to perform best at

minimizing MISE. For all three crops, corn uses least historical data followed by soybeans and winter wheat,

which is consistent with technological advances. Comparing MISE and RMSE, there are more historical

data used when estimating tails.

Conclusions

County crop yield data from NASS of USDA has been the major data source for extensive literatures.

Commonly used methodology in the literature adjusts only the first and second moments of the yields, then

assumes the adjusted data are i.i.d.s without further investigation. Meanwhile, there have been significant

innovations in farm management and seed technologies. Particular, the widely planted GM crops have

fundamentally change the landscape of U.S. agriculture. It is reasonable to conjecture that these technological

changes may alter higher moments of the yield DGPs more than just the first two. On the other hand, the

changes of higher moments is difficult to detect by popular structural tests since they are of low power to

test these changes, suffering likely type II errors.

In this manuscript, we attempt to answer the question how much historical yield data should be used.

Obviously the answer is dependent on the empirical question at hand, loss function, and methodology. Our

focus is on rating crop insurance contracts. Meanwhile, we propose methodologies that can use data from

possibly like DGPs to improve estimation efficiency so we do not necessarily discard historical yield data.

Results suggest that for corn and soybeans the identically distributed assumption does not likely hold, and

significant efficiency gains (MISE and MSE) from using estimators that can incorporate historical data in
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alternative ways. Our results coincide with plant scientists that suggest much greater technological change in

corn followed by soybeans. The RMA might wish to restrict the amount of historical data used in the rating

of their area-based products (similar to their shallow-loss products) for crop and possibly region specific.

Our future study following this direction could extend to borrowing information across space and time to

increase efficiency. Intuitively, neighboring counties would have similar yield DGPs.
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Klümper, W., and M. Qaim. 2014. “A meta-analysis of the impacts of genetically modified crops.” PloS one

9:e111629.

Koundouri, P., and N. Kourogenis. 2011. “On the distribution of crop yields: does the central limit theorem

apply?” American Journal of Agricultural Economics 93:1341–1357.

Kucharik, C.J., and N. Ramankutty. 2005. “Trends and variability in US corn yields over the twentieth

century.” Earth Interactions 9:1–29.



25

Leng, G. 2017. “Recent changes in county-level corn yield variability in the United States from observations

and crop models.” Science of The Total Environment 607:683–690.

Li, D., L. Simar, and V. Zelenyuk. 2016. “Generalized nonparametric smoothing with mixed discrete and

continuous data.” Computational Statistics & Data Analysis 100:424–444.

Li, Q., and J. Racine. 2003. “Nonparametric estimation of distributions with categorical and continuous

data.” journal of multivariate analysis 86:266–292.

Marron, J.S., and M.P. Wand. 1992. “Exact mean integrated squared error.” The Annals of Statistics

20(2):712–736.

Miao, R., M. Khanna, and H. Huang. 2016. “Responsiveness of crop yield and acreage to prices and climate.”

American Journal of Agricultural Economics 98:191–211.

Naranjo, S.E., J.R. Ruberson, H.C. Sharma, L. Wilson, and K. Wu. 2008. “The present and future role of

insect-resistant genetically modified cotton in IPM.” In Integration of insect-resistant genetically modified

crops within IPM programs. Springer, pp. 159–194.

Naylor, R., W. Falcon, and E. Zavaleta. 1997. “Variability and growth in grain yields, 1950-94: does the

record point to greater instability?” Population and Development Review , pp. 41–58.

Norwood, B., M.C. Roberts, and J.L. Lusk. 2004. “Ranking crop yield models using out-of-sample likelihood

functions.” American Journal of Agricultural Economics 86:1032–1043.

Ortiz-Bobea, A., and R.E. Just. 2013. “Modeling the structure of adaptation in climate change impact

assessment.” American Journal of Agricultural Economics 95:244–251.

Racine, J., and A.P. Ker. 2006. “Rating crop insurance policies with efficient nonparametric estimators that

admit mixed data types.” Journal of Agricultural and Resource Economics 31(1):27–39.

Racine, J., and Q. Li. 2004. “Nonparametric estimation of regression functions with both categorical and

continuous data.” Journal of Econometrics 119:99–130.

Ramirez, O.A., S. Misra, and J. Field. 2003. “Crop-yield distributions revisited.” American Journal of

Agricultural Economics 85:108–120.

Reilly, J., F. Tubiello, B. McCarl, D. Abler, R. Darwin, K. Fuglie, S. Hollinger, C. Izaurralde, S. Jagtap,

J. Jones, et al. 2003. “US agriculture and climate change: new results.” Climatic Change 57:43–67.

Reilly, J.M., and K.O. Fuglie. 1998. “Future yield growth in field crops: what evidence exists?” Soil and

Tillage Research 47:275–290.

Roberts, M.J., W. Schlenker, and J. Eyer. 2013. “Agronomic weather measures in econometric models of

crop yield with implications for climate change.” American Journal of Agricultural Economics 95:236–243.

Tack, J., A. Harri, and K. Coble. 2012. “More than mean effects: modeling the effect of climate on the higher

order moments of crop yields.” American Journal of Agricultural Economics 94:1037–1054.

Tolhurst, T.N., and A.P. Ker. 2015. “On technological change in crop yields.” American Journal of Agricul-

tural Economics 97:137–158.



26

USDA. 2016. “Adoption of genetically engineered crops in the US.” Working paper, United States Depart-

ment of Agriculture, Economic Research Service.

Woodard, J.D., A.D. Pavlista, G.D. Schnitkey, P.A. Burgener, and K.A. Ward. 2012. “Government insurance

program design, incentive effects, and technology adoption: the case of skip-row crop insurance.” American

Journal of Agricultural Economics 94:823–837.

Woodard, J.D., and B.J. Sherrick. 2011. “Estimation of mixture models using cross-validation optimization:

Implications for crop yield distribution modeling.” American Journal of Agricultural Economics 93:968–

982.

Woodard, J.D., and L.J. Verteramo-Chiu. 2017. “Efficiency Impacts of Utilizing Soil Data in the Pricing of

the Federal Crop Insurance Program.” American Journal of Agricultural Economics 99:757–772.

Wu, J., R.M. Adams, C.L. Kling, and K. Tanaka. 2004. “From microlevel decisions to landscape changes: an

assessment of agricultural conservation policies.” American Journal of Agricultural Economics 86:26–41.

Yvette Zhang, Y. 2017. “A Density-Ratio Model of Crop Yield Distributions.” American Journal of Agri-

cultural Economics, pp. .




