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Abstract 

Considering different scenarios of future trends in climate, several authors have found 

that the impact that climate change will have on agriculture will most likely be negative. 

Most of these studies consider regions with low level of irrigation and do not control for 

purchased farm inputs. An important step towards understanding the evolution of 

agricultural production is to carefully estimate the effect that different temperatures and 

precipitation have on agricultural productivity considering also inputs under farmers’ 

control and the farmers’ profit maximizing behavior. This research develops a county 

level biomass production function for an 800-mile climatic gradient from the Rocky 

Mountains to the Mississippi River (41N). Our results quantify the critical effects that 

high temperatures have on agricultural productivity in the region, after controlling for 

irrigation, other managed inputs, soil characteristics, precipitation, and technological 

change. We find a negative and increasing (nonlinear) effect of temperatures over 30ºC 

on crop yields; a full day of temperatures between 30ºC and 35ºC decreases expected 

yield by 1.7% and a day of temperatures over 35ºC decreases yields by 23.1%. In 

addition, converting rainfed crops to irrigated crop will produce a sharp decrease in the 

negative impact of the higher temperature interval. 

 

Introduction 

The dramatic increase in world crop production observed over the 40-year period from 

1960 to 2000 was attributable partly to land expansion, but it was also the result of 

increasing yields due to new technologies and management techniques, including 
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mechanization and an increase in the use of chemicals, fertilizers, pesticides and water 

from irrigation systems (Tilman et al., 2001). During the last decade, several authors 

observed a reduction in global yield growth rates for corn, wheat, rice and soybeans 

(Alston, Babcock and Pardey, 2010 and World Bank Report 2008).  

Studies indicate that climate has been and will be severely affected by increases in 

CO2 levels in the atmosphere. Changes in temperature, precipitation and solar radiation 

will affect yields with different intensity across regions (Ruttan 2002). Most agronomic 

studies of the effects of weather on crop yields are based on field experiments and are 

aimed to account for the biological effect of different temperatures on specific crops 

(Ritchie and Nesmith, 1991). Other studies use historical data to look into the effect of 

climate on crop yield in different regions. In the latter category, looking to the United 

States and other important agricultural producers, several authors have found that the 

impact of climate change on agriculture production will most likely be negative 

(Schlenker and Roberts, 2009, Lobell, Schlenker and Costa-Roberts, 2011, Fisher et al., 

2012, Urban et al., 2012, and Nelson et al, 2014).  

Yields reflect not only the impact of precipitation and temperature, but the 

decisions taken by individuals, given their market expectations. To understand yield 

performance, it is important to include not only the natural environment, but the market 

environment.
4
 This includes prices expected to be paid for inputs and received for the 

products. Choices are made not just to increase yields but to obtain profits as a means of 

enterprise survival.  Our study uses an agent-based decision making model to understand 

yield performance and the impact of weather variables on crop yields across a transect of 
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the Great Plains of the U.S. We then compare our results with those in the literature that 

have only included weather variables.  

 

Background 

Lobell (2007) uses national crop yield data and climate and crop location datasets for 

1961-2002 to estimate the impact of changes in the diurnal temperature range (DTR = 

Tmax - Tmin) on the cereal grain yields of major producing countries. He found a non-

linear negative response of yields to increases in average temperature and a generally 

non-significant effect of increases in DTR, with positive or negative effects depending on 

the region.  

Another global study by Lobell, Schlenker and Costa-Roberts (2011) include 

average monthly temperature but also precipitation and changes in the growing season. It 

studies the impact of changes in climate trends (1980-2008) on major crop yields (maize, 

wheat, rice and soybeans) at a country level scale. It reveals positive trends in 

temperature for nearly all major growing areas (excluding the United States) and smaller 

precipitation trends with mixed results across regions. A 1ºC increase in average 

temperature was found to decrease yields by up to 10% for low latitude countries and has 

mixed results for high latitude countries depending on the crop. Increases in precipitation 

have a positive effect on yields for most crops and countries but beyond a threshold level 

further increases become harmful.  Observed average precipitation increase was higher 

than this threshold level thus the median estimated impact was negative. Additionally, the 

effect of precipitation was found to be less important than the effect of temperatures.  
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The studies mentioned above use average temperature to measure effects on yield. 

Another measure of temperature impact on yields that is increasingly used is the 

agronomic measure “growing degree days” (Zalom and Goodell, 1983 and Snyder, 

1985)
5
. These measure the amount of time during the growing season during which the 

temperature was within specific ranges. Schlenker and Roberts (2009) use this concept to 

estimate the effect of weather on aggregate farm yields in the United States. They regress 

corn, wheat and cotton yields in counties east of the 100º meridian on weather variables 

during the years 1950-2005 using alternative specifications. They find that there is an 

increasing positive relation between temperatures and crop yield up to 29-32ºC (with 

variations depending on the crop). Temperatures above these thresholds are found to 

reduce yields significantly and at an increasingly negative rate. Precipitation was found to 

significantly affect yields. This effect follows an inverted U pattern with different levels 

of yield-maximizing values depending on the crop (25 inches for corn and 27.2 inches for 

soybeans).  

Roberts, Schlenker and Eyer (2012) also use the growing degree days measure to 

estimate the impact of temperatures on corn yields in Illinois for the years 1950-2010. 

They consider the impact of extreme temperatures measured by extreme heat degree 

days, precipitation and vapor pressure deficit (VPD). Extreme temperatures were found 

to have a robust negative effect on yields. Precipitation effects were found to have an 

inverted U shape, consistent with previous studies, with yield maximizing levels lower 

than the observed mean in the specification that did not include VPD.  
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The studies mentioned have two important omissions. First, in the U.S. they 

mostly studied rain-fed agriculture
6
, counties east of the 100º meridian. Irrigation 

developments from 1950’s on have been an important source of production increases in 

general and specifically in the region west of the 100º meridian in the U.S Plains. Second, 

their studies control for the natural environment, precipitation and temperature, which are 

not under the control of farmers, but do not allow a role for human decision making in the 

production process. Yields used in these studies are a result of human management 

decisions as well as the natural environment. How much and what to produce as well as 

how much and which inputs to use are producers’ choices within the environment they 

face. This environment includes prices received and paid and the available technology, as 

well as natural phenomena. To understand aggregate yields it is important to allow for 

agent-based decisions as well as natural phenomena not under human control, which is 

the objective of this research. 

 

Theoretical framework 

We assume that production decisions are made by profit-maximizing farmers who 

operate under perfect competition in all commodities and factor markets. Farmers choose 

their optimum production and input requirements, subject to the production function Y= 

f(X,e), output and input prices and the characteristics of the environment (weather, soil, 

etc), as the solution to the following problem  

max𝑋  𝜋 =   𝑝 ∙ 𝑌 − 𝒛 ∙ 𝑿  ; 𝑌 =  𝑓 𝑋, 𝑒 ;  𝑝 ≫ 0, 𝒛 ≫ 0   , (1) 
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where output per hectare is Y with price p, the variable input vector is X with 

corresponding price vector z, and the environment variables are vector e. Following 

Chambers (1988) the production function f(X,e) is assumed to be finite, nonnegative, real 

valued, and single valued for all nonnegative and finite X, everywhere twice-

continuously differentiable, non-decreasing in X, and quasi-concave, fulfilling the weak 

essentiality condition.   

The first order interior conditions for profit maximization are, 

∂ 𝜋

∂ 𝑋𝑗
= 𝑝 ∙

∂ 𝑌

∂ 𝑋𝑗
− 𝑧𝑗 = 0, j = 1,… , J   . (1.a) 

From equations (1) and (1.a) and using logarithms:  

𝜕 ln 𝑓 𝑿,𝒆 

∂ln 𝑋𝑗
 =

∂ 𝑓 𝑿,𝒆 

∂ 𝑋𝑗
∙

𝑋𝑗

𝑓 𝑋,𝑒 
= 𝛾𝑗 =

𝑧𝑗

𝑝
∙
𝑋𝑗 (𝒛,𝒆)

𝑌
= 𝑠𝑗  (z, e)     j= 1,…J       (2) 

where 𝛾𝑗 is the production elasticity of input j and, under optimizing behavior, its share in 

total cost 𝑠𝑗 . Thus under the conditions of this model, the production elasticity of input j 

is equal to the cost share of that input, capturing the essence of the firm’s choice of input 

levels given expectations about natural circumstances as reflected by e.   

We are able to estimate the effect of the environmental variables e (degree days, 

precipitation and soil carbon) on yields as 

𝜕 ln 𝑓 𝑿,𝒆 

∂ 𝑒𝑢
 =  𝜇𝑢           𝑢 = 1,… , 𝑈 ,          (3) 

where eu is an environmental variable. This expression indicates the impact, expressed as 

a fraction of output, of a one-unit change in temperatures (measured in degree days) and 

of one percentage point change in precipitation and in soil carbon (both variables are in 

logarithms). Different from the estimates in previous studies, our estimates of the impact 
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of weather variables are thus obtained from an agent-based model that controls for the 

simultaneous decisions made by the farmer given market as well as natural and 

technological conditions.   

The following expression represents the rate of technical change (sometimes 

referred to as Total Factor Productivity change), expressed as a fraction of current 

production per unit change in t: 

𝜕 ln 𝑓 𝑿,𝒆,𝑡 

∂ 𝑡
 =

𝜕𝑇𝐹𝑃

∂ 𝑡
 .        (4) 

According to its effects on relative input productivity, the rate of technical change can be 

further characterized in terms of input biases. Bias in technical change reflects the effect 

of innovations on the use of various inputs. We choose to use Chambers’ (1988) overall 

biases that measure changes in shares, rather than Hicksian pair-wise biases
7
, as they are 

more intuitive, defined as: 

𝐵𝑗 =
𝜕𝑠𝑗 (𝑿,𝒆,𝑡)

𝜕𝑡
     ∀  𝑗   . (5) 

Technological change is Hicks neutral if these biases are all zero, i.e., if t is 

separable for each of the j inputs. Technical change is said to be unbiased (or share 

neutral) if it does not affect the relative cost shares. Hence, Hicks neutrality implies share 

neutrality. If 𝐵𝑗 > 0 the technical change is said to be biased toward input j, or j-using; if 

𝐵𝑗 < 0 the technical change is said to be biased against input j, or j-saving.  

 

Empirical Model 
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(6) 

Single equation estimates of the production function will be affected by biases and 

identification issues due to the firms’ simultaneity in choice of output and inputs. A 

system of equations that estimates jointly the production function and the inverse input 

demand equations in (2) allows for endogeneity of input choice and makes it obvious that 

the output produced and the inputs used are manifestations of a single decision making 

process tempered by expectations about natural phenomena.  The estimates of the 

weather impact in (3) control for the farmers’ market behavior given expectations about 

weather and should be different than pure technical responses measured on experimental 

plots. Models that do not explicitly account for this behavior will err in indicating the 

impact of weather on yields because they do not account for adaptive decision-making.  

 For this application the semi-transcendental logarithmic functional form 

(Christensen, Jorgenson and Lay, 1973) is chosen to approximate the production function 

in (1) and the corresponding shares in (2).
8
 This specification is flexible as it provides a 

local second order approximation to any production technology, minimizing a priori 

restrictions on its structure. The following system of equations
9
 is estimated: 

𝑦𝑖𝑡 = 𝛼0 +  𝛽𝑗𝑥𝑖𝑗𝑡
3
𝑗=1 +

1

2
  𝛽𝑗𝑘 𝑥𝑖𝑗𝑡 𝑥𝑖𝑘𝑡

3
𝑘=1

3
𝑗=1 +  𝜔𝑤𝑑𝑖𝑤𝑡

3
𝑤=1 +  𝜔𝑤3𝑑𝑖𝑤𝑡 𝑥𝑖3𝑡

3
𝑤=1 +

𝜃1 𝑟𝑖𝑡 +   
1

2
𝜃11  𝑟𝑖𝑡

2 + 𝜃13𝑟𝑖𝑡𝑥𝑖3𝑡 + 𝜃2 𝑠𝑜𝑚𝑖𝑡 + 𝜃23𝑠𝑜𝑚𝑖𝑡𝑥𝑖3𝑡 + 𝜏1 𝑡 +
1

2
𝜏2 𝑡 

2 +  𝜑𝑗 𝑡 𝑥𝑖𝑗𝑡
3
𝑗=1 ,  

𝑠1𝑖𝑡
 = 𝛽1 + 𝛽11𝑥𝑖1𝑡 + 𝛽12𝑥𝑖2𝑡 + 𝛽13𝑥𝑖3𝑡 + 𝜑1𝑡  

𝑠2𝑖𝑡
 = 𝛽2 + 𝛽21𝑥𝑖1𝑡 + 𝛽22𝑥𝑖2𝑡 + 𝛽23𝑥𝑖3𝑡 + 𝜑2𝑡  

where i = 1,…,101 are counties; t = 1,…,49 are years introduced as a proxy for 

technology; j, k = 1, 2, 3 are controllable factors of production, fertilizer, chemicals and 
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irrigation respectively and w = 1, 2, 3 are the temperature intervals. Under the assumption 

of constant returns to scale, the output and all the inputs have been divided by land.
10

 For 

each county i and each year t, yit is logarithm of biomass yield Y; 𝑠1𝑖𝑡
  is the share of 

fertilizer, 𝑠2𝑖𝑡
  is the share of chemicals, xit is a vector of the logarithms of fertilizer and 

chemicals per hectare, and the fraction of agricultural land irrigated; t is a proxy for 

technical change measured as years since the beginning of the analysis starting with 1960 

= 1; som is the logarithm of the level of soil organic matter; rit is the logarithm of 

precipitation; and diwt is a vector of degree days intervals. The coefficients α0, βj, βjk, ωw, 

ωw3, θ1, θ11, θ13, θ2, θ23, τ1, τ2, and φj are the parameters to be estimated. 

We included the interactions between variables that represent farmer’s choices of 

inputs (fertilizer, chemicals and irrigation), and technology (time trend). In addition we 

account for the environmental variables (soil organic matter, degree days, and 

precipitation) that condition farmers’ choice, adding interactions of irrigation with 

precipitation, which allows us to examine how irrigation mitigates water stress and to 

account for the substitutability between them. We also add interactions of irrigation with 

degree-days, to study how irrigation mitigates heat stress; and of irrigation with soil 

organic matter, to examine the benefits of irrigation on different types of land.  

The properties of equality of coefficients across equations as well as symmetry, 

are imposed before estimation while monotonicity and quasiconcavity are checked at 

each data point after estimation. Monotonicity requires that the marginal product of all 

inputs be nonnegative or that the estimated share be nonnegative. Quasiconcavity 

requires that the determinant of the bordered Hessian be negative semidefinite. 
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Since the Cobb-Douglas production function (Cobb and Douglas, 1928) is nested 

in the translog production function when all second order coefficients are zero, we use a 

Wald test to check if the former is as good as the latter in capturing this technology. 

Equations (6) are jointly estimated using a three stage least squares approach 

(Zellner and Theil, 1962). Since the farmers take decisions about the desired yield and the 

amount of fertilizer and chemicals needed to produce it simultaneously, an instrumental 

variables approach is used to avoid further endogeneity issues. For this purpose, indexes 

of prices of these inputs were used as instruments. Given that the interactions of the 

instrumented inputs, fertilizer and chemicals, with themselves and with the other 

variables are also endogenous, instruments for these interactions were also created.
11

  

As established in equation (2) the first derivative of the translog production 

function with respect to the logarithm of each input corresponds to the production 

elasticities 𝛾𝑖𝑗𝑡  that, given our assumptions of profit maximization and perfect 

competition, are equal to the factor shares 𝑠𝑖𝑗𝑡 . These elasticities vary with time (t) and 

county inputs (i, j) in the following way:  

𝛾𝑖𝑗𝑡 =   
𝜕𝑦𝑖𝑡
𝜕𝑥𝑖𝑗𝑡

 =   
𝜕𝑌𝑖𝑡
𝜕𝑋𝑖𝑗𝑡

 ∙  
𝑋𝑖𝑗𝑡

𝑌𝑖𝑡
 = 𝛽𝑗 +  𝛽𝑗𝑘 𝑥𝑖𝑘𝑡 + 𝜑𝑗 𝑡 

3

𝑘≠𝑗

 (7) 

The most important results of our study are found in estimates of the impact on 

yields of the natural environment e, in particular the weather variables that condition 

management decisions. Per equation (3) the following semi-elasticity captures the impact 

of degree days: 

𝜇𝑑𝑑𝑖𝑡 =
𝜕𝑦𝑖𝑡

𝜕𝑑𝑤
=   𝜔𝑤 + 𝜔𝑤3𝑥𝑖3𝑡              𝑤 = 𝑑𝑑0030, 𝑑𝑑3035, 𝑑𝑑35     (8) 
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while the precipitation and soil carbon elasticities are: 

𝜇𝑠𝑜𝑚𝑖𝑡 =
𝜕𝑦𝑖𝑡

𝜕𝑠𝑜𝑚 𝑖𝑡
=  𝜃2  + 𝜃23𝑥𝑖3𝑡                        (9)     

𝜇𝑟𝑖𝑡 =
𝜕𝑦𝑖𝑡

𝜕𝑟𝑖𝑡
= 𝜃1  + 𝜃11𝑟𝑖𝑡 + 𝜃13𝑥𝑖3𝑡         (10)      

As stated in equation (4), the first derivative of the production function with respect to the 

time trend t, used as a proxy for technical change, can be interpreted as the primal rate of 

technical change in county i, year t: 

𝜕𝑦𝑖𝑡
𝜕𝑡

= 𝜏1 + 𝜏2 𝑡 
 +  𝜑𝑗𝑥𝑖𝑗𝑡

3

𝑗=1

 (11) 

The biases in technical change (5) also vary with time and input use and are: 

𝐵𝑗 =
𝜕𝑠𝑗

𝜕𝑡
=  𝜑𝑗  ,      ∀ 𝑗 (12) 

If 𝐵𝑗  
> 0 the technical change is biased toward input j; if 𝐵𝑗  

< 0 the technical change 

biased against input j. In this way we are able to estimate if agricultural technical change 

in the Great Plains has been biased for or against the use of irrigation, important in the 

context of this study. 

 

Data description 

The unit of analysis is the county, the area of analysis consists of 101 counties spread 

along the 41º N latitude parallel in the U.S. Midwest, examined over the period 1960-

2008. This area is chosen because it encompasses an 800-mile climatic gradient from the 

Rocky Mountains to the Mississippi River that includes 47 counties in Nebraska, 47 

counties in Iowa, 4 counties in Colorado and 3 counties in Wyoming (figure 1). The area 
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ranges from rain-fed crops with high precipitation and high soil carbon in the east to 

highly irrigated crops with low precipitation and moderate soil carbon in the west. This 

vast gradient of weather, soil and ground water characteristics makes this region ideal for 

re-evaluating the impact of weather on production. 

[Figure 1] 

The dependent variable is the logarithm of the total amount of agricultural 

biomass produced (a more general measure than individual crop production) in the 

county, in dry megagrams (Mg) per hectare planted (harvested crop plus estimated crop 

residual, aggregated across all crops). Coefficients used to convert to megagrams from 

bushels were 0.0254 for corn, sorghum and rye and 0.0272 for wheat and soybeans. 

The unharvested biomass for each crop was estimated by multiplying the reported 

harvested production by one minus the respective harvest index, where this index is the 

fraction of the above-ground biomass that is usually harvested according to the 

agronomic literature (Hay, 1995; Unkovich et at., 2010). The following harvest indexes 

were used: 0.50 for corn and sorghum for grain; 1.00 for corn and sorghum for silage and 

hay; 0.40 for soybeans, and 0.35-0.85 for rye and barley and other minor crops.  

The estimated total production for each crop was converted to dry matter (DM) by 

multiplying the metric tons produced by one minus the respective moisture index of that 

crop. The indexes used follow Loomis and Connor (1992): 0.145 for corn and sorghum 

for grain, 0.145 for barley and rye; 0.55 for corn and sorghum for silage; 0.135 for wheat; 

0.13 for soybeans and beans and 0.10-0.78 for other minor crops. 
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The county-level yields were obtained by dividing the biomass produced by the total 

planted area for all crops for each county. Annual harvested production and planted land 

data were obtained from the U.S. Department of Agriculture’s National Agricultural 

Statistical Service (USDA-NASS). 

The independent variables under farmers’ control include quantities of fertilizer 

and chemicals, and the fraction of planted area that was irrigated. The variables not under 

farmers’ control are the environmental variables. These are soil organic matter, 

precipitation and degree days.  

Fertilizer and chemical inputs are measured as implicit indexes of quantity per 

hectare planted. These indexes were estimated from the county expenditures on these 

inputs published by the Census of Agriculture as reported by USDA-NASS. The quantity 

indexes were constructed for each census year by dividing the reported total expenditure 

by price indexes obtained from USDA-ERS for fertilizers and USDA-NASS for 

chemicals (base 1990-1992=100). These implicit quantities were then divided by total 

planted area to obtain indexes of quantities applied per hectare by county and census 

year. Since the census is done generally every five years, the missing years were 

estimated by linear interpolation of these county quantity indexes between census years 

(implying an inelastic demand for these inputs between census years).  Finally, these 

indexes were divided by the index in Adams County, Nebraska, for year 1960, converting 

them to a multilateral index.  
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 The irrigation variable is the ratio of planted land that has been irrigated to total 

planted land. There is an important variability in percentage of irrigated land across time 

and space with higher values in the center of Nebraska and zero values in Iowa
12

. 

To account for the differences in soil quality we include average megagrams (Mg) 

of soil organic matter (SOM) per hectare for each county. This variable was obtained 

from Lakoh (2012). Using 2010 data on Soil Organic Carbon (SOC) from the Soil Survey 

Geographic Database (SSURGO), Lakoh estimated average SOC levels per county for 

2010, then estimated levels for the period 1960-2008 retroactively from 2010 initial 

values using modified versions of the DK model as described by Liska et al. (2014). An 

approximate SOC to soil organic matter (SOM) conversion factor of 2.0 was then applied 

to convert the series to SOM (Liska et al., 2014).   

Turning to the weather variables, data on degree days and precipitation were 

estimated from weather station data collected from the United States Historical 

Climatology Network. From these data, a county average daily precipitation value (in 

centimeters) and county average daily maximum and minimum temperatures were 

constructed from temperature and precipitation results for each day during the growing 

season (March to August). To obtain county-level values for these daily observations, we 

used a weighted average of data from the 5 closest stations to the center of each county. 

For weighting, we used a Shephard inverse distance function: 

𝑢(𝑞𝑘) =  
𝑏𝑖𝑘  𝑞𝑖

 𝑏𝑗𝑘
5
𝑗=0

5
𝑖=0  ,  where 𝑏𝑖𝑘 =

1

𝑑𝑖𝑘
2  ,    (13) 
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where qk denotes the interpolated value for county k, qi is the measurement at weather 

station i, and d is the distance from the weather station i to the center of county k. These 

daily data at the county level were then used to construct the yearly precipitation and 

degree days data for each county.  

To measure the impact of temperatures on yield we use an adaptation of the 

agronomic measure “growing degree days.” Following this literature, a growing degree 

day is defined as the amount of time (in days) where the temperature is above a certain 

threshold; one degree-day is accumulated when the temperature is one degree above the 

threshold for a 24-hour period (Ritchie and Nesmith, 1991). To estimate degree days we 

adapt Snyder’s (1985) method, which uses a bell-shaped curve to estimate from 

maximum and minimum daily temperatures the number of hours during the day that the 

temperature was within a specific interval. We convert these values into fractions of a 

day, then sum the fractions over the growing season to provide the variables for this 

analysis
13

. 

  We constructed growing season degree day variables for three intervals that cover 

all the temperatures higher than 0ºC. The lower temperature interval, dd0030, covers the 

degree days from 0ºC to less than 30ºC, the next interval, dd3035, covers the range 30ºC 

to less than 35ºC and the higher temperatures interval, dd35plus, covers temperatures 

equal or higher than 35ºC.   

Figure 2 depicts the average numbers of degree days for the growing season for 

the hottest degree day interval, dd35plus. It can be seen that there is an increasing amount 
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of time with temperatures higher than 35ºC moving from eastern Iowa to western 

Nebraska. 

[Figure 2] 

[Figure 3] 

The precipitation variable used is the logarithm of the total amount of 

precipitation, in centimeters, accumulated during the growing season. To construct these 

values, the estimated daily values for each county (weighted averages constructed using 

equation 13) were added for March through August. As shown in figure 3, there is a 

substantial decrease in average precipitation towards the West. In counties in eastern 

Iowa the average yearly precipitation was near 60 cm, in counties in western Nebraska, 

Colorado and Wyoming the average yearly precipitation was below 30 cm.   

As seen in figure 2 and figure 3, the area of study shows a rich variability in 

weather variables.  Precipitation increases towards the East and temperature degree days 

increase toward the West. 

Summary statistics are presented in table A.1 in the Appendix.  

 

Results 

The parameters obtained by the joint estimation of equations (6), using iterated Three-

Stage Least Squares, are shown in table A.2 in the Appendix.  Before focusing on 

weather effects, we discuss the characteristics of the technology estimated and results of 

post estimation tests. Of the 25 parameters estimated, 22 are significantly different from 
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zero at the 99% confidence level. The pseudo R squared is 0.702. Although this standard 

goodness of fit cannot be interpreted as the proportion of the variance explained when 

estimating a three-stage least squares system of equations, it still provides a useful 

indication of the overall predictive power of the estimators (Toft and Bjørndal, 1997).  

A Wald test rejects the nested Cobb-Douglas form as a better specification. The 

Wald test on the 𝛽𝑗𝑘  coefficients equal to zero rejects the hypothesis that all the inputs are 

additively separable (∀ 𝑗, 𝑘 ) and strongly separable (∀ 𝑗 ≠ 𝑘), meaning that the translog 

specification is preferred to a Cobb-Douglas specification.   

We employ a “pairs bootstrap” methodology (Freedman, 1981) for the estimation 

of the standard errors. Following MacKinnon (2002) and Flachaire (2004) pairs 

bootstrapping gives robust estimates under heteroskedasticity. Additionally, we estimated 

the system using standard 3SLS to check for robustness of results and found no 

qualitative changes in the significance of the estimated parameters. 

 Evaluated at the average of the observations, the technology is monotone for all 

the inputs, but this is not true at each data point. The percentages of monotonicity 

violations are 1.71% for fertilizer, 2.57% for chemicals and 0% for irrigation. The 

determinants of the bordered Hessian indicate quasiconcavity violations at 11.34% of the 

observations. Given the lack of irrigation in Iowa we do not account for this state in the 

previously reported monotonicity and quasiconcavity violations since it is not possible to 

estimate the bordered Hessian matrix for a translog specification when some inputs are 

equal to 0.  
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The elasticities of production estimated as described in equation (7) are shown in 

table 1. Since the translog specification allows the estimation of the elasticities for each 

data point, we only show average elasticities for each variable. The standard errors 

included in the table are evaluated at the means of the variables and they were estimated 

using the delta method.   

[Table 1] 

The production semi-elasticity of irrigation is significantly different from zero at the 95% 

confidence level, while the other elasticities are significant at the 99% confidence level. 

Our estimate of the production elasticity of fertilizer (0.193) is greater than Saha, 

Shumway and Havenner (1997) and Headley (1968), Hayami and Ruttan (1970) and 

Griliches (1963) who find values from 0.10 to 0.17. Our estimate of the production 

elasticity of chemicals (0.167) is greater than Ball’s (1985) estimate of 0.057. The semi-

elasticity of irrigation implies an increase in yields of 36.6% when irrigating
14

. This 

estimate is much higher than the Coelli and Rao (2005) estimate of 14.1% for the whole 

United States during 1980-2000. The interaction coefficients of irrigation and fertilizer 

and irrigation and chemicals reflect a positive effect of irrigation on fertilizer productivity 

and a negative effect on chemicals productivity. Additionally, if we only account for the 

counties that have any irrigation (counties in Nebraska, Colorado and Wyoming (NCW 

hereafter)) the average semi-elasticity of irrigation rises to 0.53; the exclusion of Iowa 

significantly shifts the estimate of this average elasticity. Except for Iowa where no 

irrigation is present due to adequate precipitation, the counties in the remaining states 

(NCW) compensate for lower levels of precipitation with higher levels of irrigation. By 
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increasing irrigated land these counties are able to obtain yields similar to Iowa rainfed 

counties. Figure 4 shows the relationship between biomass yields and share of irrigated 

land in our study. 

[Figure 4] 

 Table 1 also includes the average production elasticity for soil organic matter 

(SOM). This elasticity was found to be positive and significant at the 95% confidence 

level, indicating that a 10% increase in SOM induces a 0.13% increase in yields. This 

variable is more important in Iowa as the average elasticity for these counties is 0.07 

while the estimate for the counties in NCW is close to zero.  

The estimated rate of technical change, also known as the rate of total factor 

productivity (TFP) change, was calculated using equation (11).  As shown in table 1, the 

estimated average rate of technical change during 1960-2009 is 0.3% per year. This is 

lower than the 1.78% estimated by Alston, Babcock and Pardey (2010) for all of U.S. 

agriculture in 1949-2002 and lower than the 1.56% calculated by the USDA-ERS (2015) 

in 1960-2008. We note that many counties in the NCW irrigated areas have improved 

their relative rate of technical change from 1960 to 1980 and that the dispersion of the 

rate across counties has decreased considerably. 

 Using a Wald test, the hypothesis of Hicks neutrality was rejected. Table 2 shows 

the biases of technical change calculated using equation (12) and their standard errors. 

Technical change was fertilizer- and chemical-using and irrigation-saving. These results 

can be taken as evidence of a shift in the production technology that induced the use of 
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commercial inputs and an increase in the efficiency of water use for irrigation, both 

consistent with expectations.  

[Table 2] 

 

Weather Impact 

We focus now on the impacts of weather variables on yields and on decision making in 

agriculture of this Midwest region, the issue of interest in this study. Similar to other 

authors, we find a non-linear increasingly negative effect of higher temperatures on crop 

yields. While temperatures lower than 30ºC were found to have a positive effect on 

yields, higher temperatures have an increasing negative impact. Table 3 shows the 

marginal impact of each degree day interval on expected yield. 

[Table 3] 

The higher temperatures are of interest here. Our estimates indicate that for each extra 

day of temperatures between 30ºC and 35ºC, yields are expected to be reduced by 1.6 %. 

For even higher temperatures, above 35ºC, each extra day of exposure is predicted to 

decrease yields by 23.0%. Comparing our results with those of Schlenker and Roberts 

(2009), we find similar impacts of temperatures up to 35ºC, but above this threshold, they 

estimate yield reductions of about 6% for each day of exposure, compared to our estimate 

of 23.13%. Roberts, Schlenker and Eyer (2012) find similar estimates to ours for 

temperatures between 10ºC and 29ºC.  For days with temperatures higher than 29ºC they 

estimate a negative effect of 6.2%, which is not inconsistent with our estimates of 1.6% 

for 30-35 degree days and 23.13% for days above 35ºC
15

. These two studies focused on 
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corn and soybean yields in rain fed counties in the U.S. east of the 100th meridian and 

their models give no role to management. We instead use an economic decision-making 

model focused on total biomass yields in a subset of counties in Iowa, Nebraska, 

Colorado and Wyoming that include rain-fed and irrigated agriculture.  

Our estimates indicate that converting land from rainfed to irrigated production 

decreases the negative effect of an extra day with high temperatures by 58%. Figure 6 

depicts the marginal effects of temperatures for counties in Iowa versus counties in the 

remaining states (NCW). We observe that, given the lack of irrigation in Iowa, the 

negative impact of degree days (-31% per 24 hours above 35 ºC) is more severe than in 

the counties in the states that use irrigation to counter higher temperatures (-15% per 24-

hours above 35 ºC). These temperature-irrigation interactions on Midwest agriculture 

yields, are new and not found in any of the previous studies.  

[Figure 6] 

Irrigation thus alleviates much of the harmful effect of higher temperatures. By 

converting a hectare of land from rainfed to irrigated production, about three-fourths of 

the negative impact of high temperatures on biomass yields is ameliorated
16

. 

 With respect to precipitation, our estimates of the effects in individual 

counties were highly significant, but when we average these effects and their standard 

errors as in table 3, we found that the average effect was only marginally significant 

statistically
17

. Similar to Lobell (2007), Schlenker and Roberts (2009) and Roberts, 

Schlenker and Eyer (2012), we found that the effect of this variable follows an inverted U 

shape. Because of the negative interaction coefficient between irrigation and rainfall, the 
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amount of rainfall during the growing season that maximizes yield is affected by 

irrigation: it is 47.51 cm with no irrigation
18

, compared to 35.13 cm under irrigation. This 

difference is 12.38 cm. Irrigation substitutes for about 12.38 cm, or about 25%, of natural 

rainfall during the growing season. The negative interaction coefficient for irrigation and 

precipitation means both that the marginal product of precipitation is lower under 

irrigation and that the marginal product of irrigation is lower as precipitation increases, 

both of which are inherently logical and expected. 

 

Conclusions 

This study provides evidence of the impact of weather on irrigated and rainfed 

agricultural production in the Great Plains. We show that irrigation increases biomass 

yields in this region by about 36.6%, that extreme temperatures decrease biomass yields 

by 1.6% for each 24-hours subjected to 30ºC and 35ºC temperatures and 23% for each 

24- hours above 35ºC.  Our results further show that irrigated agriculture reduces these 

adverse impacts by about 58%.  The estimated effect of growing season precipitation 

follows the expected inverted U shape, with maximum yields occurring at about 47.51 

cm without irrigation, and 35.13 cm with irrigation.  

 In contrast to agronomic studies of yield, this economic study includes the results 

of both weather and decisions made by farmers given their market and natural 

environments. This improves our estimates of weather effects by adjusting them to 

account for adaptive behavior by farmers in their choice of irrigation and quantities of 

fertilizer and chemicals. 
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Our results are qualitatively similar to Schlenker and Roberts’ (2009) findings but 

provide additional information. First, we are able to disentangle the yield impacts of 

unabated weather itself from the effects of management on weather impacts. In the 

absence of this interaction information, as is the case for most weather-yield studies, the 

effects of weather itself are likely to be underestimated. Second, we estimate that the 

harmful effect of temperatures above 35ºC can be substantially offset by the use of 

irrigation. In semi-arid areas like western Nebraska and eastern Colorado and Wyoming, 

for example, farmers compensate for both higher temperatures and lower precipitation by 

choosing high levels of irrigation. Hence, the transformation of rainfed to irrigated land is 

an effective mechanism to cope with possible increases in average temperatures. Third, 

we are able to estimate the contribution of fertilizer and chemicals to yield changes; with 

production elasticities of 0.19 and 0.17, respectively. Fourth, we find that technical 

change in this region and during the period of analysis was, on average, 0.3%, and was 

fertilizer and chemicals using.  

Our results quantify the critical effects that high temperatures have on agricultural 

productivity in the context of an agent-based model. Given the climatic and hydrologic 

variability observed in our area of analysis, these conclusions might be representative of 

other temperate regions of the world. 
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Tables and Figures 

 

Figure 1.  Study counties along the 41
st
 parallel north 

 

 

Figure 2. Average number of degree days above 35ºC during the growing season in 

study counties, 1960-2008 
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Figure 3. Average growing season precipitation (cm) in study counties, 1960-2008  

 

 

Table 1. Elasticities and Semi-elasticities of Production Estimated at their Means in 

Study Counties along the 41
st
 Parallel North in Iowa, Nebraska, Colorado and 

Wyoming, 1960-2008 

Variable Elasticity Std. Err. 

Fertilizer            0.193                  0.005  

Chemicals            0.167                  0.007  

Irrigation ratio            0.366
a
                  0.047  

Soil organic matter            0.013                  0.016  

Time Trend            0.003
a
       <0.001 

  
a
semi-elasticity 
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Figure 4. Yield (Mg per ha) (online) and percentage of irrigated land in counties in 

Iowa, Nebraska, Colorado and Wyoming (NCW), 1960-2008 
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Figure 5. Estimated rate of technical change per year for each county in selected 

counties of Iowa, Nebraska, Colorado and Wyoming, 1960-2008  

 

Table 2. Biases of Technical Change Estimated at their Means in Study Counties 

along the 41
st
 Parallel North in Iowa, Nebraska, Colorado and Wyoming, 1960-2008 

Input Bias Std. Err. 

Fertilizer 0.0005 <0.001 

Chemical 0.0004 <0.001 

Irrigation -0.00023 0.0008 

 

 

Table 3 – Average Impact of Weather Variables on Biomass Yields, Estimated in 

Study Counties along the 41
st
 Parallel North in Iowa, Nebraska, Colorado and 

Wyoming, 1960-2008 

Variable Marginal effect Std. Err. 

dd0030 (days) 0.0036  0.0070  

dd3035 (days) -0.0169 0.0026  

dd35plus (days) -0.2631 0.0303  

Precipitation (ln(cm)) -0.0637 0.0197  
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Figure 6.  Marginal effect of degree day temperature intervals on biomass yield for 

subset of counties in Iowa, Nebraska, Colorado, and Wyoming, 1960-2008  

 

Table A.1 - Summary Statistics in Study Counties along the 41st Parallel North in 

Iowa, Nebraska, Colorado and Wyoming, 1960-2008  
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dd0030

dd3035

dd35plus

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Fertilizer 21.56    6.34      0.27 44.40        17.92     8.65      0.04 48.19    

Chemicals 16.38    6.45      2.62 44.52        10.79     6.54      0.24 32.28    

Irrigation ratio -       -       -       -            0.45       0.22      0.00 0.91      

SOM (Mg/ha) 175.89  39.01    101.08 316.70      106.33   24.12    62.67 175.80  

Time period 24.00    14.15    0.00 48.00        24.00     14.15    0.00 48.00    

Precipitation (cm) 58.80    13.96    23.01 125.73      46.80     13.35    12.83 111.71  

dd0030 165.89  5.45      147.68 178.83      163.50   5.29      148.83 177.27  

dd3035 3.21      2.09      0.14 12.78        4.92       2.13      0.26 12.05    

dd35plus 0.06      0.17      0.00 1.56          0.20       0.25      0.00 1.90      

Share Fertilizer 0.06      0.02      0.00 0.16          0.06       0.03      0.00 0.25      

Share Chemicals 0.03      0.01      0.01 0.10          0.03       0.01      0.00 0.08      

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Fertilizer 15.48    6.21      1.21 32.10        10.07     4.59      0.78 21.93    

Chemicals 9.46      6.23      1.08 27.50        5.50       3.13      0.41 11.24    

Irrigation ratio 0.35      0.14      0.01 0.68          0.43       0.14      0.17 0.83      

SOM (Mg/ha) 88.31    16.26    60.44 108.30      57.00     10.71    46.55 73.20    

Time period 24.00    14.18    0.00 48.00        24.00     14.19    0.00 48.00    

Precipitation (cm) 32.99    7.03      15.14 51.92        25.39     6.73      11.94 41.99    

dd0030 161.47  4.94      148.96 174.28      160.58   4.98      147.69 172.34  

dd3035 4.41      2.12      0.27 9.18          3.04       1.72      0.26 8.09      

dd35plus 0.20      0.20      0.00 0.91          0.12       0.16      0.00 0.82      

Share Fertilizer 0.06      0.02      0.00 0.11          0.05       0.03      0.00 0.15      

Share Chemicals 0.03      0.01      0.00 0.07          0.02       0.01      0.00 0.05      

11.94

147.68

0.14

0.00

0.00

0.00

Wyoming (3 counties)Colorado (4 counties)

14.15              

15.68              

5.54                

2.26                

0.22                

0.02                

125.73                  

178.83                  

12.78                    

1.90                      

0.25                      

0.10                      

48.00                    

Share Fertilizer

Share Chemicals

164.44                  

4.05                      

0.13                      

0.06                      

0.03                      

0.00

0.01                

Iowa (47 counties)

51.20                    

Mean

13.18                    

0.23                      

136.53                  

24.00                    

Nebraska (47  counties)

Precipitation (cm)

Complete region (101 counties)

Max

44.52                    

0.91                      

316.70                  

0.24

Variable

Chemicals

Irrigation ratio

SOM (Mg/ha)

Time period

0.27                

MinStd. Dev.

49.17              

0.00

46.55

7.12                
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Table A.2 - Parameters Estimated Using Iterated Three-stage Least-Squares

  
                                                                              

     fert_chem_pr1960 

     fertpr1960sq chempr1960sq fertpr60_x1 chempr60_x1 chempr60_t fertpr60_t 

     dd35plus dd0030x1 dd3035x1 dd35plusx1 t tsq x1t fertpr1960 chempr1960 

Exogenous variables:   x1 lnx6 lnx5 x1sq lnx6sq x1_x6 x15 dd0030 dd3035 

     chemha_t 

     lnfertpha60sq lnchempha60sq x1_fertha x1_chemha fertha_chemha fertha_t 

Endogenous variables:  lny sharefert sharechem lnfertpha60 lnchempha60 

                                                                               

        _cons     .0197663   .0005874    33.65   0.000      .018615    .0209177

            t     .0006428   .0000391    16.45   0.000     .0005662    .0007194

  lnchempha60      .020963   .0012076    17.36   0.000     .0185961    .0233299

  lnfertpha60     -.012756   .0014155    -9.01   0.000    -.0155303   -.0099816

           x1    -.0140799   .0011928   -11.80   0.000    -.0164178   -.0117419

sharechem      

                                                                               

        _cons     .0833962   .0011319    73.68   0.000     .0811778    .0856147

            t     .0007974   .0000451    17.67   0.000     .0007089    .0008858

  lnchempha60     -.012756   .0014155    -9.01   0.000    -.0155303   -.0099816

  lnfertpha60     .0295802   .0017552    16.85   0.000       .02614    .0330203

           x1     .0121514   .0020195     6.02   0.000     .0081932    .0161096

sharefert      

                                                                               

        _cons    -3.706356   .3501841   -10.58   0.000    -4.392704   -3.020007

     chemha_t     .0006428   .0000391    16.45   0.000     .0005662    .0007194

     fertha_t     .0007974   .0000451    17.67   0.000     .0007089    .0008858

          x1t    -.0032466   .0009228    -3.52   0.000    -.0050552   -.0014381

          tsq     .0000602   .0000194     3.10   0.002     .0000222    .0000983

            t    -.0012032   .0010686    -1.13   0.260    -.0032977    .0008912

   dd35plusx1     .5771791   .0866024     6.66   0.000     .4074415    .7469167

     dd3035x1     .0286606   .0061365     4.67   0.000     .0166333     .040688

     dd0030x1     .0030523   .0018099     1.69   0.092     -.000495    .0065995

     dd35plus     -.374998   .0344756   -10.88   0.000    -.4425689    -.307427

       dd3035    -.0224774   .0027797    -8.09   0.000    -.0279254   -.0170293

       dd0030     .0030203   .0006389     4.73   0.000      .001768    .0042726

fertha_chemha     -.012756   .0014155    -9.01   0.000    -.0155303   -.0099816

          x15    -.2706849   .0404083    -6.70   0.000    -.3498838    -.191486

        x1_x6    -.2198005   .0431516    -5.09   0.000     -.304376   -.1352249

    x1_chemha    -.0140799   .0011928   -11.80   0.000    -.0164178   -.0117419

    x1_fertha     .0121514   .0020195     6.02   0.000     .0081932    .0161096

       lnx6sq    -.3119567   .0210561   -14.82   0.000     -.353226   -.2706874

lnchempha60sq      .041926   .0024152    17.36   0.000     .0371923    .0466597

lnfertpha60sq     .0591603   .0035104    16.85   0.000     .0522801    .0660406

         x1sq     .0946995   .0671738     1.41   0.159    -.0369587    .2263576

         lnx5     .0658375   .0162649     4.05   0.000     .0339589    .0977161

         lnx6     2.403443   .1691807    14.21   0.000     2.071855    2.735031

  lnchempha60     .0197663   .0005874    33.65   0.000      .018615    .0209177

  lnfertpha60     .0833962   .0011319    73.68   0.000     .0811778    .0856147

           x1     1.897078   .3832981     4.95   0.000     1.145828    2.648329

lny            

                                                                               

                     Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                  Observed   Bootstrap                         Normal-based

                                                                               

 (10)  - [lny]lnchempha60 + [sharechem]_cons = 0

 ( 9)  - [lny]lnfertpha60 + [sharefert]_cons = 0

 ( 8)  - [lny]chemha_t + [sharechem]t = 0

 ( 7)  - [lny]x1_chemha + [sharechem]x1 = 0

 ( 6)  - .5*[lny]lnchempha60sq + [sharechem]lnchempha60 = 0

 ( 5)  - [lny]fertha_t + [sharefert]t = 0

 ( 4)  - [lny]x1_fertha + [sharefert]x1 = 0

 ( 3)  - [lny]fertha_chemha + [sharefert]lnchempha60 = 0

 ( 2)  - .5*[lny]lnfertpha60sq + [sharefert]lnfertpha60 = 0

 ( 1)  [sharefert]lnchempha60 - [sharechem]lnfertpha60 = 0

                                                                      

sharechem        4949      4    .0162825    0.5987    6747.21   0.0000

sharefert        4949      4    .0295918    0.3451    1467.25   0.0000

lny              4949     25    .1916884    0.7022  100523.88   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Three-stage least-squares regression, iterated 
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Footnotes 

1. Support acknowledgements. 

2. Corresponding author information. 

3. Coauthors credentials 

4. Nelson et al. (2014) use five crop models, two climate models, nine global economic 

models, and seven climate change scenarios to show that the impact of climate change in 

global agriculture require integration across these models. 

5. A degree day is defined as 24 hours with temperatures one degree above certain 

threshold. 

6. Except for Schlenker and Roberts 2009 when considering cotton yields. 

7. Hicksian pair-wise biases are defined as the change in the marginal rate of substitution 

between two inputs as a result of technical change and their sum for each input result in 

the overall measure of bias in (5). 

8. Quadratic production functions with many parameters relative to the number of 

observations might suffer from low precision and might result in imprecise parameter 

estimates. The joint estimation of the factor shares and the production function leads to 

higher efficiency since the higher information present in the joint estimation can 

compensate for the information inadequacy in the production function alone (Ray, 1982). 

 9. We have included only share equations for fertilizers and chemicals because we lack 

county level information on labor, capital, and cost of irrigation.  

 10. An estimation of an average yield function is preferable if the data being analyzed 

are subject to heteroskedasticity (Jacobs, Smith and Street, 2006). 
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11. Reg3 command in STATA version 12.0 was used for the econometric estimations. 

12. Given the minimal levels of irrigation present in Iowa, USDA does not report the 

amount of planted land that was irrigated. 

13.  This is necessary because of the area under the approximation curve. 

14. Given that irrigation is not a logarithm, the percentage change in yield will be given 

by exp(.263)=.2313. 

15. We also ran an OLS regression of yields on weather variables and county dummies 

that is closer to the specification used by Schlenker and Roberts (2009). We again found 

a significant increasingly negative effect of higher temperatures on biomass yield. 

16. The interaction coefficients between the degree day intervals and irrigation are the 

following (p-values in parenthesis):  dd0030: 0.003 (0.0023); dd3035: 0.0286 (0.0069); 

dd35plus: 0.577 (0.070). 

17. Coefficient estimates related to precipitation are all highly significant. 

18. Grassini et al. (2011) report a 90 cm water supply required to achieve mean yield full 

potential, around 45% of it (~40.5cm) from seasonal water supply. 

 

 


