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Abstract: 

Rice farming remains an important undertaking in Asia and Africa due to its important role in maintaining 
essential food supply. Rice ranks second to maize in providing more than one-fifth of the calories consumed 
worldwide. In Kenya, rice is an important food crop and cash crop. A survey of 773 farmers was undertaken 
in Mwea, West Kano, Ahero and Bunyala rice growing regions to investigate the technical efficiency and 
technology gap ratios. The meta-frontier estimates indicate that the technical efficiency of Mwea, West 
Kano, Ahero and Bunyala was 0.556, 0.475, 0.402 and 0.45 respectively. The regional efficiencies indicate 
that the technical efficiency of Mwea, WestKano, Ahero and Bunyala was 0.557, 0.784, 0.833 and 0.937 
respectively. Thus, the technology gap ratio was 0.998, 0.605, 0.482 and 0.48 for Mwea, West Kano, Ahero 
and Bunyala respectively. The results thus suggest that a narrow gap existed between the region and the 
meta-frontier results for Mwea, while a wider gap existed for West Kano, Ahero and Bunyala implying that 
Mwea farmers were more technically efficient than farmers in the other schemes. Using the fractional 
regression models the determinants of efficiency were found to be age, farmer’s gender, humidity, rainfall, 
temperature and adopting technologies.   
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Technical efficiency and technology gap ratios among rice farmers in Kenya 

 

Abstract 
Rice farming remains an important undertaking in Asia and Africa due to its important role in 

maintaining essential food supply. Rice ranks second to maize in providing more than one-fifth of 

the calories consumed worldwide. In Kenya, rice is an important food crop and cash crop. A survey 

of 773 farmers was undertaken in Mwea, West Kano, Ahero and Bunyala rice growing regions to 

investigate the technical efficiency and technology gap ratios. The meta-frontier estimates indicate 

that the technical efficiency of Mwea, West Kano, Ahero and Bunyala was 0.556, 0.475, 0.402 and 

0.45 respectively. The regional efficiencies indicate that the technical efficiency of Mwea, 

WestKano, Ahero and Bunyala was 0.557, 0.784, 0.833 and 0.937 respectively. Thus, the 

technology gap ratio was 0.998, 0.605, 0.482 and 0.48 for Mwea, West Kano, Ahero and Bunyala 

respectively. The results thus suggest that a narrow gap existed between the region and the meta-

frontier results for Mwea, while a wider gap existed for West Kano, Ahero and Bunyala implying 

that Mwea farmers were more technically efficient than farmers in the other schemes. Using the 

fractional regression models the determinants of efficiency were found to be age, farmer’s gender, 

humidity, rainfall, temperature and adopting technologies.   
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Introduction 

The global population now at 7 billion is still growing rapidly and is projected to 

reach 9 billion by 2050, and increasing incomes and urbanization will inevitably lead to 

dietary change. The food security challenge will increasingly encompass the triple burden 

of malnutrition-undernutrition, obesity and micronutrient deficiencies especially in 

developing countries where food production is being constrained by low productivity. In 

recent times, significant emphasis and substantial resources have been focussed on 

increasing food production in many countries (Nagothu, 2014; Wei et al., 2009; Wilson et 

al., 2013). In countries where food insecurity is rampant, the policy-makers aim to improve 

productivity by turning the root causes of chronic food insecurity into priority objectives 

for development. Kenya’s hunger level is rated as “serious” placing it ahead of countries 

such as Pakistan and Iraq despite Kenya ranking as one of the largest and fast-growing 

economies in the Eastern and Central African region. Over ten million Kenyans suffer from 
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chronic food insecurity and a further 1.8 million children are classified as chronically 

undernourished. In addition, between two and four million people every year are in dire 

need of food relief (GoK, 2011). Due to the hunger concern, the right to food is now 

articulated in Article 43 (c) of Kenya’s constitution of 2010 which states that “each 

individual has the right to be free from hunger and to have adequate food of an acceptable 

quality” (Constitution of Kenya, 2010). 

Rice is one of the crops earmarked worldwide as a food security crop that is capable 

of reducing the number of gravely food insecure people since the World Food Summit of 

1996 and is being promoted in many African countries. Rice farming is an important 

concern in many countries both in Asia and Africa because of its important role in 

maintaining domestic food security and as well as improving agricultural development 

(Bishwajit et al., 2013; Enwerem & Ohajianya, 2013; Heriqbaldi, Purwono, Haryanto, & 

Primanthi, 2014; Kadiri et al., 2014; Khai & Yabe, 2011; Mushtaq, Maraseni, Maroulis, & 

Hafeez, 2009).  

Globally, rice is one of the most important food crops and ranks second only to maize 

in terms of total volume of production providing more than one fifth of the calories 

consumed worldwide by human beings (Dawe, Pandey, & Nelson, 2010). Rice 

consumption continues to rise steadily in sub-Saharan Africa where the increase has been 

by more than 50%. Further increase in demand has been projected in many African 

countries, for example, in Central and Eastern Africa high population growth and increased 

purchasing power associated with rapid increases in income is expected to increase demand 

for rice by about 300% between 2010 and 2050. Instructively, rice demand in both regions 

is still expected to double if income growth is more limited but population growth occurs 
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at a more rapid rate (Zuberi & Thomas, 2012). It is projected that 112 million tons of 

additional rice will be needed globally by 2040 and nearly 40% of this additional demand 

will be coming from Africa. Hence unless rice production in Africa keeps pace with its 

rising consumption, then the continent is likely to emerge as a growing importer of rice 

from Asia (Mohanty, 2013). Despite the importance of this crop, rice remains a political 

commodity since in most cases the government is a major player in the development of the 

rice infrastructure such as irrigation facilities, input supplies, credit or the market function. 

Thus, as a result government policies can have a major bearing on the incentive an 

individual farmer or miller has for increasing production.   

Rice is one important crop that has attained a staple food status in Kenya and also 

become a source of calories for the urban people. Rice is 3rd after maize and wheat in order 

of economic importance among cereals in Kenya. Annual demand for rice in Kenya has 

been growing much more rapidly than production, at an average rate of 11 percent per year 

between 1963 and 2013. The estimated rice production is at 325,000 tons which exceeds 

the national rice production currently estimated at 110,000 tons by about 200%. This huge 

gap between consumption and production is met through imports which costs the country 

millions of dollars (GoK, 2010). Kenya’s rice import dependency ratio for the decade 

remains high, at more than 80% which means local production only meets about 20% of 

the demand. Kenya imports nearly all of its rice from the East Asia, with Pakistan 

accounting for 74% of total rice imports during the period 2006-2013. Kenya has set a 

target of increasing rice production to 178,580 MT/year by 2018 as set out in its National 

Rice Development Strategy (NRDS) in order to stabilize the rice consumption. The specific 

strategies as spelled out in the plan include the use of quality inputs especially seeds, deploy 
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extension officers in rice growing areas, mechanization and post-harvest technology 

improvement among others.  

This paper has two major objectives, first it will quantify the technical efficiency of 

rice farming sector of Kenya and second it will identify the determinants of efficiency. 

Since the Kenyan market heavily relies on rice imports, analysis of efficiency becomes 

important since it will help the farmers to identify and eliminate their source of inefficiency 

hence become more efficient. This research will help identify incentives and policies that 

could lead to the adoption of sustainable rice farming practices.  

The rest of the paper is organized as follows. A review of existing studies is outlined 

in section 2. A summary of the methods used and the data sources is presented in section 

3. The results are presented in section 4. Section 5 concludes the paper and draws some 

policy implications. 

 

2.0 Literature on rice processing 

There exists a significant number of studies in the literature focusing on technical 

and allocative efficiency of various crops in different regions or countries (Gebregziabher 

et al., 2012; Iraizoz et al., 2003; Latruffe, et al., 2004; Sekhon et al., 2010; Wadud, 2003). 

Studies on rice farming efficiency that exist in the literature include the analysis of rice 

production in the Philippines (Pate & Cruz, 2007; Yao & Shively, 2007 and Villano & 

Fleming, 2006). Khai and Yabe (2011) examined rice farming in Vietnam while Tian & 

Wan (2000) have examined the technical efficiency of grain (rice, wheat and corn) 

production and its determinants in China. Coelli et.al. (2002) examined the efficiency 

(technical, allocative, cost and scale) of 406 rice farms in 21 villages of Bangladesh for the 
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year 1997 and found a difference in mean efficiency results between the dry (Boro) and 

wet (Aman) seasons. Chang & Wen (2011) analysed the technical efficiency and 

production risk for two categories of rice farmers in Taiwan i.e. those with off-farm work 

and those without off‐farm work and found differences in resource use among the two 

categories of rice farmers. The authors found that the farmers with off-farm work faced a 

higher production risk than those without off-farm income and that off farm income 

reduced inefficiency among the lower percentiles farmers.  

Although several studies on agriculture technical efficiency at the micro-level exist 

for Kenya (see Seyoum et al., 1998; Mochebelele & Winter, 2002), the bulk of these studies 

have been limited to a sample of farms mostly in the high potential zones and of dairy 

farmers. A few studies on rice farming in Kenya exist, mainly focusing on specific regions. 

For example, Omondi and Shikuku (2013) used the Cobb Douglas production function to 

evaluate Ahero irrigation scheme’s rice farming efficiency for 220 rice farmers and found 

the average technical efficiency to be 0.82. The authors established that the gender of the 

rice farmer, rice farming experience, the farmer’s income levels and market distance 

significantly affected efficiency. Mati et al. (2011) and Nyamai et al. (2012) evaluated the 

impact of adopting the system of rice intensification (SRI) among the rice farmers at the 

Mwea Irrigation Scheme. They found that the SRI had more benefits than the conventional 

method of rice growing, since it saved on water, seed, fertiliser and pesticides use, hence 

cutting rice farming costs. Gitau et al. (2011) evaluated Kenya’s trade and agriculture 

competitiveness in wheat and rice, and found inefficiencies along the rice chain which 

included: high labour costs, high migration rate and high fertiliser/seed costs. Kuria et al. 

(2003) examined Mwea’s rice farming efficiency by comparing one-season and two-season 



6 

 

rice producers and found that farmers growing a single crop of rice annually to be more 

efficient than those growing a double crop.  

The above review indicates that the studies fail to provide an in-depth analysis of 

Kenya’s rice farming system and of the factors that determine the efficiency levels. Rice 

in Kenya is cultivated under diverse agroecological conditions, which means farmers face 

different production technologies and opportunities, and therefore may make decisions 

based on the input-output level choices they make (O’Donnell et al., 2008). Hence, the 

assumption that farmers use the same technology can lead to biased results and that 

unobserved differences in production techniques may be inappropriately labelled as 

technical inefficiency (Villano et al., 2010; Jiang & Sharp, 2015). Currently, no study exists 

on the technical efficiency across the rice agro-ecological zones of Kenya, a gap that this 

study attempts to fill. To do so, the study examines rice farming efficiencies (technical, 

cost and allocative) and the technology gaps across four rice agro-ecological zones of 

Kenya, i.e., Mwea, Ahero, West Kano and Bunyala irrigation schemes and investigates the 

factors that determine the efficiency levels.  
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3.0 Methodology 

3.1: Data Envelopment Analysis 

Data envelopment analysis (DEA) is a linear programming based technique for 

measuring the relative performance of Decision Making Units (DMUs). DEA technique 

was originally developed by Charnes, Cooper, and Rhodes (1978) for the purpose of 

evaluating performance of non-profit and public sector organizations. DEA has been 

accepted as a major frontier technique for benchmarking many sectors such as energy 

(Abbott, 2006; Jamasb & Pollitt, 2000); education (Abbott & Doucouliagos, 2003); 

banking (Vassiloglou & Giokas, 1990); hospitals (Puig-Junoy, 2000); among others. 

Though DEA has a disadvantage of exaggerating the noise component, one main advantage 

is that does not require a functional form and can accommodation multiple outputs. In 

DEA, the input or output oriented models may be used. The input-oriented approach to 

technical efficiency estimates to what extent a DMU could reduce the resources employed 

and still produce the same output level. This represents the DMU’s resource intensity 

relative to best practice. The output-oriented DEA determines to what extent a DMU could 

increase its output level while employing the same level of resources. A DMU is considered 

efficient if it is on the best practice frontier and inefficient if vice versa. The linear 

programme solved for the ith firm/farm when using the output-oriented approach, can be 

represented as follows;  

𝑀𝑎𝑥Ф1 

Subject to: 

Ф1𝑦𝑘,𝑚 ≤ ∑ 𝑍𝑘
𝐾
𝑘=1 𝑦𝑘,𝑚   ∀𝑚    (1) 

∑ 𝑍𝑘
𝐾
𝑘=1 𝑥𝑘,𝑛 ≤ 𝑥𝑘,𝑛    𝑛 ∈ 𝛼    (2) 
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∑ 𝑍𝑘
𝐾
𝑘=1 𝑥𝑘,𝑚 = λ𝑘,𝑛𝑥𝑘,𝑛   𝑛 ∈ 𝛼̂    (3) 

λ𝑘,𝑛 ≥ 0     𝑛 ∈ 𝛼̂    (4) 

where Ф denotes a scalar showing by how much the firms can increase output; 𝑦𝑘,𝑚 

denotes the output m by farm/firm k; 𝑥𝑘,𝑛 denotes the input n used by farm/firm k and 𝑧𝑘 

are weighting factors. Inputs comprise of fixed factors and variable factors defined by the 

set as 𝛼̂. To calculate the capacity output measure, relaxing of the bounds on the sub-vector 

of variable inputs 𝑥𝛼̂ is required. Relaxing the bounds on the sub-vector is achieved by 

allowing the inputs to remain unconstrained through introducing a measure of the input 

utilising rate (λ𝑘,𝑛), estimated in the model for each firm k and variable input n (Färe et al., 

1994). The technically efficient capacity utilisation (TECU) based on observed output (u) 

becomes: 

𝑇𝐸𝐶𝑈 =  
𝑦

𝑦∗ =  
𝑦

ɸ1𝑦
=  

1

ɸ1

      (5) 

where y* denotes the capacity-output based on observed outputs y. The TECU 

measure ranges from zero to one, with one implying full capacity utilisation (i.e. 100% of 

capacity) which assumes efficient use of all the inputs exists at their optimal capacity. 

Efficiency measures of less than one indicates that the firm operates at less than full 

capacity given the set of fixed inputs.  

 

3.2 Meta-frontier analysis 

The concept of measuring efficiency using meta-frontier was first developed by 

Hayami and Ruttan (1970), and extended by Rao et al. (2003). The meta-frontier evaluates 

the efficiency of firms/units that operate under different production technologies or 

physical environment (climate, soil type and farming history). Several studies employ the 
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meta-frontier to evaluate technical efficiency and establish if there any technological gaps 

among firms operating under different production technologies in areas such as 

manufacturing (Rao et al., 2003; Battese et al., 2004); agriculture (Rao et al., 2008); 

tourism (Assaf et al., 2010) and environment (Yang, 2010; Oh, 2010; Sala‐Garrido et al., 

2011).  

The meta-technology as defined by Rao et al. (2003) is the total of the regional 

technologies. For example, if some output denoted by y, can be produced using an input 

quantity x in any given region, then x, y will belong to the meta-technology denoted as 𝑇∗. 

The meta-technology then will be expressed as follows: 

𝑇∗ = ((x, y): x ≥  0  and y ≥  0, such that x inputs will yield y outputs using at least one 

region specific technology, 𝑇1, 𝑇2, … … … … . ., 𝑇𝐾)     (6) 

The meta-technology is assumed to satisfy all the production axioms and the convexity 

axiom, expressed as the convex hull of the pooled region-specific technologies as follows:  

𝑇∗ ≡ Convex Hull (𝑇1ں… . . 𝑇2ں . . .  𝑇𝐾).      (7)ں

If the input-output distance function is known such that 𝐷0
∗(x, y)  and 𝐷𝑖

∗(x, y) denote 

for the output and input functions respectively using the meta-technology 𝑇∗then the results 

of any given region should be as follows: 

𝐷0
𝑘(x, y) ≥ 𝐷0

∗(x, y), k =  1, 2, … … … K) and  𝐷𝑖
𝑘 (x, y)  ≤  and 𝐷𝑖

∗(x, y).   (8) 

Thus, the output oriented technology gap ratio between the region k technology and 

the meta-technology is computed as follows: 

𝑇𝐺𝑅0
𝑘 (𝑥, 𝑦) =  

𝐷0
∗(x,y)

𝐷0
𝑘 (x,y)

        (9) 

The technology gap ratio when considering the output-oriented technical efficiency 

measure is denoted as follows: 
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𝑇𝐺𝑅0
𝑘 (𝑥, 𝑦) =  

𝑇𝐸0
∗(x,y)

𝑇𝐸0
𝑘 (x,y)

       (10) 

or: 𝑇𝐸0
∗(x, y) =  𝑇𝐸0

𝑘 (x, y) ∗ 𝑇𝐺𝑅0
𝑘 (𝑥, 𝑦)     (11) 

Figure 1 shows the relationship among three regional frontiers (1, 2 and 3 curves), 

the metafrontier (M curve) and the technology gap ratios.  
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Figure 1 Technical efficiencies and Meta-technology ratios 

In this study, the DEA approach will be used to measure the efficiency of rice farming 

in the four regions of Kenya and the meta-frontier approach will be used to analyse the 

technology gap ratios. 

 

3.3: Regression analysis of determinants of efficiency 

The standard methodology for investigating the technical efficiency determinants of a 
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probit models and truncated regressions. Studies that estimate determinants of efficiency 

by regressing efficiency scores on some covariates mostly specify a censored (tobit) model 

or a linear model based on ordinary least squares (see Aly et al., 1990; Chirikos & Sear 

1994; Ray, 1991; Sexton et al., 1994; Cazals et al., 2002; Stanton, 2002; Daraio & Simar, 

2005; Hoff, 2007; Banker & Natarajan 2008).  

However, running a two-stage DEA is often criticised because the efficiency scores 

by nature are bounded at unity from above which makes it a limited dependent variable. 

Modelling of such bounded variables especially the non-binary ones with many 

observations at the extremes thus becomes a challenge since it makes the application of the 

standard linear models inappropriate. The logit and probit models provide a limited 

approach to solving the problem due to their strong distribution assumption for the 

underlying population. Tobit regressions become appropriate when the dependent variable 

is limited either above or below and when unbounded elsewhere. However, the two-limit 

tobit model does not observe efficiency scores of zero which implies that the estimates end 

up being based on the one limit tobit (Ramalho et al., 2010).  

Recent developments in the two-stage process include the use of the bootstrapping 

technique which assumes that the accumulation of observations at unity is due to censoring 

(see Simar & Wilson, 2007). However, McDonald (2009) argues that efficiency scores 

being fractional data, may not be generated by a censoring process. McDonald (2009) 

adopts the ‘conventionalist’ approach in evaluating the two-stage process where the 

efficiency scores are measured relative to an estimated frontier, an approach that fails to 

solve the sampling variation issue. Banker & Natarajan (2008) that assumes a linear 

correlation exists between the logged technical efficiency scores and the covariates seemed 
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favourable, however, the method only considers one parameter estimates and does not 

tackle the issue of hypothesis testing of the estimated variables. 

The fractional regression model (FRM) developed by Papke and Wooldridge (1996) 

represents a viable solution to addressing the challenge of the second stage DEA analysis. 

The FRM is a class of functional forms extended from the general linear model. FRM has 

the following advantages: first, it helps to cater for the boundedness of the dependent 

variable from above and below. Second, it helps predict response values within the interval 

limits of the dependent variable and last, it also captures nonlinear data thus yielding better 

estimates. The only assumption required of FRM is a functional form of 𝑦 so that the 

desired constraints on the dependent variable are imposed (Ramalho et al., 2010) as 

follows: 

𝐸(𝑦|𝑥) = 𝐺(𝑋θ)         (12)  

where 𝐺(. ) denotes a nonlinear function that satisfies the condition 0 ≤ 𝐺(. ) ≤ 1. (13) 

The model is estimated using four widely accepted models which include the logit, 

probit, loglog and complementary log referred to as Cloglog. The partial effects in all the 

models are denoted as: 

𝛿𝐸 (𝑦|𝑥)

𝛿𝑥j
= θ𝑗𝑔(𝑥θ)         (14)  

In the recent works of Ramalho, et al. (2010) the authors recommend use of the 

fractional regression models to analyse efficiency determinants in the second stage. They 

consider a one and two-part models due to the differences in efficiency scores. The one 

part models assume that: 

 𝐸(θ̂|𝑤) = 𝐺(𝑤𝛿),         (15)  
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where G(.) denotes a probability distribution function. 𝛿 is unknown and is estimated by 

quasi-maximum likelihood (QML) that maximises: 

∑ (𝑛
𝑖=1 θ̂𝑖 log(𝐺(𝑤𝑖𝛿))) + (1 − θ𝑖) log(1 − 𝐺(𝑤𝑖𝛿)).     (16) 

In the two-part models’ the whole sample is used to estimate the model: 

𝑃𝑟𝑜𝑏 (θ̂𝑖 = 1|𝑤𝑖) = 𝐹(𝑤𝑖
′𝛽)        (17)  

where 𝛽 denotes an unknown parameter and F denotes a known probability distribution 

function. It is assumed that (θ̂𝑖|𝑤𝑖) = 𝐺(𝑤𝑖
′𝛿) for the responses in (0, 1) for the second 

part.   

Following the recent works of E. A. Ramalho et al. (2010) the fractional regression 

models are used to evaluate farming process. The technical efficiency scores are regressed 

against the following determinants: age of the miller, experience of the miller, number of 

times the mill is serviced, number of years the mill has been in use and the type of energy 

used. A positive sign on the variables indicates that the variable positively affects 

efficiency and vice versa.  

 

3.4: Study site and data 

The target population consisted of adult (over 18 years) small-scale rice farmers 

located in Mwea and Western Kenya (Ahero, West Kano and Bunyala) rice schemes. The 

primary data used was from a household survey conducted in these rice regions. A sample 

of 835 small-scale rice farmers was drawn from the four rice schemes of Kenya. In Mwea, 

twenty-five rice farmers were randomly selected from twenty rice blocks (rice villages), 

making a sample total of 500 farmers. Mwea has about 6000 rice farmers thus making a 

sampling ratio of 8.3%. The rice schemes of western Kenya consist of Ahero, West Kano 
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and Bunyala irrigation schemes. The Bunyala scheme has 133 farmers divided into seven 

blocks, hence a sample of thirty-five farmers was obtained making a sampling ratio of 

26.3%. The West Kano scheme and Ahero schemes have twelve rice blocks each with a 

total of 819 and 1650 rice farmers respectively. A sample of 140 (17.1%) and 160 (9.7%) 

rice farmers was obtained from the West Kano and the Ahero schemes respectively.  

The survey took place between April and June 2014. The data was collected using a 

questionnaire with pretesting done using a sample of 30 questionnaires. Data collection in 

each scheme was done using face to face interviews by enumerators. The data collected 

from the rice farmers’ interviews and recorded in the questionnaires included output data 

(i.e. paddy amount harvested), input data included fertiliser amount, labour man days, seed 

quantity, pesticides quantity and land area (number of acres under rice). The data collected 

on socio-economic characteristics included farmers’ age, farmer gender, household size, 

years of schooling, rice farming experience, distance to extension advice distance and 

market distance. Secondary supplemented the survey with further data on rainfall, humidity 

and temperature. After data coding, 62 observations (7.4%) were removed due to 

incomplete data thus making the total observations used for analysis to be 773. 

 

3.1 Descriptive statistics of rice farmers’ data 

Table 1 provides summary statistics of the rice farmers’ data. The statistics indicate 

that most farmers harvested an average of 4192kgs of paddy per year, with a maximum of 

28500kg and a minimum of 225kg obtained. In terms of input quantities, land size ranged 

between 0.25 acres and 12 acres with an average of 1.98 acres. On average farmers used 

222.4kg of fertiliser, with a maximum of 2400kg and a minimum of 24Kg. Farmers applied 
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0.76 litres of pesticides on average, with a maximum of 12 litres while a few farmers did 

not use pesticides. Given very few farmers did not apply pesticides, sample average 

estimates were used on the assumption that the effect the average had on the estimates was 

negligible. Farmers used 42.3kg of seed with a maximum and minimum of 330kg and 2kg 

respectively. Hired labour was on average 32.9 persons, with the maximum number being 

178 while some farmers did not hire any workers. On average, farmers used 1.47 persons 

of family labour with a maximum of 23 persons per season. Thus, combining family and 

hired labour provided an average of 34.4 persons per season.  

The demographic attributes of rice farmers captured included rice farmer’s age, 

which ranged between 20 and 88 years, with an average of 48.6 years. A dummy variable 

captured the farmers’ gender with males’ being assigned one and females zero: 551 farmers 

were male and 222 females. On average, farmers had 8.1 years of schooling with the 

maximum number of years of schooling attained being 19 years while the minimum being 

a few farmers not having formal education. On average, farmers had 18.5 years of rice 

farming experience with a maximum of 80 years and no experience as a minimum. The 

market distance served as a proxy for infrastructure. Farms on average were located at 

3.9km away from the market with the farthest being 20 km away. On average, farms were 

located 4.1km from extension advice with the farthest being 28km away and the nearest 

being locate a few metres away. The average rainfall ranged between 980.9mm and 

1717.6mm with an average of 1113.0mm. Average humidity was 69.03% with a minimum 

of 64.5% and a high of 71.3%. The mean temperature was 22.70C, with a minimum of 

22.30C and maximum of 23.30C. To cater for the regional differences, a dummy variable 

of one was assigned for farms located in the Mwea region and zero for those located in 
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other regions. A dummy variable represented technology adoption, with one if a farmer 

adopted SRI technology and zero if otherwise. 605 (78.3%) of rice farmers were 

conventional farmers and 168 (21.7%) were SRI farmers. MaxDEA 6.0 software was used 

to generate the efficiency scores. 

 

Table 1 Descriptive statistics of inputs and outputs for rice farmers 

Variable Mean Min max StdD 

Paddy (kg) 4192.00 225 28500 3139.59 

Size of plot (acres)  1.98 0.25 12 1.31 

Total fertilizer (kg) 222.39 24 2400 192.01 

Pesticide applied (L)   0.76 0.01 12 0.92 

Seed quantity (kg)  42.33 2 330 33.78 

Labour hired (No) 32.97 0 178 20.43 

Family labour used (No) 1.47 0 23 2.95 

Total labour (No) 34.44 1 178 20.41 

Unit prices 

Price per unit of paddy  46.07 25 100 10.56 

Cost of land = Water cost per acre 2538.65 300 14800 1091.18 

Average fertilizer per kg (Ksh) 53.57 0 138 13.33 

Average cost of pesticides (per unit) 2.57 0.02 150 7.42 

Cost of seed per Kg  88.17 20 200 16.30 

Wage rate per head (Ksh) 1284.50 145.82 11610 1437.96 

Inefficiency estimates 

Gender (1= male, 0 otherwise)  0 1  
Age (years) 48.63 20 88 13.54 

Schooling (years) 8.07 0 19 3.83 

Household members (No) 5.36 2 28 2.87 

Experience (year) 18.46 1 80 13.52 

Distance to extension advice (km) 4.09 0.007 28 3.85 

Distance to the market place (km)  3.89 0.01 20 3.26 

Average rainfall (mm) 1112.99 980.934 1717.6 189.55 

Average humidity (%) 69.03 64.5 71.3 1.76 

Average temperature (0C) 22.65 22.3 23.3 0.47 

Region dummy (1= Mwea, 0= Otherwise)  0 1  
Technology (1 = Adopted, 0 = Otherwise)   0 1  

Source: Field survey estimates and other sources 
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4.0 Results 

4.1: Efficiency estimates and distribution 

Table 2 provides the efficiency scores results. The overall mean technical and scale 

efficiency was 0.512 and 0.839 respectively, implying that there was a 48.8% greater 

potential to increase output further given the same input levels and 16.1% potential increase 

of output given optimal scale. 96.8% of the farms were found to be scale-inefficient, with 

35.8% operating on increasing returns to scale, 60.9% operating under decreasing returns 

to scale and only 3.2% were scale efficient.  

 

Table 2 Summary of technical, allocative and cost-efficiency 
 Technical Scale 

Range No of 

DMUs 

% No of 

DMUs 

% 

<0.1 0 0 0 0 

0.1-0.199 12 1.55 1 0.13 

0.2-0.299 79 10.22 4 0.52 

0.3-0.399 182 23.54 8 1.03 

0.4-0.499 181 23.42 19 2.46 

0.5-0.599 102 13.2 40 5.17 

0.6-0.699 75 9.7 88 11.38 

0.7-0.799 42 5.43 76 9.83 

0.8-0.899 29 3.75 142 18.37 

0.9-0.999 24 3.1 370 47.87 

1 47 6.08 25 3.23 

IRS 277 35.83   

DRS 471 60.93   

CRS 25 3.23   

Mean 0.512 

0.109 

1.000 

0.214 

0.839 

0.197 

1.000 

0.158 

Minimum 

Maximum 

Std. Dev 
Source: Results estimates 

Note: IRS = increasing returns to scale; DRS = decreasing returns to scale. 
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4.2 Meta-technology ratio 

4.2.1 Hypothesis testing for technical and scale efficiency 

To find if the technical, scale, allocative and cost-efficiency means were statistically 

different across regions, a Kruskal Wallis Test was carried out. The following hypotheses were 

tested: 

Hypothesis 1: H0 = mean technical efficiency is the same in all the regions 

H1 = mean technical efficiency is different across the regions 

Hypothesis 2: H0 = mean scale efficiency is the same in all the regions 

H1 = mean scale efficiency is different across the regions 

 The results indicate that the distribution of the means was statistically different across the 

regions since the null hypothesis was rejected in all cases (see Table 3). This implies that 

efficiencies varied across the regions which thus formed the basis for calculating the technology 

gap ratios between the regions as shown in Table 7. 

 

Table 3 Hypothesis testing results for technical and scale efficiency  

Variable P value Result 

Technical efficiency 0.000 Rejected 

Scale efficiency 0.000 Rejected 
Source: Results estimates 

 

 

4.2.2 Pooled and regional meta-frontiers of technical, allocative and cost-efficiency  

Table 4 provides the meta-frontier estimates of the pooled data. The technical efficiency of 

Mwea, West Kano, Ahero and Bunyala was 0.556, 0.475, 0.402 and 0.45 respectively. Analysing 

regional efficiencies as shown in Table 5 indicates that the technical efficiency of Mwea, West 

Kano, Ahero and Bunyala was 0.557, 0.784, 0.833 and 0.937. Thus, the technology gap ratios as 

shown in Table 6 for Mwea, West Kano, Ahero and Bunyala was 0.998, 0.605, 0.482 and 0.480 

respectively. The results thus suggest that a narrow gap existed between the region and the meta-

frontier results for Mwea, while a wider gap existed for West Kano, Ahero and Bunyala. Mwea 

rice farmers were thus more technical efficient than rice farmers in the other schemes with Bunyala 
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being worse off. Mwea may have an advantage over the other rice-growing regions due to its 

proximity to the capital city, Nairobi where key inputs such as fertiliser are easily accessible. The 

transportation cost of inputs e.g. fertiliser, seed and other inputs from Nairobi City make them 

more expensive and unaffordable in the other regions. As noted by Kherallah et al. (2002), fertiliser 

is much more expensive in Africa than elsewhere in the world due to high transportation costs, 

making it difficult for poor farmers to afford it. Mwea also benefits from its proximity to the Mwea 

Rice Research Centre and nearby higher institutions of learning conducting rice research in the 

area. Mwea also has large SRI experiment sites set up by researchers which encourage farmers to 

adopt such technology - all of which would impact on the efficient use of inputs. Further, the rice 

seed breeding centre is located in Mwea which makes the farmers easily access improved seed.  

 

Table 5 Meta-frontier regional efficiencies estimates from pooled data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Results estimates 

 

 

 

 

 Mwea  West Kano  Ahero  Bunyala  

     

Range No of 

DMUs 

% No of 

DMUs 

% No of 

DMUs 

% No of 

DMUs 

% 

<0.1 0 0 0 0 0 0 0 0 

0.1-0.199 1 0.21 3 2.36 7 5.34 1 3.13 

0.2-0.299 26 5.38 19 14.96 30 22.90 4 12.50 

0.3-0.399 101 20.91 32 25.20 39 29.77 10 31.25 

0.4-0.499 117 24.22 30 23.62 29 22.14 5 15.63 

0.5-0.599 66 13.66 18 14.17 11 8.40 7 21.88 

0.6-0.699 59 12.22 7 5.51 6 4.58 3 9.38 

0.7-0.799 31 6.42 6 4.72 5 3.82 0 0 

0.8-0.899 23 4.76 2 1.57 3 2.29 1 3.13 

0.9-0.999 19 3.93 5 3.94 0 0 0 0 

1 40 8.28 5 3.94 1 0.76 1 3.13 

Average 0.556  0.475  0.402  0.450  

Minimum 0.157  0.147  0.109  0.167  

Maximum 1.000  1.000  1.000  1.000  

Std. Dev 0.216  0.206  0.164  0.179  



20 

 

Table 6 Regional meta-frontier efficiencies estimate (when each region is analysed separately) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Results estimates 

 

 

 

Table 7 Summary of the technical efficiency means and the gap ratios 

Source: Results estimates 

 

 

 

 Mwea 

Irrigation 

Scheme  

West Kano 

Irrigation 

scheme 

Ahero Irrigation 

Scheme 

Allocative 

Bunyala 

Irrigation 

Scheme Cost 

Range No of 

DMUs 

% No of 

DMUs 

% No of 

DMUs 

% No of 

DMUs 

% 

<0.1 0 0 0 0 0 0 0 0 

0.1-0.199 1 0.21 0 0 0 0 0 0 

0.2-0.299 25 5.18 0 0 4 3.05 0 0 

0.3-0.399 100 20.7 2 1.57 2 1.53 0 0 

0.4-0.499 118 24.43 7 5.51 4 3.05 2 6.25 

0.5-0.599 65 13.46 10 7.87 17 12.98 0 0 

0.6-0.699 60 12.42 24 18.90 8 6.11 0 0 

0.7-0.799 32 6.63 26 20.47 7 5.34 2 6.25 

0.8-0.899 22 4.55 14 11.02 12 9.16 3 9.38 

0.9-0.999 19 3.93 7 5.51 24 18.32 0 0 

1 41 8.49 37 29.13 53 40.46 25 78.13 

Average 0.557 

0.157 

1.000 

0.216 

0.784 

0.350 

1.000 

0.183 

0.641 

0.341 

1.000 

0.131 

0.501 

0.220 

1.000 

0.161 

Minimum 

Maximum 

Std. Dev 

 

 

Mwea 

Irrigation 

Scheme  

West Kano 

Irrigation 

Scheme 

Ahero 

Irrigation 

Scheme 

Bunyala 

Irrigation 

Scheme 

Pooled 

frontier 
Average 0.556 0.475 0.402 0.450 

Minimum 0.157 0.147 0.109 0.167 

Maximum 1.000 1.000 1.000 1.000 

Std Dev 0.216 0.206 0.164 0.179 

Region 

frontier 

 

Average 0.557 0.784 0.833 0.937 

Minimum 0.157 0.350 0.250 0.456 

Maximum 1.000 1.000 1.000 1.000 

Std Dev 0.216 0.183 0.215 0.141 

 Gap 

Ratio 0.998 0.605 0.482 0.480 
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4.3 Determinants of efficiency 

Table 8 provides the FRM estimates for technical efficiency. In the one-part models 

(linear models) age, farmer’s gender and adopting technologies were significant at the 10% 

and 5% levels, thereby explaining why some farmers were efficient. However, experience, 

extension, market distance, years of schooling, humidity, rainfall and temperature did not 

explain the inefficiency, since the variables were not statistically significant. At 10% and 

5% significance levels for the logit and cloglog model, age, farmer’s gender, humidity, 

rainfall, temperature and adopting technologies explained the inefficiency.   

An examination of the second part of the two-part models, showed that adopting 

technologies was the reason why some farmers were more efficient (5% significance level 

for the cloglog and at 10% significance level for the logit model). In examining why some 

farmers were inefficient, their age, gender and level of humidity reduced their efficiency 

scores at 5% and 1% significance level for all the models. Adopting technologies and 

temperature reduced their inefficiency at the 5% and 10% significance level for all the 

models.  

The role of gender in rice farming remains important. The results indicate that a rice 

farmer's gender had a negative relationship with efficiency, implying that males were more 

inefficient in rice farming than the females. The finding contradicts the bulk of the existing 

literature which finds males more efficient than females (Ironkwe et al., 2014; Oladeebo, 

2012). However, it may be assumed that given women play a critical role in rice farming 

by providing close to half of the total labour input in rice farming, then this finding holds. 

The age of the farmer was found to be negatively correlated with efficiency. The 

finding corroborates the works of Mugera and Featherstone (2008) who found that age 
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increased inefficiency among a sample of 126 people rearing hog in the Philippines. The 

results also confirmed that young farmers tend to adopt newer technologies faster than the 

older farmers hence, the higher efficiency. 

 The role of climatic factors in rice farming remains important. The average humidity 

and rainfall, affected efficiency negatively, while temperature positively affected 

efficiency. Sarker et al. (2012) and HoAfricain et al. (2013) also found rainfall to be 

negatively associated with AUS variety rice farming in Bangladesh. However, in relation 

to humidity and temperature, this study results contradict the findings of these authors. 

However, Banaszek and Siebenmorgen (1990) found that lower relative humidity reduced 

head rice yield less while Mahmood et al. (2012) found that in India’s Punjab province an 

increase in temperature by 1.50C and 30C increased rice yield by 2.09% and 4.33%, 

respectively. Rice requires optimum rainfall, temperature and humidity for its vegetative 

growth and to produce paddy therefore policies that spearhead adaptive strategies to 

mitigate adverse effects of the climatic factors would benefit rice farmers. 

Adopting technologies has been found the key to increasing rice output particularly 

in Asia. In this study, those farmers who adopted improved seed and water saving 

technologies were more efficient than the conventional farmers. Thus, investing in 

improved rice technologies will clearly help increase rice output in Kenya. 
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Source: Results estimate

Table 8 Determinants of technical efficiency 

One-part models Two-part models 

  1st Part 2nd Part 

Variable Linear Tobit logit cloglog logit cloglog Linear logit probit loglog cloglog 

Intercept 

2.140*** 

(0.345) 

2.211*** 

(0.364) 

6.677 ***  

(1.153) 

4.450*** 

(0.846) 

21.97 

(1037) 

21.44 

(991.2) 

1.761*** 

(0.297) 

5.144*** 

(1.012) 

3.210*** 

(0.632) 

3.935*** 

(0.699) 

3.469*** 

(0.759) 

Age (years) 

-0.002* 

(0.001) 

-0.002* 

(0.001) 

-0.006* 

(0.003) 

-0.005** 

(0.002) 

-0.010 

(0.018) 

-0.010 

(0.017) 

-0.002** 

(0.001) 

-0.006** 

(0.003) 

-0.004** 

(0.002) 

-0.004** 

(0.002) 

-0.005** 

(0.002) 

Experience (years) 

0.000 

(0.001) 

0.000 

(0.001) 

0.001 

(0.003) 

0.000 

(0.002) 

0.003 

(0.017) 

0.003 

(0.016) 

0.000 

(0.001) 

0.001 

(0.003) 

0.000 

(0.002) 

0.000 

(0.002) 

0.000 

(0.002) 

Extension (km) 

-0.001 

(0.002) 

-0.001 

(0.002) 

-0.003 

(0.009) 

-0.002 

(0.006) 

-0.012 

(0.046) 

-0.011 

(0.044) 

-0.000 

(0.002) 

-0.002 

(0.007) 

-0.001 

(0.005) 

-0.001 

(0.005) 

-0.001 

(0.005) 

Gender (0 = 

female; 1=male) 

-0.039** 

(0.017) 

-0.041** 

(0.018) 

-0.160** 

(0.071) 

-0.112** 

(0.049) 

-0.232 

(0.332) 

-0.224 

(0.317) 

-0.034** 

(0.015) 

-0.138** 

(0.062) 

-0.087** 

(0.039) 

-0.098** 

(0.044) 

-0.101** 

(0.044) 

Humidity (%) 

-0.024 

(0.048) 

-0.024 

(0.050) 

-0.114*** 

(0.035) 

-0.097*** 

(0.025) 

-2.355 

(333.7) 

-2.335 

(319.0) 

-0.023 

(0.040) 

-0.111*** 

(0.029) 

-0.067*** 

(0.018) 

-0.063*** 

(0.020) 

-0.094*** 

(0.022) 

Market (km) 

-0.001 

(0.003) 

-0.001 

(0.003) 

-0.002 

(0.012) 

-0.001 

(0.008) 

0.000 

(0.053) 

0.001 

(0.051) 

-0.000 

(0.002) 

-0.002 

(0.009) 

-0.001 

(0.006) 

-0.002 

(0.007) 

-0.001 

(0.007) 

Rainfall (mm) 

-0.000 

(0.000) 

-0.000 

(0.001) 

-0.001*** 

(0.000) 

-0.001*** 

(0.000) 

-0.024 

(3.366) 

-0.024 

(3.218) 

-0.000 

(0.000) 

-0.001*** 

(0.000) 

-0.001*** 

(0.000) 

-0.001*** 

(0.000) 

-0.001*** 

(0.000) 

School (years) 

-0.001 

(0.002) 

-0.001 

(0.002) 

-0.005 

(0.009) 

-0.004 

(0.007)  

0.011 

(0.048) 

0.011 

(0.046) 

-0.002 

(0.002) 

-0.007 

(0.008) 

-0.004 

(0.005) 

-0.005 

(0.006) 

-0.005 

(0.006) 

Technologies 

(1=adopted; 0= not 

adopted) 

0.048** 

(0.018) 

0.052** 

(0.019) 0.197** 

(0.079) 

0.146*** 

(0.056)  

0.735* 

(0.347) 

0.705** 

(0.328) 

0.030* 

(0.016) 0.121* 

(0.068) 

0.075* 

(0.042) 

0.082* 

(0.048) 

0.091* 

(0.050) 

Temperature (0C) 

0.022 

(0.166) 

0.018 

(0.174) 

0.142 

(0.117) 

0.155* 

(0.085)  

7.442 

(1162) 

7.392 

(1111) 

0.034 

(0.140) 

0.192* 

(0.101) 

0.112* 

(0.063) 

0.085 

(0.070) 

0.185** 

(0.075) 

Sigma 

 0.215*** 

(0.006)     

 

    

Number of 

observations 

773 773 773 773 773 773 726 726 726 726 726 

R-squared 0.093 1.967 0.093 0.094 0.024 0.025 0.082 0.082 0.082 0.082 0.083 
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4.4 Conclusion and recommendations 

The technical efficiency of a sample of 773 rice farmers from four rice-growing schemes in 

Kenya were measured using DEA and the efficiency determinants were quantified using FRM. 

The results indicate a significant variation of the efficiency scores among the four regions.  

The overall mean technical and scale efficiency was 0.512 and 0.839 respectively, implying 

that there was a 48.8% greater potential to increase output further given the same input levels and 

16.1% potential increase of output given optimal scale. 96.8% of the farms were found to be scale-

inefficient, with 35.8% operating on increasing returns to scale, 60.9% operating under decreasing 

returns to scale and only 3.2% were scale efficient.  

The average technical efficiency of Mwea, West Kano, Ahero and Bunyala was 0.556, 0.475, 

0.402 and 0.45 respectively which implies that on average output would be increased by 44.8%, 

52.5%, 59.8% and 55% in Mwea, West Kano, Ahero and Bunyala respectively given the same 

level of inputs. Mwea efficiency results were close to the meta-frontier results of the pooled data 

thus indicating a very narrow gap between the two estimates. The West Kano, Ahero and Bunyala 

efficiency scores were higher than that of the meta-frontier thus indicating a gap between the 

regional and meta-frontier results. Thus, Mwea appeared to be closer to the frontier, while Bunyala 

was very far from the frontier. The factors found to be associated with technical efficiency 

included: gender, age, humidity, rainfall, temperature and adopting technologies.  

Based on these findings, some important policy implications can be drawn. Policy 

interventions should aim at improving overall technical, cost and allocative efficiency of rice 

farming in Kenya. Thus, policy-makers should focus on enhancing rice farmers’ technology 

adoption and training to bridge the inefficiency gap. Putting in place a planting schedule 

programme that will allow rice farmers to utilise the land during the fallow months for short 
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duration crops such as tomatoes, watermelons and beans would be one important means of helping 

farmers to enhance their livelihoods. Policies that target the challenges young farmers and either 

gender face in the rice farming systems will also contribute to narrowing the efficiency gap 

between the older and younger farmers, and between the male and female rice farmers. Policies 

that would narrow the technological gap between Mwea and the Western schemes would also be 

beneficial to the farmers. Spearheading adaptive strategies to mitigate adverse effects of climatic 

factors especially temperature, rainfall and humidity would be equally beneficial for farmers. In 

addition, very inefficient rice farmers should be encouraged to exit the industry to enable Policy-

makers to reallocate the resources (especially land and water) to other more economic activities. 

  



26 

 

5.0 References 

Abbott, M. (2006). The productivity and efficiency of the Australian electricity supply industry. 

Energy Economics, 28(4), 444-454.  

Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: a data 

envelopment analysis. Economics of Education review, 22(1), 89-97 

Ali, J., Singh, S. P., & Ekanem, E. (2009). Efficiency and productivity changes in the Indian 

food processing industry: Determinants and policy implications. International Food and 

Agribusiness Management Review, 12(1), 43-66.  

Basorun, J. (2008). A Bivariate Analysis of Factors Affecting Rice Processing in Igbemo-Ekiti, 

Nigeria. Agricultural Journal, 3(6), 442-446.  

Bishwajit, G., Sarker, S., Kpoghomou, M.-A., Gao, H., Jun, L., Yin, D., & Ghosh, S. (2013). 

Self-sufficiency in rice and food security: a South Asian perspective. Agriculture & Food 

Security, 2(1), 10.  

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making 

units. European Journal of Operational Research, 2(6), 429-444.  

Chiu, C.-R., Liou, J.-L., Wu, P.-I., & Fang, C.-L. (2012). Decomposition of the environmental 

inefficiency of the meta-frontier with undesirable output. Energy Economics, 34(5), 1392-1399.  

Dawe, D., Pandey, S., & Nelson, A. (2010). Emerging trends and spatial patterns of rice 

production. Rice in the Global Economy: Strategic Research and Policy Issues for Food 

Security. Los Baños, Philippines: International Rice Research Institute (IRRI).  

Enwerem, V., & Ohajianya, D. (2013). Farm size and technical efficiency of rice farmers in Imo  

state, Nigeria. Greener Journal of Agricultural Sciences, 3(2), 128-136.  

FAO, (2012). Sustainable Agricultural Productivity Growth and Bridging the Gap for Small-

Family Farms. Interagency Report to the Mexican G20 Presidency, with contributions by 

Biodiversity International, CGIAR, FAO, IFAD, IFPRI, IICA, OECD, UNCTAD, UN-HLTF, 

WFP, the World Bank and WTO.  

Fleming, E., & Lummani, J. (2001). Analysis of the technical efficiency of cocoa smallholders in 

the Gazelle Peninsula, East New Britain Province. Occasional Paper, 7.  

Fu, W.-G., Sun, S., & Zhou, Z.-Y. (2011). Technical efficiency of food processing in China: the 

case of flour and rice processing. China Agricultural Economic Review, 3(3), 321-334.  

Gebregziabher, G., Namara, R. E., & Holden, S. (2012). Technical efficiency of irrigated and 

rain-fed smallholder agriculture in Tigray, Ethiopia: A comparative stochastic frontier 

production function analysis. Quarterly Journal of International Agriculture, 51(3), 203.  

GoK. (2010). Agricultural Sector Development Strategy 2010-2020. Nairobi, Kenya: Ministry of 

Agriculture. 

GoK. (2011). National Food and Nutritional Security Policy, Nairobi, Kenya: Agricultural 

Sector Coordination Unit 

 Goyal, S., Jogdand, S., & Agrawal, A. (2014). Energy use pattern in rice milling industries—a 

critical appraisal. Journal of Food Science and Technology, 51(11), 2907-2916.  

Heriqbaldi, U., Purwono, R., Haryanto, T., & Primanthi, M. R. (2014). An Analysis of Technical 

Efficiency of Rice Production in Indonesia. Asian Social Science, 11(3), p91.  

Hodges, R. J., Buzby, J. C., & Bennett, B. (2011). Postharvest losses and waste in developed and 

less developed countries: opportunities to improve resource use. The Journal of Agricultural 

Science, 149(S1), 37-45.  



27 

 

Ibitoye, S., Idoko, D., & Shaibu, U. (2014). Economic assessment of rice processing in Bassa 

local government area of Kogi state, Nigeria. Asian Journal of Basic and Applied Sciences Vol, 

1(2).  

IPCC. (2007). Climate Change 2007: Fourth Assessment Report. Synthesis Report. Cambridge 

University Press, Cambridge. Retrieved from  

Iraizoz, B., Rapun, M., & Zabaleta, I. (2003). Assessing the technical efficiency of horticultural 

production in Navarra, Spain. Agricultural Systems, 78(3), 387-403.  

Jamasb, T., & Pollitt, M. (2000). Benchmarking and regulation: international electricity 

experience. Utilities Policy, 9(3), 107-130.  

Jones, D. C., Kalmi, P., & Kauhanen, A. (2010). Teams, incentive pay, and productive 

efficiency: Evidence from a food-processing plant. Industrial & Labor Relations Review, 63(4), 

606-626.  

Kadiri, F., Eze, C., Orebiyi, J., Lemchi, J., Ohajianya, D., & Nwaiwu, I. (2014). Technical 

Efficiency in paddy rice production in Niger delta region of Nigeria. Global Journal of 

Agricultural Research, 2(2), 33-43.  

Kalirajan, K., & Shand, R. (1985). Types of education and agricultural productivity: a 

quantitative analysis of Tamil Nadu rice farming. The Journal of Development Studies, 21(2), 

232-243.  

Kapelko, M., & Lansink, A. (2013). Technical Efficiency of the Spanish Dairy Processing 

Industry: Do Size and Exporting Matter? In A. B. Mendes, E. L. D. G. Soares da Silva, & J. M. 

Azevedo Santos (Eds.), Efficiency Measures in the Agricultural Sector (pp. 93-106): Springer 

Netherlands. 

Kapelko, M., Lansink, A. O., & Stefanou, S. E. (2015). Effect of Food Regulation on the Spanish 

Food Processing Industry: A Dynamic Productivity Analysis. PloS one, 10(6), e0128217.  

Khai, H. V., & Yabe, M. (2011). Technical efficiency analysis of rice production in Vietnam. 

Journal of ISSAAS, 17(1), 135-146.  

Kilic, O., Ceyhan, V., & Alkan, I. (2009). Determinants of economic efficiency: A case study of 

hazelnut (Corylus avellana) farms in Samsun Province, Turkey. New Zealand Journal of Crop 

and Horticultural Science, 37(3), 263-270.  

Kiplagat, J. K., Wang, R. Z., & Li, T. X. (2011). Renewable energy in Kenya: Resource potential 

and status of exploitation. Renewable and Sustainable Energy Reviews, 15(6), 2960-2973.  

Latruffe, L., Balcombe, K., Davidova, S., & Zawalinska, K. (2004). Determinants of technical 

efficiency of crop and livestock farms in Poland. Applied Economics, 36(12), 1255-1263.  

Maxime, D., Marcotte, M., & Arcand, Y. (2006). Development of eco-efficiency indicators for 

the Canadian food and beverage industry. Journal of Cleaner Production, 14(6), 636-648.  

Mohanty, S. (2013). Trends in global rice consumption. Rice Today, 12(1), 44-45.  

Mushtaq, S., Maraseni, T. N., Maroulis, J., & Hafeez, M. (2009). Energy and water tradeoffs in 

enhancing food security: A selective international assessment. Energy Policy, 37(9), 3635-3644.  

Nagothu, U. S. (2014). Food Security and Development: Country Case Studies: Routledge. 

Nakano, M., & Managi, S. (2010). Productivity analysis with CO2 emissions in Japan. Pacific 

Economic Review, 15(5), 708-718. doi:10.1111/j.1468-0106.2010.00526.x 

Ogundari, K. (2010). Estimating and analysing cost efficiency of sawmill industries in Nigeria: 

A stochastic frontier approach. China Agricultural Economic Review, 2(4), 420-432 

Papke, L. E., & Wooldridge, J. M. (1996). Econometric methods for fractional response 

variables with an application to 401 (k) plan participation rates. Journal of Applied 

Econometrics, 11(6), 619-632.  



28 

 

Puig-Junoy, J. (2000). Partitioning input cost efficiency into its allocative and technical 

components: an empirical DEA application to hospitals. Socio-Economic Planning Sciences, 

34(3), 199-218.  

Ramalho, E., Ramalho, J. S., & Henriques, P. (2010). Fractional regression models for second 

stage DEA efficiency analyses. Journal of Productivity Analysis, 34(3), 239-255. 

doi:10.1007/s11123-010-0184-0 

Ramalho, E. A., Ramalho, J. J., & Henriques, P. D. (2010). Fractional regression models for 

second stage DEA efficiency analyses. Journal of Productivity Analysis, 34(3), 239-255.  

Sekhon, M., Mahal, A. K., Kaur, M., & Sidhu, M. (2010). Technical efficiency in crop 

production: A region-wise analysis. Agricultural Economics Research Review, 23(2), 367-374.  

Skevas, T., Lansink, A. O., & Stefanou, S. E. (2012). Measuring technical efficiency in the 

presence of pesticide spillovers and production uncertainty: The case of Dutch arable farms. 

European Journal of Operational Research, 223(2), 550-559. doi:10.1016/j.ejor.2012.06.034 

Subramaniam, S., Husin, S. H. B., Yusop, Y. B., Hamidon, A. H. B., Kartalopoulos, S., Buikis, 

A., . . . Vladareanu, L. (2008). Machine efficiency and man power utilization on production lines. 

Paper presented at the WSEAS International Conference. Proceedings. Mathematics and 

Computers in Science and Engineering. 

Vassiloglou, M., & Giokas, D. (1990). A study of the relative efficiency of bank branches: an 

application of data envelopment analysis. Journal of the Operational Research Society, 591-597.  

Wadud, M. A. (2003). Technical, allocative, and economic efficiency of farms in Bangladesh: A 

stochastic frontier and DEA approach. The Journal of Developing Areas, 109-126.  

Wei, X., Declan, C., Erda, L., Yinlong, X., Hui, J., Jinhe, J., . . . Yan, L. (2009). Future cereal 

production in China: The interaction of climate change, water availability and socio-economic 

scenarios. Global Environmental Change, 19(1), 34-44.  

Wilson, G., Ryder, M., Fitzgerald, G., Tausz, M., Norton, R., O’Leary, G., . . . Hollaway, G. 

(2013). Case Studies on Food Production, Policy and Trade. In Q. Farmar-Bowers, V. Higgins, 

& J. Millar (Eds.), Food Security in Australia (pp. 353-364): Springer US. 

Wolde-Rufael, Y. (2005). Energy demand and economic growth: The African experience. 

Journal of Policy Modeling, 27(8), 891-903.  

Zhang, T. (2008). Environmental performance in China's agricultural sector: A case study in 

corn production. Applied Economics Letters, 15(8), 641-645. doi:10.1080/13504850600721874 

Zuberi, T., & Thomas, K. J. (2012). Demographic projections, the environment and food security 

in Sub-Saharan Africa. WP 2012-001.   

 


