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Rice farming remains an important undertaking in Asia and Africa due to its important role in maintaining
essential food supply. Rice ranks second to maize in providing more than one-fifth of the calories consumed
worldwide. In Kenya, rice is an important food crop and cash crop. A survey of 773 farmers was undertaken
in Mwea, West Kano, Ahero and Bunyala rice growing regions to investigate the technical efficiency and
technology gap ratios. The meta-frontier estimates indicate that the technical efficiency of Mwea, West
Kano, Ahero and Bunyala was 0.556, 0.475, 0.402 and 0.45 respectively. The regional efficiencies indicate
that the technical efficiency of Mwea, WestKano, Ahero and Bunyala was 0.557, 0.784, 0.833 and 0.937
respectively. Thus, the technology gap ratio was 0.998, 0.605, 0.482 and 0.48 for Mwea, West Kano, Ahero
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Technical efficiency and technology gap ratios among rice farmers in Kenya

Abstract

Rice farming remains an important undertaking in Asia and Africa due to its important role in
maintaining essential food supply. Rice ranks second to maize in providing more than one-fifth of
the calories consumed worldwide. In Kenya, rice is an important food crop and cash crop. A survey
of 773 farmers was undertaken in Mwea, West Kano, Ahero and Bunyala rice growing regions to
investigate the technical efficiency and technology gap ratios. The meta-frontier estimates indicate
that the technical efficiency of Mwea, West Kano, Ahero and Bunyala was 0.556, 0.475, 0.402 and
0.45 respectively. The regional efficiencies indicate that the technical efficiency of Mwea,
WestKano, Ahero and Bunyala was 0.557, 0.784, 0.833 and 0.937 respectively. Thus, the
technology gap ratio was 0.998, 0.605, 0.482 and 0.48 for Mwea, West Kano, Ahero and Bunyala
respectively. The results thus suggest that a narrow gap existed between the region and the meta-
frontier results for Mwea, while a wider gap existed for West Kano, Ahero and Bunyala implying
that Mwea farmers were more technically efficient than farmers in the other schemes. Using the
fractional regression models the determinants of efficiency were found to be age, farmer’s gender,
humidity, rainfall, temperature and adopting technologies.
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Introduction

The global population now at 7 billion is still growing rapidly and is projected to
reach 9 billion by 2050, and increasing incomes and urbanization will inevitably lead to
dietary change. The food security challenge will increasingly encompass the triple burden
of malnutrition-undernutrition, obesity and micronutrient deficiencies especially in
developing countries where food production is being constrained by low productivity. In
recent times, significant emphasis and substantial resources have been focussed on
increasing food production in many countries (Nagothu, 2014; Wei et al., 2009; Wilson et
al., 2013). In countries where food insecurity is rampant, the policy-makers aim to improve
productivity by turning the root causes of chronic food insecurity into priority objectives
for development. Kenya’s hunger level is rated as “serious” placing it ahead of countries
such as Pakistan and Irag despite Kenya ranking as one of the largest and fast-growing

economies in the Eastern and Central African region. Over ten million Kenyans suffer from



chronic food insecurity and a further 1.8 million children are classified as chronically
undernourished. In addition, between two and four million people every year are in dire
need of food relief (GoK, 2011). Due to the hunger concern, the right to food is now
articulated in Article 43 (c) of Kenya’s constitution of 2010 which states that “each
individual has the right to be free from hunger and to have adequate food of an acceptable
quality” (Constitution of Kenya, 2010).

Rice is one of the crops earmarked worldwide as a food security crop that is capable
of reducing the number of gravely food insecure people since the World Food Summit of
1996 and is being promoted in many African countries. Rice farming is an important
concern in many countries both in Asia and Africa because of its important role in
maintaining domestic food security and as well as improving agricultural development
(Bishwajit et al., 2013; Enwerem & Ohajianya, 2013; Herigbaldi, Purwono, Haryanto, &
Primanthi, 2014; Kadiri et al., 2014; Khai & Yabe, 2011; Mushtaq, Maraseni, Maroulis, &
Hafeez, 2009).

Globally, rice is one of the most important food crops and ranks second only to maize
in terms of total volume of production providing more than one fifth of the calories
consumed worldwide by human beings (Dawe, Pandey, & Nelson, 2010). Rice
consumption continues to rise steadily in sub-Saharan Africa where the increase has been
by more than 50%. Further increase in demand has been projected in many African
countries, for example, in Central and Eastern Africa high population growth and increased
purchasing power associated with rapid increases in income is expected to increase demand
for rice by about 300% between 2010 and 2050. Instructively, rice demand in both regions

is still expected to double if income growth is more limited but population growth occurs



at a more rapid rate (Zuberi & Thomas, 2012). It is projected that 112 million tons of
additional rice will be needed globally by 2040 and nearly 40% of this additional demand
will be coming from Africa. Hence unless rice production in Africa keeps pace with its
rising consumption, then the continent is likely to emerge as a growing importer of rice
from Asia (Mohanty, 2013). Despite the importance of this crop, rice remains a political
commodity since in most cases the government is a major player in the development of the
rice infrastructure such as irrigation facilities, input supplies, credit or the market function.
Thus, as a result government policies can have a major bearing on the incentive an
individual farmer or miller has for increasing production.

Rice is one important crop that has attained a staple food status in Kenya and also
become a source of calories for the urban people. Rice is 3" after maize and wheat in order
of economic importance among cereals in Kenya. Annual demand for rice in Kenya has
been growing much more rapidly than production, at an average rate of 11 percent per year
between 1963 and 2013. The estimated rice production is at 325,000 tons which exceeds
the national rice production currently estimated at 110,000 tons by about 200%. This huge
gap between consumption and production is met through imports which costs the country
millions of dollars (GoK, 2010). Kenya’s rice import dependency ratio for the decade
remains high, at more than 80% which means local production only meets about 20% of
the demand. Kenya imports nearly all of its rice from the East Asia, with Pakistan
accounting for 74% of total rice imports during the period 2006-2013. Kenya has set a
target of increasing rice production to 178,580 MT/year by 2018 as set out in its National
Rice Development Strategy (NRDS) in order to stabilize the rice consumption. The specific

strategies as spelled out in the plan include the use of quality inputs especially seeds, deploy



extension officers in rice growing areas, mechanization and post-harvest technology
improvement among others.

This paper has two major objectives, first it will quantify the technical efficiency of
rice farming sector of Kenya and second it will identify the determinants of efficiency.
Since the Kenyan market heavily relies on rice imports, analysis of efficiency becomes
important since it will help the farmers to identify and eliminate their source of inefficiency
hence become more efficient. This research will help identify incentives and policies that
could lead to the adoption of sustainable rice farming practices.

The rest of the paper is organized as follows. A review of existing studies is outlined
in section 2. A summary of the methods used and the data sources is presented in section
3. The results are presented in section 4. Section 5 concludes the paper and draws some

policy implications.

2.0 Literature on rice processing

There exists a significant number of studies in the literature focusing on technical
and allocative efficiency of various crops in different regions or countries (Gebregziabher
etal., 2012; Iraizoz et al., 2003; Latruffe, et al., 2004; Sekhon et al., 2010; Wadud, 2003).
Studies on rice farming efficiency that exist in the literature include the analysis of rice
production in the Philippines (Pate & Cruz, 2007; Yao & Shively, 2007 and Villano &
Fleming, 2006). Khai and Yabe (2011) examined rice farming in Vietnam while Tian &
Wan (2000) have examined the technical efficiency of grain (rice, wheat and corn)
production and its determinants in China. Coelli et.al. (2002) examined the efficiency

(technical, allocative, cost and scale) of 406 rice farms in 21 villages of Bangladesh for the



year 1997 and found a difference in mean efficiency results between the dry (Boro) and
wet (Aman) seasons. Chang & Wen (2011) analysed the technical efficiency and
production risk for two categories of rice farmers in Taiwan i.e. those with off-farm work
and those without off-farm work and found differences in resource use among the two
categories of rice farmers. The authors found that the farmers with off-farm work faced a
higher production risk than those without off-farm income and that off farm income
reduced inefficiency among the lower percentiles farmers.

Although several studies on agriculture technical efficiency at the micro-level exist
for Kenya (see Seyoum et al., 1998; Mochebelele & Winter, 2002), the bulk of these studies
have been limited to a sample of farms mostly in the high potential zones and of dairy
farmers. A few studies on rice farming in Kenya exist, mainly focusing on specific regions.
For example, Omondi and Shikuku (2013) used the Cobb Douglas production function to
evaluate Ahero irrigation scheme’s rice farming efficiency for 220 rice farmers and found
the average technical efficiency to be 0.82. The authors established that the gender of the
rice farmer, rice farming experience, the farmer’s income levels and market distance
significantly affected efficiency. Mati et al. (2011) and Nyamai et al. (2012) evaluated the
impact of adopting the system of rice intensification (SRI) among the rice farmers at the
Mwea Irrigation Scheme. They found that the SRI had more benefits than the conventional
method of rice growing, since it saved on water, seed, fertiliser and pesticides use, hence
cutting rice farming costs. Gitau et al. (2011) evaluated Kenya’s trade and agriculture
competitiveness in wheat and rice, and found inefficiencies along the rice chain which
included: high labour costs, high migration rate and high fertiliser/seed costs. Kuria et al.

(2003) examined Mwea’s rice farming efficiency by comparing one-season and two-season



rice producers and found that farmers growing a single crop of rice annually to be more
efficient than those growing a double crop.

The above review indicates that the studies fail to provide an in-depth analysis of
Kenya’s rice farming system and of the factors that determine the efficiency levels. Rice
in Kenya is cultivated under diverse agroecological conditions, which means farmers face
different production technologies and opportunities, and therefore may make decisions
based on the input-output level choices they make (O’Donnell et al., 2008). Hence, the
assumption that farmers use the same technology can lead to biased results and that
unobserved differences in production techniques may be inappropriately labelled as
technical inefficiency (Villano et al., 2010; Jiang & Sharp, 2015). Currently, no study exists
on the technical efficiency across the rice agro-ecological zones of Kenya, a gap that this
study attempts to fill. To do so, the study examines rice farming efficiencies (technical,
cost and allocative) and the technology gaps across four rice agro-ecological zones of
Kenya, i.e., Mwea, Ahero, West Kano and Bunyala irrigation schemes and investigates the

factors that determine the efficiency levels.



3.0 Methodology
3.1: Data Envelopment Analysis

Data envelopment analysis (DEA) is a linear programming based technique for
measuring the relative performance of Decision Making Units (DMUs). DEA technique
was originally developed by Charnes, Cooper, and Rhodes (1978) for the purpose of
evaluating performance of non-profit and public sector organizations. DEA has been
accepted as a major frontier technique for benchmarking many sectors such as energy
(Abbott, 2006; Jamasb & Pollitt, 2000); education (Abbott & Doucouliagos, 2003);
banking (Vassiloglou & Giokas, 1990); hospitals (Puig-Junoy, 2000); among others.
Though DEA has a disadvantage of exaggerating the noise component, one main advantage
is that does not require a functional form and can accommodation multiple outputs. In
DEA, the input or output oriented models may be used. The input-oriented approach to
technical efficiency estimates to what extent a DMU could reduce the resources employed
and still produce the same output level. This represents the DMU’s resource intensity
relative to best practice. The output-oriented DEA determines to what extent a DMU could
increase its output level while employing the same level of resources. A DMU is considered
efficient if it is on the best practice frontier and inefficient if vice versa. The linear
programme solved for the ith firm/farm when using the output-oriented approach, can be

represented as follows;

Max®,
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where @ denotes a scalar showing by how much the firms can increase output; vy .,
denotes the output m by farm/firm k; x; ,, denotes the input n used by farm/firm k and z,
are weighting factors. Inputs comprise of fixed factors and variable factors defined by the
setas a. To calculate the capacity output measure, relaxing of the bounds on the sub-vector
of variable inputs x; is required. Relaxing the bounds on the sub-vector is achieved by
allowing the inputs to remain unconstrained through introducing a measure of the input
utilising rate (A ,,), estimated in the model for each firm k and variable input n (Fare et al.,
1994). The technically efficient capacity utilisation (TECU) based on observed output (u)

becomes:

_yY_ vy _ 1
TECU = = 3" b )

where y* denotes the capacity-output based on observed outputs y. The TECU
measure ranges from zero to one, with one implying full capacity utilisation (i.e. 100% of
capacity) which assumes efficient use of all the inputs exists at their optimal capacity.
Efficiency measures of less than one indicates that the firm operates at less than full

capacity given the set of fixed inputs.

3.2 Meta-frontier analysis

The concept of measuring efficiency using meta-frontier was first developed by
Hayami and Ruttan (1970), and extended by Rao et al. (2003). The meta-frontier evaluates
the efficiency of firms/units that operate under different production technologies or

physical environment (climate, soil type and farming history). Several studies employ the
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meta-frontier to evaluate technical efficiency and establish if there any technological gaps
among firms operating under different production technologies in areas such as
manufacturing (Rao et al., 2003; Battese et al., 2004); agriculture (Rao et al., 2008);
tourism (Assaf et al., 2010) and environment (Yang, 2010; Oh, 2010; Sala-Garrido et al.,
2011).

The meta-technology as defined by Rao et al. (2003) is the total of the regional
technologies. For example, if some output denoted by y, can be produced using an input
quantity x in any given region, then X, y will belong to the meta-technology denoted as T*.
The meta-technology then will be expressed as follows:

T"=((x,y):x = 0 andy = 0, such that x inputs will yield y outputs using at least one
region specific technology, T, T2, ..............,, TK) (6)
The meta-technology is assumed to satisfy all the production axioms and the convexity
axiom, expressed as the convex hull of the pooled region-specific technologies as follows:
T* = Convex Hull (T's.....T?0...0TH). (7)

If the input-output distance function is known such that Dy (x,y) and D/ (X, y) denote
for the output and input functions respectively using the meta-technology T *then the results
of any given region should be as follows:

DE(x,y) = Di(x,y),k = 1,2,......... K) and Df (x,y) < and D;(x,y). (8)
Thus, the output oriented technology gap ratio between the region k technology and

the meta-technology is computed as follows:

Dy (x.y)
TGRS (r.y) = LA ©

The technology gap ratio when considering the output-oriented technical efficiency

measure is denoted as follows:



TE§(X,
TGRE (%) = To¢ s (10)

or: TEg(x,y) = TE§ (x,y) * TGR§ (x,y) (11)
Figure 1 shows the relationship among three regional frontiers (1, 2 and 3 curves),

the metafrontier (M curve) and the technology gap ratios.

Technology gap

Output,
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\
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Input, X
Figure 1 Technical efficiencies and Meta-technology ratios

In this study, the DEA approach will be used to measure the efficiency of rice farming
in the four regions of Kenya and the meta-frontier approach will be used to analyse the

technology gap ratios.

3.3: Regression analysis of determinants of efficiency

The standard methodology for investigating the technical efficiency determinants of a
firm using DEA involves first generating the efficiency scores and evaluating the
determinants in the second stage. In essence, the efficiency score become the dependent

variable in the second stage and hence are regressed on covariates using the standard logit,
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probit models and truncated regressions. Studies that estimate determinants of efficiency
by regressing efficiency scores on some covariates mostly specify a censored (tobit) model
or a linear model based on ordinary least squares (see Aly et al., 1990; Chirikos & Sear
1994; Ray, 1991; Sexton et al., 1994; Cazals et al., 2002; Stanton, 2002; Daraio & Simar,
2005; Hoff, 2007; Banker & Natarajan 2008).

However, running a two-stage DEA is often criticised because the efficiency scores
by nature are bounded at unity from above which makes it a limited dependent variable.
Modelling of such bounded variables especially the non-binary ones with many
observations at the extremes thus becomes a challenge since it makes the application of the
standard linear models inappropriate. The logit and probit models provide a limited
approach to solving the problem due to their strong distribution assumption for the
underlying population. Tobit regressions become appropriate when the dependent variable
is limited either above or below and when unbounded elsewhere. However, the two-limit
tobit model does not observe efficiency scores of zero which implies that the estimates end
up being based on the one limit tobit (Ramalho et al., 2010).

Recent developments in the two-stage process include the use of the bootstrapping
technique which assumes that the accumulation of observations at unity is due to censoring
(see Simar & Wilson, 2007). However, McDonald (2009) argues that efficiency scores
being fractional data, may not be generated by a censoring process. McDonald (2009)
adopts the ‘conventionalist’ approach in evaluating the two-stage process where the
efficiency scores are measured relative to an estimated frontier, an approach that fails to
solve the sampling variation issue. Banker & Natarajan (2008) that assumes a linear

correlation exists between the logged technical efficiency scores and the covariates seemed
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favourable, however, the method only considers one parameter estimates and does not
tackle the issue of hypothesis testing of the estimated variables.

The fractional regression model (FRM) developed by Papke and Wooldridge (1996)
represents a viable solution to addressing the challenge of the second stage DEA analysis.
The FRM is a class of functional forms extended from the general linear model. FRM has
the following advantages: first, it helps to cater for the boundedness of the dependent
variable from above and below. Second, it helps predict response values within the interval
limits of the dependent variable and last, it also captures nonlinear data thus yielding better
estimates. The only assumption required of FRM is a functional form of y so that the
desired constraints on the dependent variable are imposed (Ramalho et al., 2010) as
follows:

E(ylx) = G(X6) (12)
where G (.) denotes a nonlinear function that satisfies the condition 0 < G(.) < 1. (13)

The model is estimated using four widely accepted models which include the logit,
probit, loglog and complementary log referred to as Cloglog. The partial effects in all the

models are denoted as:

SE(|x) _
o ;g (x0) (14)

In the recent works of Ramalho, et al. (2010) the authors recommend use of the
fractional regression models to analyse efficiency determinants in the second stage. They
consider a one and two-part models due to the differences in efficiency scores. The one
part models assume that:

E(8|w) = Gwd), (15)
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where G(.) denotes a probability distribution function. § is unknown and is estimated by
quasi-maximum likelihood (QML) that maximises:
1(8;10g(G(w;6))) + (1 — 8)) log(1 — G(w;8)). (16)

In the two-part models’ the whole sample is used to estimate the model:

Prob (8; = 1|WL-) = F(w{B) 17)
where £ denotes an unknown parameter and F denotes a known probability distribution
function. It is assumed that (8;|w;) = G(w/&) for the responses in (0, 1) for the second
part.

Following the recent works of E. A. Ramalho et al. (2010) the fractional regression
models are used to evaluate farming process. The technical efficiency scores are regressed
against the following determinants: age of the miller, experience of the miller, number of
times the mill is serviced, number of years the mill has been in use and the type of energy
used. A positive sign on the variables indicates that the variable positively affects

efficiency and vice versa.

3.4: Study site and data

The target population consisted of adult (over 18 years) small-scale rice farmers
located in Mwea and Western Kenya (Ahero, West Kano and Bunyala) rice schemes. The
primary data used was from a household survey conducted in these rice regions. A sample
of 835 small-scale rice farmers was drawn from the four rice schemes of Kenya. In Mwea,
twenty-five rice farmers were randomly selected from twenty rice blocks (rice villages),
making a sample total of 500 farmers. Mwea has about 6000 rice farmers thus making a

sampling ratio of 8.3%. The rice schemes of western Kenya consist of Ahero, West Kano
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and Bunyala irrigation schemes. The Bunyala scheme has 133 farmers divided into seven
blocks, hence a sample of thirty-five farmers was obtained making a sampling ratio of
26.3%. The West Kano scheme and Ahero schemes have twelve rice blocks each with a
total of 819 and 1650 rice farmers respectively. A sample of 140 (17.1%) and 160 (9.7%)
rice farmers was obtained from the West Kano and the Ahero schemes respectively.

The survey took place between April and June 2014. The data was collected using a
questionnaire with pretesting done using a sample of 30 questionnaires. Data collection in
each scheme was done using face to face interviews by enumerators. The data collected
from the rice farmers’ interviews and recorded in the questionnaires included output data
(i.e. paddy amount harvested), input data included fertiliser amount, labour man days, seed
quantity, pesticides quantity and land area (number of acres under rice). The data collected
on socio-economic characteristics included farmers’ age, farmer gender, household size,
years of schooling, rice farming experience, distance to extension advice distance and
market distance. Secondary supplemented the survey with further data on rainfall, humidity
and temperature. After data coding, 62 observations (7.4%) were removed due to

incomplete data thus making the total observations used for analysis to be 773.

3.1 Descriptive statistics of rice farmers’ data

Table 1 provides summary statistics of the rice farmers’ data. The statistics indicate
that most farmers harvested an average of 4192kgs of paddy per year, with a maximum of
28500kg and a minimum of 225kg obtained. In terms of input quantities, land size ranged
between 0.25 acres and 12 acres with an average of 1.98 acres. On average farmers used

222.4kg of fertiliser, with a maximum of 2400kg and a minimum of 24Kg. Farmers applied
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0.76 litres of pesticides on average, with a maximum of 12 litres while a few farmers did
not use pesticides. Given very few farmers did not apply pesticides, sample average
estimates were used on the assumption that the effect the average had on the estimates was
negligible. Farmers used 42.3kg of seed with a maximum and minimum of 330kg and 2kg
respectively. Hired labour was on average 32.9 persons, with the maximum number being
178 while some farmers did not hire any workers. On average, farmers used 1.47 persons
of family labour with a maximum of 23 persons per season. Thus, combining family and
hired labour provided an average of 34.4 persons per season.

The demographic attributes of rice farmers captured included rice farmer’s age,
which ranged between 20 and 88 years, with an average of 48.6 years. A dummy variable
captured the farmers’ gender with males’ being assigned one and females zero: 551 farmers
were male and 222 females. On average, farmers had 8.1 years of schooling with the
maximum number of years of schooling attained being 19 years while the minimum being
a few farmers not having formal education. On average, farmers had 18.5 years of rice
farming experience with a maximum of 80 years and no experience as a minimum. The
market distance served as a proxy for infrastructure. Farms on average were located at
3.9km away from the market with the farthest being 20 km away. On average, farms were
located 4.1km from extension advice with the farthest being 28km away and the nearest
being locate a few metres away. The average rainfall ranged between 980.9mm and
1717.6mm with an average of 1113.0mm. Average humidity was 69.03% with a minimum
of 64.5% and a high of 71.3%. The mean temperature was 22.7°C, with a minimum of
22.3°C and maximum of 23.3°C. To cater for the regional differences, a dummy variable

of one was assigned for farms located in the Mwea region and zero for those located in
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other regions. A dummy variable represented technology adoption, with one if a farmer

adopted SRI technology and zero if otherwise. 605 (78.3%) of rice farmers were

conventional farmers and 168 (21.7%) were SRI farmers. MaxDEA 6.0 software was used

to generate the efficiency scores.

Table 1 Descriptive statistics of inputs and outputs for rice farmers

Variable Mean Min max StdD
Paddy (kg) 4192.00 225 28500  3139.59
Size of plot (acres) 1.98 0.25 12 1.31
Total fertilizer (kg) 222.39 24 2400 192.01
Pesticide applied (L) 0.76 0.01 12 0.92
Seed quantity (kg) 42.33 2 330 33.78
Labour hired (No) 32.97 0 178 20.43
Family labour used (No) 1.47 0 23 2.95
Total labour (No) 34.44 1 178 20.41
Unit prices

Price per unit of paddy 46.07 25 100 10.56
Cost of land = Water cost per acre 2538.65 300 14800 1091.18
Average fertilizer per kg (Ksh) 53.57 0 138 13.33
Average cost of pesticides (per unit) 2.57 0.02 150 7.42
Cost of seed per Kg 88.17 20 200 16.30
Wage rate per head (Ksh) 128450  145.82 11610  1437.96
Inefficiency estimates

Gender (1= male, 0 otherwise) 0 1

Age (years) 48.63 20 88 13.54
Schooling (years) 8.07 0 19 3.83
Household members (No) 5.36 2 28 2.87
Experience (year) 18.46 1 80 13.52
Distance to extension advice (km) 4.09 0.007 28 3.85
Distance to the market place (km) 3.89 0.01 20 3.26
Average rainfall (mm) 111299 980.934 1717.6  189.55
Average humidity (%) 69.03 64.5 71.3 1.76
Average temperature (°C) 22.65 22.3 23.3 0.47
Region dummy (1= Mwea, 0= Otherwise) 0 1

Technology (1 = Adopted, 0 = Otherwise) 0 1

Source: Field survey estimates and other sources
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4.0 Results

4.1: Efficiency estimates and distribution

Table 2 provides the efficiency scores results. The overall mean technical and scale
efficiency was 0.512 and 0.839 respectively, implying that there was a 48.8% greater
potential to increase output further given the same input levels and 16.1% potential increase
of output given optimal scale. 96.8% of the farms were found to be scale-inefficient, with

35.8% operating on increasing returns to scale, 60.9% operating under decreasing returns

to scale and only 3.2% were scale efficient.

Table 2 Summary of technical, allocative and cost-efficiency

Technical Scale

Range No of % |Noof %
DMUs DMUs

<0.1 0 0 0 0
0.1-0.199 12 1.55 1 0.13
0.2-0.299 79 10.22 4 0.52
0.3-0.399 182 23.54 8 1.03
0.4-0.499 181 23.42 19 2.46
0.5-0.599 102 13.2 40 5.17
0.6-0.699 75 9.7 88 11.38
0.7-0.799 42 5.43 76 9.83
0.8-0.899 29 3.75 142 18.37
0.9-0.999 24 3.1 370 47.87
1 47 6.08 25 3.23
IRS 277 35.83
DRS 471 60.93
CRS 25 3.23
Mean 0.512 0.839
Minimum 0.109 0.197
Maximum 1.000 1.000
Std. Dev 0.214 0.158

Source: Results estimates
Note: IRS = increasing returns to scale; DRS = decreasing returns to scale.
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4.2 Meta-technology ratio
4.2.1 Hypothesis testing for technical and scale efficiency

To find if the technical, scale, allocative and cost-efficiency means were statistically
different across regions, a Kruskal Wallis Test was carried out. The following hypotheses were
tested:

Hypothesis 1: Ho = mean technical efficiency is the same in all the regions
H: = mean technical efficiency is different across the regions
Hypothesis 2: Ho = mean scale efficiency is the same in all the regions
H: = mean scale efficiency is different across the regions
The results indicate that the distribution of the means was statistically different across the
regions since the null hypothesis was rejected in all cases (see Table 3). This implies that
efficiencies varied across the regions which thus formed the basis for calculating the technology

gap ratios between the regions as shown in Table 7.

Table 3 Hypothesis testing results for technical and scale efficiency

Variable Pvalue Result
Technical efficiency 0.000 Rejected
Scale efficiency 0.000 Rejected

Source: Results estimates

4.2.2 Pooled and regional meta-frontiers of technical, allocative and cost-efficiency

Table 4 provides the meta-frontier estimates of the pooled data. The technical efficiency of
Mwea, West Kano, Ahero and Bunyala was 0.556, 0.475, 0.402 and 0.45 respectively. Analysing
regional efficiencies as shown in Table 5 indicates that the technical efficiency of Mwea, West
Kano, Ahero and Bunyala was 0.557, 0.784, 0.833 and 0.937. Thus, the technology gap ratios as
shown in Table 6 for Mwea, West Kano, Ahero and Bunyala was 0.998, 0.605, 0.482 and 0.480
respectively. The results thus suggest that a narrow gap existed between the region and the meta-
frontier results for Mwea, while a wider gap existed for West Kano, Ahero and Bunyala. Mwea

rice farmers were thus more technical efficient than rice farmers in the other schemes with Bunyala
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being worse off. Mwea may have an advantage over the other rice-growing regions due to its
proximity to the capital city, Nairobi where key inputs such as fertiliser are easily accessible. The
transportation cost of inputs e.g. fertiliser, seed and other inputs from Nairobi City make them
more expensive and unaffordable in the other regions. As noted by Kherallah et al. (2002), fertiliser
is much more expensive in Africa than elsewhere in the world due to high transportation costs,
making it difficult for poor farmers to afford it. Mwea also benefits from its proximity to the Mwea
Rice Research Centre and nearby higher institutions of learning conducting rice research in the
area. Mwea also has large SRI experiment sites set up by researchers which encourage farmers to
adopt such technology - all of which would impact on the efficient use of inputs. Further, the rice

seed breeding centre is located in Mwea which makes the farmers easily access improved seed.

Table 5 Meta-frontier regional efficiencies estimates from pooled data

Mwea West Kano Ahero Bunyala

Range No of % No of % No of % No of %

DMUs DMUs DMUs DMUs
<0.1 0 0 0 0 0 0 0 0
0.1-0.199 1 0.21 3 2.36 7 5.34 1 3.13
0.2-0.299 26 5.38 19 14.96 30 22.90 4 12.50
0.3-0.399 101 20.91 32 25.20 39 29.77 10 31.25
0.4-0.499 117 24.22 30 23.62 29 22.14 5 15.63
0.5-0.599 66 13.66 18 14.17 11 8.40 7 21.88
0.6-0.699 59 12.22 7 5.51 6 4.58 3 9.38
0.7-0.799 31 6.42 6 4.72 5 3.82 0 0
0.8-0.899 23 4.76 2 1.57 3 2.29 1 3.13
0.9-0.999 19 3.93 5 3.94 0 0 0 0
1 40 8.28 5 3.94 1 0.76 1 3.13
Average 0.556 0.475 0.402 0.450
Minimum 0.157 0.147 0.109 0.167
Maximum 1.000 1.000 1.000 1.000
Std. Dev 0.216 0.206 0.164 0.179

Source: Results estimates
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Table 6 Regional meta-frontier efficiencies estimate (when each region is analysed separately)

Mwea West Kano Ahero Irrigation Bunyala
Irrigation Irrigation Scheme Irrigation
Scheme scheme Allocative Scheme Cost
Range No of % No of % No of % No of %
DMUs DMUs DMUs DMUs
<0.1 0 0 0 0 0 0 0 0
0.1-0.199 1 0.21 0 0 0 0 0 0
0.2-0.299 25 5.18 0 0 4 3.05 0 0
0.3-0.399 100 20.7 2 1.57 2 1.53 0 0
0.4-0.499 118 24.43 7 5.51 4 3.05 2 6.25
0.5-0.599 65 13.46 10 7.87 17 12.98 0 0
0.6-0.699 60 12.42 24 18.90 8 6.11 0 0
0.7-0.799 32 6.63 26 20.47 7 5.34 2 6.25
0.8-0.899 22 4,55 14 11.02 12 9.16 3 9.38
0.9-0.999 19 3.93 7 5.51 24 18.32 0 0
1 41 8.49 37 29.13 53 40.46 25 78.13
Average 0.557 0.784 0.641 0.501
Minimum 0.157 0.350 0.341 0.220
Maximum 1.000 1.000 1.000 1.000
Std. Dev 0.216 0.183 0.131 0.161
Source: Results estimates
Table 7 Summary of the technical efficiency means and the gap ratios
Mwea West Kano Ahero Bunyala
Irrigation Irrigation Irrigation Irrigation
Scheme Scheme Scheme Scheme
Pooled  Average 0.556 0.475 0.402 0.450
frontier  \inimum 0.157 0.147 0.109 0.167
Maximum 1.000 1.000 1.000 1.000
Std Dev 0.216 0.206 0.164 0.179
Regiqn Average 0.557 0.784 0.833 0.937
frontier  \inimum 0.157 0.350 0.250 0.456
Maximum 1.000 1.000 1.000 1.000
Std Dev 0.216 0.183 0.215 0.141
Gap
Ratio 0.998 0.605 0.482 0.480

Source: Results estimates
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4.3 Determinants of efficiency

Table 8 provides the FRM estimates for technical efficiency. In the one-part models
(linear models) age, farmer’s gender and adopting technologies were significant at the 10%
and 5% levels, thereby explaining why some farmers were efficient. However, experience,
extension, market distance, years of schooling, humidity, rainfall and temperature did not
explain the inefficiency, since the variables were not statistically significant. At 10% and
5% significance levels for the logit and cloglog model, age, farmer’s gender, humidity,
rainfall, temperature and adopting technologies explained the inefficiency.

An examination of the second part of the two-part models, showed that adopting
technologies was the reason why some farmers were more efficient (5% significance level
for the cloglog and at 10% significance level for the logit model). In examining why some
farmers were inefficient, their age, gender and level of humidity reduced their efficiency
scores at 5% and 1% significance level for all the models. Adopting technologies and
temperature reduced their inefficiency at the 5% and 10% significance level for all the
models.

The role of gender in rice farming remains important. The results indicate that a rice
farmer's gender had a negative relationship with efficiency, implying that males were more
inefficient in rice farming than the females. The finding contradicts the bulk of the existing
literature which finds males more efficient than females (Ironkwe et al., 2014; Oladeebo,
2012). However, it may be assumed that given women play a critical role in rice farming
by providing close to half of the total labour input in rice farming, then this finding holds.

The age of the farmer was found to be negatively correlated with efficiency. The

finding corroborates the works of Mugera and Featherstone (2008) who found that age
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increased inefficiency among a sample of 126 people rearing hog in the Philippines. The
results also confirmed that young farmers tend to adopt newer technologies faster than the
older farmers hence, the higher efficiency.

The role of climatic factors in rice farming remains important. The average humidity
and rainfall, affected efficiency negatively, while temperature positively affected
efficiency. Sarker et al. (2012) and HoAfricain et al. (2013) also found rainfall to be
negatively associated with AUS variety rice farming in Bangladesh. However, in relation
to humidity and temperature, this study results contradict the findings of these authors.
However, Banaszek and Siebenmorgen (1990) found that lower relative humidity reduced
head rice yield less while Mahmood et al. (2012) found that in India’s Punjab province an
increase in temperature by 1.5°C and 3°C increased rice yield by 2.09% and 4.33%,
respectively. Rice requires optimum rainfall, temperature and humidity for its vegetative
growth and to produce paddy therefore policies that spearhead adaptive strategies to
mitigate adverse effects of the climatic factors would benefit rice farmers.

Adopting technologies has been found the key to increasing rice output particularly
in Asia. In this study, those farmers who adopted improved seed and water saving
technologies were more efficient than the conventional farmers. Thus, investing in

improved rice technologies will clearly help increase rice output in Kenya.
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Table 8 Determinants of technical efficiency

One-part models

Two-part models

1% Part 2" Part
Variable Linear Tobit logit cloglog logit cloglog Linear logit probit loglog cloglog
2.140*%** | 2.211*** | 6.677 *** 4.450%** 21.97 21.44 1.761*** | 5.144%** 3.210*** 3.935%** 3.469***
Intercept (0.345) (0.364) (1.153) (0.846) (1037) (991.2) (0.297) (1.012) (0.632) (0.699) (0.759)
-0.002* -0.002* -0.006* -0.005** -0.010 -0.010 -0.002** | -0.006** -0.004** -0.004** -0.005**
Age (years) (0.001) (0.001) (0.003) (0.002) (0.018) | (0.017) (0.001) (0.003) (0.002) (0.002) (0.002)
0.000 0.000 0.001 0.000 0.003 0.003 0.000 0.001 0.000 0.000 0.000
Experience (years) | (0.001) (0.001) (0.003) (0.002) (0.017) | (0.016) (0.001) (0.003) (0.002) (0.002) (0.002)
-0.001 -0.001 -0.003 -0.002 -0.012 -0.011 -0.000 -0.002 -0.001 -0.001 -0.001
Extension (km) (0.002) (0.002) (0.009) (0.006) (0.046) | (0.044) (0.002) (0.007) (0.005) (0.005) (0.005)
Gender (0 = -0.039** | -0.041** | -0.160** -0.112** -0.232 -0.224 -0.034** | -0.138** -0.087** -0.098** -0.101**
female; 1=male) (0.017) (0.018) (0.071) (0.049) (0.332) | (0.317) (0.015) (0.062) (0.039) (0.044) (0.044)
-0.024 -0.024 -0.114*** | -0.097*** | -2.355 -2.335 -0.023 -0.111*** | -0.067*** | -0.063*** | -0.094***
Humidity (%) (0.048) (0.050) (0.035) (0.025) (333.7) | (319.0) (0.040) (0.029) (0.018) (0.020) (0.022)
-0.001 -0.001 -0.002 -0.001 0.000 0.001 -0.000 -0.002 -0.001 -0.002 -0.001
Market (km) (0.003) (0.003) (0.012) (0.008) (0.053) | (0.051) (0.002) (0.009) (0.006) (0.007) (0.007)
-0.000 -0.000 -0.001*** | -0.001*** | -0.024 -0.024 -0.000 -0.001*** | -0.001*** | -0.001*** | -0.001***
Rainfall (mm) (0.000) (0.001) (0.000) (0.000) (3.366) | (3.218) (0.000) (0.000) (0.000) (0.000) (0.000)
-0.001 -0.001 -0.005 -0.004 0.011 0.011 -0.002 -0.007 -0.004 -0.005 -0.005
School (years) (0.002) (0.002) (0.009) (0.007) (0.048) | (0.046) (0.002) (0.008) (0.005) (0.006) (0.006)
Technologies 0.048** 0.052** 0.030*
(1=adopted; 0= not | (0.018) (0.019) 0.197** 0.146*** 0.735* | 0.705** | (0.016) 0.121* 0.075* 0.082* 0.091*
adopted) (0.079) (0.056) (0.347) | (0.328) (0.068) (0.042) (0.048) (0.050)
0.022 0.018 0.142 0.155* 7.442 7.392 0.034 0.192* 0.112* 0.085 0.185**
Temperature (°C) (0.166) (0.174) (0.117) (0.085) (1162) (1111) (0.140) (0.101) (0.063) (0.070) (0.075)
0.215%**
Sigma (0.006)
Number of 773 773 773 773 773 773 726 726 726 726 726
observations
R-squared 0.093 1.967 0.093 0.094 0.024 0.025 0.082 0.082 0.082 0.082 0.083

Source: Results estimate
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4.4 Conclusion and recommendations

The technical efficiency of a sample of 773 rice farmers from four rice-growing schemes in
Kenya were measured using DEA and the efficiency determinants were quantified using FRM.

The results indicate a significant variation of the efficiency scores among the four regions.

The overall mean technical and scale efficiency was 0.512 and 0.839 respectively, implying
that there was a 48.8% greater potential to increase output further given the same input levels and
16.1% potential increase of output given optimal scale. 96.8% of the farms were found to be scale-
inefficient, with 35.8% operating on increasing returns to scale, 60.9% operating under decreasing

returns to scale and only 3.2% were scale efficient.

The average technical efficiency of Mwea, West Kano, Ahero and Bunyala was 0.556, 0.475,
0.402 and 0.45 respectively which implies that on average output would be increased by 44.8%,
52.5%, 59.8% and 55% in Mwea, West Kano, Ahero and Bunyala respectively given the same
level of inputs. Mwea efficiency results were close to the meta-frontier results of the pooled data
thus indicating a very narrow gap between the two estimates. The West Kano, Ahero and Bunyala
efficiency scores were higher than that of the meta-frontier thus indicating a gap between the
regional and meta-frontier results. Thus, Mwea appeared to be closer to the frontier, while Bunyala
was very far from the frontier. The factors found to be associated with technical efficiency

included: gender, age, humidity, rainfall, temperature and adopting technologies.

Based on these findings, some important policy implications can be drawn. Policy
interventions should aim at improving overall technical, cost and allocative efficiency of rice
farming in Kenya. Thus, policy-makers should focus on enhancing rice farmers’ technology
adoption and training to bridge the inefficiency gap. Putting in place a planting schedule

programme that will allow rice farmers to utilise the land during the fallow months for short
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duration crops such as tomatoes, watermelons and beans would be one important means of helping
farmers to enhance their livelihoods. Policies that target the challenges young farmers and either
gender face in the rice farming systems will also contribute to narrowing the efficiency gap
between the older and younger farmers, and between the male and female rice farmers. Policies
that would narrow the technological gap between Mwea and the Western schemes would also be
beneficial to the farmers. Spearheading adaptive strategies to mitigate adverse effects of climatic
factors especially temperature, rainfall and humidity would be equally beneficial for farmers. In
addition, very inefficient rice farmers should be encouraged to exit the industry to enable Policy-

makers to reallocate the resources (especially land and water) to other more economic activities.
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