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ABSTRACT 

This paper investigates the existence and magnitude of air pollution spillovers in 

Chinese cities. Estimation of this spillover effect is complicated because neighboring cities 

share similar business/pollution cycles and changes in wind direction can be fairly frequent. 

To circumvent these empirical challenges, we exploit spatial and temporal variations in PM10 

concentrations for 108 major cities in China’s Eastern Monsoon Region during the East 

Asian winter and summer monsoon seasons. We find large pollution spillover effects: a city’s 

average PM10 concentration increases by 0.09-0.21 units during the winter monsoon season 

and by 0.06-0.10 units during the summer monsoon season, if PM10 concentrations in cities 

upwind of this city increase by one unit. The percentage contributions of PM10 pollution from 

upwind cities to local PM10 levels vary by region and can be as large as 30%. These findings 

are comparable to the existing atmospheric evidence. Our findings suggest that pollution 

control policies must be coordinated between cities to abate urban air pollution. 
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1. Introduction 

China’s poor air quality has put the country in the world’s spotlight. In many Chinese 

cities, pollution levels exceeded the World Health Organization air quality guidelines on more 

than 250 days in 2011 (Cheng et al., 2013). International media has described air quality in 

China as “hazardous to human health”.1 Negative health consequences have been repeatedly 

reported, including premature death (Yang et al., 2013; Zhang et al., 2010) and significant 

reduction in average life expectancy (Chen et al., 2013a). Air pollution is also linked to China’s 

growing social unrest in recent years.2  

This paper aims at identifying the contributions of various pollution sources to ambient 

air pollution concentrations in Chinese cities. As the economics literature is relatively new to 

this topic, we first give a brief overview of previous approaches to set the stage for our study. 

These can be divided into two main categories, starting with the air sampling approach that 

entails measuring the content of particulate and gaseous contaminants in collected air samples. 

By analyzing ambient gases and aerosol properties in air samples, atmospheric scientists can 

pin down the contributions of various sources, such as primary emissions vs. secondary 

formation and local sources vs. regional transport, to ambient pollution concentrations (Guo et 

al., 2014). However, results based on this approach are sensitive to sampling sites, duration of 

sampling periods and sampling methods (Katz, 1969).3  

The Air Quality (AQ) models are another widely-used approach, which utilizes 

complex mathematical techniques to simulate transport and diffusion processes of air 

pollutants in the atmosphere. An example is Models-3/Community Multi-scale Air Quality 

(CMAQ), developed by the US Environmental Protection Agency (EPA). Using CMAQ and 

a modified version of the model (MM5–CMAQ), respectively, Streets et al. (2007) and Chen 

et al. (2007) concluded that neighboring provinces, such as Hebei, Shandong, and Tianjin, 

had a large influence on Beijing’s air quality. However, several studies have pointed out that 

simulation results based on the AQ models are sensitive to grid resolutions (see Queen and 

Zhang, 2008), and running these AQ models involves substantial computational costs 

(Capaldo et al., 2000). 

                                                        
1 “China smog sparks red alerts in 10 cities,” BBC news, December 24, 2015. 
2 “Chinese anger over pollution becomes main cause of social unrest,” Bloomberg, March 6, 2013. 
3 Using the data collected from an urban site in Beijing between April 2009 and January 2010, Zhang et al. 

(2013) showed that industrial pollution and secondary inorganic aerosol formation were the major sources of the 

city’s air pollution, while traffic emissions played only an insignificant role. Based on the data collected from 

the same site during a different time period, from September to November 2013, Guo et al. (2014) concluded 

that nitrogen oxides (NOx) from local transportation and sulfur dioxide (SO2) from regional industrial sources 

were the main sources of air pollution in Beijing.  
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In this paper, we employ an econometric approach. We develop a spatial dynamic panel 

data (SDPD) model to quantify the effects of various local and neighboring factors on air 

quality in Chinese cities, with a particular focus on estimating pollution spillovers effect. As 

compared to the atmospheric approaches mentioned above, the SDPD model developed here 

has at least three advantages. First, by explicitly including an extensive list of explanatory 

variables, this approach leads to a clearer understanding of the impacts of various local and 

neighboring factors on urban air quality. Our SDPD model includes not only meteorological 

factors (as in most atmospheric studies), but also considers the effects on local air quality of 

agricultural activities, energy consumption, holidays/weekends, and air pollution from upwind 

cities. Second, our approach allows us to fully utilize high-frequency data consisting of daily 

meteorological conditions and air pollution, while most of the AQ models use only 

seasonal/monthly data to minimize computational costs (Capaldo et al., 2000). Third, our 

approach yields more robust results that are not sensitive to study periods, study sites, and 

estimation techniques, which are explained in detail in the results section.  

However, estimation of this pollution spillover effect is complicated for two reasons. 

One, the observed pollution in a city is an outcome of local activities and possible spillovers 

from upwind cities and neighboring cities usually share similar business/pollution cycles and 

meteorological conditions, which makes separating pollution spillovers from locally generated 

pollution difficult. Two, our data show frequent spatial and temporal changes in wind direction, 

making it even more difficult than in other contexts4  to identify pollution spillovers. For 

example, wind can carry air pollutants from one city to its downwind areas on one day. These 

pollutants, together with pollutants generated from the downwind areas, could be transported 

back to the original city on the following day, due to changes in wind direction.  

To circumvent the empirical challenges noted above, we restrict our focus to major 

cities located in the Eastern Monsoon Region (EMR) in China5 during the East Asian winter 

monsoon (EAWM) and the East Asian summer monsoon (EASM) seasons. The most notable 

feature of the EAWM is strong and stable northwesterly winds across the east flank of the 

Siberian high and the East Asia coast including China’s EMR (Zhou, 2011), while the 

prevailing winds have been southerly and southwesterly during the EASM season (Ding, 1994). 

By restricting our sample to these major cities in the EMR during the two monsoon seasons, 

                                                        
4 Such as transboundary water pollution spillovers (Sigman, 2002). 
5 According to climatological and topographical characteristics, China can be divided into three main regions, 

including the Eastern Monsoon Region, the Qinghai-Tibetan Plateau Region and the Northwestern Arid Region 

(Figure 1). 
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(a) Winter monsoon       (b) Summer monsoon  

 

Figure 1. City-average PM10 concentrations during the winter (a) and summer (b) monsoon seasons, 2009-2013 
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we can obtain clean estimates of pollution spillover effects. This identification strategy is 

similar to that used by Jia and Ku (2016) who assess the impacts of air pollution spillover from 

China to South Korea.  

We conduct this analysis by compiling a city-level panel that contains daily air quality 

and weather information for the 108 major cities located in the EMR from 2009 to 2013 (see 

Figure 1). We use the concentration of particulate matter with a diameter of 10 μm or less 

(PM10) as our dependent variable. We focus on PM10 for two reasons. First, PM10 is the 

primary air pollutant in Chinese cities (Chan and Yao, 2008). Second, PM10 can travel long 

distances (Duce et al., 1980; Parrington et al., 1983; Tsunogai and Kondo, 1982), while other 

major air pollutants, such as SO2, NOx, ozone, and carbon monoxide, are either exclusively 

from local emissions sources or can only be transported within relatively small geographic 

regions (Guo et al., 2014). Therefore, focusing on PM10 can better serve our research 

purpose.  

Our regression model includes a wide range of local and neighboring factors as 

explanatory variables. Local factors include a temporally lagged dependent variable, which 

represents a city’s air pollution stock; weather conditions, such as temperature, precipitation, 

solar radiation, wind speed, relative humidity and atmospheric pressure; the gasoline price, 

which is used to control for PM10 released from vehicle exhaust; and open-field burning of crop 

residues during post-harvest seasons. We account for the effect of PM10 from upwind cities on 

local PM10 concentrations by creating a spatially-weighted PM10 variable that depends on 

physical distance between cities, wind direction, wind speed and emission strength in upwind 

cities. We also augment the model by using city-year-month fixed effects to minimize the 

potential estimation biases originating from omitted variables. The high dimensional fixed 

effects capture a wide range of the unobserved factors within a city-year-month that may affect 

city-average PM10 concentrations. These unobserved factors may include regional economic 

shocks, seasonal coal combustion for heat and power generation, dust generated from the 

construction of new buildings and roads, number of vehicles, and perhaps others. 

We find strong evidence of the existence of spatial spillover effects of PM10 pollution 

in China. Holding all else the same, a one-unit increase in PM10 concentrations in upwind 

cities of a city is expected to raise that city’s PM10 concentration by 0.09-0.21 unit during the 

winter monsoon season, and by 0.06-0.13 during the summer monsoon season. Impacts of 

upwind air pollution on local PM10 concentrations vary across regions ranging from 0% to 

30% during the winter monsoon season and from 0% to 26% during the summer monsoon 
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season, with cities located in the North China Plain and Yangtze River Delta regions most 

affected by air pollution from upwind cities.  

Our findings are highly relevant to the design of China’s air pollution control 

strategies. If air pollutants are generated mostly from local sources, such as traffic emissions 

and/or coal burning, an effective pollution abatement strategy should target these local 

sources. On the other hand, if air pollutants are found to come primarily from upwind areas, 

collective efforts for regional air pollution abatement would be called for. With the lack of 

rigorous empirical analysis, China’s air pollution control strategies have been shown to 

perform quite poorly. At present, the common strategy adopted by many Chinese cities to 

improve air quality is to relocate large-scale and heavily polluting factories to suburbs and to 

neighboring provinces. For instance, to host the 2008 Olympic Games, China relocated 

several large, heavily polluting firms to Beijing’s neighboring cities as one of a series of 

actions to improve Beijing’s air quality (Chen et al., 2013b). However, Guo et al. (2014) 

showed that relocating polluting firms is a poor pollution abatement strategy, because 

Beijing’s neighboring cities/provinces contributed significantly to ambient air pollution 

concentrations in Beijing after the Olympic Games. By using high quality data and a rigorous 

approach to identify the effects of various local and neighboring factors on urban air quality, 

our results may stimulate public policy debates regarding how to effectively design China’s 

air pollution control policies. 

In addition to using a new approach to assess the impacts of various factors on air 

pollution, this paper contributes to the existing literature in three major aspects. First, our 

spatial econometric model is novel. When conducting spatial econometric analyses, many 

studies specify spatial weights matrices based on either geographical criteria or economic 

dependence between regions/sectors. These studies typically assume that spatial weights 

matrices are time-invariant (see Anselin and Bera, 1997; Won Kim et al., 2003), ignoring the 

fact that, under certain circumstances, spatial dependence of two regions/sectors may change 

over time. In contrast to these studies, we allow our spatial weights matrix to change daily 

according to wind direction and wind speed in upwind cities. Although our approach is 

different from the atmospheric approaches, our results are fairly comparable to the 

atmospheric evidence. 

Second, we provide a new way to construct an instrumental variable for air quality. 

Chay and Greenstone (2005) used nonattainment status as the instrumental variable for air 
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quality to examine the impacts of air pollution on housing values.6 Luechinger (2009) 

improved their approach and used the changes in SO2 concentration due to the mandated 

installation of SO2 emissions control equipment in upwind areas as an instrument for SO2 

pollution. Here, we demonstrate that air pollution from areas upwind of a city can serve as a 

valid instrumental variable for that city’s air quality, because air pollution levels are spatially 

correlated, but local economic indicators, such as housing values, unemployment rates and 

labor income, are unlikely to be correlated with air pollution in other regions. 

Lastly, although this paper focuses on air pollution, our research contributes to a 

broader literature on the design of efficient environmental policies to control transboundary 

pollution. Several studies in the US have documented negative spatial externalities of 

agricultural runoffs (Goetz and Zilberman, 2000; Griffin and Bromley, 1982), and analyzed 

optimal management strategies for groundwater pumping  (Brozović et al., 2010; 

Chakravorty and Umetsu, 2003; Kuwayama and Brozović, 2013; Pfeiffer and Lin, 2012). Our 

empirical findings suggest that adjacent cities should establish environmental agreements to 

collectively control transboundary air pollution (Espínola-Arredondo and Muñoz-García, 

2012).   

The rest of the paper is organized as follows. Section 2 illustrates various factors that 

may affect urban PM10 concentrations in China. Section 3 presents our empirical model. 

Section 4 describes data sources. Section 5 presents baseline results. Section 6 considers a 

variety of robustness checks. Section 7 assesses the percentage contributions of PM10 

pollution from upwind cities. Section 8 concludes.  

 

2. Contributing factors to PM10 pollution in Chinese cities 

Based on their origins, we categorize the factors affecting a city’s PM10 concentration 

into local and neighboring factors. Local factors include weather, combustion of fossil fuels, 

economic activities, and city-specific environmental protection measures. Neighboring 

factors refer to PM10 transported from upwind regions by the passage of wind. In this section, 

we discuss each of these factors.  

2.1 Local factors 

Weather conditions, such as precipitation, wind, temperature, sunshine, relative 

humidity, and atmospheric pressure, have been well recognized as important factors affecting 

                                                        
6 Under the Clean Air Act, the US EPA designates a county as in “nonattainment” status if pollution 

concentrations in this county exceed the federally determined ceiling. 
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ambient PM10 concentrations. Precipitation can increase the weight of PM that is floating in 

the air and cause the particles to fall. Strong winds can facilitate atmospheric dispersion and 

thus reduce PM10 concentrations. While wind affects the horizontal movement of PM10, the 

literature on atmospheric pollution suggests that temperature influences the vertical 

movement of PM10 (Arya, 1999). When ground temperature increases, warm air tends to rise, 

expand, and move to areas with cold air, which causes air to move vertically. The vertical 

movement of air as a result of temperature rise can move PM10 away from the ground level, 

and reduce ground-level PM10 concentrations. Other weather variables, such as sunshine 

hours, relative humidity, and atmospheric pressure, are also important factors affecting local 

PM10 concentrations (Arya, 1999; Pankow et al., 1993).  

The primary source of PM10 pollution in Chinese cities is combustion of fossil fuels, 

including vehicle fuel consumption and coal burning for winter heating and industrial 

production. China’s private car sector has experienced explosive growth during the past 

decade. The number of privately owned vehicles in Chinese cities increased from 7.7 million 

in 2001 to 88.4 million in 2012, with an average annual rate of growth of nearly 25% (NBS, 

2013). A recent emission inventory indicates that, although contributions of vehicles to urban 

air pollution differ by region, vehicle emissions are a major contributor to the overall PM 

problem in many Chinese cities.7 As the primary energy source in China, burning coal in 

industrial sectors, such as cement, paper, and chemical factories, is also associated with the 

release of PM.  

Rapid urbanization is another important local factor contributing to the formation of 

PM10. Massive infrastructure construction in China in the past decade has generated a 

significant amount of dust.8 Illicit burning of crop residues and occasional sand storms have 

also contributed to poor air quality.  

On the mitigation side, central and local governments have undertaken various efforts 

to improve air quality, including closing heavily polluting facilities, regulating the content of 

gasoline and diesel, saving energy during construction, and requiring coal-powered plants to 

install and operate dust-removing technologies (Zhao and Gallagher, 2007). Driving 

restrictions have also been implemented by some Chinese cities to reduce traffic congestion 

                                                        
7 “China vehicle emissions control annual report,” available at: 

http://transportpolicy.net/index.php?title=China:_Compliance_and_Enforcement 
8 The Chinese-language version of the website is available at: 

http://www.bjepb.gov.cn/bjepb/323474/331443/331937/333896/396191/index.html 

http://transportpolicy.net/index.php?title=China:_Compliance_and_Enforcement
http://www.bjepb.gov.cn/bjepb/323474/331443/331937/333896/396191/index.html
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and improve air quality, although the impacts of those policies are found to be mixed (Viard 

and Fu, 2015; Wang et al., 2014).   

 

2.2 Neighboring factors 

Because wind can transport certain air pollutants from one region to other regions, 

ambient PM10 concentrations in areas downwind of a city are expected to be negatively 

affected by PM10 released in that city. Guo et al. (2014) discovered that pollutants emitted 

from industrial sectors in Beijing’s neighboring provinces contributed substantially to the PM 

formation in Beijing. Kallos et al. (1998) found evidence that the wind blew polluted air from 

southern Europe to Africa. The US EPA also believes that international transport of air 

pollution has a significant negative impact on US air quality.9 

 

3. Empirical methodology 

3.1 Model specification 

  Following the above discussion, we estimate a regression model that accounts for both 

spatial and temporal correlations of PM10 concentrations and considers a variety of local and 

neighboring factors that may affect urban PM10 concentrations. Formally, we estimate: 

𝑃𝑀𝑖,𝑦𝑚𝑑 = 𝜏𝑃𝑀𝑖,𝑦𝑚𝑑−1 + 𝜌1 ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑

𝐽

𝑗≠𝑖

𝑃𝑀𝑗,𝑦𝑚𝑑 + 𝜌2 ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑−1

𝐽

𝑗≠𝑖

𝑃𝑀𝑗,𝑦𝑚𝑑−1 

                     +  𝑋𝑖,𝑦𝑚𝑑𝛽 + 𝜇𝑖,𝑦𝑚 + 𝜀𝑖,𝑦𝑚𝑑        (1) 

where 𝑃𝑀𝑖,𝑦𝑚𝑑 denotes the daily average PM10 concentration for city i on day d in month m of 

year y, while 𝑃𝑀𝑗,𝑦𝑚𝑑 denotes the daily average PM10 concentration for city i’s upwind city j 

on the same day. 𝜔𝑖𝑗,𝑦𝑚𝑑 (𝜔𝑖𝑗,𝑦𝑚𝑑−1) is the weight assigned to the upwind city j by city i on 

day d (d-1) in month m of year y. Thus, ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑
𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑  (∑ 𝜔𝑖𝑗,𝑦𝑚𝑑−1

𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑−1) 

denotes the aggregate amount of PM10 transported from cities upwind of city i to city i on day 

d (d-1) in month m of year y. In the remainder of this paper, we call ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑
𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑 “the 

spatially-lagged PM10 variable”, and call ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑−1
𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑−1  “the spatially and 

temporally-lagged PM10 variable”. As noted above, we restrict our sample to observations of 

cities located in China’s EMR during the East Asian monsoon seasons. Thus, PM10 

concentrations in city i may be affected by PM10 pollution spilled over from upwind cities 

                                                        
9 “International transport of air pollution,” available at: 

http://www.millenniumbulkeiswa.gov/comments/MBTL-EIS-0002256-58930.pdf  
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during a given monsoon season, but city i’s PM10 concentrations are unlikely to influence PM10 

concentrations in its upwind cities during the same monsoon season. 

  𝑋𝑖,𝑦𝑚𝑑 is a vector of variables describing local conditions in city i on day d in month m 

of year y. 𝜇𝑖,𝑦𝑚 denotes the city-year-month fixed effects that capture a wide range of the 

unobserved factors that are common to a city in a given year and month, such as seasonal coal 

consumption (in particular in North China, where coal is used for winter home and office 

heating), construction of buildings, subways and new roads, occasional sand storms, and 

policies implemented by different levels of government to improve air quality. The high 

dimensional fixed effects can also account for the effects of regional economic shocks and/or 

changes in regional meteorological conditions in a given year and month on PM10 pollution. 

𝜀𝑖,𝑦𝑚𝑑 are the idiosyncratic error terms.  

  The atmospheric pollution literature suggests that there exists some degree of natural 

dilution of air pollution (Mayer, 1999). We make two assumptions to simplify our regression 

model (1). First, we assume that the temporal dependency of PM10 concentrations in a city 

exists only between day d and day d-1. 𝜏 captures this temporal dependency. Second, a city’s 

PM10 concentration on a given day is assumed to be affected by PM10 pollution in cities upwind 

of this city on the same day and the previous day. 𝜌1 and 𝜌2 represent the spatial correlations 

of PM10 concentrations. Our main hypothesis is to test whether 𝜌1 = 𝜌2 = 0, namely the null 

hypothesis that spatial spillover effects of PM10 do not exist.10  

  𝑋𝑖,𝑦𝑚𝑑 includes weather, fuel prices, dummy variables for post-harvest seasons of crops, 

and dummy variables for weekends and national holidays. We consider a comprehensive set 

of weather variables, including daily precipitation, sunshine duration, maximum temperature 

(Tmax), minimum temperature (Tmin), average wind speed, relative humidity and atmospheric 

pressure. Because private vehicles in China are usually powered with gasoline, we use gasoline 

price as an explanatory variable to control for the effects of vehicle emissions on city-average 

PM10 concentrations. An increase in gasoline price is expected to reduce vehicle miles traveled 

and thus total fuel consumption, which in turn may reduce urban PM10 concentrations. To 

reduce emissions from crop residue burning, Chinese governments at different levels have 

imposed bans on open-field burning of crop residues during post-harvest seasons. However, 

illicit burning of crop residues still occurs across China’s agricultural heartland because it is a 

                                                        
10 We also considered adding spatially and temporally-lagged PM10 variables for more than one period as 

additional explanatory variables. We find that coefficient estimates of these additional variables are not 

statistically significant and coefficient estimates of other variables are close to our baseline estimates. For 

brevity, these results are not reported, but are available upon request. 



11 

 

cheap way to remove crop residues from fields, while enhancing soil fertility. To control for 

the effects of farmers’ illicit burning of crop residues on PM10 pollution, we include dummies 

for the post-harvest seasons of three major crops in China, including corn, wheat and rice. 𝛽 

reflects the effects of these local factors on city-average PM10 concentrations. 

 

3.2 Weighting scheme 

To estimate 𝜌1 and 𝜌2 in Eq. (1), the spatial weights matrices, including 𝜔𝑖𝑗,𝑦𝑚𝑑 and 

𝜔𝑖𝑗,𝑦𝑚𝑑−1, must be specified. Atmospheric studies emphasize the importance of wind speed 

and wind direction in dispersing air pollutants across regions (Appendix A has detailed 

background on regional transport of PM). In light of this, we use three sources of information 

to specify our spatial weights matrices:  

𝜔𝑖𝑗,𝑦𝑚𝑑 = {

𝐺𝐷𝑃𝑗,𝑦

𝑓(𝑑𝑖,𝑗)𝑤𝑠𝑗,𝑦𝑚𝑑
              𝑖𝑓 𝑔𝑖,𝑗 = 𝑤𝑑𝑗,𝑦𝑚𝑑  and  

𝑑𝑖,𝑗

𝑤𝑠𝑗,𝑦𝑚𝑑
≤ 24 ℎ𝑜𝑢𝑟𝑠

0                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (2) 

The first source of information is the geographical distance between the centroid of city 

i and the centroid of city i’s upwind city j, denoted by 𝑑𝑖,𝑗. The value of the weight assigned to 

city j by city i is negatively correlated with 𝑑𝑖,𝑗. If city j is geographically close to city i, we 

assign a large weight to city j. Otherwise, a small weight will be assigned. Atmospheric studies 

suggest that the amount of air pollutants transported from a city to downwind areas of this city 

by wind may not be a linear function of distance. Rather, this transport process is highly 

complex and is expected to be a nonlinear function of distance. In the empirical analysis, we 

consider several functional forms, represented by 𝑓(𝑑𝑖,𝑗) in Eq. (2), to characterize this process 

and to examine the robustness of our results.  

The second source of information is the geographical location of city j relative to city i 

(denoted by 𝑔𝑖,𝑗) and the wind direction in city j on day d in month m of year y (denoted by 

𝑤𝑑𝑗,𝑦𝑚𝑑). In addition to distance, spatial interaction of PM is most likely to occur if there is 

sufficient air flow so that wind can carry PM10 from city j to cities downwind of city j. Thus, 

we assign a positive weight to city j if there is wind blowing from city j toward city i, i.e., 

𝑔𝑖,𝑗 = 𝑤𝑑𝑗,𝑦𝑚𝑑. For instance, if city j is located northeast of city i, the PM10 concentration in 

city i on day d in month m of year y is affected by city j’s PM10 concentration on the same day 

if and only if city j has a northeast wind blowing on that day. We use 16 cardinal directions to 

characterize 𝑔𝑖,𝑗 and 𝑤𝑑𝑗,𝑦𝑚𝑑. 

The third source of information is the wind speed in city i’s upwind cities, denoted by 

𝑤𝑠𝑗,𝑦𝑚𝑑. The speed of wind affects horizontal movement of PM and determines how long it 
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can take PM to travel from the origin city j to the destination city i. Atmospheric studies find 

that pollutant concentrations in cities downwind of city j are negatively correlated with the 

wind speed in city j (Ermak, 1977). Lastly, we multiply 
1

𝑓(𝑑𝑖,𝑗)𝑤𝑠𝑗,𝑦𝑚𝑑
 by GDP in city j in year 

y, denoted by 𝐺𝐷𝑃𝑗,𝑦, to capture the effect of city j’s emission strength on PM10 

concentrations in downwind cities.  

When specifying 𝜔𝑖𝑗,𝑦𝑚𝑑, we assign positive weights to city j if it takes less than 24 

hours to transport PM10 from city j to city i. Using the same approach, we also specify 

𝜔𝑖𝑗,𝑦𝑚𝑑−1. Here, 𝜔𝑖𝑗,𝑦𝑚𝑑−1 is specified differently from 𝜔𝑖𝑗,𝑦𝑚𝑑 in that, when specifying 

𝜔𝑖𝑗,𝑦𝑚𝑑−1, we assign positive weights to city j if it takes more than 24 hours but less than 48 

hours to transport PM10 from city j to city i, 24 ℎ𝑜𝑢𝑟𝑠 <  
𝑑𝑖,𝑗

𝑤𝑠𝑗,𝑦𝑚𝑑−1
≤ 48 ℎ𝑜𝑢𝑟𝑠.  

 

3.3 Method of estimation 

When panel lengths are short and the number of “individuals” is large, the standard 

method is to apply GMM to estimate dynamic panel models with fixed individual effects,11 

while OLS estimates are inconsistent (Nickell, 1981). However, this inconsistency tends to be 

negligible when panel lengths are large (Deryugina and Hsiang, 2014). With daily 

observations, our panel has a large number of time periods. Moreover, using OLS allows us 

to account for spatial correlation and autocorrelation of the error terms, while avoiding using 

weak instruments, which is a common issue for GMM estimators (Roodman, 2009). 

Therefore, we use OLS to estimate Eq. (1), with standard errors clustered within province-

year-month-day and within cities (see Cameron et al., 2011; Hsiang, 2010). The former 

(clustering standard errors within province-year-month-day) accounts for spatial correlation 

across cities within each province-year-month-day, while the latter (clustering standard errors 

within cities) accounts for serial correlation within each city. We also allow for the 

heteroscedasticity of the error terms. 

 

 4. Data 

We compile the data from three major sources. This section describes data sources 

and reports summary statistics. 

 

                                                        
11 Another leading procedure estimating SDPD models is the (quasi) maximum likelihood estimation (MLE) (Lee 

and Yu, 2014). 
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4.1 PM10 data 

We use the approach introduced by Andrews (2008) to construct daily PM10 

concentrations for the 108 major cities included in our sample over the period 2009-2013, 

based on the daily air pollution index (API) reported by the Ministry of Environmental 

Protection (MEP). API is a composite index of PM10, SO2, and NO2.12 Daily concentrations 

of the three pollutants are recorded by monitoring stations in each city and are rescaled for 

ease of comparison. The pollutant that has the highest concentration on a day is identified as 

the “major pollutant” for that day. The MEP uses a piece-wise linear conversion formula to 

compute a city’s daily average API based on the concentration of the “major pollutant” in 

that city. However, the MEP reported only daily average API and “major pollutants” for each 

city during our study period. Hence, daily PM10 data can be retrieved only if PM10 was 

reported as the “major pollutant” on a particular day, which leads to an unbalanced panel. In 

our sample, PM10 accounts for more than 75% of the “major pollutants”. Appendix B reports 

summary statistics of key variables. 

Concerns have been raised regarding the validity of the officially reported API data. 

Wang et al. (2009) collected PM samples at Peking University, located in northwestern 

Beijing, for six weeks in 2008. They found that the self-measured PM10 concentrations were 

about 30% higher than those reported by the Beijing Environmental Protection Bureau. Using 

daily air pollution data during the period 2001-2010, Ghanem and Zhang (2014) showed that 

many Chinese cities may have manipulated the official API data, especially for API scores 

around 100.13 Chen et al. (2012) confirmed such API discontinuity, but showed a significant 

correlation of API with another commonly used air pollution measure, namely Aerosol 

Optical Depth (AOD) from NASA satellites. Therefore, although the official API data are 

subject to manipulation, they are the best available measurement for air quality in urban 

China and still provide useful information about air pollution in Chinese cities. 

We select Beijing (located in northern China) and Chengdu (a major city located in 

western China) as two representative cities to get a sense of daily PM10 co-movement 

between the two cities and their upwind cities. We plot daily PM10 concentrations in 2012 for 

each of the two cities and their two upwind cities during the winter and summer monsoon 

seasons. Figure C1 in the Appendix C shows that PM10 concentrations between the two cities 

                                                        
12 For a comprehensive discussion about the construction of API, see 

http://www.aqhi.gov.hk/pdf/related_websites/APIreview_report.pdf 
13 That is because the number of “blue sky” days (a blue sky day is defined as a day for which the average API 

is below 100) was used as a measure for environmental performance of local officials by the central 

government. 

http://www.aqhi.gov.hk/pdf/related_websites/APIreview_report.pdf
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and their upwind cities are positive and statistically significant (p < 1%). For instance, during 

the winter monsoon season, the correlation coefficients between Beijing and its two upwind 

cities are 0.32 and 0.26, while the correlation coefficients between Chengdu and its two 

upwind cities are 0.67 and 0.60. During the summer monsoon season, PM10 correlations for 

the two cities and their upwind cities are also large and statistically significant (p < 1%). 

 

4.2 Weather data  

We gather weather data from the China Meteorological Data Sharing Service System, 

which records daily weather information for 820 weather stations in China. The fine-scale 

weather data set also contains coordinates of each weather station, enabling us to match 

weather data with our air pollution data. Each of the cities included in the sample has at least 

one weather station. For cities with several weather stations, we construct weather variables 

by taking a simple average of these weather variables across these stations.  

According to Ding (1994), the winter monsoon is defined as between November and 

March. The summer monsoon period differs substantially across regions in China. The 

summer monsoon in southern China typically starts in the middle of April and ends in 

September, while southerly winds dominate northern China in the middle of July and begin to 

weaken from August 10 (Ding, 1994). We define the summer monsoon as between July 15 

and August 10, which is the time period during which southerly winds dominate the entire 

China’s EMR. Figure C2 in Appendix C plots the distributions of wind direction during the 

monsoon seasons and verifies that the prevailing winds have been southerly (with cardinals 

of 6-12) during the summer monsoon season, and China’s EMR is dominated by northerly 

winds during the winter monsoon season (with cardinals of 1-5 and 13-16). 

 

4.3 Other control variables 

We obtain gasoline prices from the National Development and Reform Commission 

(NDRC) for the sample period.14 The NDRC is the nation’s top economic planner, and it sets 

baseline fuel prices in China. State-owned retailers are allowed to adjust retail fuel prices 

within a tight 8% up or down band of the baseline prices. The frequency of fuel price 

adjustments ranges from days to weeks, depending on the fluctuations in international prices 

of crude oil. China has been revising the fuel pricing policy and changing the frequency of 

fuel price adjustments to better reflect the international prices of crude oil, but the pricing 

                                                        
14 See http://www.sdpc.gov.cn/zcfb/zcfbgg/index_2.html, last accessed on March 26, 2016.  

http://www.sdpc.gov.cn/zcfb/zcfbgg/index_2.html
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mechanism implemented by the NDRC is still not fully market-driven (Zhang and Xie, 

2016). We collect information on province-level post-harvest seasons of corn, wheat and rice 

from the Ministry of Agriculture of China.15 With the daily specification for our 

observations, we have a total number of 47,881 and 9,713 observations during the winter and 

summer monsoon seasons, respectively.  

 

5. Baseline results 

 Tables 1 and 2 report the baseline results based on the observations during the winter 

monsoon season and during the summer monsoon season, respectively. In each table, we 

conduct the empirical analysis using three different model specifications. Specifically, in 

Model 1, we include only local factors, namely a temporally-lagged dependent variable, 

weather variables, gasoline price, and dummy variables for post-harvest seasons of rice, corn 

and wheat, as explanatory variables to examine the variations in city-average PM10 

concentrations during the sample period. In Model 2, we add “the spatially-lagged PM10 

variable” to examine whether a city’s PM10 concentration is affected by contemporaneous 

PM10 transport from upwind cities. In Model 3, we incorporate “the spatially and temporally-

lagged PM10 variable” as an additional explanatory variable. The three model specifications 

incorporate weekend and holiday dummies and city-year-month fixed effects. In the baseline 

analysis, we specify 𝑓(𝑑𝑖,𝑗) in Eq. (2) as a linear function of distance, i.e., 𝑓(𝑑𝑖,𝑗) = 𝑑𝑖,𝑗. 

This assumption will be relaxed in the robustness check section.  

 

5.1 Temporal dependence of PM10 concentrations 

Coefficient estimates of the temporally lagged PM10 variable are positive and 

statistically significant (p < 1%) in all three model specifications, indicating that city-average 

PM10 concentrations are temporally correlated. Holding all else the same, if the average PM10 

level in a city on a given day increases by one unit during the winter monsoon season, the 

average PM10 concentration for the same city on the following day is expected to increase by 

0.43-0.46 units. The remaining portion (0.54-0.57 units) of the increase in PM10 concentration 

is diluted by nature. The temporal dependence of PM10 concentrations during the summer 

monsoon season is considerably smaller, at 0.31-0.32. 

 

                                                        
15 The Chinese language version of the website is available at http://202.127.42.157/moazzys/nongshi.aspx, last 

accessed on March 26, 2016. 

http://202.127.42.157/moazzys/nongshi.aspx
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Table 1. Baseline results: Winter monsoon (dependent variable: PM10 concentration) 

Variables 
Model 1: Local 

factors only 

Model 2: Add 

spatial PM10 

Model 3: Add 

lagged spatial PM10 

Panel A: temporally- and spatially-lagged PM10 variables 

Temporally-lagged PM10 0.458*** 0.446*** 0.430*** 

 (0.012) (0.013) (0.013) 

Spatially-lagged PM10   0.116*** 0.111*** 

 (0.011) (0.010) 

Spatially and temporally-lagged 

PM10  

  0.061*** 

  (0.009) 

Panel B: Weather variables  

Precipitation -0.103*** -0.101*** -0.101*** 

 (0.016) (0.015) (0.015) 

Sunshine duration -0.172*** -0.159*** -0.158*** 

 (0.021) (0.020) (0.020) 

Tmax 0.278*** 0.271*** 0.278*** 

 (0.018) (0.018) (0.017) 

Tmin -0.135*** -0.135*** -0.141*** 

 (0.022) (0.022) (0.022) 

Average wind speed -0.384*** -0.429*** -0.448*** 

 (0.054) (0.060) (0.062) 

Atmospheric pressure -0.056*** -0.045*** -0.045*** 

 (0.013) (0.012) (0.012) 

Relative humidity -0.022 0.003 0.019 

 (0.058) (0.055) (0.054) 

Panel C: Economic variables 

Gasoline price -0.005** -0.006** -0.006** 

 (0.003) (0.003) (0.003) 

Post-harvest season of rice -0.287 -0.034 0.377 

 (2.466) (2.392) (2.335) 

R2 0.310 0.326 0.332 

Notes: City-year-month fixed effects and dummy variables for weekends and national holidays are included in 

all model specifications. Dummy variables for post-harvest seasons of corn and wheat are omitted because the 

harvest of the two crops does not occur during the winter monsoon season. Robust standard errors are in 

parentheses, adjusted for spatial correlation, autocorrelation, and heteroscedasticity of the error terms. 

N=47,881. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 2. Baseline results: Summer monsoon (dependent variable: PM10 concentration) 

Variables 

Model 1: 

Local factors 

only 

Model 2: Add 

spatial PM10 

Model 3: Add 

lagged spatial 

PM10 

Panel A: temporally- and spatially-lagged PM10 variables 

Temporally-lagged PM10 0.321*** 0.315*** 0.313*** 

 (0.020) (0.020) (0.019) 

Spatially-lagged PM10   0.082*** 0.082*** 

 (0.013) (0.013) 

Spatially and temporally- lagged 

PM10  

  0.015 

  (0.011) 

Panel B: Weather variables  

Precipitation -0.011*** -0.012*** -0.012*** 

 (0.002) (0.002) (0.002) 

Sunshine duration -0.143*** -0.137*** -0.136*** 

 (0.022) (0.022) (0.022) 

Tmax 0.340*** 0.329*** 0.329*** 

 (0.033) (0.033) (0.033) 

Tmin 0.025 0.022 0.022 

 (0.031) (0.031) (0.031) 

Average wind speed -0.257*** -0.265*** -0.267*** 

 (0.043) (0.044) (0.044) 

Atmospheric pressure 0.017 0.021 0.022 

 (0.018) (0.018) (0.018) 

Relative humidity 0.139 0.136 0.136 

 (0.088) (0.087) (0.086) 

Panel C: Economic variables 

Gasoline price 0.004 0.004 0.003 

 (0.005) (0.005) (0.005) 

Post-harvest season of rice  -1.483 -1.340 -1.340 

 (1.627) (1.564) (1.561) 

Post-harvest season of corn -2.354 -1.906 -1.777 

 (2.817) (2.709) (2.715) 

Post-harvest season of wheat 4.305 4.695 4.610 

 (2.706) (2.871) (2.945) 

R2 0.215 0.225 0.225 

Notes: City-year-month fixed effects and dummy variables for weekends and national holidays are included in all 

model specifications. Robust standard errors are in parentheses, adjusted for spatial correlation, autocorrelation, 

and heteroscedasticity of the error terms. N=9,713. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 

5.2 Spatial spillovers of PM10 pollution 

In Models 2 and 3, the coefficient estimates of “the spatially-lagged PM10 variable” 

are positive and statistically significant (p < 1%). The parameter estimate of this variable is 

0.11-0.12 when the analysis is conducted using the winter monsoon sample and is 0.08 when 

the analysis is conducted using the summer monsoon sample. This provides strong evidence 
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for the existence of spatial spillover effects of PM10. With the linear specifications of the two 

models, the coefficient estimates of this variable can be interpreted as follows: for each unit 

increase in PM10 concentrations in a city’s upwind cities, the average PM10 concentration in 

this city is expected to increase by 0.11-0.12 units during the winter monsoon season and by 

0.08 during the summer monsoon season, holding all else the same.  

Compared to the contemporaneous pollution spillover effects, the negative impacts on 

local air quality of the one-day lagged PM10 pollution transported from upwind cities are 

much smaller. The coefficient estimate of “the spatially and temporally-lagged PM10 

variable” is insignificant for the summer monsoon sample. Although it is statistically 

significant (p < 1%) for the winter monsoon sample, it is about 45% smaller than the 

coefficient estimate of “the spatially-lagged PM10 variable”. That probably is the case 

because, when PM10 travels long distance and when wind speed is slow, most of the PM10 

from upwind cities will be diluted by natural ecosystems (Kalthoff et al., 2000).  

  

5.3 Effects of weather on PM10 pollution 

Coefficient estimates of the precipitation and wind speed variables are negative and 

statistically significant (p < 1%), and remain fairly comparable across different model 

specifications. This suggests that increased precipitation and strong winds can effectively 

reduce ground-level PM10 concentrations and improve urban air quality. These findings are in 

agreement with the well-established literature on atmospheric pollution (see Arya, 1999).  

Temperature effects on PM10 concentrations differ over time during a day. The 

parameter estimate of Tmin is found to be negative and statistically significant (p < 1%) for the 

winter monsoon sample, suggesting that higher Tmin can reduce city-average PM10 

concentrations. The mechanism behind this finding is simple. Studies on atmospheric 

pollution have discovered that, when temperature increases, warmer air near the surface 

becomes lighter than colder air above it, creating an uplift of air. The vertical movement of 

air can bring PM10 away from the surface and thus reduce ground-level PM10 concentrations 

(Arya, 1999). The coefficient estimate of Tmin has a positive sign but it is insignificant for the 

summer monsoon sample. The coefficient estimate of Tmax is found to be positive and 

statistically significant (p < 1%). While Tmin typically occurs before sunrise, Tmax usually 

occurs during the early to middle afternoon. Human activities, such as construction and 

driving for recreation, are expected to be highest during the early to middle afternoon, and 

may generate PM10 that is not captured by our explanatory variables. That may explain the 

positive coefficient estimate of the Tmax variable. Coefficient estimates of other weather 
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variables, including sunshine hours, relative humidity and atmospheric pressure, are 

consistent with well-established atmospheric evidence (Seinfeld and Pandis, 2006). 

 

5.4 Effects of economic variables on PM10 pollution 

Parameter estimates of economic variables have expected signs and statistical 

significance. Coefficient estimates of the dummy variables for post-harvest seasons of rice, 

corn and wheat are insignificant, possibly because post-harvest seasons of the three crops are 

collected at provincial scale and the city-year-month fixed effects may have absorbed some 

of the effects of burning residues on PM10 concentrations.  

The coefficient estimate of gasoline price is negative and statistically significant for 

the winter monsoon sample, suggesting that increased gasoline prices have effectively 

improved air quality during the winter months, possibly by reducing fuel consumption. The 

coefficient estimate of this variable is insignificant for the summer monsoon sample, possibly 

because car travel during the summer months is more responsive to changes in income than 

to changes in fuel prices (Dargay and Gately, 1999). 

 

6. Robustness checks 

The results presented above regarding the impacts of various factors on ambient PM10 

concentrations make intuitive sense. But how robust are they? In this section, we examine the 

sensitivity of our results in nine different scenarios. For brevity, we summarize estimated 

pollution spillover effects (the sum of the point estimates of “the spatially-lagged PM10 

variable” and “the spatially and temporally-lagged PM10 variable) and their 95% confidence 

bands across various scenarios in Figure 2.16  

 

                                                        
16 Across the various scenarios that we considered, coefficient estimates of other control variables are fairly 

close to our baseline estimates. For brevity, they are not reported. 
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(a) Winter monsoon        (b) Summer monsoon  

 

Figure 2. Sensitivity analysis 

 

Notes: This figure shows the sums of coefficient estimates of the spatially-lagged PM10 and the spatially and temporally-lagged PM10 variables in different 

scenarios and their 95% confidence intervals. 
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6.1 Results by spatial weights matrix and econometric estimation strategy 

The first set of robustness checks addresses the sensitivity of our results to variations 

in spatial weights matrices and econometric estimation strategies. In Scenarios (1)-(3), we 

consider three nonlinear forms of distance function suggested by Ermak (1977) to construct 

our spatial weights matrix. Specifically, we consider a quadratic distance function 𝑓(𝑑𝑖,𝑗) =

𝑑𝑖,𝑗 + 𝑑𝑖,𝑗
2  in Scenario (1), a square root distance function 𝑓(𝑑𝑖,𝑗) = 𝑑𝑖,𝑗

0.5 in Scenario (2), and 

an exponential distance function 𝑓(𝑑𝑖,𝑗) = exp (𝑑𝑖,𝑗) in Scenario (3). In Scenario (4), we 

replicate the above analysis by estimating standard errors that are clustered within cities and 

within region-year-month-days. We consider this scenario mainly due to the concern that the 

error terms may be correlated because a shock occurring in a region on a given day may 

affect PM10 concentrations for all cities located in that region on that day. In Scenario (5), we 

use city-year-season fixed effects and month fixed effects to control for the unobserved 

factors. We find that estimated pollution spillover effects in these five scenarios are almost 

identical to our baseline estimates, suggesting that our results are robust to variations in 

spatial weights matrices and econometric estimation strategies. 

 

6.2 Results by variable and sample 

Neighboring cities are likely to experience similar shocks due to changes in regional 

business/pollution cycles and meteorological conditions. To separate the pollution spillovers 

caused by idiosyncratic changes in wind direction from these regional shocks, we add an 

additional variable in Eq. (1) in Scenario (6). This new variable is another weighted average 

of PM10 concentrations in nearby cities, where weights are based solely on distance between 

cities but not on wind direction. This variable is expected to control for regional shocks 

because of changes in regional business/pollution cycles and meteorological conditions, 

which are most likely to be correlated across nearby cities and are unrelated to wind 

direction. Figure 2 shows that the estimates of the pollution spillover effects are still positive 

and statistically significant (p < 1%), but they are about 42-49% smaller than our baseline 

estimates.  

Although the prevailing wind directions are northerly during the winter monsoon 

season and southerly during the summer monsoon season, wind directions in some cities 

during the monsoon seasons still occasionally change (see Figure C2). In Scenario (7), we 

further restrict our sample by dropping observations that are not strictly following prevailing 

wind directions during the two monsoon seasons. Estimated pollution spillover effects in this 
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scenario are statistically significant (p < 1%), and their magnitudes are broadly consistent 

with our baseline estimates. 

 

6.3 Results by terrain feature 

Lastly, we examine the role of terrain features in affecting regional spillovers of PM10 

pollution in Scenarios (8) and (9). A flat terrain facilitates unobstructed movement of wind 

and thus air pollution. China has four major plains, including Northeast China Plain, North 

China Plain, Yangtze Plain and Guanzhong Plain. We divide our sample into two subsamples 

based on whether a city is located in plain or non-plain regions. As expected, we find that 

estimated spillover effects in plain regions are considerably (24-37%) larger than the baseline 

estimates, while estimated spillover effects in non-plain regions are substantially (37-58%) 

smaller than our baseline estimates17.  

 

7. Assessment of the upwind impacts  

The results presented above show how various factors affect city-average PM10 

concentrations and their statistical significance. In this section, we estimate the percentage 

contributions of PM10 transported from upwind cities to local PM10 concentrations for each of 

the cities included in our sample. To achieve this goal, we first estimate our baseline Model 3 

for each city as a time series regression analysis, and obtain city-specific parameter estimates 

of 𝜌1 and 𝜌2. We then compute 𝜃𝑖 for city i: 

𝜃𝑖 =
∑ 𝐸(𝑃𝑀𝑗)

𝐽
𝑗≠𝑖

𝐸(𝑃𝑀𝑖)
        (3) 

where 𝐸(𝑃𝑀𝑖) denotes the predicted PM10 concentration for city i and ∑ 𝐸(𝑃𝑀𝑗)𝐽
𝑗≠𝑖  

represents the sum of the PM10 transported from J upwind cities of city i on days d and d-1. 

When calculating 𝐸(𝑃𝑀𝑖), we first obtain city-specific predicted values of 𝑃𝑀𝑖,𝑦𝑚𝑑 for day d 

in month m of year y. We then compute the average of the predicted values of 𝑃𝑀𝑖,𝑦𝑚𝑑 over 

time to get 𝐸(𝑃𝑀𝑖). Similarly, we use city-specific parameter estimates of 𝜌1 and 𝜌2, 

multiplied by sample means of ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑
𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑 and ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑−1

𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑−1, 

respectively, to compute ∑ 𝐸(𝑃𝑀𝑗)𝐽
𝑗≠𝑖 . Hence, 𝜃𝑖 measures the “average” contribution of 

PM10 transported from upwind cities to city i’s PM10 concentrations. 

                                                        
17 The estimated spillover effect in non-plain regions during the summer monsoon season is statistically 

insignificant. 
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(a) Winter monsoon        (b) Summer monsoon  

 

Figure 3. Percentage contributions of PM10 from upwind cities to local PM10 concentrations during the winter (a) and summer (b) monsoon 

seasons 
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Figure 3 shows that there exist large variations in estimated 𝜃𝑖 across cities, 

ranging from 0% to 30% during the winter monsoon season and from 0% to 26% 

during the summer monsoon season. Of the cities included in the sample, we find that 

the cities located in the North China Plain and Yangtze River Delta regions are most 

affected by PM10 pollution from upwind cities. These are expected results because: (i) 

the two regions have a large number of adjacent cities and (ii) the two regions have 

relatively flat terrain that facilitates pollution diffusion across regions. The estimated 

percentage contributions of PM10 pollution from upwind cities are comparable with 

the findings reported in Guo et al. (2014) and Liu et al. (2016) that focus on cities in 

the North China Plain region.  

Most of the cities that are least affected by PM10 pollution from upwind cities 

during the winter monsoon season are located in mountainous areas. Their local 

terrains can effectively prevent wind from carrying air pollutants from other regions. 

During the summer monsoon season, the cities with smallest upwind impacts are 

located in Central China, which are expected given that the prevailing wind directions 

are southerly during the summer months and the cities located in southern China have 

much lower PM10 levels relative to cities in northern China (see Figure 1). 

 

 8. Conclusions and discussion 

In this paper, we exploit spatial and temporal variations in PM10 

concentrations for major cities located in China’s EMR during the East Asian 

monsoon seasons to examine the effects of various local and neighboring factors on 

PM10 concentrations in Chinese cities. To fully incorporate the spatial and temporal 

dynamics of PM10 concentrations, we develop a dynamic spatial panel model. The 

spatial weights matrix constructed in the model considers not only geographical 

distance between cities, but also wind direction, wind speed, and emission strength in 

upwind cities. The spatial econometric model we developed in this paper is novel, as 

it is the first empirical study that allows a spatial weights matrix to change over time. 

In contrast to the approaches used by atmospheric studies, findings based on our 

regression framework remain remarkably robust to locations, econometric estimation 

strategies, data and variables.   

Our regression results provide strong evidence of the existence of spatial 

spillover effects of air pollution. Coefficient estimates of weather variables are 

consistent with the findings presented in the atmospheric pollution literature. Other 
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variables have intuitive signs and magnitudes as well. For example, city-average PM10 

concentrations are temporally correlated, and higher gasoline prices help to improve 

air quality. We also find that the percentage contributions of pollution from upwind 

cities to local PM10 levels vary across regions, with cities located in the North China 

Plain and Yangtze River Delta regions most affected by pollution from upwind cities. 

Although our approach is different from the atmospheric approaches, these findings 

are fairly comparable to the existing atmospheric evidence. 

Our findings have important public policy implications for the effective design 

of China’s air pollution control policies. Given the existence of transboundary air 

pollution across regions, China’s widely-adopted strategy of relocating large-scale 

and heavily polluting factories to suburbs or neighboring cities will not be effective. 

To effectively abate transboundary air pollution, pollution control policies must be 

coordinated between cities and provinces to address this negative externality. Our 

findings also support the idea that China should adopt a version of the US EPA’s 

Good Neighbor Rule, which is designed to address interstate transport of air pollution.  

Several caveats apply. First, because daily PM10 data used in the sample are 

not continuous, we may have underestimated the true spatial spillover effects of PM10. 

Second, our sample includes only 108 major Chinese cities in the EMR. While we 

investigate the spatial correlations of PM10 among these major cities, there are many 

small and medium-size cities located between these major cities. PM10 generated in 

those cities could be transported by wind to the major cities in the sample. As a result, 

our estimated spatial spillover effects could be smaller or larger than the actual 

estimates. The last major caveat is that we cannot conduct a cost-benefit analysis to 

quantify the costs and benefits of abating PM10. On the cost side, there are a number 

of options to reduce PM10 emissions, with marginal abatement costs varying by city 

and by abatement option. The relationship between emissions and concentrations is 

quite complex and varies across locations (Lanigan, 1993). Thus, it is quite difficult to 

predict how PM10 concentrations will change when emission levels change. On the 

benefit side, it is difficult to estimate the benefits stemming from reduced PM10 

concentrations, because the benefits depend not only on reduced PM10 concentrations, 

but also on initial PM10 levels. Moreover, estimating the benefits due to reduced PM10 

concentrations would require us to project the potential reduction of the number of 

days when activity is restricted because of air pollution, as well as estimates on 

reduced health costs and increased output from increased work time, all of which vary 
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by city. We can conclude by pointing to a multiplier effect of pollution abatement. If 

all cities lower their PM10 concentrations by one unit, average PM10 concentrations in 

Chinese cities can decrease by up to 1.7 units during the winter monsoon season and 

by up to 1.1 units during the summer monsoon season. 
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