%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

30TH INTERNATIONAL CONFERENCE OF

AGRICULTURAL ECONOMISTS
JULY 28 = AUGUST 2, 2018 | VANCOUVER

When the Wind Blows: Spatial Spillover Effects of Urban
Air Pollution

X. Chen?; J. Ye?

1: Southwestern University of Finance and Economics, , China, 2: Southwestern Uni of Finance
and Economics, , China

Corresponding author email: cxg@swufe.edu.cn

Abstract:

This paper investigates the existence and magnitude of air pollution spillovers in Chinese cities. Estimation
of this spillover effect is complicated because neighboring cities share similar business/pollution cycles
and changes in wind direction can be fairly frequent. To circumvent these empirical challenges, we exploit
spatial and temporal variations in PM10 concentrations for 108 major cities in China’s Eastern Monsoon
Region during the East Asian winter and summer monsoon seasons. We find large pollution spillover
effects: a city’s average PM10 concentration increases by 0.09-0.21 units during the winter monsoon
season and by 0.06-0.10 units during the summer monsoon season, if PM10 concentrations in cities upwind
of this city increase by one unit. The percentage contributions of PM10 pollution from upwind cities to
local PM10 levels vary by region and can be as large as 30%. These findings are comparable to the existing
atmospheric evidence. Our findings suggest that pollution control policies must be coordinated between
cities to abate urban air pollution.

Acknowledegment:

JEL Codes: Q58, Q52

#1112
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ABSTRACT

This paper investigates the existence and magnitude of air pollution spillovers in
Chinese cities. Estimation of this spillover effect is complicated because neighboring cities
share similar business/pollution cycles and changes in wind direction can be fairly frequent.
To circumvent these empirical challenges, we exploit spatial and temporal variations in PMz1g
concentrations for 108 major cities in China’s Eastern Monsoon Region during the East
Asian winter and summer monsoon seasons. We find large pollution spillover effects: a city’s
average PM1o concentration increases by 0.09-0.21 units during the winter monsoon season
and by 0.06-0.10 units during the summer monsoon season, if PM1o concentrations in cities
upwind of this city increase by one unit. The percentage contributions of PM1o pollution from
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are comparable to the existing atmospheric evidence. Our findings suggest that pollution
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1. Introduction

China’s poor air quality has put the country in the world’s spotlight. In many Chinese
cities, pollution levels exceeded the World Health Organization air quality guidelines on more
than 250 days in 2011 (Cheng et al., 2013). International media has described air quality in
China as “hazardous to human health”.1 Negative health consequences have been repeatedly
reported, including premature death (Yang et al., 2013; Zhang et al., 2010) and significant
reduction in average life expectancy (Chen et al., 2013a). Air pollution is also linked to China’s
growing social unrest in recent years.2

This paper aims at identifying the contributions of various pollution sources to ambient
air pollution concentrations in Chinese cities. As the economics literature is relatively new to
this topic, we first give a brief overview of previous approaches to set the stage for our study.
These can be divided into two main categories, starting with the air sampling approach that
entails measuring the content of particulate and gaseous contaminants in collected air samples.
By analyzing ambient gases and aerosol properties in air samples, atmospheric scientists can
pin down the contributions of various sources, such as primary emissions vs. secondary
formation and local sources vs. regional transport, to ambient pollution concentrations (Guo et
al., 2014). However, results based on this approach are sensitive to sampling sites, duration of
sampling periods and sampling methods (Katz, 1969).3

The Air Quality (AQ) models are another widely-used approach, which utilizes
complex mathematical techniques to simulate transport and diffusion processes of air
pollutants in the atmosphere. An example is Models-3/Community Multi-scale Air Quality
(CMAQ), developed by the US Environmental Protection Agency (EPA). Using CMAQ and
a modified version of the model (MM5-CMAQ), respectively, Streets et al. (2007) and Chen
et al. (2007) concluded that neighboring provinces, such as Hebei, Shandong, and Tianjin,
had a large influence on Beijing’s air quality. However, several studies have pointed out that
simulation results based on the AQ models are sensitive to grid resolutions (see Queen and
Zhang, 2008), and running these AQ models involves substantial computational costs
(Capaldo et al., 2000).

1 “China smog sparks red alerts in 10 cities,” BBC news, December 24, 2015.

2 “Chinese anger over pollution becomes main cause of social unrest,” Bloomberg, March 6, 2013.

3 Using the data collected from an urban site in Beijing between April 2009 and January 2010, Zhang et al.
(2013) showed that industrial pollution and secondary inorganic aerosol formation were the major sources of the
city’s air pollution, while traffic emissions played only an insignificant role. Based on the data collected from
the same site during a different time period, from September to November 2013, Guo et al. (2014) concluded
that nitrogen oxides (NO) from local transportation and sulfur dioxide (SO>) from regional industrial sources
were the main sources of air pollution in Beijing.



In this paper, we employ an econometric approach. We develop a spatial dynamic panel
data (SDPD) model to quantify the effects of various local and neighboring factors on air
quality in Chinese cities, with a particular focus on estimating pollution spillovers effect. As
compared to the atmospheric approaches mentioned above, the SDPD model developed here
has at least three advantages. First, by explicitly including an extensive list of explanatory
variables, this approach leads to a clearer understanding of the impacts of various local and
neighboring factors on urban air quality. Our SDPD model includes not only meteorological
factors (as in most atmospheric studies), but also considers the effects on local air quality of
agricultural activities, energy consumption, holidays/weekends, and air pollution from upwind
cities. Second, our approach allows us to fully utilize high-frequency data consisting of daily
meteorological conditions and air pollution, while most of the AQ models use only
seasonal/monthly data to minimize computational costs (Capaldo et al., 2000). Third, our
approach yields more robust results that are not sensitive to study periods, study sites, and
estimation techniques, which are explained in detail in the results section.

However, estimation of this pollution spillover effect is complicated for two reasons.
One, the observed pollution in a city is an outcome of local activities and possible spillovers
from upwind cities and neighboring cities usually share similar business/pollution cycles and
meteorological conditions, which makes separating pollution spillovers from locally generated
pollution difficult. Two, our data show frequent spatial and temporal changes in wind direction,
making it even more difficult than in other contexts to identify pollution spillovers. For
example, wind can carry air pollutants from one city to its downwind areas on one day. These
pollutants, together with pollutants generated from the downwind areas, could be transported
back to the original city on the following day, due to changes in wind direction.

To circumvent the empirical challenges noted above, we restrict our focus to major
cities located in the Eastern Monsoon Region (EMR) in China® during the East Asian winter
monsoon (EAWM) and the East Asian summer monsoon (EASM) seasons. The most notable
feature of the EAWM is strong and stable northwesterly winds across the east flank of the
Siberian high and the East Asia coast including China’s EMR (Zhou, 2011), while the
prevailing winds have been southerly and southwesterly during the EASM season (Ding, 1994).

By restricting our sample to these major cities in the EMR during the two monsoon seasons,

4 Such as transboundary water pollution spillovers (Sigman, 2002).

5 According to climatological and topographical characteristics, China can be divided into three main regions,
including the Eastern Monsoon Region, the Qinghai-Tibetan Plateau Region and the Northwestern Arid Region
(Figure 1).



[ ] Qinghai-Tibet Plateau Region
- Northwestern Arid Region
|| Eastern Monsoon Region

(a) Winter monsoon (b) Summer monsoon

Figure 1. City-average PMz1o concentrations during the winter (a) and summer (b) monsoon seasons, 2009-2013
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we can obtain clean estimates of pollution spillover effects. This identification strategy is
similar to that used by Jia and Ku (2016) who assess the impacts of air pollution spillover from
China to South Korea.

We conduct this analysis by compiling a city-level panel that contains daily air quality
and weather information for the 108 major cities located in the EMR from 2009 to 2013 (see
Figure 1). We use the concentration of particulate matter with a diameter of 10 um or less
(PM1o0) as our dependent variable. We focus on PMyq for two reasons. First, PMyg is the
primary air pollutant in Chinese cities (Chan and Yao, 2008). Second, PMyo can travel long
distances (Duce et al., 1980; Parrington et al., 1983; Tsunogai and Kondo, 1982), while other
major air pollutants, such as SO2, NOx, 0zone, and carbon monoxide, are either exclusively
from local emissions sources or can only be transported within relatively small geographic
regions (Guo et al., 2014). Therefore, focusing on PMyg can better serve our research
purpose.

Our regression model includes a wide range of local and neighboring factors as
explanatory variables. Local factors include a temporally lagged dependent variable, which
represents a city’s air pollution stock; weather conditions, such as temperature, precipitation,
solar radiation, wind speed, relative humidity and atmospheric pressure; the gasoline price,
which is used to control for PMyo released from vehicle exhaust; and open-field burning of crop
residues during post-harvest seasons. We account for the effect of PMz1o from upwind cities on
local PM1o concentrations by creating a spatially-weighted PM1o variable that depends on
physical distance between cities, wind direction, wind speed and emission strength in upwind
cities. We also augment the model by using city-year-month fixed effects to minimize the
potential estimation biases originating from omitted variables. The high dimensional fixed
effects capture a wide range of the unobserved factors within a city-year-month that may affect
city-average PM1o concentrations. These unobserved factors may include regional economic
shocks, seasonal coal combustion for heat and power generation, dust generated from the
construction of new buildings and roads, number of vehicles, and perhaps others.

We find strong evidence of the existence of spatial spillover effects of PMzo pollution
in China. Holding all else the same, a one-unit increase in PM1o concentrations in upwind
cities of a city is expected to raise that city’s PM1o concentration by 0.09-0.21 unit during the
winter monsoon season, and by 0.06-0.13 during the summer monsoon season. Impacts of
upwind air pollution on local PM1o concentrations vary across regions ranging from 0% to

30% during the winter monsoon season and from 0% to 26% during the summer monsoon



season, with cities located in the North China Plain and Yangtze River Delta regions most
affected by air pollution from upwind cities.

Our findings are highly relevant to the design of China’s air pollution control
strategies. If air pollutants are generated mostly from local sources, such as traffic emissions
and/or coal burning, an effective pollution abatement strategy should target these local
sources. On the other hand, if air pollutants are found to come primarily from upwind areas,
collective efforts for regional air pollution abatement would be called for. With the lack of
rigorous empirical analysis, China’s air pollution control strategies have been shown to
perform quite poorly. At present, the common strategy adopted by many Chinese cities to
improve air quality is to relocate large-scale and heavily polluting factories to suburbs and to
neighboring provinces. For instance, to host the 2008 Olympic Games, China relocated
several large, heavily polluting firms to Beijing’s neighboring cities as one of a series of
actions to improve Beijing’s air quality (Chen et al., 2013b). However, Guo et al. (2014)
showed that relocating polluting firms is a poor pollution abatement strategy, because
Beijing’s neighboring cities/provinces contributed significantly to ambient air pollution
concentrations in Beijing after the Olympic Games. By using high quality data and a rigorous
approach to identify the effects of various local and neighboring factors on urban air quality,
our results may stimulate public policy debates regarding how to effectively design China’s
air pollution control policies.

In addition to using a new approach to assess the impacts of various factors on air
pollution, this paper contributes to the existing literature in three major aspects. First, our
spatial econometric model is novel. When conducting spatial econometric analyses, many
studies specify spatial weights matrices based on either geographical criteria or economic
dependence between regions/sectors. These studies typically assume that spatial weights
matrices are time-invariant (see Anselin and Bera, 1997; Won Kim et al., 2003), ignoring the
fact that, under certain circumstances, spatial dependence of two regions/sectors may change
over time. In contrast to these studies, we allow our spatial weights matrix to change daily
according to wind direction and wind speed in upwind cities. Although our approach is
different from the atmospheric approaches, our results are fairly comparable to the
atmospheric evidence.

Second, we provide a new way to construct an instrumental variable for air quality.

Chay and Greenstone (2005) used nonattainment status as the instrumental variable for air



quality to examine the impacts of air pollution on housing values.¢ Luechinger (2009)
improved their approach and used the changes in SO concentration due to the mandated
installation of SO, emissions control equipment in upwind areas as an instrument for SO>
pollution. Here, we demonstrate that air pollution from areas upwind of a city can serve as a
valid instrumental variable for that city’s air quality, because air pollution levels are spatially
correlated, but local economic indicators, such as housing values, unemployment rates and
labor income, are unlikely to be correlated with air pollution in other regions.

Lastly, although this paper focuses on air pollution, our research contributes to a
broader literature on the design of efficient environmental policies to control transboundary
pollution. Several studies in the US have documented negative spatial externalities of
agricultural runoffs (Goetz and Zilberman, 2000; Griffin and Bromley, 1982), and analyzed
optimal management strategies for groundwater pumping (Brozovic et al., 2010;
Chakravorty and Umetsu, 2003; Kuwayama and Brozovi¢, 2013; Pfeiffer and Lin, 2012). Our
empirical findings suggest that adjacent cities should establish environmental agreements to
collectively control transboundary air pollution (Esp nola-Arredondo and Mufpz-Garc &,
2012).

The rest of the paper is organized as follows. Section 2 illustrates various factors that
may affect urban PMyo concentrations in China. Section 3 presents our empirical model.
Section 4 describes data sources. Section 5 presents baseline results. Section 6 considers a
variety of robustness checks. Section 7 assesses the percentage contributions of PM1o
pollution from upwind cities. Section 8 concludes.

2. Contributing factors to PMio pollution in Chinese cities

Based on their origins, we categorize the factors affecting a city’s PMyg concentration
into local and neighboring factors. Local factors include weather, combustion of fossil fuels,
economic activities, and city-specific environmental protection measures. Neighboring
factors refer to PMyo transported from upwind regions by the passage of wind. In this section,
we discuss each of these factors.
2.1 Local factors

Weather conditions, such as precipitation, wind, temperature, sunshine, relative

humidity, and atmospheric pressure, have been well recognized as important factors affecting

6 Under the Clean Air Act, the US EPA designates a county as in “nonattainment” status if pollution
concentrations in this county exceed the federally determined ceiling.

7



ambient PMygo concentrations. Precipitation can increase the weight of PM that is floating in
the air and cause the particles to fall. Strong winds can facilitate atmospheric dispersion and
thus reduce PMyo concentrations. While wind affects the horizontal movement of PMyo, the
literature on atmospheric pollution suggests that temperature influences the vertical
movement of PMzo (Arya, 1999). When ground temperature increases, warm air tends to rise,
expand, and move to areas with cold air, which causes air to move vertically. The vertical
movement of air as a result of temperature rise can move PMz1o away from the ground level,
and reduce ground-level PM1g concentrations. Other weather variables, such as sunshine
hours, relative humidity, and atmospheric pressure, are also important factors affecting local
PMyo concentrations (Arya, 1999; Pankow et al., 1993).

The primary source of PMz pollution in Chinese cities is combustion of fossil fuels,
including vehicle fuel consumption and coal burning for winter heating and industrial
production. China’s private car sector has experienced explosive growth during the past
decade. The number of privately owned vehicles in Chinese cities increased from 7.7 million
in 2001 to 88.4 million in 2012, with an average annual rate of growth of nearly 25% (NBS,
2013). A recent emission inventory indicates that, although contributions of vehicles to urban
air pollution differ by region, vehicle emissions are a major contributor to the overall PM
problem in many Chinese cities.” As the primary energy source in China, burning coal in
industrial sectors, such as cement, paper, and chemical factories, is also associated with the
release of PM.

Rapid urbanization is another important local factor contributing to the formation of
PM1o. Massive infrastructure construction in China in the past decade has generated a
significant amount of dust.8 Illicit burning of crop residues and occasional sand storms have
also contributed to poor air quality.

On the mitigation side, central and local governments have undertaken various efforts
to improve air quality, including closing heavily polluting facilities, regulating the content of
gasoline and diesel, saving energy during construction, and requiring coal-powered plants to
install and operate dust-removing technologies (Zhao and Gallagher, 2007). Driving

restrictions have also been implemented by some Chinese cities to reduce traffic congestion

7 “China vehicle emissions control annual report,” available at:
http://transportpolicy.net/index.php?title=China:_Compliance_and_Enforcement

8 The Chinese-language version of the website is available at:
http://www.bjepb.gov.cn/bjepb/323474/331443/331937/333896/396191/index.html
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and improve air quality, although the impacts of those policies are found to be mixed (Viard
and Fu, 2015; Wang et al., 2014).

2.2 Neighboring factors

Because wind can transport certain air pollutants from one region to other regions,
ambient PMyo concentrations in areas downwind of a city are expected to be negatively
affected by PMyo released in that city. Guo et al. (2014) discovered that pollutants emitted
from industrial sectors in Beijing’s neighboring provinces contributed substantially to the PM
formation in Beijing. Kallos et al. (1998) found evidence that the wind blew polluted air from
southern Europe to Africa. The US EPA also believes that international transport of air

pollution has a significant negative impact on US air quality.®

3. Empirical methodology
3.1 Model specification

Following the above discussion, we estimate a regression model that accounts for both
spatial and temporal correlations of PM1g concentrations and considers a variety of local and
neighboring factors that may affect urban PMyo concentrations. Formally, we estimate:

J J
PMi,ymd = TPMi,ymd—l + p1 z Wijymd PMj,ymd + P2 z Wij ymd—1 PMj,ymd—l
J#EL J#EL
+ Xi,ymdﬂ + .ui,ym + gi,ymd (1)

where PM; .4 denotes the daily average PMao concentration for city i on day d in month m of
year y, while PM; ,,,, denotes the daily average PMio concentration for city i’s upwind city j
on the same day. w;j yma (Wijyma-1) 1S the weight assigned to the upwind city j by city i on
day d (d-1) in month m of year y. Thus, ¥/.; 0 yma PMjyma (Xh.; @i yma-1 PMj yma-1)
denotes the aggregate amount of PMyg transported from cities upwind of city i to city i on day
d (d-1) in month m of year y. In the remainder of this paper, we call Z;ii W} yma PMj ymq “the
spatially-lagged PMyo variable”, and call Z§¢i Wijyma-1 PMjyma—1 “the spatially and
temporally-lagged PM1o variable”. As noted above, we restrict our sample to observations of

cities located in China’s EMR during the East Asian monsoon seasons. Thus, PMzo

concentrations in city i may be affected by PMio pollution spilled over from upwind cities

9 “International transport of air pollution,” available at:
http://www.millenniumbulkeiswa.gov/comments/MBTL-EIS-0002256-58930.pdf

9



during a given monsoon season, but city i’s PM1o concentrations are unlikely to influence PMzo
concentrations in its upwind cities during the same monsoon season.

Xi yma 18 @ vector of variables describing local conditions in city i on day d in month m
of year y. u; ,,, denotes the city-year-month fixed effects that capture a wide range of the
unobserved factors that are common to a city in a given year and month, such as seasonal coal
consumption (in particular in North China, where coal is used for winter home and office
heating), construction of buildings, subways and new roads, occasional sand storms, and
policies implemented by different levels of government to improve air quality. The high
dimensional fixed effects can also account for the effects of regional economic shocks and/or
changes in regional meteorological conditions in a given year and month on PMyo pollution.
&; yma are the idiosyncratic error terms.

The atmospheric pollution literature suggests that there exists some degree of natural
dilution of air pollution (Mayer, 1999). We make two assumptions to simplify our regression
model (1). First, we assume that the temporal dependency of PMio concentrations in a city
exists only between day d and day d-1. t captures this temporal dependency. Second, a city’s
PM o concentration on a given day is assumed to be affected by PM1g pollution in cities upwind
of this city on the same day and the previous day. p, and p, represent the spatial correlations
of PM1o concentrations. Our main hypothesis is to test whether p; = p, = 0, namely the null
hypothesis that spatial spillover effects of PM1o do not exist.10

Xiyma includes weather, fuel prices, dummy variables for post-harvest seasons of crops,
and dummy variables for weekends and national holidays. We consider a comprehensive set
of weather variables, including daily precipitation, sunshine duration, maximum temperature
(Tmax), minimum temperature (Tmin), average wind speed, relative humidity and atmospheric
pressure. Because private vehicles in China are usually powered with gasoline, we use gasoline
price as an explanatory variable to control for the effects of vehicle emissions on city-average
PM1o concentrations. An increase in gasoline price is expected to reduce vehicle miles traveled
and thus total fuel consumption, which in turn may reduce urban PMio concentrations. To
reduce emissions from crop residue burning, Chinese governments at different levels have
imposed bans on open-field burning of crop residues during post-harvest seasons. However,

illicit burning of crop residues still occurs across China’s agricultural heartland because it is a

10 We also considered adding spatially and temporally-lagged PMy variables for more than one period as
additional explanatory variables. We find that coefficient estimates of these additional variables are not
statistically significant and coefficient estimates of other variables are close to our baseline estimates. For
brevity, these results are not reported, but are available upon request.

10



cheap way to remove crop residues from fields, while enhancing soil fertility. To control for
the effects of farmers’ illicit burning of crop residues on PMzo pollution, we include dummies
for the post-harvest seasons of three major crops in China, including corn, wheat and rice. 8

reflects the effects of these local factors on city-average PMzo concentrations.

3.2 Weighting scheme

To estimate p; and p, in Eq. (1), the spatial weights matrices, including w;;j,mq and
w;jyma-1, Must be specified. Atmospheric studies emphasize the importance of wind speed
and wind direction in dispersing air pollutants across regions (Appendix A has detailed
background on regional transport of PM). In light of this, we use three sources of information

to specify our spatial weights matrices:

GDP; dij
1,y . L]
I T if g;; = wd; and < 24 hours
Wijymd = {f(di,j)wsj,ymd f 9ij Jymd WSjymd (2)

0 otherwise

The first source of information is the geographical distance between the centroid of city
i and the centroid of city i’s upwind city j, denoted by d; ;. The value of the weight assigned to
city j by city i is negatively correlated with d; ;. If city j is geographically close to city i, we
assign a large weight to city j. Otherwise, a small weight will be assigned. Atmospheric studies
suggest that the amount of air pollutants transported from a city to downwind areas of this city
by wind may not be a linear function of distance. Rather, this transport process is highly
complex and is expected to be a nonlinear function of distance. In the empirical analysis, we
consider several functional forms, represented by f(d; ;) in Eq. (2), to characterize this process
and to examine the robustness of our results.

The second source of information is the geographical location of city j relative to city i
(denoted by g; ;) and the wind direction in city j on day d in month m of year y (denoted by
wd; ymq)- In addition to distance, spatial interaction of PM is most likely to occur if there is
sufficient air flow so that wind can carry PMyg from city j to cities downwind of city j. Thus,
we assign a positive weight to city j if there is wind blowing from city j toward city i, i.e.,
gi,j = wd; ,mq. For instance, if city j is located northeast of city i, the PMio concentration in
city i on day d in month m of year y is affected by city j’s PM1o concentration on the same day
if and only if city j has a northeast wind blowing on that day. We use 16 cardinal directions to
characterize g; j and wd; 4.

The third source of information is the wind speed in city i’s upwind cities, denoted by

wsj yma- The speed of wind affects horizontal movement of PM and determines how long it

11



can take PM to travel from the origin city j to the destination city i. Atmospheric studies find

that pollutant concentrations in cities downwind of city j are negatively correlated with the

wind speed in city j (Ermak, 1977). Lastly, we multiply by GDP in city j in year

f(dij)Wsjyma
y, denoted by GDP; ,,, to capture the effect of city j’s emission strength on PMzo
concentrations in downwind cities.

When specifying w;; yma, We assign positive weights to city j if it takes less than 24
hours to transport PMyo from city j to city i. Using the same approach, we also specify
Wi yma-1- Here, w;; yma—1 is specified differently from w;; .4 in that, when specifying

w;j yma—-1, WE assign positive weights to city j if it takes more than 24 hours but less than 48

hours to transport PMzo from city j to city i, 24 hours < WSL < 48 hours.
jymd—-1

3.3 Method of estimation

When panel lengths are short and the number of “individuals” is large, the standard
method is to apply GMM to estimate dynamic panel models with fixed individual effects,1?
while OLS estimates are inconsistent (Nickell, 1981). However, this inconsistency tends to be
negligible when panel lengths are large (Deryugina and Hsiang, 2014). With daily
observations, our panel has a large number of time periods. Moreover, using OLS allows us
to account for spatial correlation and autocorrelation of the error terms, while avoiding using
weak instruments, which is a common issue for GMM estimators (Roodman, 2009).
Therefore, we use OLS to estimate Eq. (1), with standard errors clustered within province-
year-month-day and within cities (see Cameron et al., 2011; Hsiang, 2010). The former
(clustering standard errors within province-year-month-day) accounts for spatial correlation
across cities within each province-year-month-day, while the latter (clustering standard errors
within cities) accounts for serial correlation within each city. We also allow for the

heteroscedasticity of the error terms.

4. Data
We compile the data from three major sources. This section describes data sources

and reports summary statistics.

11 Another leading procedure estimating SDPD models is the (quasi) maximum likelihood estimation (MLE) (Lee
and Yu, 2014).
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4.1 PMyo data

We use the approach introduced by Andrews (2008) to construct daily PM1g
concentrations for the 108 major cities included in our sample over the period 2009-2013,
based on the daily air pollution index (API) reported by the Ministry of Environmental
Protection (MEP). API is a composite index of PMzo, SO2, and NO2.12 Daily concentrations
of the three pollutants are recorded by monitoring stations in each city and are rescaled for
ease of comparison. The pollutant that has the highest concentration on a day is identified as
the “major pollutant” for that day. The MEP uses a piece-wise linear conversion formula to
compute a city’s daily average API based on the concentration of the “major pollutant” in
that city. However, the MEP reported only daily average API and “major pollutants” for each
city during our study period. Hence, daily PMyo data can be retrieved only if PM1owas
reported as the “major pollutant” on a particular day, which leads to an unbalanced panel. In
our sample, PM1o accounts for more than 75% of the “major pollutants”. Appendix B reports
summary statistics of key variables.

Concerns have been raised regarding the validity of the officially reported API data.
Wang et al. (2009) collected PM samples at Peking University, located in northwestern
Beijing, for six weeks in 2008. They found that the self-measured PM1o concentrations were
about 30% higher than those reported by the Beijing Environmental Protection Bureau. Using
daily air pollution data during the period 2001-2010, Ghanem and Zhang (2014) showed that
many Chinese cities may have manipulated the official API data, especially for API scores
around 100.13 Chen et al. (2012) confirmed such API discontinuity, but showed a significant
correlation of API with another commonly used air pollution measure, namely Aerosol
Optical Depth (AOD) from NASA satellites. Therefore, although the official API data are
subject to manipulation, they are the best available measurement for air quality in urban
China and still provide useful information about air pollution in Chinese cities.

We select Beijing (located in northern China) and Chengdu (a major city located in
western China) as two representative cities to get a sense of daily PM1o co-movement
between the two cities and their upwind cities. We plot daily PM1o concentrations in 2012 for
each of the two cities and their two upwind cities during the winter and summer monsoon

seasons. Figure C1 in the Appendix C shows that PM1g concentrations between the two cities

12 For a comprehensive discussion about the construction of API, see
http://www.aghi.gov.hk/pdf/related_websites/APIreview_report.pdf

13 That is because the number of “blue sky” days (a blue sky day is defined as a day for which the average API
is below 100) was used as a measure for environmental performance of local officials by the central
government.
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and their upwind cities are positive and statistically significant (p < 1%). For instance, during
the winter monsoon season, the correlation coefficients between Beijing and its two upwind
cities are 0.32 and 0.26, while the correlation coefficients between Chengdu and its two
upwind cities are 0.67 and 0.60. During the summer monsoon season, PMyq correlations for

the two cities and their upwind cities are also large and statistically significant (p < 1%).

4.2 Weather data

We gather weather data from the China Meteorological Data Sharing Service System,
which records daily weather information for 820 weather stations in China. The fine-scale
weather data set also contains coordinates of each weather station, enabling us to match
weather data with our air pollution data. Each of the cities included in the sample has at least
one weather station. For cities with several weather stations, we construct weather variables
by taking a simple average of these weather variables across these stations.

According to Ding (1994), the winter monsoon is defined as between November and
March. The summer monsoon period differs substantially across regions in China. The
summer monsoon in southern China typically starts in the middle of April and ends in
September, while southerly winds dominate northern China in the middle of July and begin to
weaken from August 10 (Ding, 1994). We define the summer monsoon as between July 15
and August 10, which is the time period during which southerly winds dominate the entire
China’s EMR. Figure C2 in Appendix C plots the distributions of wind direction during the
monsoon seasons and verifies that the prevailing winds have been southerly (with cardinals
of 6-12) during the summer monsoon season, and China’s EMR is dominated by northerly

winds during the winter monsoon season (with cardinals of 1-5 and 13-16).

4.3 Other control variables

We obtain gasoline prices from the National Development and Reform Commission
(NDRC) for the sample period.1* The NDRC is the nation’s top economic planner, and it sets
baseline fuel prices in China. State-owned retailers are allowed to adjust retail fuel prices
within a tight 8% up or down band of the baseline prices. The frequency of fuel price
adjustments ranges from days to weeks, depending on the fluctuations in international prices
of crude oil. China has been revising the fuel pricing policy and changing the frequency of
fuel price adjustments to better reflect the international prices of crude oil, but the pricing

14 See http://www.sdpc.gov.cn/zcfb/zcfbgg/index 2.html, last accessed on March 26, 2016.
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mechanism implemented by the NDRC is still not fully market-driven (Zhang and Xie,
2016). We collect information on province-level post-harvest seasons of corn, wheat and rice
from the Ministry of Agriculture of China.t> With the daily specification for our
observations, we have a total number of 47,881 and 9,713 observations during the winter and

summer monsoon seasons, respectively.

5. Baseline results

Tables 1 and 2 report the baseline results based on the observations during the winter
monsoon season and during the summer monsoon season, respectively. In each table, we
conduct the empirical analysis using three different model specifications. Specifically, in
Model 1, we include only local factors, namely a temporally-lagged dependent variable,
weather variables, gasoline price, and dummy variables for post-harvest seasons of rice, corn
and wheat, as explanatory variables to examine the variations in city-average PM1o
concentrations during the sample period. In Model 2, we add “the spatially-lagged PM1o
variable” to examine whether a city’s PMzo concentration is affected by contemporaneous
PMyo transport from upwind cities. In Model 3, we incorporate “the spatially and temporally-
lagged PM1o variable” as an additional explanatory variable. The three model specifications
incorporate weekend and holiday dummies and city-year-month fixed effects. In the baseline
analysis, we specify f(d; ;) in Eq. (2) as a linear function of distance, i.e., f(d; ;) = d; .

This assumption will be relaxed in the robustness check section.

5.1 Temporal dependence of PM1o concentrations
Coefficient estimates of the temporally lagged PM1q variable are positive and

statistically significant (p < 1%) in all three model specifications, indicating that city-average
PM3o concentrations are temporally correlated. Holding all else the same, if the average PM1o
level in a city on a given day increases by one unit during the winter monsoon season, the
average PM1o concentration for the same city on the following day is expected to increase by
0.43-0.46 units. The remaining portion (0.54-0.57 units) of the increase in PM3g concentration
is diluted by nature. The temporal dependence of PM1o concentrations during the summer

monsoon season is considerably smaller, at 0.31-0.32.

15 The Chinese language version of the website is available at http://202.127.42.157/moazzys/hongshi.aspx, last
accessed on March 26, 2016.
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Table 1. Baseline results: Winter monsoon (dependent variable: PMio concentration)

Model 1: Local Model 2: Add Model 3: Add

Variables factors only spatial PMio  lagged spatial PM1o
Panel A: temporally- and spatially-lagged PM1q variables
Temporally-lagged PM1o 0.458*** 0.446*** 0.430***
(0.012) (0.013) (0.013)
Spatially-lagged PM1o 0.116*** 0.111***
(0.011) (0.010)
Spatially and temporally-lagged 0.061***
PM1o (0.009)
Panel B: Weather variables
Precipitation -0.103*** -0.101*** -0.101***
(0.016) (0.015) (0.015)
Sunshine duration -0.172%** -0.159*** -0.158***
(0.021) (0.020) (0.020)
Tmax 0.278*** 0.271%** 0.278***
(0.018) (0.018) (0.017)
Tmin -0.135%** -0.135*** -0.141***
(0.022) (0.022) (0.022)
Average wind speed -0.384*** -0.429*** -0.448***
(0.054) (0.060) (0.062)
Atmospheric pressure -0.056*** -0.045%** -0.045***
(0.013) (0.012) (0.012)
Relative humidity -0.022 0.003 0.019
(0.058) (0.055) (0.054)

Economic variables

Gasoline price -0.005** -0.006** -0.006**
(0.003) (0.003) (0.003)

Post-harvest season of rice -0.287 -0.034 0.377
(2.466) (2.392) (2.335)

R? 0.310 0.326 0.332

Notes: City-year-month fixed effects and dummy variables for weekends and national holidays are included in
all model specifications. Dummy variables for post-harvest seasons of corn and wheat are omitted because the
harvest of the two crops does not occur during the winter monsoon season. Robust standard errors are in
parentheses, adjusted for spatial correlation, autocorrelation, and heteroscedasticity of the error terms.
N=47,881.

“p<0.10, " p<0.05 " p<0.01
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Table 2. Baseline results: Summer monsoon (dependent variable: PMio concentration)

Model 1: Model 2: Add Model 3: Add
Variables Local factors spatial PM1o lagged spatial
only PM1o
Panel A: temporally- and spatially-lagged PMso variables
Temporally-lagged PM1o 0.321%** 0.315*** 0.313***
(0.020) (0.020) (0.019)
Spatially-lagged PM1o 0.082*** 0.082***
(0.013) (0.013)
Spatially and temporally- lagged 0.015
PM1o (0.011)
Panel B: Weather variables
Precipitation -0.011*** -0.012*** -0.012***
(0.002) (0.002) (0.002)
Sunshine duration -0.143*** -0.137*** -0.136***
(0.022) (0.022) (0.022)
Tmax 0.340*** 0.329*** 0.329***
(0.033) (0.033) (0.033)
Tmin 0.025 0.022 0.022
(0.031) (0.031) (0.031)
Average wind speed -0.257*** -0.265*** -0.267***
(0.043) (0.044) (0.044)
Atmospheric pressure 0.017 0.021 0.022
(0.018) (0.018) (0.018)
Relative humidity 0.139 0.136 0.136
(0.088) (0.087) (0.086)
Panel C: Economic variables
Gasoline price 0.004 0.004 0.003
(0.005) (0.005) (0.005)
Post-harvest season of rice -1.483 -1.340 -1.340
(1.627) (1.564) (1.561)
Post-harvest season of corn -2.354 -1.906 -1.777
(2.817) (2.709) (2.715)
Post-harvest season of wheat 4.305 4.695 4.610
(2.706) (2.871) (2.945)
R? 0.215 0.225 0.225

Notes: City-year-month fixed effects and dummy variables for weekends and national holidays are included in all
model specifications. Robust standard errors are in parentheses, adjusted for spatial correlation, autocorrelation,
and heteroscedasticity of the error terms. N=9,713.

“p<0.10, " p<0.05 " p<0.01

5.2 Spatial spillovers of PM1o pollution

In Models 2 and 3, the coefficient estimates of “the spatially-lagged PMyg variable”
are positive and statistically significant (p < 1%). The parameter estimate of this variable is
0.11-0.12 when the analysis is conducted using the winter monsoon sample and is 0.08 when
the analysis is conducted using the summer monsoon sample. This provides strong evidence
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for the existence of spatial spillover effects of PMz1o. With the linear specifications of the two
models, the coefficient estimates of this variable can be interpreted as follows: for each unit
increase in PM1o concentrations in a city’s upwind cities, the average PM1o concentration in
this city is expected to increase by 0.11-0.12 units during the winter monsoon season and by
0.08 during the summer monsoon season, holding all else the same.

Compared to the contemporaneous pollution spillover effects, the negative impacts on
local air quality of the one-day lagged PMo pollution transported from upwind cities are
much smaller. The coefficient estimate of “the spatially and temporally-lagged PM1o
variable” is insignificant for the summer monsoon sample. Although it is statistically
significant (p < 1%) for the winter monsoon sample, it is about 45% smaller than the
coefficient estimate of “the spatially-lagged PM1o variable”. That probably is the case
because, when PMyp travels long distance and when wind speed is slow, most of the PM1o
from upwind cities will be diluted by natural ecosystems (Kalthoff et al., 2000).

5.3 Effects of weather on PMyo pollution

Coefficient estimates of the precipitation and wind speed variables are negative and
statistically significant (p < 1%), and remain fairly comparable across different model
specifications. This suggests that increased precipitation and strong winds can effectively
reduce ground-level PM1o concentrations and improve urban air quality. These findings are in
agreement with the well-established literature on atmospheric pollution (see Arya, 1999).

Temperature effects on PMzg concentrations differ over time during a day. The
parameter estimate of Tmin is found to be negative and statistically significant (p < 1%) for the
winter monsoon sample, suggesting that higher Tmin can reduce city-average PM1o
concentrations. The mechanism behind this finding is simple. Studies on atmospheric
pollution have discovered that, when temperature increases, warmer air near the surface
becomes lighter than colder air above it, creating an uplift of air. The vertical movement of
air can bring PM1o away from the surface and thus reduce ground-level PMyo concentrations
(Arya, 1999). The coefficient estimate of Tmin has a positive sign but it is insignificant for the
summer monsoon sample. The coefficient estimate of Tmax is found to be positive and
statistically significant (p < 1%). While Tmin typically occurs before sunrise, Tmax usually
occurs during the early to middle afternoon. Human activities, such as construction and
driving for recreation, are expected to be highest during the early to middle afternoon, and
may generate PMyo that is not captured by our explanatory variables. That may explain the
positive coefficient estimate of the Tmax variable. Coefficient estimates of other weather
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variables, including sunshine hours, relative humidity and atmospheric pressure, are

consistent with well-established atmospheric evidence (Seinfeld and Pandis, 2006).

5.4 Effects of economic variables on PMyo pollution

Parameter estimates of economic variables have expected signs and statistical
significance. Coefficient estimates of the dummy variables for post-harvest seasons of rice,
corn and wheat are insignificant, possibly because post-harvest seasons of the three crops are
collected at provincial scale and the city-year-month fixed effects may have absorbed some
of the effects of burning residues on PM1o concentrations.

The coefficient estimate of gasoline price is negative and statistically significant for
the winter monsoon sample, suggesting that increased gasoline prices have effectively
improved air quality during the winter months, possibly by reducing fuel consumption. The
coefficient estimate of this variable is insignificant for the summer monsoon sample, possibly
because car travel during the summer months is more responsive to changes in income than

to changes in fuel prices (Dargay and Gately, 1999).

6. Robustness checks

The results presented above regarding the impacts of various factors on ambient PM1o
concentrations make intuitive sense. But how robust are they? In this section, we examine the
sensitivity of our results in nine different scenarios. For brevity, we summarize estimated
pollution spillover effects (the sum of the point estimates of “the spatially-lagged PM1o
variable” and “the spatially and temporally-lagged PMyo variable) and their 95% confidence

bands across various scenarios in Figure 2.1

16 Across the various scenarios that we considered, coefficient estimates of other control variables are fairly
close to our baseline estimates. For brevity, they are not reported.
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Figure 2. Sensitivity analysis

Notes: This figure shows the sums of coefficient estimates of the spatially-lagged PMio and the spatially and temporally-lagged PMi, variables in different
scenarios and their 95% confidence intervals.
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6.1 Results by spatial weights matrix and econometric estimation strategy

The first set of robustness checks addresses the sensitivity of our results to variations
in spatial weights matrices and econometric estimation strategies. In Scenarios (1)-(3), we
consider three nonlinear forms of distance function suggested by Ermak (1977) to construct
our spatial weights matrix. Specifically, we consider a quadratic distance function f(d; ;) =
d;j+ dﬁj in Scenario (1), a square root distance function f(d; ;) = dgf in Scenario (2), and
an exponential distance function f(d; ;) = exp(d; ;) in Scenario (3). In Scenario (4), we
replicate the above analysis by estimating standard errors that are clustered within cities and
within region-year-month-days. We consider this scenario mainly due to the concern that the
error terms may be correlated because a shock occurring in a region on a given day may
affect PMyo concentrations for all cities located in that region on that day. In Scenario (5), we
use city-year-season fixed effects and month fixed effects to control for the unobserved
factors. We find that estimated pollution spillover effects in these five scenarios are almost
identical to our baseline estimates, suggesting that our results are robust to variations in

spatial weights matrices and econometric estimation strategies.

6.2 Results by variable and sample

Neighboring cities are likely to experience similar shocks due to changes in regional
business/pollution cycles and meteorological conditions. To separate the pollution spillovers
caused by idiosyncratic changes in wind direction from these regional shocks, we add an
additional variable in Eq. (1) in Scenario (6). This new variable is another weighted average
of PM1o concentrations in nearby cities, where weights are based solely on distance between
cities but not on wind direction. This variable is expected to control for regional shocks
because of changes in regional business/pollution cycles and meteorological conditions,
which are most likely to be correlated across nearby cities and are unrelated to wind
direction. Figure 2 shows that the estimates of the pollution spillover effects are still positive
and statistically significant (p < 1%), but they are about 42-49% smaller than our baseline
estimates.

Although the prevailing wind directions are northerly during the winter monsoon
season and southerly during the summer monsoon season, wind directions in some cities
during the monsoon seasons still occasionally change (see Figure C2). In Scenario (7), we
further restrict our sample by dropping observations that are not strictly following prevailing

wind directions during the two monsoon seasons. Estimated pollution spillover effects in this
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scenario are statistically significant (p < 1%), and their magnitudes are broadly consistent

with our baseline estimates.

6.3 Results by terrain feature

Lastly, we examine the role of terrain features in affecting regional spillovers of PM1o
pollution in Scenarios (8) and (9). A flat terrain facilitates unobstructed movement of wind
and thus air pollution. China has four major plains, including Northeast China Plain, North
China Plain, Yangtze Plain and Guanzhong Plain. We divide our sample into two subsamples
based on whether a city is located in plain or non-plain regions. As expected, we find that
estimated spillover effects in plain regions are considerably (24-37%) larger than the baseline
estimates, while estimated spillover effects in non-plain regions are substantially (37-58%)

smaller than our baseline estimates®’.

7. Assessment of the upwind impacts

The results presented above show how various factors affect city-average PMio
concentrations and their statistical significance. In this section, we estimate the percentage
contributions of PMyg transported from upwind cities to local PMio concentrations for each of
the cities included in our sample. To achieve this goal, we first estimate our baseline Model 3
for each city as a time series regression analysis, and obtain city-specific parameter estimates
of p; and p,. We then compute 6; for city i:

YL E(PM)
i = ey @)
where E(PM;) denotes the predicted PM1o concentration for city i and ZjiiE(PMj)
represents the sum of the PMyo transported from J upwind cities of city i on days d and d-1.
When calculating E (PM;), we first obtain city-specific predicted values of PM; ,,,,4 for day d
in month m of year y. We then compute the average of the predicted values of PM; ,,,,,4 over

time to get E(PM;). Similarly, we use city-specific parameter estimates of p; and p,,

multiplied by sample means of 31, @ yma PM; yma ad T4, 0 yma—1 PMjyma-1.

J

respectively, to compute ). 21 E(PM;j). Hence, 6; measures the “average” contribution of

PMyo transported from upwind cities to city i’s PM1o concentrations.

17 The estimated spillover effect in non-plain regions during the summer monsoon season is statistically
insignificant.
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Figure 3. Percentage contributions of PM1o from upwind cities to local PM1o concentrations during the winter (a) and summer (b) monsoon
seasons
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Figure 3 shows that there exist large variations in estimated 8; across cities,
ranging from 0% to 30% during the winter monsoon season and from 0% to 26%
during the summer monsoon season. Of the cities included in the sample, we find that
the cities located in the North China Plain and Yangtze River Delta regions are most
affected by PM1o pollution from upwind cities. These are expected results because: (i)
the two regions have a large number of adjacent cities and (ii) the two regions have
relatively flat terrain that facilitates pollution diffusion across regions. The estimated
percentage contributions of PMzo pollution from upwind cities are comparable with
the findings reported in Guo et al. (2014) and Liu et al. (2016) that focus on cities in
the North China Plain region.

Most of the cities that are least affected by PMzo pollution from upwind cities
during the winter monsoon season are located in mountainous areas. Their local
terrains can effectively prevent wind from carrying air pollutants from other regions.
During the summer monsoon season, the cities with smallest upwind impacts are
located in Central China, which are expected given that the prevailing wind directions
are southerly during the summer months and the cities located in southern China have
much lower PMyo levels relative to cities in northern China (see Figure 1).

8. Conclusions and discussion

In this paper, we exploit spatial and temporal variations in PMzg
concentrations for major cities located in China’s EMR during the East Asian
monsoon seasons to examine the effects of various local and neighboring factors on
PM1o concentrations in Chinese cities. To fully incorporate the spatial and temporal
dynamics of PM1o concentrations, we develop a dynamic spatial panel model. The
spatial weights matrix constructed in the model considers not only geographical
distance between cities, but also wind direction, wind speed, and emission strength in
upwind cities. The spatial econometric model we developed in this paper is novel, as
it is the first empirical study that allows a spatial weights matrix to change over time.
In contrast to the approaches used by atmospheric studies, findings based on our
regression framework remain remarkably robust to locations, econometric estimation
strategies, data and variables.

Our regression results provide strong evidence of the existence of spatial
spillover effects of air pollution. Coefficient estimates of weather variables are

consistent with the findings presented in the atmospheric pollution literature. Other
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variables have intuitive signs and magnitudes as well. For example, city-average PM1o
concentrations are temporally correlated, and higher gasoline prices help to improve
air quality. We also find that the percentage contributions of pollution from upwind
cities to local PM1o levels vary across regions, with cities located in the North China
Plain and Yangtze River Delta regions most affected by pollution from upwind cities.
Although our approach is different from the atmospheric approaches, these findings
are fairly comparable to the existing atmospheric evidence.

Our findings have important public policy implications for the effective design
of China’s air pollution control policies. Given the existence of transboundary air
pollution across regions, China’s widely-adopted strategy of relocating large-scale
and heavily polluting factories to suburbs or neighboring cities will not be effective.
To effectively abate transboundary air pollution, pollution control policies must be
coordinated between cities and provinces to address this negative externality. Our
findings also support the idea that China should adopt a version of the US EPA’s
Good Neighbor Rule, which is designed to address interstate transport of air pollution.

Several caveats apply. First, because daily PM1o data used in the sample are
not continuous, we may have underestimated the true spatial spillover effects of PMyo.
Second, our sample includes only 108 major Chinese cities in the EMR. While we
investigate the spatial correlations of PM1g among these major cities, there are many
small and medium-size cities located between these major cities. PMio generated in
those cities could be transported by wind to the major cities in the sample. As a result,
our estimated spatial spillover effects could be smaller or larger than the actual
estimates. The last major caveat is that we cannot conduct a cost-benefit analysis to
quantify the costs and benefits of abating PM1o. On the cost side, there are a number
of options to reduce PM1o emissions, with marginal abatement costs varying by city
and by abatement option. The relationship between emissions and concentrations is
quite complex and varies across locations (Lanigan, 1993). Thus, it is quite difficult to
predict how PMzo concentrations will change when emission levels change. On the
benefit side, it is difficult to estimate the benefits stemming from reduced PM1o
concentrations, because the benefits depend not only on reduced PM1o concentrations,
but also on initial PMyo levels. Moreover, estimating the benefits due to reduced PM1o
concentrations would require us to project the potential reduction of the number of
days when activity is restricted because of air pollution, as well as estimates on
reduced health costs and increased output from increased work time, all of which vary
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by city. We can conclude by pointing to a multiplier effect of pollution abatement. If
all cities lower their PM1o concentrations by one unit, average PM1o concentrations in
Chinese cities can decrease by up to 1.7 units during the winter monsoon season and

by up to 1.1 units during the summer monsoon season.
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