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on productivity growth assumes that firms share the same production possibilities and only differ
with respect to their level of inefficiency. We do this by implementing a Random Parameters
approach in a Stochastic Production Frontier framework. The resulting parameter estimates are
used to decompose a multiplicative TFP index that yields measures of technological progress,
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even after accounting for knowledge stocks generated from investments in research and
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Accounting for the Impacts of Changing Configurations in Temperature and

Precipitation on U.S. Agricultural Productivity

1. Introduction

There is growing evidence that climate change will have significant impact on global agricultural
production (Lobell, Schlenker, and Costa-Roberts 2011; IPCC 2014). CO, emissions have
increased 46% since 1990 and this trend has resulted in a major decline in the global resource
base for food production thus exacerbating food insecurity (United Nations 2013). Global
population currently stands at 7 billion and is projected to rise to 9.7 billion by 2050 (United
Nations 2015). Of immediate concern is how to provide food and sustenance to this rapidly
growing population. Agricultural production will have to rise by 70% in order to meet 2050
projected food demand (FAO 2011). Beyond food production, the climate change phenomenon
may take on other global security dimensions. Indications are that environmental disasters
attributed to climate change, such as rising sea levels, floods, drought, and frequent and more
intense storms are likely to cause large-scale disruption, massive loss of life and property,
overwhelm disaster relief efforts, lead to wide-spread public unrest, large-scale refugee flows
and even the failure of some fragile nations (Busby 2008; Femia and Werrell 2016; Werrell and
Femia 2017).

Though the agricultural sector constitutes a small proportion of the U.S. GDP, climate
change impacts raise major concerns given the significance of this country’s role in global food
markets. In 2016 the U.S. generated approximately 35% of global corn supply, 33% of global
soybeans and close to 33% of global dairy products (U.S. Department of Agriculture 2017).
Moreover, extreme weather events attributed to anthropogenic sources have exposed climate

related stresses and demonstrated vulnerabilities in agriculture (Hatfield et al. 2014). An



increasingly integrated global food system means that any climate shocks in the U.S. agricultural
sector would be transmitted worldwide, thus raising the specter of food insecurity globally
(Hatfield et al. 2014). Similarly, any negative shocks to world food systems as a result of climate
change are likely to increase the reliance of U.S. agricultural output in meeting global shortfalls.
Several studies have considered the projected impacts of climate change on U.S.
agriculture (e.g., Mendelsohn, Nordhaus, and Shaw 1994; Schlenker, Hanemann, and Fisher
2006; Deschenes and Greenstone 2007; Schlenker and Roberts 2009; Roberts, Schlenker, and
Eyer 2013; Burke and Emerick 2016) and their conclusions have yielded a wide range of
expected effects on U.S. agriculture. Whereas some studies present evidence that climate change
might be beneficial to the farm sector as profit-maximizing economic agents adapt to a changing
climate (e.g., Mendelsohn, Nordhaus, and Shaw 1994; Deschenes and Greenstone 2007), others
anticipate mild impacts (Mendelsohn and Dinar 2003), a mixture of results due to a lack of
significant climate trends in the United States (Lobell, Schlenker, and Costa-Roberts 2011) and
significant declines in agricultural yields for major U.S. field crops such as corn, soybeans, and
cotton (Schlenker and Roberts 2009; Roberts, Schlenker, and Eyer 2013; Burke and Emerick
2016). Nevertheless, the studies that present beneficial impacts due to climate change have been
criticized for various reasons. The study by Mendelsohn and colleagues has been criticized for
applying cross-sectional data while implicitly assuming a perfectly elastic supply of irrigation
water (Cline 1996) and for overstating the potential benefits of warmer weather (Darwin 1999).
The study by Deschenes and Greenstone (2007) has been criticized for data and coding errors in
weather variables and input-output data, the climate change scenario that is used to simulate
impacts predictions, and standard errors that are biased due to spatial correlation (Fisher et al.

2012).



Regarding the potential for adaptive mechanisms, some studies have considered regional
adjustments in crop and livestock production (Mendelsohn, Nordhaus, and Shaw 1994), the role
of irrigation in ameliorating reduced precipitation (Schlenker, Hanemann, and Fisher 2005),
future irrigation demand under shifting climatic conditions (Marshall et al. 2015), and shifting
growing seasons and planting dates in order to minimize the effects of rising temperatures during
key stages in corn production (Ortiz-Bobea and Just 2013). In addition, there is evidence that
long-run adaptation in the agricultural sector appears to have mitigated less than half of the
short-run effects of extreme heat (Burke and Emerick 2016). Notwithstanding, the U.S. farm
sector continues to adapt to climate change via various mechanisms, such as crop rotation,
fertilizer management and water management, and these strategies appear to have mitigated
some of the negative consequences of climate change (Hatfield et al. 2014).

The primary objective of this study is to investigate how changing configurations in
temperature and precipitation are transmitted to U.S. agricultural productivity growth. In doing
s0, we combine county-level agricultural input-output data, with agronomic measures of weather
(growing degree days, harmful degree days, vapor pressure deficit and growing season-
precipitation), characteristics of the production environment (e.g., clay and sand content, salinity
levels, moisture capacity, soil permeability levels, length of slope), and knowledge stocks
generated from cumulative public expenditures in research and development. These variables
are incorporated into a stochastic production frontier model and the parameter estimates are
subsequently used to construct a total factor productivity (TFP) index. Decomposition is then
implemented in order to generate yield TFP measures that isolate and explicitly account for
weather effects, technological progress, technical efficiency, and scale and mix efficiency

changes. These measures provide a better understanding of U.S. agricultural productivity growth.



Climate shifts vs. random weather fluctuations

In this study, we make a distinction between random fluctuations in weather and climate shifts.
Whereas climate refers to the distribution of outcomes over long intervals (e.g., over several
decades), weather on the other hand refers to a particular realization from a climate distribution.
Hence, weather variation refers to shorter-run temporal fluctuation in temperature and
precipitation within a given geographic area (Dell, Jones, and Olken 2014, p. 741). The central
argument is that changing climate causes fluctuations in weather, and that weather has a direct
biophysical impact on agricultural output (Nelson et al. 2014). In this sense, ‘“climate is
perceived to be predictably variable, so that a farmer can make adjustments ex-ante while daily
weather is unpredictable, so that a farmer must cope with it ex-post” (Seo 2013, p. 113). Thus,
because weather fluctuations constitute unanticipated shocks on output, these are more difficult
to address and are easier to discern using panel data models.

Therefore, our identification strategy relies on exploiting within-county year-to-year
fluctuations in weather variables in order to identify their effects on agricultural output. Unlike
the use of long-run climate variables, which are likely to be fixed over the duration of the panel,
hence serially-correlated with time-invariant characteristics of the production environment
(Fisher et al. 2012), year-to-year fluctuations in weather are random and better identify the
effects of changes in climatic conditions on economic outcomes (Burke and Emerick 2016).

In order to account for adaptive mechanism we incorporate knowledge stocks generated
from cumulative public expenditures in agricultural research and development (R&D). Such
public expenditures differ across states, thus this is akin to introducing an exogenous spatially
heterogeneous time trend, which ensures that the relationship of interest is identified by local

shocks (Dell, Jones, and Olken 2014). Moreover, this approach of incorporating the potential for



adaptation via knowledge stocks created from expenditures in public goods helps to allay the
‘dumb-farmer’ scenario (see Mendelsohn, Nordhaus, and Shaw 1994, p. 754) which is used to
characterize a typical farmer that is unresponsive to changing climatic conditions.

The rest of this paper is organized as follows: Section 2 presents the analytical
framework as well as the theoretical foundation for the random parameters stochastic production
frontier. Section 3 illustrates the methodology that is used to decompose a total factor
productivity index. In section 4 we introduce the data. We present the results in section 5 and

finally present the concluding remarks.

2. Analytical Framework

The evaluation of the effects of year-to-year fluctuations in weather on agricultural output is
conducted in two stages. The first stage involves an estimation of a Random-Parameters
Stochastic Production Frontier in order to capture spatial and temporal firm-level effects. The
second stage consists of the decomposition of a total factor productivity (TFP) index in order to
capture the growth effects. We proceed by assuming a representative decision-making unit
(DMU) that has access to a period-and-environment specific technology set that characterizes all
feasible input-output combinations under a set of environmental conditions. This period-¢

technology under conditions characterized by environment z is given as:

(D) T (2) = {(x,q) € RY*N:x can produce q in environment z in period t}

We also assume that the standard theoretical properties of a regular period-¢ technology
hold (O’Donnell 2016, p. 330). We proceed by introducing subscripts i and ¢, into the notation
that characterize firm and time, respectively, such that, q;;, x;;, and z;; now represent output, a

vector of inputs and a vector of environmental characteristics for DMU i in period ¢, respectively.



Consider a Cobb-Douglas stochastic production frontier that represents the unknown technology

and that captures the level effects of weather, which is expressed as:'

I M ]
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where: q;; is a measure of firm-level output; gj; represents state-level knowledge stocks
generated from cumulative expenditures in research and development (R&D); xy;¢, ..., Xgir are
land, labor, capital, intermediate materials and livestock, irrigation; Wy, ..., Wy are weather
variables (i.e., growing degree-days, harmful degree days, vapor pressure deficit, and growing
season precipitation); Zj;, ..., Zg;; represent physical characteristics of the production
environment (i.e., fraction of land under clay and sand, permeability of the soil, susceptibility to
erosion, length of slope); v;; is an unobserved variable representing statistical errors and is
distributed v~N(0,02); and finally, u; is a nonnegative technical efficiency effect with

distributional parameters u~N* (0, 6;2).

Total Factor Productivity

Total factor productivity (TFP) is defined as the ratio of aggregate output to aggregate inputs
used over a given period (Solow 1957; Jorgenson and Griliches 1967; O’Donnell 2016). In the
single output case, which is the case in this study, the multiplicative index that compares TFP of
firm 7 in period ¢ with the TFP of firm & in period s is the Total factor productivity index denoted

as:
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' We do not appeal to the more flexible and commonly used translog specification because it fails to satisfy some
regularity conditions that are necessary in order to guarantee the existence of a regular metatechnology that
conforms to economic theory (see O’Donnell 2012, 2016).



where by, ...,by are any nonnegative weights such that ¥M_, b, = 1. Furthermore, b,, =
B/ M _. B, Where B, is the estimated mean of the random parameters. By substituting the
antilogarithm of the right-hand side of equation 2 into equation 3, we obtain the full expression

of the TFP index as follows:
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The TFPI in (4) above decomposes into the following six components. The first term is a
technology index (TI) that captures technological progress as a result of cumulative R&D
expenditures. The argument is that the R&D investments result in new knowledge that is
productivity enhancing. The second component is an environmental effects index (EI) that
captures the contribution of observed time-varying weather fluctuations and other physical
characteristics of the production environment to TFP. The third term is the output-oriented scale
efficiency index (OSEI), a component that measures productivity gains linked to economies of
scale. The fourth term is an Agricultural index (Al) that measures the effect of unobserved time-
invariant characteristics of the production environment. The fifth term is an output-oriented
technical efficiency index (OTEI) that captures movements towards and away from the frontier.
And the last term is a statistical noise index (SNI) that accounts for measurement errors and other
sources of statistical noise.

Data

The data consists of a panel of county-level input-output data drawn from the U.S. Department
of Agriculture, Census of Agriculture for the years 1987, 1992, 1997, 2002, 2007 and 2012. The

‘State and County rankings’ volume that is published alongside every census report is used to



select 340 of the top agricultural counties across all the 48 conterminous states, based on the total
market value of agricultural products sold in 2012. Figure 1 illustrates the spatial location of the
agricultural counties used in this analysis. Aggregation at the county-level can be justified based
on past research that finds evidence that U.S. agricultural producers behave collectively as if they
were price-taking, and profit-maximizing firms (e.g., Williams and Shumway 1998). The output
variable is the total value of agricultural sales. The input variables include: agricultural land in
acres; livestock (number of dairy cows, beef cows, hogs, sheep, horses, poultry) converted into
animal equivalents using an approach that accounts for the feed requirements of each animal type
(USDA 2000); value of machinery and equipment; hired and contract labor hours; and
expenditures on intermediate materials (fertilizer, chemicals, electricity and gasoline). The
market value of agricultural products sold that represents the output variable is converted into
constant-2016 dollar values using agricultural price indexes constructed by the USDA (USDA
2016b). The variable representing the value of machinery and equipment is constructed using the
perpetual inventory method, which imputes net additions to the capital stock (e.g., Christensen,
Jorgenson, and Lau 1973; Griliches 1980; Madsen 2007; Madsen and Islam 2016). Using 1987
as the base year, any changes in machinery and equipment values are considered to reflect net
investments in capital. These figures are then adjusted to 2016 dollars.

Weather Measures

Data on contemporaneous temperature and precipitation are derived from the Parameter-
Elevation Regressions on Independent Slopes Model (PRISM) Climate Group. The PRISM
incorporates a climate-mapping system to generate temperature and precipitation information at
‘2.5 by 2.5’ mile grid cells for the entire United States and accounts for the effects of elevation,

coastal proximity, temperature inversions, and terrain induced air-mass blockage (Daly et al.



2008, 2012; Daly, Smith, and Olson 2015). The weather measures are used to construct estimates
that comprise growing degree-days, harmful degree-days, vapor pressure deficit, and growing
season precipitation. We discuss each measure below.

Growing Degree-Days

Schlenker and Roberts (2009) argue that the true underlying relationship between temperature
and yield is nonlinear and is best-characterized using growing degree-days. From an agronomic
perspective, each crop species relies on ambient weather conditions from planting to harvesting
and has a temperature range that is considered optimal for crop development (Hatfield et al.
2014). Growing degree-days capture the accumulated exposure of crops to heat between given
upper and lower bounds during the growing season (Roberts, Schlenker, and Eyers 2013; Burke
and Emerick 2016). We use daily maximum and minimum temperatures as well as PRISM’s
inverse-distance squared weighting interpolation methods to obtain estimates for each ‘2.5 by
2.5’ mile grid in the county and thereafter we average over the grids in each county. The growing
degree-days are obtained by calculating the number of degrees above a lower threshold and
below an upper threshold and sum across all the days in the growing season, April to September.
(see Roberts, Schlenker and Eyer 2012). Furthermore, growing degree-days are constructed for
each county in the dataset based on the predominant field crop in the county for each of the
census of agriculture years: 1987, 1992, 1997, 2002, 2007 and 2012.

Harmful Degree-Days

Agronomists also recognize that beyond certain thresholds, higher temperatures are likely to
negatively affect crop development (Hatfield and Prueger 2015). Therefore, we incorporate into
the model a non-linear measure that captures the number of days within the growing season with

extreme temperatures. This measure is expected to capture the yield-decreasing range, and thus
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we refer to this as harmful degree-days (e.g., Schlenker, Hanemann and Fisher 2006; Schlenker,
Roberts and Eyers 2013).

Vapor Pressure Deficit

Vapor pressure deficit (VPD) is the difference between the amount of moisture currently in the
air and how much moisture the air can hold when it is completely saturated. It captures the
potential of the surrounding air to pull moisture from the foliage through transpiration (Ficklin
and Novick 2017). Rising temperatures lead to higher levels of vapor pressure deficit between
the saturated foliage and the ambient air, which then leads to higher rates of evapotranspiration,
which is the amount of water that is lost from the leaf surface. Plants respond to higher rates of
VPD by reducing stomatal conductance in order to prevent excessive water loss and this in turn
limits plant carbon uptake, thus leading to wilting and stunted growth (Ficklin and Novick 2017).
Conversely, when the air is fully saturated with humidity, leaves transpire less, leading to low
VPD. This reduces the rate of transpiration thus limiting the ability of the plant to take up
essential minerals, which may lead to mineral deficiencies and plant susceptibility to disease
pathogens (Ficklin and Novick 2017). Both scenarios may lead to reduced crop development and
yields. We incorporate measures of averages of daily maximum and minimum VPD over the
growing season for all counties in the dataset using PRISM’s inverse-distance squared weighting
interpolation methods in order to obtain estimates for each ‘2.5 by 2.5’ mile grid in the county
(see Daly, Smith, and Olson 2015).

Growing Season Precipitation

Finally, we include a measure of cumulative precipitation over the growing season, April to

September. This measure is split into two: spring precipitation (April-June) and summer
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precipitation (July-September), which capture cumulative precipitation in the early growing
season and the latter half of the growing season, respectively.

Irrigation

As mentioned above, in the absence of adequate rainfall, additional water can be supplied via
irrigation. According to the U.S. Geological Survey (USGS 2014), the agricultural sector was the
second largest consumer of water resources in United States. Combined water withdrawals used
in irrigation, livestock and aquaculture accounted for approximately 115,000 million gallons per
day, with 62.4 million acres of land under irrigation in 2010 (USGS 2014). Estimates of
volumetric measures of water applied in agriculture at the county-level are obtained from the
U.S. Geological Survey and are available for the years 1985, 1990, 1995, 2000, 2005 and 2010.2
Cubic spline interpolation methods are used to match the irrigation data with the input-output
data (e.g., Yang and Shumway 2016).

Soil Quality

We conjecture that agricultural production is likely to be impacted by topography and soil
characteristics. Therefore, we incorporate into the model information on the physical attributes of
the land, obtained from the National Resource Inventory of the U.S. Department of Agriculture.
This information comprises data on soil samples obtained from soil surveys. It also contains
detailed information on the land characteristics such as measures of susceptibility to soil erosion
(k-factor), estimates of susceptibility to floods, length of slope, permeability, fraction of land
cover under clay and sand, level of moisture capacity, and salinity of the soil. Similar measures
of soil characteristics have been used in other studies of climate change (e.g., Deschenes and

Greenstone 2007; Schlenker, Hanemann and Fisher 2006).

? U.S. Geological Survey data on irrigation are constructed from estimates of all secondary sources of water used for
agriculture and does not indicate if these volumetric measures are obtained from groundwater or surface water
sources.
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Research and Development

New technologies (i.e., new methods for transforming inputs into outputs) are discovered
through research and development (R&D). Public R&D expenditures are incorporated into the
stochastic production frontier in order to capture technological progress. This is an improvement
over the common practice of measuring technological change using a simple time trend. The
state-level public expenditures dedicated to agricultural research used in this study are similar to
those used in Huffman and Evenson (1992), Huffman and Evenson (2006), and Huffman (2010)
’. The R&D expenditure data are originally extracted from the Current Research Information
System (CRIS) that is maintained by the National Institute for Food and Agriculture (NIFA). The
data consist of outlays dedicated to agricultural research that are allocated via the USDA’s
Agricultural Research Service and Economic Research Service, State Agricultural Experiment
Stations (SAES), and Schools of Veterinary Medicine.

The R&D stocks are constructed as a weighted sum of previous years flows using a 35-
year lag. This 35-year lag captures the time frame from when the initial R&D investment is made
and consists of: a research lag, when experimental work is done; a development lag, that
precedes the commercial phase; and finally an adoption lag, when the new variety is adopted by
farmers, and net benefits increase until they reach a maximum (Alston et al. 2010, p. 244). The
trapezoidal form for the lag distribution that is used to characterize the weights to be applied to
past research expenditures is taken from Huffman and Evenson (2006) and Huffman (2010).
These data has been used in various studies, most recently by Wang et al. (2012, 2013) and by

Jin and Huffman (2016).

’ We are grateful to Professor Wallace Huffman (Iowa State University) for sharing the dataset on R&D
expenditures.
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Furthermore, investments in R&D should also account for transfer of technology across
geopolitical boundaries, that is spillover effects, because new knowledge created in one
geopolitical entity can have impacts elsewhere (Alston et al. 2010). We expand R&D measures
by incorporating estimates of spillover effects. This way, the R&D stock in each state is a
function of its own stock of knowledge, as well as spillover stocks of knowledge from other
states that have a similar mix of outputs (see Alston et al. 2010, p:274). Summary statistics of all
the variables incorporated in the stochastic production frontier model are provided in Table 1.
Results
Statistical tests and parameter estimates
An important aspect of agricultural production in the United States is the key disparity between
the eastern half and the western half. Western states are characterized by a semi-arid climate
compared to the sub-continental eastern half (Schlenker, Hanemann, and Fisher 2006). For this
reason, western agriculture is heavily dependent on irrigation for primary purposes while eastern
states utilize irrigation for supplemental purposes only (Schlenker, Hanemann, and Fisher 2006;
Wichelns 2010). We conduct a statistical test to measure if this effect is significant enough to
warrant separating the model into a western vis-a-vis an eastern half. A likelihood ratio test of
the pooled vs. the restricted model generates a likelihood-ratio statistic of 147.309 with a p-
value=0.000 and this provides evidence in favor of a pooled model.

The model represented by equation 2 is estimated using simulated maximum likelihood
methods. There are possible concerns regarding the potential for endogeneity in stochastic
production frontier models (Mutter et al. 2013; Tran and Tsionas 2013; Shee and Stefanou 2015).
A possible source of endogeneity in our model is that input choices may be driven by weather

outcomes. A Wu-Hausman test for endogeneity is conducted; where the null hypothesis is that
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the variable under consideration, in this case irrigation, is exogenous. The logarithms of intra-
annual precipitation from 5 years prior are used as instruments. We obtain a Wu-Hausman test
statistic=3.30 and a p-value=0.1694; thus, we fail to reject the null hypothesis of exogeneity.

The estimated coefficients are presented in Table 2. The estimates for the conventional
inputs (i.e., land, labor, machinery, livestock, intermediate materials, and irrigation), are
interpreted as partial output elasticities. The estimated partial elasticities are nonnegative, which
is consistent with our assumption of strong disposability of inputs. A Wald test for the null
hypothesis of constant returns to scale generates a test-statistic of 39.25 with a p-value = 0.000.
Therefore, we reject the null hypothesis that this model exhibits constant returns to scale. In fact,
the sum of the coefficients, 7 = 1.11, reveals slightly increasing returns to scale. The values of
02 and 02 show that the inefficiency component dominates the statistical error component in the
overall error term. The estimated coefficient for R&D indicates that stocks generated from the
investment in R&D contribute, ceteris paribus, 11.05% to agricultural output.

The maximal possible output is affected by the seasonal spread and fluctuations in year-
to-year temperature and precipitation as well as characteristics of the production environment,
such as soil quality. We conjecture that weather fluctuations impact agricultural output in a non-
linear fashion. Hence we model this relationship via measures of growing degree-days, harmful
degree-days, vapor pressure deficit; and linearly using a cumulative measure of precipitation
during the growing season. Separate Wald tests with the null hypothesis that the weather
variables, and the land quality measures are not jointly significant generate F-statistics of 3.98
and 8.79 respectively, with p-values=0.000 in both cases. Therefore, we strongly reject the null

hypothesis that the weather variables and the soil quality measures do not belong in the model.
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We experiment with multiple specifications for the weather variables. The resulting
model that we select minimizes the Bayesian information criteria and consists of level and
squared-terms for growing degree-days, harmful degree-days, spring precipitation; a level term
for maximum vapor pressure deficit; and the cross product of harmful degree-days and spring
precipitation. The impact of growing degree-days, and harmful degree-days indicate weakly
positive and negative effects on output respectively. Conversely, the effects of spring
precipitation, the square term of growing degree-days, and the interaction term of harmful
degree-days and spring precipitation have strongly positive effects on output. On the other hand,
maximum vapor pressure deficit, and the square terms for spring precipitation, and harmful
degree-days have strongly negative effects on output.

As mentioned above, we include the characteristics of the production environment (e.g.,
clay content, sand content, permeability, moisture capacity, length of slope, k-factor, flood
prone) in order to capture time invariant unobserved effects. Results indicate that counties
characterized by greater proportions of clay having strongly positive effects on output. Clay soils
are amenable to farming because their small-sized particles have more surface area and create
layers in the soil that can hold more water and nutrients. The effects for the other physical
characteristics of the soil and land in which agricultural production takes place reveal that
counties characterized by higher levels of moisture capacity, and soil permeability also have
strongly positive effects on output. On the other hand, the marginal impact of soils characterized
by high susceptibility to erosion (k-factor), and wetlands, ceteris paribus, have strongly negative
effects on agricultural output. In addition, our model comprises a fixed effect that captures
unobservables in agricultural production west of the 100™ Meridian; which is, the boundary that

roughly demarcates the semi-arid climate to the West of the United States where agriculture is
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heavily dependent on irrigation and hence more vulnerable to shocks due to water scarcity
(Schlenker, Hanemann and Fisher 2006; Wichelns 2010). The parameter estimate that captures
agricultural production west of the 100" Meridian indicates, ceteris paribus, a statistically

significant reduction in agricultural output at a rate of 4.3% per annum.

Decomposition of Total Factor Productivity Index

As indicated above, we define total factor productivity index (TFPI) as aggregate output divided
by aggregate input. The parameter estimates from equation 2 are used to decompose the TFP
index following equation 4 into a technological index (TI), which measures shifts of the
production frontier due to the discovery of new technologies; an output-oriented technical
efficiency index (OTEI), which measures movements towards or away from the frontier due to
the use of different technologies; an output-oriented scale efficiency index (OSEI), that measure
productivity gains linked to economies of scale; an environmental effects index (EI), which
captures changes in TFP due to year-to-year fluctuations in weather; an agricultural index (Al),
which measures changes in TFP due to time-invariant characteristics of the land; and a statistical
noise index (SNI) as defined in equation 5.

Moreover, the TFP index that we use is a proper index in the sense that it satisfies several
basic  theoretical axioms including monotonicity, linear homogeneity, identity,
commensurability, proportionality, and transitivity (see O’Donnell 2016). The transitivity axiom,
guarantees that we can make a direct comparison of the TFPI of two DMUs and that they should
yield the same estimate of TFP change as an indirect comparison through a third DMU
(O’Donnell 2012). In this study, all indexes compare the relevant value of any DMU in any
particular year against the value of a reference DMU, which is Weld County in Colorado (CO) in

1987.
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The way to interpret TFPI is as follows: Fresno county, California (CA), the largest
agricultural county according to the 2012 agricultural census generated $3,782.55 million of
agricultural output in 2012. On the other hand, Weld County in Colorado (CO) generated
$1,283.56 million and $1,415.28 million of agricultural output in 1987 and 2012, respectively”.
Thus the TFPI that compares Fresno County in 1987 to Weld County in 1987 decomposes as
TFPlpre 12welas7 = 0.91 as illustrated in equation 3. In words, Fresno County in 2012 was
approximately nine-tenths as productive as Weld County in 1987. A comparison of Weld County
productivity in 2012 vis-a-vis 1987 translates as TFPIly¢o1q 12 weia g7 = 0.90. Again in words,
Weld County in 2012 was approximately nine-tenths as productive as Weld County in 1987. By
the transitivity property we conclude that Weld County in 2012 was as productive as Fresno
County in the same year.

Productivity growth is measured as the year-to-year percentage rate of growth in TFP and
decomposes as: %ATFP = %AT + %AOSE + %AOTE +%AE +%AAE + %ASN, where the right-
hand-side components are percentage rates of growth in TFP due to changes in technology
(%AT), output-oriented scale efficiency (%AOSE), output-oriented technical efficiency

(%AOTE), environmental effects (%AE), agricultural effects (%AAE) and statistical noise

(%ASN). For conciseness, we present results of TFP growth by placing each county into one of
eight plant-hardiness zones in the contiguous United States as illustrated in Figure 2. These
zones, which are based on the average annual minimum winter temperatures, are generated by
the U.S. Department of Agriculture for purposes of illustrating regions with varying climatic
conditions. Thus each zone is on average, 10°F warmer (cooler) than its neighboring region.

Table 3 presents estimated year-to-year percentages rates of growth in TFP and its components

*All monetary values are converted to 2016 dollars using the U.S. Department of Agricultural price index generated
by the economic research service.
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for the counties in our sample over the period 1987-2012. Viewed in concert with Figure 2, we
observe that with the exception of Zone 3, which consists of counties in the northern parts of
Montana, North Dakota, and Minnesota, all the regions in the United States initially experienced
positive TFP growth. Results from the most recent decade 2003-2007, and 2008-2012 reveal
significant reductions in TFP growth in all regions. The decline in overall productivity growth
was primarily driven by reductions in technological change, output-oriented technical efficiency
change, as well as sharp declines in weather effects.

It is straightforward to track well-documented recent and past weather shocks and their
impacts on U.S. agricultural productivity growth. For example, California’s six year drought
between 1987-1992 and its most recent drought between 2008-2014 (California Department of
Water Services 2015) are picked up in our results as -8.05% and -2.68% declines in weather
effects in zone 9 over the periods 1987-1992 and 2008-2012 respectively. In addition the 1988
drought that devastated most of the Midwest region of the United States (Fuchs et al. 2012) is
manifested as -8.20% and -2.06% reductions in TFP due to weather effects, in zones 5 and 6
respectively. The primary corn and soybean belt region was also devastated by a severe drought
that significantly hampered crops, and pasture development in 2012 (NOAA 2012). Table 4
presents estimated average year-to-year percentages rates of growth in TFP and efficiency
changes for all counties in the corn and soybean belt region. The drought that was experienced in
the corn and soybean belt in the growing season of 2012 appears markedly as a 3.90% decline in
overall TFP change (%ATFP) which is primarily driven by: a 1.83% and 0.029% drops due to
weather effects (%AWE) and agro-ecological change (%AAE), respectively; 0.26% decline in
technological change (%AT); 0.88% drop in output-oriented technical efficiency change

(%AOTE); and a -1.44% decline for reasons that cannot be identified (%ASN).
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Conclusion

The third National Climate Assessment report (Hatfield et al. 2014) singles out recent droughts
and heavy precipitation as the biggest threats to the U.S. agricultural sector, and notes that crop
and livestock productivity will be negatively impacted as critical temperature and precipitation
thresholds are met and exceeded. Our general findings are consistent with these reports. Using
agronomic weather measures, we find that excessive temperatures as well as heavy precipitation
are harmful to crop development.

Shifting patterns in temperature and precipitation as well a general trend towards
warming has caused several regions in the United States to face severe declines in agricultural
productivity growth. Consequently, it is important and informative to measure agricultural water
productivity in order to evaluate the efficient use of water across the United States agricultural
sector. We measure water productivity in a way that conforms to the hydrology and agronomy
literature.

The main contributions of this study are: we incorporate conventional inputs (i.e., land,
labor, capital, livestock, and intermediate materials), agronomic weather measures (growing
degree-days, harmful degree-days, vapor pressure deficit, and precipitation), and physical
attributes of the land (e.g., soil type, k-factor, soil permeability, salinity, and moisture capacity)
into a production function, and subsequently undertake a decomposition of total factor
productivity index (TFPI) that isolates the contribution of agronomic weather measures and other
environmental factors to productivity growth. In addition we decompose TFPI into various
measures: a technology index (TI), which captures the role of cumulative R&D expenditures in
generating new knowledge stocks; an Output-oriented scale efficiency index (OSEI), which

measures productivity gains linked to economies of scale; an Output-oriented technical
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efficiency index (OTEI) that captures movements towards and away from the frontier. It is
noteworthy to point out that our study is the only one that explicitly incorporate the effects of
agronomic weather measures and other agro-ecological conditions into a total factor productivity
(TFP) model and the subsequent analysis of productivity growth in U.S. agriculture.

These findings have important implications for public policy. The ability to respond
appropriately and in a timely fashion to the adverse effects of climate change is expected to have

a significant effect on future agricultural productivity (Malcolm et al. 2012; Hatfield et al. 2014).
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Table 1: Summary statistics of variables used in Stochastic Production Frontier

Variable (Unit) Mean Std. Dev Min Max
Output ('000 $) 259,930.70 387,630.70 1,764.62  3,953,646.00
Land (acres) 440,795.70 423,976.70 1,047.00 3,112,271.00
Livestock (animal equivalent) 42,334.44 59,285.84 29.69 595,766.50
Machinery ('000 $) 146.15 104.64 1.22 1,030.97
Labor (hours) 3,662.06 8,941.37 12.92 96,120.48
Intermediate Inputs ('000 $) 31.29 50.83 12.00 533.03
Irrigation (Mgal/day) 114.65 324.62 0.03 3,411.04
Research and Development ('000) 88,769.51 51,747.18  15,425.16 257,187.30
Weather Variables

Growing Degree Days 3,433.06 1,111.20 1,516.00 8,078.75
Harmful Degree Days 31.71 34.20 0.00 171.00
Growing Season Precipitation 179.532 19.31318 84.7 244.5
Maximum Vapor Pressure Deficit 15.95 6.60 6.60 55.41
Production Environment Characteristics

Fraction of Clay 0.17 0.21 0.00 1.00
Fraction of Sand 0.08 0.18 0.00 1.00
Flood Prone 0.12 0.18 0.00 1.00
K-Factor 0.30 0.06 0.02 0.51
Permeability 2.67 2.41 0.25 13.69
Wetlands 0.11 0.11 0.00 0.73
Moisture Capacity 0.18 0.04 0.05 0.30
Salinity 0.01 0.05 0.00 0.64
Length of slope 253.41 230.25 30.51 1631.17
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Table 2: Estimates of Random Parameters Stochastic Production Frontier

Variables Means for Random Parameters Standard Errors
Constant B 0.1602%* 0.0129
Land By 0.0226* 0.0121
Labor Bair  0.2665%** 0.0074
Machinery Laie  0.4504%%* 0.0148
Livestock Bsip  0.1356%** 0.0065
Intermediate Materials Beir  0.1637%** 0.0075
Irrigation By 0.0368%** 0.0053
Growing degree-days prie  0.0173 0.0226
Harmful degree-days Py -0.0113 0.0095
Spring precipitation p3ie 0.2264%* 0.1034
Summer precipitation Paie  0.0026 0.0048
Vapor pressure deficit (Max) Psie -0.1108%** 0.0196
Growing degree-days squared Peir  0.5599%%** 0.1236
Harmful degree-days squared psie  -0.0017* 0.0013
HDD*Spring precipitation peir  0-0601 0.0609
Non-random Parameters

R&D o 0.1141%** 0.0143
100th meridian West Y1 -0.0349%** 0.0111
Clay Y2 0.0062*** 0.0143
Sand Y3 -0.0031%** 0.0016
Floodprone Y4 -0.0036** 0.0015
Kfactor Ys -0.1181%** 0.0341
Permeability Yo 0.1016*** 0.0213
Wetlands Y7 -0.0520%** 0.0064
Moisturecapacity Y8 0.2225%** 0.0387
Salinity Yo 0.0043** 0.0021
Islope Y10 -0.035*** 0.01676
Sigma-squared (V) oy 0.0937

Sigma-squared (u) 6 0.1185

log likelihood 912.622
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Table 3: Average Percentage change in TFP and its components across U.S. Counties 1987-2012

Region Year %ATFP  %AT  %AOSE  %AOTE  %AWE  %AA  %ASN
Zone 3 1987-1992 57766  2.711 -0.365 1.101 2.690 -0.001 -0.370
1993-1997 -1.526  1.697 0.106 -1.095  -2.445 -0.032 0.242
1998-2002 5.532  1.033 -0.072 1.913 3.199 0.000  -0.541
2003-2007 -0.885  0.244 0.511 -0.331 4.617  0.021 -5.947
2008-2012 -0.276  -0.100 0.606 -0.017  -4.642  0.000 3.877
Zone 4 1987-1992 4.549 2896  -0.376 0.340 -6.539 -0.013 8.241
1993-1997 4230  2.130  -0.097 0.284 1.160  0.031 0.723
1998-2002 0.093  1.566 0.079 0.197 6.698 -0.032  -8415
2003-2007 -0.988  1.038 0.410 -0.439  -0.891 0.008  -1.115
2008-2012 -0.731  0.589 0.305 -0.475 1.677 0.019  -2.845
Zone 5 1987-1992 4459 2941 -0.370 0317 -8.202 -0.002 9.775
1993-1997 1918 2.236  -0.138 0.033 2697 0012  -2.923
1998-2002 0954  1.507 0.144 0.090 9.586 0.000 -10.372
2003-2007 0.820  0.438 0.289 -0.109  -2.559 -0.007 2.767
2008-2012 -3.380 -0.203 0.259 -0.968 0411 -0.011 -2.869
Zone 6 1987-1992 3217 2.138  -0.196 0.090 -2.064 0.005 3.243
1993-1997 2.865  1.517 0.008 0.698 -0.239 0.024 0.856
1998-2002 1.579  0.834 0.152 0.143 5.538 0.000  -5.088
2003-2007 -1.323  -0.073 0.285 -0.426  -0.965 -0.014  -0.129
2008-2012 -2.797  -0.385 0.153 -1.064 1.618 0.000  -3.118
Zone 7 1987-1992 5273 2.679  -0.190 0.884  -0.636 -0.040 2.576
1993-1997 2495  2.008  -0.003 0.235 -1.492 -0.027 1.774
1998-2002 0995  1.358 0.165 -0.017 4.019 0.057  -4.588
2003-2007 -1.391  0.260 0.156 -1.482  -2.784  0.054 2.405
2008-2012 -1.937  -0.391 0.006 -0.669 1.397 0.000  -2.280
Zone 8 1987-1992 3.486  2.407 0.199 0.244 6.549 0.057  -5.970
1993-1997 4.257  1.543 0.047 0.805  -7.747 -0.027 9.637
1998-2002 -1.511  0.843 0.178 -0.621 5.404 -0.031 -7.283
2003-2007 -0.789  -0.036 0.204 -0.313 4201 0.013 -4.858
2008-2012 -1.947 -0.442  -0.095 -0.831  -4.618  0.000 4.039
Zone 9 1987-1992 2,738 2340  -0.201 0.559 -8.057 -0.149 8.246
1993-1997 2960 1.824 0.217 0.281 3238  0.096  -2.697
1998-2002 3.007  1.201 0.043 0.221  -3.074  0.000 4.616
2003-2007 -3.155  0.366 0.182 -1.441 2576  0.006  -4.844
2008-2012 -0.999 -0.012 0.260 0.525  -2.687  0.000 0.915
Zone 10 1987-1992 2.085 2.852  -0.206 -0.304  -2.244  0.006 1.982
1993-1997 3.759 2169  -0.272 0.835 4.150 -0.026  -3.097
1998-2002 9359 1386  -0.385 0.525 0.074  0.000 7.758
2003-2007 -6.982  0.265 0.508 -0.887 1.154 0318  -8.340
2008-2012 -2.626  -0.306 0.549 -1.480  -3.587  0.000 2.197
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Table 4: Average Percentage change in TFP and its components across Corn and Soybean belt

Region Year %ATFP %AT  %AOSE  %AOTE  %AWE  %AA  %ASN
Cornbelt 1987-1992 4.427 3.277 -0.313 -0.014 -1.387 0.019 2.846
1993-1997 3.011 2.636 -0.108 0.609 5.075 0.016 -5.216
1998-2002 0.985 1.909 0.055 -0.153 0.708  0.000 -1.533
2003-2007 2.321 0.738 0.251 0.568 4834 -0.017 -4.052
2008-2012 -3.905  -0.268 0.548 -0.882 -1.831 -0.029 -1.444
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Figure 1: Spatial location of agricultural counties used in analysis
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Figure 2: U.S. Department of Agriculture plant hardiness zones
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