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Accounting for the Impacts of Changing Configurations in Temperature and 

Precipitation on U.S. Agricultural Productivity 

 

Abstract 

The objective of this study is to investigate how changing configurations in temperature and 

precipitation are transmitted to productivity growth in the U.S. agricultural sector. In doing so, 

we account for farm heterogeneity in production possibilities and the considerable variations in 

weather and other physical characteristics of the environment. In contrast, the received literature 

on productivity growth assumes that firms share the same production possibilities and only differ 

with respect to their level of inefficiency. We do this by implementing a Random Parameters 

approach in a Stochastic Production Frontier framework. The resulting parameter estimates are 

used to decompose a multiplicative TFP index that yields measures of technological progress, 

technical efficiency change, environmental, and scale-mix efficiency. Our results indicate that 

even after accounting for knowledge stocks generated from investments in research and 

development there are significant reductions in productivity growth, primarily driven by weather 

anomalies. 
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Accounting for the Impacts of Changing Configurations in Temperature and 

Precipitation on U.S. Agricultural Productivity 

 
1. Introduction 

There is growing evidence that climate change will have significant impact on global agricultural 

production (Lobell, Schlenker, and Costa-Roberts 2011; IPCC 2014). CO2 emissions have 

increased 46% since 1990 and this trend has resulted in a major decline in the global resource 

base for food production thus exacerbating food insecurity (United Nations 2013). Global 

population currently stands at 7 billion and is projected to rise to 9.7 billion by 2050 (United 

Nations 2015). Of immediate concern is how to provide food and sustenance to this rapidly 

growing population. Agricultural production will have to rise by 70% in order to meet 2050 

projected food demand (FAO 2011). Beyond food production, the climate change phenomenon 

may take on other global security dimensions. Indications are that environmental disasters 

attributed to climate change, such as rising sea levels, floods, drought, and frequent and more 

intense storms are likely to cause large-scale disruption, massive loss of life and property, 

overwhelm disaster relief efforts, lead to wide-spread public unrest, large-scale refugee flows 

and even the failure of some fragile nations (Busby 2008; Femia and Werrell 2016; Werrell and 

Femia 2017).  

Though the agricultural sector constitutes a small proportion of the U.S. GDP, climate 

change impacts raise major concerns given the significance of this country’s role in global food 

markets. In 2016 the U.S. generated approximately 35% of global corn supply, 33% of global 

soybeans and close to 33% of global dairy products (U.S. Department of Agriculture 2017). 

Moreover, extreme weather events attributed to anthropogenic sources have exposed climate 

related stresses and demonstrated vulnerabilities in agriculture (Hatfield et al. 2014).  An 
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increasingly integrated global food system means that any climate shocks in the U.S. agricultural 

sector would be transmitted worldwide, thus raising the specter of food insecurity globally 

(Hatfield et al. 2014). Similarly, any negative shocks to world food systems as a result of climate 

change are likely to increase the reliance of U.S. agricultural output in meeting global shortfalls. 

Several studies have considered the projected impacts of climate change on U.S. 

agriculture (e.g., Mendelsohn, Nordhaus, and Shaw 1994; Schlenker, Hanemann, and Fisher 

2006; Deschenes and Greenstone 2007; Schlenker and Roberts 2009; Roberts, Schlenker, and 

Eyer 2013; Burke and Emerick 2016) and their conclusions have yielded a wide range of 

expected effects on U.S. agriculture. Whereas some studies present evidence that climate change 

might be beneficial to the farm sector as profit-maximizing economic agents adapt to a changing 

climate (e.g., Mendelsohn, Nordhaus, and Shaw 1994; Deschenes and Greenstone 2007), others 

anticipate mild impacts (Mendelsohn and Dinar 2003), a mixture of results due to a lack of 

significant climate trends in the United States (Lobell, Schlenker, and Costa-Roberts 2011) and 

significant declines in agricultural yields for major U.S. field crops such as corn, soybeans, and 

cotton (Schlenker and Roberts 2009; Roberts, Schlenker, and Eyer 2013; Burke and Emerick 

2016). Nevertheless, the studies that present beneficial impacts due to climate change have been 

criticized for various reasons. The study by Mendelsohn and colleagues has been criticized for 

applying cross-sectional data while implicitly assuming a perfectly elastic supply of irrigation 

water (Cline 1996) and for overstating the potential benefits of warmer weather (Darwin 1999). 

The study by Deschenes and Greenstone (2007) has been criticized for data and coding errors in 

weather variables and input-output data, the climate change scenario that is used to simulate 

impacts predictions, and standard errors that are biased due to spatial correlation (Fisher et al. 

2012).  
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Regarding the potential for adaptive mechanisms, some studies have considered regional 

adjustments in crop and livestock production (Mendelsohn, Nordhaus, and Shaw 1994), the role 

of irrigation in ameliorating reduced precipitation (Schlenker, Hanemann, and Fisher 2005), 

future irrigation demand under shifting climatic conditions (Marshall et al. 2015), and shifting 

growing seasons and planting dates in order to minimize the effects of rising temperatures during 

key stages in corn production (Ortiz-Bobea and Just 2013). In addition, there is evidence that 

long-run adaptation in the agricultural sector appears to have mitigated less than half of the 

short-run effects of extreme heat (Burke and Emerick 2016). Notwithstanding, the U.S. farm 

sector continues to adapt to climate change via various mechanisms, such as crop rotation, 

fertilizer management and water management, and these strategies appear to have mitigated 

some of the negative consequences of climate change (Hatfield et al. 2014).  

The primary objective of this study is to investigate how changing configurations in 

temperature and precipitation are transmitted to U.S. agricultural productivity growth. In doing 

so, we combine county-level agricultural input-output data, with agronomic measures of weather 

(growing degree days, harmful degree days, vapor pressure deficit and growing season-

precipitation), characteristics of the production environment (e.g., clay and sand content, salinity 

levels, moisture capacity, soil permeability levels, length of slope), and knowledge stocks 

generated from cumulative public expenditures in research and development.  These variables 

are incorporated into a stochastic production frontier model and the parameter estimates are 

subsequently used to construct a total factor productivity (TFP) index. Decomposition is then 

implemented in order to generate yield TFP measures that isolate and explicitly account for 

weather effects, technological progress, technical efficiency, and scale and mix efficiency 

changes. These measures provide a better understanding of U.S. agricultural productivity growth. 
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Climate shifts vs. random weather fluctuations 

In this study, we make a distinction between random fluctuations in weather and climate shifts. 

Whereas climate refers to the distribution of outcomes over long intervals (e.g., over several 

decades), weather on the other hand refers to a particular realization from a climate distribution. 

Hence, weather variation refers to shorter-run temporal fluctuation in temperature and 

precipitation within a given geographic area (Dell, Jones, and Olken 2014, p. 741). The central 

argument is that changing climate causes fluctuations in weather, and that weather has a direct 

biophysical impact on agricultural output (Nelson et al. 2014). In this sense, “climate is 

perceived to be predictably variable, so that a farmer can make adjustments ex-ante while daily 

weather is unpredictable, so that a farmer must cope with it ex-post” (Seo 2013, p. 113). Thus, 

because weather fluctuations constitute unanticipated shocks on output, these are more difficult 

to address and are easier to discern using panel data models.  

Therefore, our identification strategy relies on exploiting within-county year-to-year 

fluctuations in weather variables in order to identify their effects on agricultural output. Unlike 

the use of long-run climate variables, which are likely to be fixed over the duration of the panel, 

hence serially-correlated with time-invariant characteristics of the production environment 

(Fisher et al. 2012), year-to-year fluctuations in weather are random and better identify the 

effects of changes in climatic conditions on economic outcomes (Burke and Emerick 2016). 

In order to account for adaptive mechanism we incorporate knowledge stocks generated 

from cumulative public expenditures in agricultural research and development (R&D). Such 

public expenditures differ across states, thus this is akin to introducing an exogenous spatially 

heterogeneous time trend, which ensures that the relationship of interest is identified by local 

shocks (Dell, Jones, and Olken 2014). Moreover, this approach of incorporating the potential for 
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adaptation via knowledge stocks created from expenditures in public goods helps to allay the 

‘dumb-farmer’ scenario (see Mendelsohn, Nordhaus, and Shaw 1994, p. 754) which is used to 

characterize a typical farmer that is unresponsive to changing climatic conditions.  

 The rest of this paper is organized as follows: Section 2 presents the analytical 

framework as well as the theoretical foundation for the random parameters stochastic production 

frontier. Section 3 illustrates the methodology that is used to decompose a total factor 

productivity index. In section 4 we introduce the data. We present the results in section 5 and 

finally present the concluding remarks. 

 
2. Analytical Framework 

The evaluation of the effects of year-to-year fluctuations in weather on agricultural output is 

conducted in two stages. The first stage involves an estimation of a Random-Parameters 

Stochastic Production Frontier in order to capture spatial and temporal firm-level effects. The 

second stage consists of the decomposition of a total factor productivity (TFP) index in order to 

capture the growth effects. We proceed by assuming a representative decision-making unit 

(DMU) that has access to a period-and-environment specific technology set that characterizes all 

feasible input-output combinations under a set of environmental conditions. This period-t 

technology under conditions characterized by environment z is given as: 

 
1            𝑇! 𝑧 =  (𝑥, 𝑞) ∈  ℜ!

!!!: 𝑥 can produce 𝑞 in environment 𝑧 in period 𝑡   

We also assume that the standard theoretical properties of a regular period-t technology 

hold (O’Donnell 2016, p. 330). We proceed by introducing subscripts i and t, into the notation 

that characterize firm and time, respectively, such that, 𝑞!", 𝑥!", and 𝑧!" now represent output, a 

vector of inputs and a vector of environmental characteristics for DMU i in period t, respectively. 
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Consider a Cobb-Douglas stochastic production frontier that represents the unknown technology 

and that captures the level effects of weather, which is expressed as:1 

2          ln 𝑞!" = 𝜙!

!

!!!

+ 𝛾! ln𝑔!! + 𝛽!"# ln 𝑥!"#

!

!!!

+ 𝜌! ln 𝑧!"#

!

!!!

+ 𝑣!" − 𝑢!"  

where: 𝑞!"  is a measure of firm-level output; 𝑔!!  represents state-level knowledge stocks 

generated from cumulative expenditures in research and development (R&D); 𝑥!!" ,… ,  𝑥!!" are 

land, labor, capital, intermediate materials and livestock, irrigation;  𝑤!!! ,… ,  𝑤!!" are weather 

variables (i.e., growing degree-days, harmful degree days, vapor pressure deficit, and growing 

season precipitation);  𝑧!!" ,… ,  𝑧!!"  represent physical characteristics of the production 

environment (i.e., fraction of land under clay and sand, permeability of the soil, susceptibility to 

erosion, length of slope);  𝑣!" is an unobserved variable representing statistical errors  and is 

distributed 𝑣~𝑁(0,𝜎!!) ; and finally, 𝑢!"  is a nonnegative technical efficiency effect with 

distributional parameters 𝑢~𝑁!(0,𝜎!!).  

 
Total Factor Productivity  

Total factor productivity (TFP) is defined as the ratio of aggregate output to aggregate inputs 

used over a given period (Solow 1957; Jorgenson and Griliches 1967; O’Donnell 2016). In the 

single output case, which is the case in this study, the multiplicative index that compares TFP of 

firm i in period t with the TFP of firm k in period s is the Total factor productivity index denoted 

as:  

3           𝑇𝐹𝑃𝐼! 𝑥!", 𝑞!", 𝑥!" , 𝑞!" =
𝑞!"
𝑞!"

  
𝑥!"#
𝑥!"#

!!
!

!!!

 

																																																								
1 We do not appeal to the more flexible and commonly used translog specification because it fails to satisfy some 
regularity conditions that are necessary in order to guarantee the existence of a regular metatechnology that 
conforms to economic theory (see O’Donnell 2012, 2016).  
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where 𝑏!,… , 𝑏!  are any nonnegative weights such that 𝑏!!
!!! = 1.  Furthermore, 𝑏! =

𝛽! 𝛽!!
!!! , where 𝛽! is the estimated mean of the random parameters. By substituting the 

antilogarithm of the right-hand side of equation 2 into equation 3, we obtain the full expression 

of the TFP index as follows:  

4           𝑇𝐹𝑃𝐼! 𝑥!", 𝑞!", 𝑥!" , 𝑞!"

=
𝑒𝑥𝑝 𝛾!𝑔!!"!

!!!

𝑒𝑥𝑝 𝛾!𝑔!!"!
!!!

𝑧!"#
!!"#

𝑧!"#
!!"#

!

!!!

𝑥!"#
!!"#!!!

𝑥!"#
!!"#!!!

!

!!!

𝑒𝑥𝑝 𝜙!
𝑒𝑥𝑝 𝜙!

 
𝑒𝑥𝑝 𝑢!"
𝑒𝑥𝑝 𝑢!"

 
𝑒𝑥𝑝 𝑣!"
𝑒𝑥𝑝 𝑣!"

 

The TFPI in (4) above decomposes into the following six components. The first term is a 

technology index (TI) that captures technological progress as a result of cumulative R&D 

expenditures. The argument is that the R&D investments result in new knowledge that is 

productivity enhancing. The second component is an environmental effects index (EI) that 

captures the contribution of observed time-varying weather fluctuations and other physical 

characteristics of the production environment to TFP. The third term is the output-oriented scale 

efficiency index (OSEI), a component that measures productivity gains linked to economies of 

scale. The fourth term is an Agricultural index (AI) that measures the effect of unobserved time-

invariant characteristics of the production environment. The fifth term is an output-oriented 

technical efficiency index (OTEI) that captures movements towards and away from the frontier. 

And the last term is a statistical noise index (SNI) that accounts for measurement errors and other 

sources of statistical noise.  

Data  

The data consists of a panel of county-level input-output data drawn from the U.S. Department 

of Agriculture, Census of Agriculture for the years 1987, 1992, 1997, 2002, 2007 and 2012. The 

‘State and County rankings’ volume that is published alongside every census report is used to 
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select 340 of the top agricultural counties across all the 48 conterminous states, based on the total 

market value of agricultural products sold in 2012. Figure 1 illustrates the spatial location of the 

agricultural counties used in this analysis. Aggregation at the county-level can be justified based 

on past research that finds evidence that U.S. agricultural producers behave collectively as if they 

were price-taking, and profit-maximizing firms (e.g., Williams and Shumway 1998). The output 

variable is the total value of agricultural sales. The input variables include: agricultural land in 

acres; livestock (number of dairy cows, beef cows, hogs, sheep, horses, poultry) converted into 

animal equivalents using an approach that accounts for the feed requirements of each animal type 

(USDA 2000); value of machinery and equipment; hired and contract labor hours; and 

expenditures on intermediate materials (fertilizer, chemicals, electricity and gasoline). The 

market value of agricultural products sold that represents the output variable is converted into 

constant-2016 dollar values using agricultural price indexes constructed by the USDA (USDA 

2016b). The variable representing the value of machinery and equipment is constructed using the 

perpetual inventory method, which imputes net additions to the capital stock (e.g., Christensen, 

Jorgenson, and Lau 1973; Griliches 1980; Madsen 2007; Madsen and Islam 2016). Using 1987 

as the base year, any changes in machinery and equipment values are considered to reflect net 

investments in capital. These figures are then adjusted to 2016 dollars.  

Weather Measures 

Data on contemporaneous temperature and precipitation are derived from the Parameter-

Elevation Regressions on Independent Slopes Model (PRISM) Climate Group. The PRISM 

incorporates a climate-mapping system to generate temperature and precipitation information at 

‘2.5 by 2.5’ mile grid cells for the entire United States and accounts for the effects of elevation, 

coastal proximity, temperature inversions, and terrain induced air-mass blockage (Daly et al. 
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2008, 2012; Daly, Smith, and Olson 2015). The weather measures are used to construct estimates 

that comprise growing degree-days, harmful degree-days, vapor pressure deficit, and growing 

season precipitation. We discuss each measure below. 

Growing Degree-Days 

Schlenker and Roberts (2009) argue that the true underlying relationship between temperature 

and yield is nonlinear and is best-characterized using growing degree-days. From an agronomic 

perspective, each crop species relies on ambient weather conditions from planting to harvesting 

and has a temperature range that is considered optimal for crop development (Hatfield et al. 

2014). Growing degree-days capture the accumulated exposure of crops to heat between given 

upper and lower bounds during the growing season (Roberts, Schlenker, and Eyers 2013; Burke 

and Emerick 2016). We use daily maximum and minimum temperatures as well as PRISM’s 

inverse-distance squared weighting interpolation methods to obtain estimates for each ‘2.5 by 

2.5’ mile grid in the county and thereafter we average over the grids in each county. The growing 

degree-days are obtained by calculating the number of degrees above a lower threshold and 

below an upper threshold and sum across all the days in the growing season, April to September. 

(see Roberts, Schlenker and Eyer 2012). Furthermore, growing degree-days are constructed for 

each county in the dataset based on the predominant field crop in the county for each of the 

census of agriculture years: 1987, 1992, 1997, 2002, 2007 and 2012.  

Harmful Degree-Days 

Agronomists also recognize that beyond certain thresholds, higher temperatures are likely to 

negatively affect crop development (Hatfield and Prueger 2015). Therefore, we incorporate into 

the model a non-linear measure that captures the number of days within the growing season with 

extreme temperatures. This measure is expected to capture the yield-decreasing range, and thus 
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we refer to this as harmful degree-days (e.g., Schlenker, Hanemann and Fisher 2006; Schlenker, 

Roberts and Eyers 2013). 

Vapor Pressure Deficit 

Vapor pressure deficit  (VPD) is the difference between the amount of moisture currently in the 

air and how much moisture the air can hold when it is completely saturated. It captures the 

potential of the surrounding air to pull moisture from the foliage through transpiration (Ficklin 

and Novick 2017). Rising temperatures lead to higher levels of vapor pressure deficit between 

the saturated foliage and the ambient air, which then leads to higher rates of evapotranspiration, 

which is the amount of water that is lost from the leaf surface. Plants respond to higher rates of 

VPD by reducing stomatal conductance in order to prevent excessive water loss and this in turn 

limits plant carbon uptake, thus leading to wilting and stunted growth (Ficklin and Novick 2017). 

Conversely, when the air is fully saturated with humidity, leaves transpire less, leading to low 

VPD. This reduces the rate of transpiration thus limiting the ability of the plant to take up 

essential minerals, which may lead to mineral deficiencies and plant susceptibility to disease 

pathogens (Ficklin and Novick 2017). Both scenarios may lead to reduced crop development and 

yields. We incorporate measures of averages of daily maximum and minimum VPD over the 

growing season for all counties in the dataset using PRISM’s inverse-distance squared weighting 

interpolation methods in order to obtain estimates for each ‘2.5 by 2.5’ mile grid in the county 

(see Daly, Smith, and Olson 2015). 

Growing Season Precipitation 

Finally, we include a measure of cumulative precipitation over the growing season, April to 

September. This measure is split into two: spring precipitation (April-June) and summer 
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precipitation (July-September), which capture cumulative precipitation in the early growing 

season and the latter half of the growing season, respectively. 

Irrigation 

As mentioned above, in the absence of adequate rainfall, additional water can be supplied via 

irrigation. According to the U.S. Geological Survey (USGS 2014), the agricultural sector was the 

second largest consumer of water resources in United States. Combined water withdrawals used 

in irrigation, livestock and aquaculture accounted for approximately 115,000 million gallons per 

day, with 62.4 million acres of land under irrigation in 2010 (USGS 2014). Estimates of 

volumetric measures of water applied in agriculture at the county-level are obtained from the 

U.S. Geological Survey and are available for the years 1985, 1990, 1995, 2000, 2005 and 2010.2 

Cubic spline interpolation methods are used to match the irrigation data with the input-output 

data (e.g., Yang and Shumway 2016).  

Soil Quality 

We conjecture that agricultural production is likely to be impacted by topography and soil 

characteristics. Therefore, we incorporate into the model information on the physical attributes of 

the land, obtained from the National Resource Inventory of the U.S. Department of Agriculture. 

This information comprises data on soil samples obtained from soil surveys. It also contains 

detailed information on the land characteristics such as measures of susceptibility to soil erosion 

(k-factor), estimates of susceptibility to floods, length of slope, permeability, fraction of land 

cover under clay and sand, level of moisture capacity, and salinity of the soil. Similar measures 

of soil characteristics have been used in other studies of climate change (e.g., Deschenes and 

Greenstone 2007; Schlenker, Hanemann and Fisher 2006). 

																																																								
2 U.S. Geological Survey data on irrigation are constructed from estimates of all secondary sources of water used for 
agriculture and does not indicate if these volumetric measures are obtained from groundwater or surface water 
sources.  
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Research and Development 

New technologies (i.e., new methods for transforming inputs into outputs) are discovered 

through research and development (R&D). Public R&D expenditures are incorporated into the 

stochastic production frontier in order to capture technological progress.  This is an improvement 

over the common practice of measuring technological change using a simple time trend. The 

state-level public expenditures dedicated to agricultural research used in this study are similar to 

those used in Huffman and Evenson (1992), Huffman and Evenson (2006), and Huffman (2010) 

3. The R&D expenditure data are originally extracted from the Current Research Information 

System (CRIS) that is maintained by the National Institute for Food and Agriculture (NIFA). The 

data consist of outlays dedicated to agricultural research that are allocated via the USDA’s 

Agricultural Research Service and Economic Research Service, State Agricultural Experiment 

Stations (SAES), and Schools of Veterinary Medicine.  

 The R&D stocks are constructed as a weighted sum of previous years flows using a 35-

year lag. This 35-year lag captures the time frame from when the initial R&D investment is made 

and consists of: a research lag, when experimental work is done; a development lag, that 

precedes the commercial phase; and finally an adoption lag, when the new variety is adopted by 

farmers, and net benefits increase until they reach a maximum (Alston et al. 2010, p. 244). The 

trapezoidal form for the lag distribution that is used to characterize the weights to be applied to 

past research expenditures is taken from Huffman and Evenson (2006) and Huffman (2010). 

These data has been used in various studies, most recently by Wang et al. (2012, 2013) and by 

Jin and Huffman (2016).  

																																																								
3  We are grateful to Professor Wallace Huffman (Iowa State University) for sharing the dataset on R&D 
expenditures.  
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Furthermore, investments in R&D should also account for transfer of technology across 

geopolitical boundaries, that is spillover effects, because new knowledge created in one 

geopolitical entity can have impacts elsewhere (Alston et al. 2010). We expand R&D measures 

by incorporating estimates of spillover effects. This way, the R&D stock in each state is a 

function of its own stock of knowledge, as well as spillover stocks of knowledge from other 

states that have a similar mix of outputs (see Alston et al. 2010, p:274). Summary statistics of all 

the variables incorporated in the stochastic production frontier model are provided in Table 1.  

Results  

Statistical tests and parameter estimates 

An important aspect of agricultural production in the United States is the key disparity between 

the eastern half and the western half. Western states are characterized by a semi-arid climate 

compared to the sub-continental eastern half (Schlenker, Hanemann, and Fisher 2006). For this 

reason, western agriculture is heavily dependent on irrigation for primary purposes while eastern 

states utilize irrigation for supplemental purposes only (Schlenker, Hanemann, and Fisher 2006; 

Wichelns 2010). We conduct a statistical test to measure if this effect is significant enough to 

warrant separating the model into a western vis-à-vis an eastern half. A likelihood ratio test of 

the pooled vs. the restricted model generates a likelihood-ratio statistic of 147.309 with a p-

value=0.000 and this provides evidence in favor of a pooled model.  

The model represented by equation 2 is estimated using simulated maximum likelihood 

methods. There are possible concerns regarding the potential for endogeneity in stochastic 

production frontier models (Mutter et al. 2013; Tran and Tsionas 2013; Shee and Stefanou 2015). 

A possible source of endogeneity in our model is that input choices may be driven by weather 

outcomes. A Wu-Hausman test for endogeneity is conducted; where the null hypothesis is that 



	 15	

the variable under consideration, in this case irrigation, is exogenous. The logarithms of intra-

annual precipitation from 5 years prior are used as instruments. We obtain a Wu-Hausman test 

statistic=3.30 and a p-value=0.1694; thus, we fail to reject the null hypothesis of exogeneity.  

The estimated coefficients are presented in Table 2. The estimates for the conventional 

inputs (i.e., land, labor, machinery, livestock, intermediate materials, and irrigation), are 

interpreted as partial output elasticities. The estimated partial elasticities are nonnegative, which 

is consistent with our assumption of strong disposability of inputs. A Wald test for the null 

hypothesis of constant returns to scale generates a test-statistic of 39.25 with a p-value = 0.000. 

Therefore, we reject the null hypothesis that this model exhibits constant returns to scale. In fact, 

the sum of the coefficients, 𝑟 = 1.11, reveals slightly increasing returns to scale. The values of 

𝜎!! and 𝜎!! show that the inefficiency component dominates the statistical error component in the 

overall error term. The estimated coefficient for R&D indicates that stocks generated from the 

investment in R&D contribute, ceteris paribus, 11.05% to agricultural output.  

The maximal possible output is affected by the seasonal spread and fluctuations in year-

to-year temperature and precipitation as well as characteristics of the production environment, 

such as soil quality. We conjecture that weather fluctuations impact agricultural output in a non-

linear fashion. Hence we model this relationship via measures of growing degree-days, harmful 

degree-days, vapor pressure deficit; and linearly using a cumulative measure of precipitation 

during the growing season. Separate Wald tests with the null hypothesis that the weather 

variables, and the land quality measures are not jointly significant generate F-statistics of 3.98 

and 8.79 respectively, with p-values=0.000 in both cases. Therefore, we strongly reject the null 

hypothesis that the weather variables and the soil quality measures do not belong in the model.  



	 16	

We experiment with multiple specifications for the weather variables. The resulting 

model that we select minimizes the Bayesian information criteria and consists of level and 

squared-terms for growing degree-days, harmful degree-days, spring precipitation; a level term 

for maximum vapor pressure deficit; and the cross product of harmful degree-days and spring 

precipitation. The impact of growing degree-days, and harmful degree-days indicate weakly 

positive and negative effects on output respectively. Conversely, the effects of spring 

precipitation, the square term of growing degree-days, and the interaction term of harmful 

degree-days and spring precipitation have strongly positive effects on output. On the other hand, 

maximum vapor pressure deficit, and the square terms for spring precipitation, and harmful 

degree-days have strongly negative effects on output.    

As mentioned above, we include the characteristics of the production environment (e.g., 

clay content, sand content, permeability, moisture capacity, length of slope, k-factor, flood 

prone) in order to capture time invariant unobserved effects. Results indicate that counties 

characterized by greater proportions of clay having strongly positive effects on output. Clay soils 

are amenable to farming because their small-sized particles have more surface area and create 

layers in the soil that can hold more water and nutrients. The effects for the other physical 

characteristics of the soil and land in which agricultural production takes place reveal that 

counties characterized by higher levels of moisture capacity, and soil permeability also have 

strongly positive effects on output. On the other hand, the marginal impact of soils characterized 

by high susceptibility to erosion (k-factor), and wetlands, ceteris paribus, have strongly negative 

effects on agricultural output. In addition, our model comprises a fixed effect that captures 

unobservables in agricultural production west of the 100th Meridian; which is, the boundary that 

roughly demarcates the semi-arid climate to the West of the United States where agriculture is 
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heavily dependent on irrigation and hence more vulnerable to shocks due to water scarcity 

(Schlenker, Hanemann and Fisher 2006; Wichelns 2010). The parameter estimate that captures 

agricultural production west of the 100th Meridian indicates, ceteris paribus, a statistically 

significant reduction in agricultural output at a rate of 4.3% per annum.  

 
Decomposition of Total Factor Productivity Index  

As indicated above, we define total factor productivity index (TFPI) as aggregate output divided 

by aggregate input. The parameter estimates from equation 2 are used to decompose the TFP 

index following equation 4 into a technological index (TI), which measures shifts of the 

production frontier due to the discovery of new technologies; an output-oriented technical 

efficiency index (OTEI), which measures movements towards or away from the frontier due to 

the use of different technologies; an output-oriented scale efficiency index (OSEI), that measure 

productivity gains linked to economies of scale; an environmental effects index (EI), which 

captures changes in TFP due to year-to-year fluctuations in weather; an agricultural index (AI), 

which measures changes in TFP due to time-invariant characteristics of the land; and a statistical 

noise index (SNI) as defined in equation 5. 

Moreover, the TFP index that we use is a proper index in the sense that it satisfies several 

basic theoretical axioms including monotonicity, linear homogeneity, identity, 

commensurability, proportionality, and transitivity (see O’Donnell 2016). The transitivity axiom, 

guarantees that we can make a direct comparison of the TFPI of two DMUs and that they should 

yield the same estimate of TFP change as an indirect comparison through a third DMU 

(O’Donnell 2012). In this study, all indexes compare the relevant value of any DMU in any 

particular year against the value of a reference DMU, which is Weld County in Colorado (CO) in 

1987.  
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The way to interpret TFPI is as follows: Fresno county, California (CA), the largest 

agricultural county according to the 2012 agricultural census generated $3,782.55 million of 

agricultural output in 2012. On the other hand, Weld County in Colorado (CO) generated 

$1,283.56 million and $1,415.28 million of agricultural output in 1987 and 2012, respectively4. 

Thus the TFPI that compares Fresno County in 1987 to Weld County in 1987 decomposes as 

𝑇𝐹𝑃𝐼!"# !",!"#$ !" = 0.91 as illustrated in equation 3. In words, Fresno County in 2012 was 

approximately nine-tenths as productive as Weld County in 1987. A comparison of Weld County 

productivity in 2012 vis-à-vis 1987 translates as 𝑇𝐹𝑃𝐼!"#$ !",!"#$ !" = 0.90. Again in words, 

Weld County in 2012 was approximately nine-tenths as productive as Weld County in 1987. By 

the transitivity property we conclude that Weld County in 2012 was as productive as Fresno 

County in the same year.  

Productivity growth is measured as the year-to-year percentage rate of growth in TFP and 

decomposes as: %ΔTFP = %ΔT + %ΔOSE + %ΔOTE +%ΔE +%ΔAE + %ΔSN, where the right-

hand-side components are percentage rates of growth in TFP due to changes in technology 

(%ΔT), output-oriented scale efficiency (%ΔOSE), output-oriented technical efficiency 

(%ΔOTE), environmental effects (%ΔE), agricultural effects (%ΔAE) and statistical noise 

(%ΔSN). For conciseness, we present results of TFP growth by placing each county into one of 

eight plant-hardiness zones in the contiguous United States as illustrated in Figure 2. These 

zones, which are based on the average annual minimum winter temperatures, are generated by 

the U.S. Department of Agriculture for purposes of illustrating regions with varying climatic 

conditions. Thus each zone is on average, 10°F warmer (cooler) than its neighboring region. 

Table 3 presents estimated year-to-year percentages rates of growth in TFP and its components 

																																																								
4 All monetary values are converted to 2016 dollars using the U.S. Department of Agricultural price index generated 
by the economic research service. 
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for the counties in our sample over the period 1987-2012. Viewed in concert with Figure 2, we 

observe that with the exception of Zone 3, which consists of counties in the northern parts of 

Montana, North Dakota, and Minnesota, all the regions in the United States initially experienced 

positive TFP growth. Results from the most recent decade 2003-2007, and 2008-2012 reveal 

significant reductions in TFP growth in all regions. The decline in overall productivity growth 

was primarily driven by reductions in technological change, output-oriented technical efficiency 

change, as well as sharp declines in weather effects.  

It is straightforward to track well-documented recent and past weather shocks and their 

impacts on U.S. agricultural productivity growth. For example, California’s six year drought 

between 1987-1992 and its most recent drought between 2008-2014 (California Department of 

Water Services 2015) are picked up in our results as -8.05% and -2.68% declines in weather 

effects in zone 9 over the periods 1987-1992 and 2008-2012 respectively. In addition the 1988 

drought that devastated most of the Midwest region of the United States (Fuchs et al. 2012) is 

manifested as -8.20% and -2.06% reductions in TFP due to weather effects, in zones 5 and 6 

respectively. The primary corn and soybean belt region was also devastated by a severe drought 

that significantly hampered crops, and pasture development in 2012 (NOAA 2012). Table 4 

presents estimated average year-to-year percentages rates of growth in TFP and efficiency 

changes for all counties in the corn and soybean belt region. The drought that was experienced in 

the corn and soybean belt in the growing season of 2012 appears markedly as a 3.90% decline in 

overall TFP change (%ΔTFP) which is primarily driven by: a 1.83% and 0.029% drops due to 

weather effects (%ΔWE) and agro-ecological change (%ΔAE), respectively; 0.26% decline in 

technological change (%ΔT); 0.88% drop in output-oriented technical efficiency change 

(%ΔOTE); and a -1.44% decline for reasons that cannot be identified (%ΔSN).   
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Conclusion 

The third National Climate Assessment report (Hatfield et al. 2014) singles out recent droughts 

and heavy precipitation as the biggest threats to the U.S. agricultural sector, and notes that crop 

and livestock productivity will be negatively impacted as critical temperature and precipitation 

thresholds are met and exceeded. Our general findings are consistent with these reports. Using 

agronomic weather measures, we find that excessive temperatures as well as heavy precipitation 

are harmful to crop development.  

Shifting patterns in temperature and precipitation as well a general trend towards 

warming has caused several regions in the United States to face severe declines in agricultural 

productivity growth. Consequently, it is important and informative to measure agricultural water 

productivity in order to evaluate the efficient use of water across the United States agricultural 

sector. We measure water productivity in a way that conforms to the hydrology and agronomy 

literature. 

The main contributions of this study are: we incorporate conventional inputs (i.e., land, 

labor, capital, livestock, and intermediate materials), agronomic weather measures (growing 

degree-days, harmful degree-days, vapor pressure deficit, and precipitation), and physical 

attributes of the land (e.g., soil type, k-factor, soil permeability, salinity, and moisture capacity) 

into a production function, and subsequently undertake a decomposition of total factor 

productivity index (TFPI) that isolates the contribution of agronomic weather measures and other 

environmental factors to productivity growth. In addition we decompose TFPI into various 

measures: a technology index (TI), which captures the role of cumulative R&D expenditures in 

generating new knowledge stocks; an Output-oriented scale efficiency index (OSEI), which 

measures productivity gains linked to economies of scale; an Output-oriented technical 
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efficiency index (OTEI) that captures movements towards and away from the frontier. It is 

noteworthy to point out that our study is the only one that explicitly incorporate the effects of 

agronomic weather measures and other agro-ecological conditions into a total factor productivity 

(TFP) model and the subsequent analysis of productivity growth in U.S. agriculture. 

These findings have important implications for public policy. The ability to respond 

appropriately and in a timely fashion to the adverse effects of climate change is expected to have 

a significant effect on future agricultural productivity (Malcolm et al. 2012; Hatfield et al. 2014). 
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Table 1: Summary statistics of variables used in Stochastic Production Frontier 

Variable (Unit) Mean Std. Dev Min Max 
Output ('000 $)  259,930.70   387,630.70   1,764.62   3,953,646.00  

     Land (acres)  440,795.70   423,976.70   1,047.00   3,112,271.00  
Livestock (animal equivalent)  42,334.44   59,285.84   29.69   595,766.50  
Machinery ('000 $)  146.15   104.64   1.22   1,030.97  
Labor (hours)  3,662.06   8,941.37   12.92   96,120.48  
Intermediate Inputs ('000 $)  31.29   50.83   12.00   533.03  
Irrigation (Mgal/day)  114.65   324.62   0.03   3,411.04  
Research and Development ('000)  88,769.51   51,747.18   15,425.16   257,187.30  

     Weather Variables 
    Growing Degree Days  3,433.06   1,111.20   1,516.00   8,078.75  

Harmful Degree Days  31.71   34.20   0.00   171.00  
Growing Season Precipitation 179.532 19.31318 84.7 244.5 
Maximum Vapor Pressure Deficit 15.95 6.60 6.60 55.41 

     Production Environment Characteristics 
    Fraction of Clay 0.17 0.21 0.00 1.00 

Fraction of Sand 0.08 0.18 0.00 1.00 
Flood Prone 0.12 0.18 0.00 1.00 
K-Factor 0.30 0.06 0.02 0.51 
Permeability 2.67 2.41 0.25 13.69 
Wetlands 0.11 0.11 0.00 0.73 
Moisture Capacity 0.18 0.04 0.05 0.30 
Salinity 0.01 0.05 0.00 0.64 
Length of slope 253.41 230.25 30.51 1631.17 
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Table 2: Estimates of Random Parameters Stochastic Production Frontier 

Variables Means for Random Parameters Standard Errors 
Constant 𝛽!!" 0.1602*** 0.0129 
Land 𝛽!!" 0.0226* 0.0121 
Labor 𝛽!!" 0.2665*** 0.0074 
Machinery 𝛽!!" 0.4594*** 0.0148 
Livestock 𝛽!!" 0.1356*** 0.0065 
Intermediate Materials 𝛽!!" 0.1637*** 0.0075 
Irrigation 𝛽!!" 0.0368*** 0.0053 

	 	 	 	Growing degree-days 𝜌!!" 0.0173 0.0226 
Harmful degree-days 𝜌!!" -0.0113 0.0095 
Spring precipitation 𝜌!!" 0.2264** 0.1034 
Summer precipitation 𝜌!!" 0.0026 0.0048 
Vapor pressure deficit (Max) 𝜌!!" -0.1108*** 0.0196 
Growing degree-days squared 𝜌!!" 0.5599*** 0.1236 
Harmful degree-days squared 𝜌!!" -0.0017* 0.0013 
HDD*Spring precipitation 𝜌!!" 0.0601 0.0609 

    
 Non-random Parameters  
R&D α1 0.1141*** 0.0143 
100th meridian West γ1 -0.0349*** 0.0111 
Clay γ2 0.0062*** 0.0143 
Sand γ3 -0.0031** 0.0016 
Floodprone γ4 -0.0036** 0.0015 
Kfactor γ5 -0.1181*** 0.0341 
Permeability γ6 0.1016*** 0.0213 
Wetlands γ7 -0.0520*** 0.0064 
Moisturecapacity γ8 0.2225*** 0.0387 
Salinity γ9 0.0043** 0.0021 
lslope γ10 -0.0351*** 0.01676 
Sigma-squared (v) σ2

v 0.0937 
	Sigma-squared (u) σ2

u 0.1185 
	log likelihood   912.622   
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Table 3: Average Percentage change in TFP and its components across U.S. Counties 1987-2012 
Region Year %ΔTFP %ΔT %ΔOSE %ΔOTE %ΔWE %ΔA %ΔSN 
Zone 3 1987-1992 5.766 2.711 -0.365 1.101 2.690 -0.001 -0.370 

 
1993-1997 -1.526 1.697 0.106 -1.095 -2.445 -0.032 0.242 

 
1998-2002 5.532 1.033 -0.072 1.913 3.199 0.000 -0.541 

 
2003-2007 -0.885 0.244 0.511 -0.331 4.617 0.021 -5.947 

 
2008-2012 -0.276 -0.100 0.606 -0.017 -4.642 0.000 3.877 

Zone 4 1987-1992 4.549 2.896 -0.376 0.340 -6.539 -0.013 8.241 

 
1993-1997 4.230 2.130 -0.097 0.284 1.160 0.031 0.723 

 
1998-2002 0.093 1.566 0.079 0.197 6.698 -0.032 -8.415 

 
2003-2007 -0.988 1.038 0.410 -0.439 -0.891 0.008 -1.115 

 
2008-2012 -0.731 0.589 0.305 -0.475 1.677 0.019 -2.845 

Zone 5 1987-1992 4.459 2.941 -0.370 0.317 -8.202 -0.002 9.775 

 
1993-1997 1.918 2.236 -0.138 0.033 2.697 0.012 -2.923 

 
1998-2002 0.954 1.507 0.144 0.090 9.586 0.000 -10.372 

 
2003-2007 0.820 0.438 0.289 -0.109 -2.559 -0.007 2.767 

 
2008-2012 -3.380 -0.203 0.259 -0.968 0.411 -0.011 -2.869 

Zone 6 1987-1992 3.217 2.138 -0.196 0.090 -2.064 0.005 3.243 

 
1993-1997 2.865 1.517 0.008 0.698 -0.239 0.024 0.856 

 
1998-2002 1.579 0.834 0.152 0.143 5.538 0.000 -5.088 

 
2003-2007 -1.323 -0.073 0.285 -0.426 -0.965 -0.014 -0.129 

 
2008-2012 -2.797 -0.385 0.153 -1.064 1.618 0.000 -3.118 

Zone 7 1987-1992 5.273 2.679 -0.190 0.884 -0.636 -0.040 2.576 

 
1993-1997 2.495 2.008 -0.003 0.235 -1.492 -0.027 1.774 

 
1998-2002 0.995 1.358 0.165 -0.017 4.019 0.057 -4.588 

 
2003-2007 -1.391 0.260 0.156 -1.482 -2.784 0.054 2.405 

 
2008-2012 -1.937 -0.391 0.006 -0.669 1.397 0.000 -2.280 

Zone 8 1987-1992 3.486 2.407 0.199 0.244 6.549 0.057 -5.970 

 
1993-1997 4.257 1.543 0.047 0.805 -7.747 -0.027 9.637 

 
1998-2002 -1.511 0.843 0.178 -0.621 5.404 -0.031 -7.283 

 
2003-2007 -0.789 -0.036 0.204 -0.313 4.201 0.013 -4.858 

 
2008-2012 -1.947 -0.442 -0.095 -0.831 -4.618 0.000 4.039 

Zone 9 1987-1992 2.738 2.340 -0.201 0.559 -8.057 -0.149 8.246 

 
1993-1997 2.960 1.824 0.217 0.281 3.238 0.096 -2.697 

 
1998-2002 3.007 1.201 0.043 0.221 -3.074 0.000 4.616 

 
2003-2007 -3.155 0.366 0.182 -1.441 2.576 0.006 -4.844 

 
2008-2012 -0.999 -0.012 0.260 0.525 -2.687 0.000 0.915 

Zone 10 1987-1992 2.085 2.852 -0.206 -0.304 -2.244 0.006 1.982 

 
1993-1997 3.759 2.169 -0.272 0.835 4.150 -0.026 -3.097 

 
1998-2002 9.359 1.386 -0.385 0.525 0.074 0.000 7.758 

 
2003-2007 -6.982 0.265 0.508 -0.887 1.154 0.318 -8.340 

  2008-2012 -2.626 -0.306 0.549 -1.480 -3.587 0.000 2.197 
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Table 4: Average Percentage change in TFP and its components across Corn and Soybean belt 
 
Region Year %ΔTFP %ΔT %ΔOSE %ΔOTE %ΔWE %ΔA %ΔSN 
Cornbelt 1987-1992 4.427 3.277 -0.313 -0.014 -1.387 0.019 2.846 

 
1993-1997 3.011 2.636 -0.108 0.609 5.075 0.016 -5.216 

 
1998-2002 0.985 1.909 0.055 -0.153 0.708 0.000 -1.533 

 
2003-2007 2.321 0.738 0.251 0.568 4.834 -0.017 -4.052 

  2008-2012 -3.905 -0.268 0.548 -0.882 -1.831 -0.029 -1.444 
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Figure 1: Spatial location of agricultural counties used in analysis 
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Figure 2: U.S. Department of Agriculture plant hardiness zones 
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