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Abstract

This article estimates a hedonic pesticide price model using 151 pesticide products
linked to more than 39 chemical families over the period 1996 to 2006 in France.
To take into account the chemical family as well as the unbalanced structure of the
panel a nested error component model is estimated. This approach embeddes the
successive components of the error term into the preceding component thus capturing
the unobservable heterogeneity. Based on the predicted prices, the decrease of indices
in 2001, corresponding to the setting of a toxicity-tax, suggests that pesticide turnover
and innovativeness is more important than toxicity-tax effect.
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1 Introduction

In 2008, the French government committed to reduce pesticide use by 50% over the follow-
ing ten years. France is the first user of pesticide in Europe and has developed agricultural
systems that are highly dependent on pesticides. These products are highly regulated be-
cause they have potential harmful impacts on the environment (Fenner et al., 2013) and
human health (Baldi et al., 2013). In a context where the use of these products is chal-
lenged, it is important to understand how the pesticides characteristics explain their prices
and how the regulation requirements influenced their turnover. Only few analysis of the
impact of regulation on pesticide supply has been provided and most of them were con-
centrated on the U.S. market1 (Lichtenberg, 1992; Ollinger et al., 1998). They aimed
at measuring the impact of regulation change on the behavior of firms, and the quality
of products available for farmers (Fernandez-Cornejo and Jans, 1995). These researches
showed that pesticide quality increases in terms of safety under the pressure of new sus-
tainable development requirements into regulation. However, the pesticide performance
is limited over time. The development of pest resistance is a key challenge for firms. It
requires high levels of Research and Development (R&D) to find new active ingredient
(a.i.) In a context where a large number of heterogeneous products are available it is use-
ful to analyze how regulation influenced the turnover of products on the pesticide market
through the analysis of their prices and characteristics.

The literature on pesticides focuses primarily on modeling the impact of pesticides on
agricultural productivity and economic evaluation of reducing their use; see Jacquet et al.
(2011); Skevas et al. (2012). Research show that farmers are very dependent on pesticide
inputs, and relate their use to better control of pest damage to maintain yields (Fernandez-
Cornejo et al., 1998; Sexton et al., 2007). Reducing pesticide use is difficult farmers’
demand is weakly sensitive to pesticide prices (Skevas et al., 2013). Few studies have
addressed the impact of regulation on pesticide supply. In the U.S. market, reinforcement
of the marketing authorization process has increased the regulatory costs and decreased
the number and toxicity of pesticides in the market (Ollinger and Fernandez-Cornejo,
1998a,b).2 However, we do not know how regulation influences firms’ pricing strategies
and their incentive to innovate. Since firms’ willingness to register a pesticide is related
strongly to regulatory constraints and the potential revenue generated by pesticide sales,
an increase in regulatory constraints should affect pesticide prices.

This article uses a hedonic framework to analyze the pesticide prices. The pesticide
market involves more than a hundred different active ingredients that are embedded within
chemical families. First, this means that within a chemical family, pesticide prices might
be correlated. Second, in the case of some pesticide products, we observe a price that
applies to several retailers and various different sales conditions. Third, the dataset used
for this analysis covers the period 1996-2006 when regulation was heavily influencing the
pesticide market and was resulting in several products being banned. Hence, the analysis

1Nowadays, the analysis of the U.S. pesticide market are widely concentrated on the gains or looses due
to genetic engineering introduction (e.g. GMOs) into the agricultural process. Hence researches switched
to the analysis of complementarities and/or substitutions between GMOs and pesticides. In the European
context, where GMOs cannot be cultivated, the pesticide use reduction is a key issue in terms of public
policies.

2 2Most studies focus on the U.S. market and the gains or losses due to the introduction of genetic
engineering (e.g. genetically modified organisms - GMOs) in the agricultural process. Most research anal-
yses the complementarities and/or substitution between GMOs and pesticides. In the European context,
where GMOs are banned from cultivation, reducing pesticide use is a key issue in public policy.
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of pesticide prices requires consideration of the hierarchical structure of the data in order
to obtain consistent parameter estimates. Our hedonic functions deal with three levels of
intra-group correlation. At the lower level, for each time period, we observe series of price
per hectare of application. This level gives, for one pesticide, several prices depending,
for example on packaging size. The second level nests all the series by pesticide products.
Here, we identify the regulatory mentions, and labeling informations. Finally, the higher
level nests the pesticide product within its chemical family. This description enables to
define a nested structure to the random error to consider the intra-group correlation for
the estimations to control the bias generated by neglecting groups correlations Moulton
(1987).3 Moreover, the empirical application is made on the French market with panel
data over the period 1996-2006. This period enables to cover both the implementation of
the the directive 91/414/ECC that contributes to ban the most toxic products, especially
in 2003 with the banning of the most toxic products. It also covers the implementation
in 2000 of an excise tax based on the toxicity of products. The 151 pesticides of our
sample contain more than 110 a.i. that cannot be introduced directly for the estimation;
however, neglecting this intra-group correlation may lead to biased estimation results
Moulton (1986).

In such a context, it is relevant to consider the nested structure of the data to define
the hedonic functions. The nested effects are defined through disturbance via a double
nested error component structure Antweiler (2001). This decomposition enables to capture
the relative part of the unobserved heterogeneity with respect to: the series, the products
and the chemical families. The structure of the pesticide dataset implies three levels of
intra-group correlation, which bias estimation of the variance components (Moulton, 1987).
First, to control for this bias, we consider a nested structure of the random error because
this allows us to model the proximity of hedonic price determinants among products in the
same “group” (Moulton, 1986, 1987). Second, because regulation influences the turnover
of pesticide products, we exploit the unbalanced structure of the data. To solve these
two issues simultaneously, nested effects are defined through disturbance via a double
nested error component structure (Antweiler, 2001) by extending the estimators proposed
in Baltagi et al. (2002)). This article proposes ANOVA estimators for the situations
where the Maximum Likelihood estimator does not have a unique solution. Based on
these estimates, predicted prices are used to compute adjusted prices that are corrected
from quality changes, and illustrate how the turnover of the pesticide products influenced
the price indices.

The remainder of this article is organized as follows. Section 4 presents the data. Sec-
tion 3 describes the double nested error component model, the corresponding ANalysis Of
VAriance (ANOVA) estimator. The estimation procedures and their results are presented
and discussed in section 5. The paper ends with some concluding remarks.

2 Related literature

An extensive part of the literature analyzed pesticide use and the impact of their reduction
on agricultural productivity; but firms supply has been seldom addressed. This literature

3This framework has been applied by Moulton (1986, 1987) and extended by ? to the Harison and
Rubinfeld data (1978) for the estimation of households willingness to pay for clean air. This structure
applied to the housing market enables to carry on the grouped structure of the data, and the proximity of
hedonic prices determinants when the houses are in the same “group”.
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emerged with data availability in the 1990’s and focused on the economic evaluation of
the strengthening of the registration process. In the U.S, it occurred by the amendment
of the FIFRA Act of 1972.4 Researchers analyzed how the introduction of environmental
requirements affect firms strategies: in term of innovation process and/or product charac-
teristics. For example, Cropper et al. (1992) showed that probability of cancellation by the
EPA is positively dependent on the risks to human health or environment. Hence, firms
are encouraged to develop less toxic pesticides Ollinger and Fernandez-Cornejo (1998a).
This is confirmed by a survey made by the European Crop Protection Association in 2012
(McDougall, 2011). The report underlined that R&D and registration cost to introduce a
new a.i. increased by 68% from 1995 to 2005 because of an increase of development costs,
i.e. field trials and toxicology evaluations. In other words regulation amendment increases
the cost of development of new products and slope on the cost functions.

The regulation has two consequences on the pesticide market: First, it leads firms
to focus on the larger harvested crops for the first registration leaving technical “holes”
for farmers (Jaffe and Palmer (1997), Ollinger et al.(1998)). Thus, the potential revenue
generated by each products depends on: the total area of each crop, and the application
rate for which the product is registered (Fernandez-Cornejo et al., 1998). Indeed, the in-
crease of sunk costs and research expenditures favors the largest firms over the small ones
(Ollinger and Fernandez-Cornejo, 1998a). Hence, the likelihood for firms to merge innova-
tion process with one of its competitor rises. For example, in 2006, BASF and Monsanto,
or Syngenta and DuPont made joint ventures on R&D for pesticide creation (See Agrow
reports). This illustrates the fact that suppliers are multinational firms that are subject
to a combination of various regulatory process to market pesticides. Their willingness to
register a pesticide is highly related to the regulatory constraints and the potential revenue
generated by pesticide sales. So, the increase of regulatory constraints should affect the
prices of pesticides to reveal their safety as well as their chemical performance. Moreover,
due to the high levels of cost to introduce a new a.i. these substances are patented giving
a monopoly advantage for firms on the first years of commercialization and confirming
their trend to choose the larger markets. Finally, the high levels of R&D to develop new
pesticides are also explained by the fact that pesticide efficacy is negatively related with
the development of pest resistance (Lichtenberg and Zilberman, 1986).

Hedonic functions have been widely adopted to explain the prices; we survey here
some of the relevant hedonic approaches (Griliches, 1961; Rosen, 1974). Griliches argued
that the hedonic coefficients illustrate firms strategies in terms of prices and quality of
products5. Werle et al. (1997) applied this framework to the French pharmaceutical drugs
market, which share a very close mechanism of registration and innovativeness with the
pesticide market. They estimated a random coefficient model by chemical family of the
drug. They conclude that the strategic effect on prices depends on the innovativeness of
drugs. This can be explained by the possibilities of substitutions with more recent, but
more expensive products.

Relative to the pesticide market, Fernandez-Cornejo and Jans (1995, hereafter FJ)

4In 1972, the U.S. Congress amended the Federal Insecticides, Fungicide, and Rotenticide (FIFRA) Act
of 1947. This amendment increases regulatory stringency on pesticides authorizations to raise health and
environmental safety of plant protection products. It had direct effect on product registrations by firms.

5Theoretical literature mainly focus on the demand side to define the hedonic functions (see Triplett
(2004) for a survey on hedonic functions) or a more global approach that consider the market equilibrium,
in the sense defined by Rosen (1974). But rather few analyses addressed the supply side functions that
enables to address the problem of firms cost functions, and thus reflect the producers’ costs (Griliches,
1961; Nerlove, 1995).
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computed for the period 1968-1981 a quality adjusted price indices for the U.S. pesticide
prices. By using a pooled time series to explain the prices of the a.i., they showed that the
pesticide quality increased in terms of safety through the introduction of sustainable de-
velopment requirements into the regulation process. They showed that the “rapid changes
in pesticide quality”(FJ, p. 657) is explained by a change in firms supply, mainly driven
by regulation and its environmental requirements.

3 The model

The specification introduces hierarchical error components which represents the impact of
packaging effects embedded within pesticide products which are embedded within their
chemical compounds. This hierarchical structure deals with unobserved heterogeneity
which is related to the chemical family of pesticide products. The dependent variable ycjit
denotes, for each time period t, the logarithm of average price of the serie i corresponding
to product j in the chemical class c. Let consider the unbalanced panel data regression
model:

ycjit = Xcjitβ + ucjit,where c = 1, ..., C, j = 1, ...,Mc; i = 1, ..., Ncj ; t = 1, ..., Tcji.(1)

Xcjit denotes a vector of k non-stochastic covariates.6 There are m(=
∑C

c=1Mc) pesticides,

and n(=
∑C

c=1

∑Mc
j=1Ncj) series of prices. The number of chemical classes is C. Each serie

of prices is observed during Tcji time periods which are not necessarily identical for all
series of prices. This means there are C pesticide classes and each class has Mc pesticides
in which Ncj series of prices are observed. In other words, the Ncj series of prices are
nested by the Mc pesticides. These pesticides are nested by the chemical class, C. The

total number of observations is given by S(=
∑C

c=1

∑Mc
j=1

∑Ncj
i=1 Tcji).

Following Antweiler (2001), the remainder term ucjit follows a nested errors compo-
nents structure:

ucjit = αc + µcj + νcji + εcjit,(2)

where αc ∼ IID(0, σ2α), µcj ∼ IID(0, σ2µ), νcji ∼ IID(0, σ2ν), εcjit ∼ IID(0, σ2ε ), and αc, µcj ,
νcij and εcijt are independent of each other and among themselves.

In notation matrix equations (1) and (2) are equivalent to

y =Xβ + u,(3)

u =Zαα+ Zµµ+ Zνν + ε,(4)

where Zα is a matrix of dimension (S,C) taking ones when i is in class c and 0 otherwise; α
is a (C, 1) of ones; Zµ is a matrix with dimension (S,m) taking ones for i and 0 otherwise; µ
is a (m, 1); Zν is a matrix with dimension (S, n) taking ones when j is in i and 0 otherwise;
ν is a (n, 1). The covariance matrix of the disturbance is given by:

Ω =σ2αZαZ
′
α + σ2µZµZ

′
µ + σ2νZνZ

′
ν + σ2ε IS .(5)

6More precisely, each product is defined by a bundle of k pesticide characteristics. Thus, the vector
xcjit includes physical and technical characteristics, see section 4.
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The estimation of equation (3) through Ordinary Least Square (OLS) gives unbiased
and consistent estimates of the parameters. However, this estimator provides biased stan-
dard error because some disturbances are correlated (due to the nested structure of error
components). Generalized Least Square (GLS) on (3) are obtained by estimating OLS on
the transformed model which incorporates between weights among the nests, and given
the number of observations they contain. The unbalancedness structure of the dataset
complicate the generalization of Ω because the Kronecker products is problematic due to
the fact that each nest does not include the same number of observations.7

Antweiler (2001) showed, through Monte Carlo simulations, the link of both the degree
of unbalancedness and variance ratios on the consistency of estimates. In such a situation,
the double error component should be preferred to the single Maximum Likelihood (ML)
estimator to minimize Moulton bias. For example, with high variance ratios and high
degree of unbalancedness, variance ratios have much more influence on the consistency of
estimates than the degree of unbalancedness. Through simulations, he underlined that
when the variance component ratios are higher than 0.4 a benchmark between estimators
is needed. Moreover, the nonlinearity of the Likelihood function can lead to unstable
maximization routines. Hence, the function value cannot be improved when the number
of nests of the smaller group is important and/or covariates get higher. In this context,
the ANOVA estimators can be an interesting alternative because they perform well for
the estimation of coefficients8, see Baltagi and Chang (1994). Their unbiasedness prop-
erties are relative in context of unbalancedness, but their results are close from those of
ML estimators (see Baltagi et al., 2001, p. 370-371, Table 2). Thus, we follow Baltagi
et al. (2001) whom computed ANOVA-type estimators with single nested error compo-
nents structure.Wansbeek and Kapteyn (1989) and Swamy and Arora (1972) estimators
are extended for the double nested disturbance structure, following the computation of the
error components with nested models derived by Xiong (1995) and using Khatri-Rao prod-
ucts (Khatri and Rao, 1968). This product enables to generalize the kronecker products
with matrix constructed from blocks of different size9;

Let define Mu a vector which contains the exact number of products of each class c,
i.e. each element is mcjit; Nu a vector which contains the number of product per serie of
price ncjit, and Tu the number of time period per serie (i.e. tcjit). These vectors, in which
is element is a scalar enables to use the Theorem 1 of Liu (1999), to obtain:

J̄Mu =
1

Mu
∗ JMu , J̄Nu =

1

Nu
∗ JNu , J̄Tu =

1

Tu
∗ JTu ,(7)

where ∗, is the Katri-Rao product; JA = ιAι
′
A, J̄A = JA/A and for any positive integers

JAB = JA ∗ JB, IAB = IA ∗ IB. Thus by replacing IA by EA + J̄A, where EA = IA − J̄A,

7Computations in the balanced situation are available upon request. We focus here on the unbalanced
situation which is more accurate for our analysis.

8If we consider a balanced panel, ANOVA estimators are the best quadratic unbiased estimators, see
Baltagi and Chang (1994); Searle (1995) for overviews. The comparison is based on the mean square error
(MSE) of the parameter estimates, (Baltagi and Chang, 1994), Table 1, p. 81.

9 Let: A = (Aij) a partitioned matrix with Aij of order mi × nj as the (i, j)th block submatrix;
B = (Blk) a partitioned matrix with Blk of order pk × ql as the (k, l)th block submatrix. The Khatri-Rao
product (Khatri and Rao, 1968; Liu and Trenkler, 2008a), generalize the kronecker products. It is defined
as follow:

A ∗B = (Aij ∗Bij)ij =

[
A11 ⊗B11 A12 ⊗B12

A21 ⊗B21 A22 ⊗B22

]
.(6)

Note that when considering non partitioned matrix : A ∗B = A⊗B (?).
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and collecting terms with the same matrices. This enables to write Ω such that:

Ω =(σ2αMu ∗Nu ∗ Tu + σ2µNu ∗ Tu + σ2νTu + σ2ε )Q4

+ (σ2µNu ∗ Tu + σ2νTu + σ2ε )Q3 + (σ2νTu + σ2ε )Q2 + σ2εQ1,(8)

with

Q1 = IC ∗ IMu ∗ INu ∗ ETu , Q2 = IC ∗ IMu ∗ ENu ∗ J̄Tu ,
Q3 = IC ∗ EMu ∗ J̄Nu ∗ J̄Tu , Q4 = IC ∗ J̄Mu ∗ J̄Nu ∗ J̄Tu .(9)

First, consider the modified Wansbeek and Kapteyn estimator of Baltagi et al. (2001),
denoted WK. The q̃1, q̃2, q̃3 and q̃4 are given by equating their expected values, respectively
E(q̃1), E(q̃2), E(q̃3) and E(q̃4), i.e.

E(q̃1) = E(ũ
′
WTNQ1ũWTN ), E(q̃2) = E(ũ

′
WTNQ2ũWTN ),

E(q̃3) = E(ũ
′
WTNQ3ũWTN ), E(q̃4) = E(ũ

′
WTNQ4ũWTN ),(10)

where ũWTN are the within residuals. We define X1 a (S×k1) matrix, which incorporates
the k1 variables that vary within time dimension. The within estimator is given by pre-
multipling the equation (3) by Q1.

10 So, the variance components are:11

σ̂2ε =
ũ

′
WTNQ1ũWTN

(S − n− k1)
,

σ̂2ν =
1

S − t

{
ũ

′
WTNQ2ũWTN − σ̂2ε

[
n−m+ tr((X

′
1Q1X1)

−1X
′
1Q2X1)

]}
,

σ̂2µ =
1

S − n

{
ũ

′
WTNQ3ũWTN − σ̂2ε

(
m− c+ tr

[
(X

′
1Q1X1)

−1X
′
1Q3X1

])
− σ̂2ν(t− c)

}
,

σ̂2α =
1

S

{
ũ

′
WTNQ4ũWTN − σ̂2ε

(
C + tr((X

′
1Q1X1)

−1X
′
1Q4X1)

)
− σ̂2µ

(
S

M

)
− σ̂2ν

S

MN

}
.(11)

Remember that the within estimator wiped out the time invariant variables, however, these
variables are relevant to define the hedonic functions. In other word, the within residual
may overestimate variances if the dimension of variation of the variables is higher. Thus,
we extended the Swamy-Arora-estimator to the double nested error component (denoted
SA). Variances for such an estimator are obtained by transforming the equation (3) with
Qp, for p = 1, ..., 4:

E(q̃+1 ) = E(ũ
′
WTNQ1ũWTN ), E(q̃+2 ) = E(ũ

′
2Q2ũ2),

E(q̃+3 ) = E(ũ
′
3Q3ũ3), E(q̃+4 ) = E(ũ

′
4Q4ũ4).(12)

10When computing the intercept, the centered residuals on the full sample should be computed as in
WK.

11The proofs are available upon request
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Thus we have:

σ̂2ε =
ũ

′
WTNQ1ũWTN

(S − n− k1)
,

σ̂2ν =
ũ

′
2Q2ũ2 − σ̂2ε (n−m− k2)

S − t− tr
(
(X

′
2Q2X2)−1X

′
2ZνZ

′
νX2

) ,
σ̂2µ =

ũ
′
3Q3ũ3 − σ̂2ν [t− c− tr(Q3X3(X

′
3Q3X3)

−1X
′
3
ZµZ

′
µ

N )] − σ̂2ε (m− c− k3)

S − n− tr(Q3X3(X
′
3Q3X3)−1X

′
3ZµZ

′
µ)

,

σ̂2α =

{
ũ

′
4Q4ũ4 − σ̂2µ(tr(ZαZ

′
α)/M − tr((X

′
4Q4X4)

−1X
′
4ZαZ

′
αX4)/M) − σ̂2ν(tr(ZαZ

′
α)/MN

− tr((X
′
4Q4X4)

−1X
′
4ZαZ

′
αX4)/MN) − σ̂2ε (C − k4)

}/{
S − tr((X

′
4Q4X4)

−1X
′
4ZαZ

′
αX4)

}
,(13)

where X2 = Q2X, X3 = Q3X and X4 = Q4X are the (S × k) matrix of explanatory
variables.

4 The Data

A new original dataset has been constructed to analyze pesticide prices. This section first
describes the several data sources and presents a range of descriptive statistics. Prices
come from the French Ministry of Agriculture; Then three data sources have been merged
to recover the technical, regulatory and commercial pesticide characteristics. One enables
to recover the regulatory mentions and identify the firm owner of the product: E-Phy
(French Ministry of Agriculture). E-Phy reports regulatory mentions imposed for each
pesticide. It contains the specific quantity of application with respect to each crop for the
specific disease. Besides, it reports information on the registrants firms, the date of regis-
tration and/or canceling, the level of toxicity of each product and the safety precautions
for farmers. One identifies, yearly, the patent portfolio of firms: “Index phytosanitaire”,
indicating whether or not the active ingredient is patented or not. The last one gives the
chemical families of the active ingredients included into each pesticide: Pesticide Prop-
erties DataBase (PPDB), see Appendix-Table 7. The chemical class enables to group
the pesticides as in Integrated Pest Management programs (IPM), illustrating possible
substitutions based on the mode of action of each active ingredient. The Herbicides, In-
secticides and Fungicides Resistance Action Committees published a uniform classification
by pesticide category: Herbicide Resistance Classification (HRAC), Insecticide Resistance
Classification (IRAC), and Fungicide Resistance Classification (FRAC).

Table 1 presents the descriptive statistics by category of pesticides, i.e. herbicides,
insecticides and fungicides. The “Dim” column reports the dimensions of the variables
with M, N and T respectively indicating that the variable changes at the product, serie
and time levels. A total of 4,968 observations are obtained from 675 series of prices
representing 151 products grouped into 39 chemical classes. The number of observations
are reported in Table 2 by category of pesticide, and considering each level. The dataset
is an unbalanced panel of 11 years from 1996 to 2006 because some product are no longer
marketed during the observed period.

To measure the degree of unbalancedness, we compute Ahrens and Pincus (1981)

8

http://sitem.herts.ac.uk/aeru/footprint/index2.htm
http://sitem.herts.ac.uk/aeru/footprint/index2.htm


statistics which are the ratio, by group, between harmonic mean and arithmetic mean.
When these ratios are smaller than one, it indicates that the sample is highly unbalanced.
The ratio is given by:

ω =
N/
∑Ni

i=1(1/Ti)

S/N
.(14)

The introduction of nests implies to compute these ratios at the level of each nest. Thus
following Antweiler, they are given by:

ωα =
C/
∑C

c=1(1/Mc)

M/C
,ωµ =

M/
∑C

c=1

∑Mc
j=1(1/Ncj)

N/M
,ων =

NT/
∑C

c=1

∑Mc
j=1

∑Ncj
t=1(1/Tcji)

S/N
.(15)

The degree of unbalancedness is reported in Table 3. For the entire sample, 83 % of the
series are observed for each of the 11 years. The remainder sample is only observed for less
periods illustrating the entry and exit of pesticides from the market. Moreover, it enables
to measure how the unbalancedness should affect the properties of our estimates. More
precisely, the structure of unbalancedness is quite different among the different categories
of pesticides. A better understanding of these ratios is completed by chemicals grouping
distribution of pesticide detailed in the Appendix A (see Table 7).
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Table 1: Descriptive Statistics

Variable Symbol Unit Dim. Herbicides Insecticides Fungicides

Mean (SD) Mean (SD) Mean (SD)

logPrice log p e/hectare . . N T 3.79 (0.44) 2.38 (0.73) 3.63 (0.33)
Concentration concent 0=liter/1=kg . . N . 0.92 (0.28) 0.74 (0.44) 0.80 (0.40)
Weight weight Unity . . N . 7.69 (7.74) 4.04 (3.50) 5.57 (5.69)
30 d. pay pay 0=No/1=Yes . . N . 0.19 (0.39) 0.28 (0.45) 0.19 (0.39)
Age age years . M . T 12.53 (5.01) 13.86 (7.05) 9.54 (3.93)
Patent pat 0=No/1=Yes . M . T 0.91 (0.28) 0.94 (0.23) 0.97 (0.17)
Nb a.i. # a.i. Unity . M . . 1.69 (0.81) 1.25 (0.44) 1.59 (0.59)
Nb diseases # dis Unity . M . . 14.51 (6.46) 11.60 (3.91) 8.46 (2.36)
Nb crops # crop Unity . M . . 2.47 (1.47) 5.25 (1.49) 4.31 (1.95)
Dose dose unit/hectare . M . . 2.78 (1.69) 1.19 (2.52) 1.60 (1.66)
Wheat wheat 0=No/1=Yes . M . . 0.58 (0.49) 0.90 (0.31) 0.83 (0.38)
Toxicity tox (1/6) . M . . 3.17 (0.90) 2.79 (1.34) 3.03 (0.97)

Dim. indicates the level of variations: M for product; N for series; T for time.
The column “SD” indicates Standard Deviations.

Table 2: Number of Observations per Category of Pesticides

Type Herbicides Insecticides Fungicides Total

Chemical class 21 6 12 39
Product 59 49 43 151
Serie 191 309 175 675

Table 3: Degree of Unbalancedness

Dim. Herbicides Insecticides Fungicides Total

Chemical class C 0.199 0.062 0.292 0.151
Nests Product M 0.376 0.236 0.296 0.295

Serie N 0.839 0.843 0.810 0.830
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Regulatory mentions are very useful to describe pesticide characteristics. FJ also
argued that priority is given to larger markets in term of area. In 2006, tender wheat
represented 43% of the French cultivated area, and generates 44% of pesticide use (Butault
et al., 2010). Our sample reveals whatever the category of pesticide most of products are
marketed for wheat which corresponds to first field crop cultivated in France. Registration
for wheat concerns 58% of herbicides, and more than 83% for the two others. Moreover,
pesticides are often marketed for more than one crop. The sample illustrates herbicides
that can be used on average on 2.47 crops, or 5.16 crops for insecticides (namely Nb
crops). The heterogeneity among the different categories of pesticides illustrates the fact
that products are more recent in the fungicides market than for the other categories of
pesticides. The regulatory mentions enable to know the levels of toxicity and eco-toxicity
of each product. However, with more than 40 mentions it is difficult to introduce each
level individually. The General Tax on Polluting Inputs (TGAP)12 classification is used
to construct seven categories summarizing toxicity and eco-toxicity mentions (namely,
Tox ). The smaller category indicates the safer products (TGAPa with a the level in
TGAP classification). This classification is used as proxy for environmental indicators
and to measure the potential risk generated by the use of pesticides. The relation among
pesticide application rates and its potency is accounted through the variable Dose which
average, for field crops the homologated quantity of application. The a.i. gives to pesticides
their pesticidal effects; we introduce the number of a.i. into each pesticide (Nb a.i.). Last,
the spectrum of pesticide registration is introduced with the variable Spect which is the
number of crop for which firms have the registrations.

Finally, Series of prices are differentiated by their sales conditions. First, the type
of pesticide (kilogram or liter) enables to control for the type of concentration of each
product.The size of the packaging is introduced through the size of the box (Pound), with
the intuition that with higher packages prices should be smaller. The variable Pay 30 in-
dicates payment within 30 days. It enables to control potential discount for cash payment
situations. However, this variable is not sufficient to analyze quantity discounts which are
based on the total sale of the crop year.

5 Estimation results and discussion

The dependent variable is the log of the price of the pesticide expressed in euros per hectare
at the regulated average quantity of application13 per hectare at homologated quantity of
application (Beach and Carlson). We expect to confirm the results of previous researches
that the “productive characteristics generally are positively associated with price, while
hazardous characteristics are negatively associated with price” (FJ, p. 646).

The explanatory variables used in the hedonic price functions concerns the technical
characteristics of pesticides and the labeling mentions imposed by regulation. Tables 4 ,

12The TGAP is paid by retailers of pesticides based on the total quantity of toxic pesticide a.i. they sold.
13To enable flexibility among different crops (e.g. corn, cotton, sorghum and soybeans) FJ applied a

Box-Cox transformation both to the dependent variable and continuous covariates. If all attributes are
observed, linear and quadratic functions of Box-Cox transformed variables provide the most exact estimates,
however, when certain “variables are omitted or replaced by proxies, it is the simpler forms [...] that do the
best”(Cropper, Deck and McConnell, 1988, p. 674). Hence, we consider log-linear specification to estimate
the implicit prices of each characteristic with an unbalanced dataset.
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5 and 6 report the parameter estimates for the hedonic functions concerning respectively
herbicides, insecticides and fungicides. Variances are computed following section 3. The
second column of this table reports the dimensions of the independent variables. M denotes
that the variations are made at pesticide level. N denotes that the variable change is made
at the level of series of prices. T denotes that the variable changes with time.

The three next columns reports the estimations results from a single nested error
component structure model, with the subscript S14. For these estimations, the series of
prices are only nested by products. The last 3 columns report the double nested error
component structure estimation results, with the subscript D. Here, the inner group is
made by series of prices. The middle group is made by pesticides. The upper group is
defined by the chemical class of each pesticide . This enables to consider the intra-class
correlation of the regressors (Moulton, 1986). The column WK presents estimations results
of Wansbeek and Kapteyn-type estimator, the column SA presents Swamy Arora-type
estimator, and the last column presents estimations results of the Maximum Likelihood
estimator developed by Anwteiler (2001).

We first inspect the relative gain in efficiency of a double nested error component
structure. Then we comment the implicit values of each pesticide characteristics based on
the preferred results. Antweiler and Baltagi et al.underline the importance of unbalanced-
ness and variance ratio to conclude on the efficiency of estimation results. The estimation
of single nested models reports high variance ratios for the top level. This suggests that
the estimation results should be biased (namely Moulton biais). The intuition presented
before is to propose ANOVA estimators for the situations where maximization routines do
not enable to estimate the double nested error component model via ML procedure15, in
our context optimization routines failed for the fungicide category. Moreover, by control-
ling the unobserved heterogeneity due to the level of variation of the different covariates,
we expect to find smaller variances when same level of variation is used to computed the
variances of the same nest. First, we find that the variances from the double model are
always smaller than for the single models. This result is much more relevant for the vari-
ables varying at N dimensions: SAD and WKD variances are close or smaller than MLD.
For the other dimensions, we always find that ML results are smaller than WK and SA.
We can now focus our comments on the estimation results provided by the double nested
error component model.

We now discuss the estimated coefficients and their conformity with agricultural eco-
nomics as well as agronomic literature. First, at the level of the series of price, the
packaging size coefficients are significant at the 5% level16 for insecticides and fungicides,
the increase of the size of the box by 1% reduce the prices of 0.06% for fungicides (this
result is valid whatever the estimator), or by 0.06% for insecticides (column SAD), ceteris
paribus. The later payments reports negative and significant coefficients for insecticides
whereas they are positive for fungicides. This can be explained by the fact that, at the
end of the cultural crops, discounts can be granted by retailers based on the total amount
of pesticides they purchase. These coefficients are highly related to pesticide pressure and
the total amount of sales.

14see Baltagi et al.(2001).
15All the estimations are made with SAS 9.3 software, using proc iml, and maximization routines. We

would like to thank Professor Werner Antweiler who gave us the SAS code for estimating the single nested
error component model via ML.

16This level is retained in this section.
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Table 4: Estimation Results for Herbicides

Dep.Var. log(P) Dim. Single Nested Error components Double Nested Error components

WKS SAS MLS WKD SAD MLD
Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.)

Intercept 3.503‡ (0.047) 3.498‡ (0.047) 3.201‡ (0.289) 3.484‡ (0.089) 3.414‡ (0.048) 3.562‡ (0.152)

Patent . M . T 0.026‡ (0.009) 0.026‡ (0.009) 0.026† (0.013) 0.026‡ (0.010) 0.024† (0.010) 0.030† (0.014)

log(Age) . M . T -0.111‡ (0.035) -0.108‡ (0.035) -0.111‡ (0.042) -0.105‡ (0.035) -0.119‡ (0.035) -0.103† (0.042)

log(Age)2 . M . T 0.046‡ (0.008) 0.045‡ (0.008) 0.046‡ (0.011) 0.044‡ (0.009) 0.045‡ (0.008) 0.039‡ (0.011)
Wheat . M . . 0.026 (0.019) 0.028 (0.019) -0.008 (0.250) 0.022 (0.035) 0.026 (0.027) -0.000 (0.082)

log(Dose) . M . . 0.320‡ (0.006) 0.320‡ (0.006) 0.312‡ (0.054) 0.380‡ (0.007) 0.334‡ (0.007) 0.397‡ (0.031)

Tox . M . . 0.102‡ (0.004) 0.101‡ (0.004) 0.094∗ (0.056) 0.093‡ (0.005) 0.096‡ (0.005) 0.137‡ (0.024)

log(Nb crops) . M . . -0.230‡ (0.010) -0.231‡ (0.010) -0.242 (0.167) -0.193‡ (0.021) -0.208‡ (0.016) -0.220‡ (0.073)

log(Nb a.i.) . M . . -0.019 (0.014) -0.020 (0.014) -0.039 (0.155) 0.038† (0.017) -0.053‡ (0.016) -0.142† (0.070)

log(Spect.) . M . . -0.000 (0.010) 0.001 (0.010) 0.149 (0.121) -0.013 (0.013) 0.061‡ (0.011) 0.007 (0.050)

log(Pound) . . N . -0.029‡ (0.005) -0.029‡ (0.005) -0.030∗ (0.016) -0.030‡ (0.005) -0.037‡ (0.005) -0.110† (0.045)

Concentr.kg=1 . . N . -0.042‡ (0.014) -0.040‡ (0.014) -0.042 (0.053) -0.040‡ (0.015) -0.069‡ (0.014) 0.086 (0.142)
30 d. pay . . N . -0.008 (0.007) -0.008 (0.007) -0.008 (0.023) -0.007 (0.007) 0.007 (0.007) -0.015 (0.049)

Year>2001 . . . T 0.008 (0.006) 0.008 (0.006) 0.008 (0.009) 0.008 (0.007) 0.012∗ (0.006) 0.020† (0.010)

σ̂2
ε 0.007 0.007 0.007 0.007 0.007 0.006

σ̂2
ν 0.008 0.007 0.008 0.005 0.007 0.029

σ̂2
µ 0.191 0.179 0.167 0.121 0.025 0.079

σ̂2
α 0.051 0.000

log(L) . . 1325.468 . . 1396.648
Std. Error beside coefficients.Level of significance : ‡=1% ; †=5% ; *=10%.

Table 5: Estimation Results for Insecticides

Dep.Var. log(P) Dim. Single Nested Error components Double Nested Error components

WKS SAS MLS WKD SAD MLD
Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.)

Intercept 3.284‡ (0.024) 3.282‡ (0.024) 3.301‡ (0.209) 3.301‡ (0.304) 3.180‡ (0.031) 2.929‡ (0.090)

Patent . M . T 0.027† (0.010) 0.027† (0.010) 0.029† (0.014) 0.027† (0.010) 0.025† (0.010) 0.020 (0.023)
log(Age) . M . T 0.026 (0.016) 0.025 (0.016) 0.026 (0.021) 0.026 (0.016) 0.024 (0.016) 0.006 (0.021)

log(Age)2 . M . T -0.004 (0.004) -0.004 (0.004) -0.004 (0.006) -0.004 (0.004) -0.003 (0.004) -0.004 (0.006)

Wheat . M . . 0.477‡ (0.049) 0.467‡ (0.049) 0.184 (0.910) 0.405‡ (0.049) 0.266‡ (0.049) 0.325 (0.403)

log(Dose) . M . . 0.374‡ (0.003) 0.375‡ (0.003) 0.385‡ (0.066) 0.234‡ (0.004) 0.388‡ (0.004) 0.480‡ (0.027)

Tox . M . . -0.058‡ (0.002) -0.059‡ (0.002) -0.068 (0.051) -0.062‡ (0.003) -0.061‡ (0.003) -0.019 (0.017)

log(Nb crops) . M . . -0.515‡ (0.032) -0.507‡ (0.032) -0.314 (0.568) -0.335‡ (0.033) -0.306‡ (0.033) -0.218 (0.243)

log(Nb a.i.) . M . . 0.204‡ (0.012) 0.203‡ (0.012) 0.192 (0.241) -0.520‡ (0.020) 0.168‡ (0.019) 0.507‡ (0.065)

log(Spect.) . M . . 0.011 (0.011) 0.012 (0.011) -0.008 (0.030) 0.011 (0.012) 0.024† (0.012) 0.004 (0.023)

log(Pound) . . N . -0.042‡ (0.003) -0.043‡ (0.003) -0.047† (0.020) -0.046‡ (0.003) -0.057‡ (0.003) -0.149‡ (0.024)

Concentr.kg=1 . . N . -0.069‡ (0.008) -0.070‡ (0.008) -0.078 (0.065) -0.079‡ (0.008) -0.113‡ (0.008) -0.037 (0.075)

30 d. pay . . N . -0.063‡ (0.004) -0.063‡ (0.004) -0.061∗ (0.036) -0.058‡ (0.004) -0.057‡ (0.004) -0.065 (0.045)
Year>2001 . . . T -0.006∗ (0.003) -0.006∗ (0.003) -0.006 (0.006) -0.006∗ (0.003) -0.006∗ (0.003) -0.003 (0.005)

σ̂2
ε 0.004 0.004 0.004 0.004 0.004 0.003

σ̂2
ν 0.055 0.054 0.052 0.045 0.052 0.064

σ̂2
µ 0.526 0.445 0.167 0.107 0.044 0.608

σ̂2
α 0.367 0.001 0.005

log(L) 2080.956 2732.594
Std. Error beside coefficients.Level of significance : ‡=1% ; †=5% ; *=10%.

Table 6: Estimation Results for Fungicides

Dep.Var. log(P) Dim. Single Nested Error components Double Nested Error components

WKS SAS MLS WKD SAD
Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.) Est. (Std.Err.)

Intercept 3.787‡ (0.040) 3.795‡ (0.040) 3.936‡ (0.495) 3.712‡ (0.103) 3.944‡ (0.056)
Patent . M . T -0.030∗ (0.016) -0.030∗ (0.016) -0.031 (0.021) -0.030∗ (0.017) -0.029∗ (0.016)
log(Age) . M . T -0.012 (0.026) -0.012 (0.026) -0.014 (0.032) -0.015 (0.027) -0.013 (0.026)

log(Age)2 . M . T -0.004 (0.007) -0.004 (0.007) -0.004 (0.009) -0.003 (0.007) -0.005 (0.007)

Wheat . M . . -1.176‡ (0.028) -1.176‡ (0.028) -1.238‡ (0.349) -1.077‡ (0.061) -1.140‡ (0.038)

log(Dose) . M . . 0.008 (0.011) 0.005 (0.011) -0.030 (0.195) 0.106‡ (0.020) -0.021 (0.016)

Tox . M . . 0.071‡ (0.005) 0.071‡ (0.005) 0.072 (0.057) 0.051 ‡ (0.006) 0.068‡ (0.005)

log(Nb crops) . M . . 0.591‡ (0.015) 0.590‡ (0.015) 0.622‡ (0.203) 0.582 ‡ (0.023) 0.580‡ (0.020)

log(Nb a.i.) . M . . 0.281‡ (0.019) 0.280‡ (0.019) 0.300 (0.216) 0.171‡ (0.025) 0.212‡ (0.022)

log(Spect.) . M . . 0.015 (0.011) 0.012 (0.011) -0.049 (0.193) 0.062† (0.025) -0.033† (0.016)

log(Pound) . . N . -0.058‡ (0.005) -0.058‡ (0.005) -0.059‡ (0.019) -0.061‡ (0.005) -0.063‡ (0.005)

Concentr.kg=1 . . N . -0.157‡ (0.012) -0.157‡ (0.012) -0.160‡ (0.055) -0.162‡ (0.013) -0.143‡ (0.013)

30 d. pay . . N . 0.021‡ (0.008) 0.022‡ (0.008) 0.016 (0.029) 0.020‡ (0.008) 0.038‡ (0.008)

Year>2001 . . . T 0.015† (0.007) 0.015† (0.007) 0.014 (0.010) 0.014∗ (0.007) 0.018† (0.007)

σ̂2
ε 0.007 0.007 0.007 0.007 () 0.007

σ̂2
ν 0.017 0.017 0.012 0.012 0.014

σ̂2
µ 0.102 0.092 0.171 0.056 0.022

σ̂2
α 0.034 0.001

log(L) 1139.602
Std. Error beside coefficients.Level of significance : ‡=1% ; †=5% ; *=10%.
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Concerning the pesticide characteristics, we focus on each category of pesticide sep-
arately. First, concerning herbicides (Table 4), a raise of the homologation rate increase
the prices by more than 0.3% (whatever the estimation method). The toxicity influences
significantly pesticide prices. The toxicity (variable Tox) has a positive and significant
impact on prices for herbicides and fungicides.17 In the agronomic literature, toxicity is
highly related to efficacy of products, with the idea that because of the ongoing commit-
ment to reduce pesticide quantities, farmers intended to reduce the quantities by choosing
pesticides with higher performance which can be more toxic. The most recent pesticides
are cheaper than older. Actually, the effect on prices becomes positive after three year
of marketing. Finally, Year>2000 has no significant impact on herbicide prices. For insec-
ticides this year correspond is associated to a 0.6% decrease of pesticide prices (column
SAD, and column MLD). Finally, the prices of fungicides also decreased significantly by
2% after 2000. This result suggest that prices are lower for 2001-2006 compared to 1996-
2000, which is the period post-TGAP. But this result should be interpreted with cautions,
because our specification does not introduce more details on firms supply or quantities
sold by retailers. This latter information is required to compute the amount of TGAP
paid by retailers.

At series level, the coefficients of concentration dummies are significant at the 5%
level18 for two of the three categories. This semi-elasticity indicates that herbicides sold in
powder form (e.g. unity in kg) are 7% cheaper than those sold as liquid form, resp. they are
11% cheaper for insecticides. Concentration has no significant impact on fungicide prices.
This results can be explained by the fact that powders should be mixed with adjuvant
before application. The coefficients of packaging size are significant for insecticides and
fungicides, a 1% increase in the size of the box reduces the price by 0.06% for fungicides,
and by 0.06% for insecticides, ceteris paribus. The payments after 30 days report negative
and significant coefficients of insecticides. This suggests that retailers offer discounts, at
the end of the cultural crops, based on the total amount of pesticides they purchased.
Payments after 30 days coefficient are positive and significant for fungicides suggesting
that payment conditions are highly related to pesticide pressure and the total amount of
sales at the farmer level. However, this result do not allow to measure the magnitude of
quantity discounts because we cannot observe the total sales per product over of the crop
year.

At pesticide level, the innovativeness of products is illustrated by Age and Pat. The
most recent pesticides are cheaper than the older ones. By introducing Age2, we may
capture the nonlinear effect of this variable on prices.19. The effect on prices becomes
positive after three year of marketing. Patented herbicides and insecticides are more
expensive than generic ones. On the contrary patented fungicides are 3% cheaper than
generic ones. This can be explained by the high level of fungicides patented a.i. which is
higher compared to the two others. The a.i. in the pesticide dictates its pesticidal effects;
therefore, we introduce the number of a.i. into each pesticide (# a.i.). This variable
decreases herbicide prices of 5%, and increases insecticide and fungicide prices of 17%
and 21%. The scope of pesticide registration is proxied by the variable #crop variable,

17We also tested a non linear effect through a squared Tox. Tox2 were non-significant for each category.
Then, we estimated the model with Tox levels (equivalent to TGAP levels). Results for insecticide confirms
that with higher levels of toxicity products are significantly cheaper. However, this solution generates
multi-colinerarity implying to aggregate categories on two categories. To eliminate this limit, we introduce
linearly the six categories.

18This is the level used this article.
19They are assumed to be explained by the loss of efficacy due to development of resistance of pests.
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which is a proxied for the scope of pesticide registration decreases over time. This result
is in line with FJ’s findings. Market size is proxied by a dummy for pesticides allowed
for application to wheat, FJ also argues that priority is given to larger - in term of area
- markets. Insecticides marketed for wheat are 26% more expensive than those which
are not. The empirical result is stronger for fungicides. Concerning the recommended
rate, its increase raises herbicide prices of more than 0.3%. If seems reasonable to assume
that farmers choose a pesticide product based on the cost of application per hectare, they
make a trade-off which depends on the level of infestation by choosing the quantities of
application. Toxicity levels interact with the quantity of application.20 The toxicity (tox)
influences significantly pesticide prices. The toxicity has a positive and significant impact
on the price of herbicides and fungicides. In the agronomic literature, toxicity is heavily
related to the technical performance of the product. The ongoing commitment to reduce
pesticide use means that farmers will try to reduce the quantities applied by choosing
pesticides with higher performance, which are often more toxic. This could suggest that
the average level of toxicity of insecticides is higher compared to other categories.

Finally, to measure the impact of the TGAP, the variable Year>2001 is used as a
regressor. It has no significant impact on herbicide prices. For insecticides, it is associated
with a 1% decrease in the prices, ceteris paribus. For fungicides, it decreases significantly
the prices by 2%, which implies that prices will be lower in 2001-2006 compared to 1996-
2000, the post-TGAP period. This result should be interpreted with caution, because our
specification does not include other details related to firm supply or quantities sold by
retailers. This information is required to compute the amount of TGAP paid by retailers.
However, at product level our results suggest that TGAP decreases pesticide prices.

At chemical family level, the chemical family nomenclature takes account of the fact
that the prices of some pesticides shifted due the introduction of new chemical families.21

Most product characteristics are time invariant, and the estimation results remain valid
only if the unobserved product characteristics are uncorrelated with the price of the pes-
ticide. This assumption is reasonable here since the introduction of regulatory mentions
supports the assumption that the error term is not correlated with the covariates.

Our results are partially in tunes with FJ’s article who shows that the “productive
characteristics generally are positively associated with price, while hazardous characteris-
tics are negatively associated with price” (FJ, p. 646). For insecticides, productive char-
acteristics are conformingly positive (dose, crop,ai), while hazardous characteristic (tox)
is negative. However, these results are not found for the other categories. The difference
between results of herbicides/insecticides and fungicides can be explained by the chemical
action of these products. Particularly, fungicides target more heterogeneous organisms,
this has an important impact on the development of pesticide resistance. A small dose of
application for a specific disease is sufficient whereas the quantity of application could be
an important variable for herbicides and insecticides.22

20Recall that in this article we use the retailer prices to construct price indices which are corrected fro
quality change. Thus the data do not represent farmers’ pesticide choices.

21We tried to introduce dummies for the a.i. in each pesticide. For the estimations of the single nested
model, it increased the variances, especially for the variables for pesticide characteristics (variables changing
within the M dimension). For the double nested model, it captures all the unobserved heterogeneity due
to the chemical family. Hence, these results are not reported.

22Diseases solved with herbicides and insecticides are related to diploid organisms, the organism eradi-
cated by fungicide applications are more heterogeneous and do not only concern diploid organisms.
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6 Conclusion

The article used a hedonic framework to evaluate the implicit marginal price of pesticide
characteristics. The specificity of our data enables to nest the observed prices by closeness
in order to control for the unobservable heterogeneity of products. Based on the assump-
tion that some intra-class correlation exist we estimated a nested error component model.
We mainly find that pesticide prices slightly increased at the moment of the TGAP. In
this analysis we used a hedonic framework to evaluate the implicit marginal prices of pes-
ticides. The specificity of our data allowed us to nest observed prices by closeness, in order
to control for unobservable product heterogeneity. Based on the assumption that some
intra-class correlation exists we estimated a double nested error component model to an
unbalanced panel. The proposed ANOVA performed well for estimation of the coefficients
and reduced variances for the double nested GLS estimates. The decrease of prices in 2001,
which is the TGAP introduction date, suggests that pesticide turnover and innovativeness
is more important than regulation changes.

With this framework it can be shown that the main difficulty is related to the degree of
unbalancedness, and the specific structure of each nest. Indeed, the ratios among σε/

√
λp

illustrates the weight of each dimension relative to within regression. More precisely, if
this ratio is small, it illustrates that efficiency gains with respect to within regression are
small. In the opposite, when these ratios are large, the gains in efficiency are important
with respect to within estimates.

The model retained for this analysis require the assumption that the error term is
not correlated with the covariates, by selecting regulatory mentions, this assumptions
is reasonable. Further researcher would introduce the pesticide efficacy into a demand
framework to measure the farmers willingness to pay for technical characteristics, such as
toxicity or efficacy. The frameworks which analyses the market equilibrium may be a good
alternative to evaluate the impact of the regulation changes on firms strategy. In other
words the idea is to measure how regulation change affects the market segmentation by
matching the supply side with a demand analysis.
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INSERM. Synthèse du rapport.

Baltagi, B. and Y.-J. Chang (1994, Jan). Incomplete panels: A comparative study of alternative estimators
for the unbalanced one-way error component regression model. Journal of Econometrics 62 (2), 67–89.

Baltagi, B. and A. Pirotte (2010). Panel data inference under spatial dependence. Economic Mod-
elling 27 (6), 1368–1381.

Baltagi, B., S. H. Song, and B. C. Jung (2001). The unbalanced nested error component regression model.
Journal of Econometrics 101 (2), 357–381.

Baltagi, B. H., S. H. Song, and B. C. Jung (2002). A comparative study of alternative estimators for the
unbalanced two-way error component regression model. The Econometrics Journal 5 (2), 480–493.

16



Bonhomme, S. and J.-M. Robin (2010). Generalized non-parametric deconvolution with an application to
earnings dynamics. Review of Economic Studies 77 (2), 491–533.

Cropper, M. L., L. B. Deck, and K. E. Mcconnell (1988). On the choice of funtional form for hedonic price
functions. The Review of Economics and Statistics 70 (4), 668–675.

Cropper, M. L., W. N. Evans, S. J. Berardi, M. M. Ducla-Soares, and P. R. Portney (1992). The de-
terminants of pesticide regulation: A statistical analysis of epa decision making. Journal of Political
Economy 100 (1), 175–197.

Fenner, K., S. Canonica, L. P. Wackett, and M. Elsner (2013). Evaluating pesticide degradation in the
environment: blind spots and emerging opportunities. Science 341 (6147), 752–758.

Fernandez-Cornejo, J. and S. Jans (1995). Quality-adjusted price and quantity indices for pesticides.
American Journal of Agricultural Economics 77 (3), 645–659.

Fernandez-Cornejo, J., S. Jans, and M. Smith (1998). Issues in the economics of pesticide use in agriculture:
a review of the empirical evidence. Review of Agricultural Economics 20 (2), 462–488.

Griliches, Z. (1961). Hedonic price indexes for automobiles: An econometric of quality change. NBER
Working Papers. Staff Papers 3 .

Harrison, D. and D. Rubinfeld (1978). Hedonic housing prices and the demand for clean air. Journal of
Environmental Economics and Management 5 (1), 81–102.

Hartnell, G. (1996). The innovation of agrochemicals: regulation and patent protection. Research pol-
icy 25 (379-395).

Jacquet, F., J.-P. Butault, and L. Guichard (2011). An economic analysis of the possibility of reducing
pesticides in french field crops. Ecological economics 70 (9), 1638–1648.

Jaffe, A. B. and K. Palmer (1997). Environmental regulation and innovation: A panel data study. The
Review of Economics and Statistics 79 (4), 610–619.

Khatri, C. G. and C. R. Rao (1968). Solutions to some functional equations and their applications to
characterization of probability distributions. Sankhyā: The Indian Journal of Statistics 30 (2), 167–180.
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A Additional informations on the Data

IPAMPA means “agricultural means of production purchasing price index”. This index is
made to track trends in the prices of goods and services used by farmers for their farm
operation. These prices are taken from the retailers of agricultural inputs.

E-Phy reports regulatory mentions imposed for each pesticide. It contains the specific
quantity of application with respect to each crop for the specific disease. Besides, it reports
information on the registrants firms, the date of registration and/or canceling, the level of
toxicity of each product and the safety precautions for farmers.

The Herbicides, Insecticides and Fungicides Resistance Action Committees published
a uniform classification by pesticide category: Herbicide Resistance Classification (HRAC),
Insecticide Resistance Classification (IRAC), and Fungicide Resistance Classification (FRAC).

Table 7: Chemical Classes

Cat. Group Chemical families

Herb. A Inhibition of acetyl CoA carboxylase (ACCase) (e.g. Aryloxyphenoxy-propionate ’FOPs’, Cyclohexanedione ’DIMs’,
Phenylpyrazoline ’DEN’)

B Inhibition of acetolactate synthase ALS (acetohydroxyacid synthase AHAS) (e.g. Imidazolinone, Pyrim-
idinyl(thio)benzoate, Sulfonylaminocarbonyl-triazolinone, Sulfonylurea, Triazolopyrimidine)

C Inhibition of photosynthesis at photosystem II (e.g. Amide, Benzothiadiazinone, Nitrile, Phenyl-carbamate, Triazine,
Triazolinone, Uracil,Urea)

E Inhibition of protoporphyrinogen oxidase (PPO) (e.g. Diphenylether, N-phenylphthalimide, Oxadiazole, Oxazolidine-
dione, Phenylpyrazole, Pyrimidindione, Thiadiazole, Triazolinone)

F Bleaching: Inhibition of carotenoid biosynthesis; Inhibition of 4-hydroxyphenyl-pyruvate-dioxygenase (4-HPPD) (e.g.
Diphenylether, Isoxazole, Isoxazolidinone, Pyrazole, Pyridazinone, Pyridinecarboxamide, Triazole, Triketone, Urea)

G Inhibition of EPSP synthase (e.g. glycine)
K Microtubule assembly inhibition; Inhibition of mitosis / microtubule organisation; Inhibition of VLCFAs (Inhibition of

cell division) (e.g. Acetamide, Benzamide, Benzoic acid, Carbamate, Chloroacetamide, Dinitroaniline, Oxyacetamide,
Phosphoroamidate, Pyridine, Tetrazolinone)

L Inhibition of cell wall (cellulose) synthesis (e.g. Benzamide, Nitrile, Quinoline carboxylic acid, Triazolocarboxamide)
N Inhibition of lipid synthesis - not ACCase inhibition (e.g. Benzofuran, Chloro-Carbonic-acid, Phosphorodithioate, Thio-

carbamate)
O Action like indole acetic acid (synthetic auxins) (e.g. Benzoic acid, Phenoxy-carboxylic-acid, Pyridine carboxylic acid,

Quinoline carboxylic acid)
No Not classified

Ins. 1 Acetylcholine esterase inhibitor (e.g. Carbamates, Organophosphates)
2 GABA-gated chloride channel antagonists (e.g. Cyclodiene organochlorines, Phenylpyrazoles (Fiproles))
3 Sodium channel modulators (e.g. DDT, Methoxychlor,Pyrethroids, Pyrethrins)
15 Inhibitors of chitin biosynthesis, type 0

Fng. A Nucleic acids synthesis (e.g. acylalanines , butyrolactones, carboxylic acids , hydroxy-(2-amino-) pyrimidines, isothia-
zolones, isoxazoles, oxazolidinones)

B Mitosis and cell division (e.g. acylpicolides, benzimidazoles, N-phenyl carbamates, phenylureas, thiophanates, tolu-
amides)

C Respiration (e.g. 2,6-dinitro-anilines, benzamides, benzyl-carbamates, cyano-imidazole, dihydrodioxazines, dinitrophenyl
crotonates, furan carboxamides, imidazolinones , methoxyacrylates, methoxycarbamates, oxathiin carboxamides, oxa-
zolidinediones, oximino acetates, oximinoacetamides, pyrazole carboxamides, pyridine carboxamides, pyrimidinamines,
pyrimidinonehydrazones, sulfamoyltriazole, thiazole carboxamides, thiophenecarboxamides, tri phenyl tin compounds)

D Amino acids and protein synthesis (e.g. anilinopyrimidines, enopyranuronic acid antibiotic, glucopyranosyl antibiotic,
hexopyranosyl antibiotic, tetracycline antibiotic)

E Signal transduction (e.g. dicarboximides, phenylpyrroles, quinolines)
G Sterol biosynthesis in membranes (e.g. allylamines, hydroxyanilides, imidazoles, morpholines, piperazines, pyridines,

pyrimidines, spiroketalamines, thiocarbamates, triazoles)
M Multi-site contact activity (e.g. chloronitriles (phthalonitriles), dithiocarbamates and relatives, guanidines, inorganic,

phthalimides, quinones (anthraquinones), sulfamides, triazines)

Table 8 gives an example the structure of our data. It illustrates why we embedded
the Series of prices within pesticide, and pesticides within chemical families.

B Homologation of pesticides

In Europe, since 1991, the directive 91/414/EEC homogenized the placing of plant protec-
tion products (i.e. pesticides) within all the European countries. It sets up a dual system
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Table 8: An example to illustrate the structure of the data

Category Chemical Pesticide Serie Pound Pay 30

Herbicides A Pesticide Product I Serie 1 5 0
Herbicides A Pesticide Product I Serie 2 1 1
Herbicides A Pesticide Product I Serie 3 5 1
Herbicides C/F Pesticide Product II Serie 4 5 0
Herbicides C/F Pesticide Product II Serie 5 10 0
Herbicides C/F Pesticide Product II Serie 6 20 0
Herbicides C/F Pesticide Product II Serie 7 10 1

Pound indicates the size of the box.
Pay 30 indicates payment within 30 days.
More details on these data are presented in section ??.

of authorization that successively analyzes the a.i. and pesticides.23 The first step is rel-
ative to the registration of a.i. It is made by the EC and States Members depending on
their acceptability for human health and environment. This decision is based on a previous
peer review evaluation of the a.i. made by the European Food Safety Authority (EFSA).
The registered a.i. are included into the Annex I of the Council Directive 91/414/EEC.
The second step concerns the evaluation and registration of pesticides. It is made at State
Member’s level. In France, this evaluation is based on the advices of both the French
Agency for Food and the Environmental and Occupational Health & Safety) (ANSES).
Registered pesticides are published by the Ministry in charge of Agriculture24 and are
available on the french open-data. Moreover, this directive incorporates into registration
process criteria such as acceptability for human health and environment of pesticide prod-
ucts. Hence, it imposed to re-evaluate each active ingredient registered before 1993. As
a result, in 2003, 26% of the 1000 marketed a.i. were registered, this involved a ban on
around four hundred pesticides. Since recently, the directive 91/414/EEC has been re-
placed by Regulation 1107/2009 which reinforces toxicity and eco-toxicity requirements to
improve the protection of pesticide users, the environment and human health. Besides,
the dangerousness of pesticides products requires precautions of use. Hence, for each reg-
istered pesticide, the regulation specifies the crop, the pest and the maximal rates by pest
and crop it can be used on. The registration process also define for each pesticide safety
precautions, toxicity and eco-toxicity mentions.

23Remember that the chemical action of one pesticide is given by one or multiple a.i. it includes.
24More detailed explanations of the registration process can be found in Hartnell, 1996.
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