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with a Bayesian Belief Network: The case

of the Kilombero Floodplain in Tanzania



Abstract

Modeling farmers intensification decision requires a model that considers the depen-
dencies between the perceived influences and their choices of intensification pathways,
accounting uncertainties at the same time. A combination of data driven Bayesian
Belief Network (BBN) and Regression Tree is proposed in this paper. Data from 304
rural households in Kilombero Valley Floodplain in Tanzania is used to learn the struc-
ture and parameter of the model. The resulting BBN is able to drive the probabilities
of intensification choices conditional on key market, biophysical and socio-economic
characteristics of farm households.
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1. Introduction

Achieving food security while promoting sustainable development are at the top of pri-

orities for the government of Tanzania (GOT). In fact, like most Sub Saharan African

countries, the agricultural sector is the main stay of the country’s economy, and a

key driver for rural development. The sector still continues to provide employment to

around 78 per cent of the total workforce and provides livelihoods to more than 70

percent of the population; it contributes to approximately 95 percent of the national

food requirements; and it is the single largest contribution to gross domestic product

and export accounting for about half of the total [Milder et al., 2013]. However, the sec-

tor remains largely subsistence, with population growth surpassing production growth,

food self-sufficiency declining, and the numbers of malnourished people consequently

rising.

The GOT vigorously pursues a policy that increases in agricultural production in the

country could be an engine of economic growth, driven either by a shift to large

scale commercial farms, or by improved productivity on smallholders through pro-

viding opportunity and access to resources. The idea highlighted an idea expressed

on different policy statements and national visions including Kilimo Kwanza (Agricul-

ture First)(2009), the Southern Agricultural Growth Corridor of Tanzania (SAGCOT)

(SAGCOT 2010) and Big Results Now (2012)[Coulson, 2015].

One of these major focal areas for the Tanzanian government in its bid to transform

towards a sustainable food basket and eradicate poverty is Kilombero valley flood-

plain wetland (KVFP). The low-lying plain with alluvial deposits is endowed with a

productive natural resource base, fertile land, reliable water availability and extensive

pastures [Bamford et al., 2010; Nindi et al., 2014a]. The floodplain is home to more

than 500 thousand people[2012 Census] and provides essential raw material, income

and nutrition benefits in form of crop production, fish, drinking water, forest products,

and fuel wood for households [Mombo et al., 2011]. Like other floodplains, the KVFP

also provides remarkably diverse array of ecosystem services including recreational fa-

cilities and aesthetic values [Kangalawe and Liwenga, 2005; Kato, 2007; Milder et al.,

2013], opening further opportunities.
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However, the supply of productive land is increasingly constrained due to intense com-

petition between different groups; small holder farmers, migrating pastorals and agro-

pastoral, large scale commercial ventures and Governmental and non governmental

conservation groups [Bamford et al., 2010; Dinesen, 2016; Kato, 2007; Milder et al.,

2013]. Mainly small-holder farmers are under considerable pressure: pressure to sell

or lease their land to national and international investors; pressure to engage in na-

tional markets; and intensify production to meet their households food requirements

[Kangalawe and Liwenga, 2005; Snyder and Cullen, 2014].

In the past, smallholders in the floodplain have enjoyed abundant land to increase their

agricultural production by substantially increasing area under cultivation and expand-

ing to marginal lands and bringing new wetland areas under cultivation [Bamford et al.,

2010][see figure A.7]. This land use change in turn is usually associated with various

negative environmental consequences, such as loss of habitat and above- and under-

ground biodiversity [Jones et al., 2012]. However, with various pressures like surging

population growth and in-migration into the valley, it is argued that agricultural in-

tensification becomes the rule rather than an option [Binswanger and Pingali, 1988;

Otsuka et al., 2013]. As Otsuka et al. [2013] argued ”the tension caused by increasing

scarcity of resource stimulates technological changes to save those resource and insti-

tutional support for those technologies also change”. And the contemporary situation

in KVFP is exhibiting such scenario. The need for increased agricultural production

has recently led GOT and various NGOs to promote the use of optimized/high-quality

inputs, adoption of new technologies or mechanization and value-chain development as

means to increase productivity and closing yield gaps for generating sustainable and

inclusive growth and reducing poverty [Agra, 2016].

The literature on agricultural intensification, its drivers, challenges and mechanisms

are well established. One of the earliest and most dominant hypothesis of drivers of

agricultural intensification are from Boserup [1965, 1981] and Lele and Stone [1989];

Ruthenberg et al. [1980], in which population growth results in increasing hardship in

providing livelihoods, causing the farmers to opt for more intensive agriculture. This

is reflected in increased land use intensities, e.g. shorter fallow periods to regenerate

soil fertility and more frequent annual cropping and adoption of improved agricultural

technologies [Jayne et al., 2014; Nin-Pratt, 2015; Okike et al., 2001; Otsuka et al., 2013].
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At the end, the pressure to adapt to the changing environment and for production in-

crease resides on the individual farmer’s decision. Like most African rural farm popula-

tion, farmers’ livelihood strategies are usually in line with their agricultural production

strategy. When faced with a decision to intensify their production, smallholders have

multiple pathways or strategies they take and the choices of these strategies are usually

conditioned on a number of socio-economic characteristics and the ecological context

of their farming environment. According to Schelhas [1996], the choices that farmers

make are not simply mechanistic responses to population density, economic conditions,

and environmental factors. The level of acceptable production for a household is de-

termined by needs to feed, clothe, house, and educate a family and to meet social

obligations and they continuously have to adjust their farming strategy to cope with

challenges they face. The underlying assumption is that the decision makers them-

selves are the experts on how they make the choices they make and their decision is

influenced by their own knowledge and perception Darnhofer et al. [1997]

However, only little is known of the relative contribution of these factors on the choice

of agricultural strategies of farmers in KVFP, an area particularly important for con-

servation and development objectives Milder et al. [2013].

It is in this light that further analysis of choices of intensification strategies in the

floodplain is required. In order to understand the state of agricultural intensification

and its role, it is important to understand the contexts in which farmers operate and

to identify and understand different factors that influence their decision making. Our

central focus is on the determinants and results of farmers decisions to uptake different

paths of intensification and land management practices. We specifically focus on four

land saving intensification strategies practiced in the study area, mainly 1) use of

chemical fertilizers, 2) use of improved seed, 3) implementation of small-scale irrigation

system, and 4) increasing frequency of planting. This is also helpful to efforts aiming

to upscale these strategies and identifying indicators farmers use to prioritize strategies

Leonard et al. [2011].

Our paper offers two novel contribution to the existing literature.First, we propose the

possibility of using Bayesian belief network (BBN) modeling as an alternative tool to ex-

isting models. Different modeling tools have been proposed to understand the decision

making and choices of individuals. Modeling paradigm ranging from , Probit mod-

els[Abay et al., 2016], Logistic regression models [Erenstein, 2006; Okike, 2001; Perz,
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2003] and decision trees [Gladwin, 1980] are few to mention [see [Besley and Case,

1993] for modeling farmer adoption decision]. In this paper, A Bayesian belief net-

work(BBN) approach was adopted as a modeling tool for identifying important factors

in explaining probabilities of intensification choices. The methodological motivations

behind this particular study are manifold. First, given all the uncertainties inherent

in modeling farmers decision making due to our current understanding of the decision

making process, the vulnerability of agriculture to random events such as changes in

weather, uncertainty related to data and observation etc. ,we opted to use probabil-

ity theory as our foundation to explicitly deal with uncertainty. And the Bayesian

approach to uncertainty ensures that the system as a whole remains consistent and

provides a way to apply the model to data [Koski and Noble, 2011]. As BBNs are joint

probability distribution, uncertainty is propagated through the model and presented

in the final results. Contrary to deterministic models, the probabilistic representation

of knowledge in BBN prevents overconfidence in the strength of responses obtained

by simulating changes in one or more variables of interest [Uusitalo, 2013]. Second,

Unlike other ’black box’ models, BBN provide generality and formalism of displaying

relationships clearly and intuitively [Daly et al., 2011; Margaritis, 2003], making them

amenable to analysis and modification by experts and stake-holders [Daly et al., 2011;

Sun and Müller, 2013; Uusitalo, 2013]. At the same time incorporating the qualitative

beliefs and attitudes of stake holders along with quantitative data. The other main

advantage of BBN is updatability where BBN can learn from minimal data in data

poor setting and the model parameters and structure can be updated as more data

become available.

Second, by investigating how farm households make their intensification decisions when

multiple pathways are available in KVFP, We highlighted factors driving the choice of

alternative strategies in an area of high potential but ecologically sensitive landscape.
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2. Material and Method

2.1 Bayesian Belief Network Modeling

BBN also known as Bayesian Net,Causal Probabilistic Network,Bayesian Network or

simply Belief Network is a probabilistic graphical modeling tool that allows for knowl-

edge representation and support for reasoning under uncertainty [Kjaerulff and Madsen,

2012; Korb and Nicholson, 2010; Pearl, 2011]. As other graphical models the nodes

represent stochastic variables and the arcs represent direct causal dependencies based

on process understanding, statistical, or other types of associations between the linked

variables [Pollino et al., 2007]. More formally Bayesian network can be described as

an acyclic directed graph (DAG) which defines a factorization of a joint probability

distribution over the variables, where the factorization is given by the directed links

of the DAG. More precisely, for a DAG, ð = (V,E), where V denotes a set of nodes

and E a set of directed links (or edges) between pairs of the nodes, a joint probability

distribution, P (XV ), over the set of (typically discrete) variables Xv indexed by V can

be factorized as

P (XV ) =
∏
vεV

P (Xv|Xpa(v))

where Xpa(v) is a set of parent nodes for variable Xv, for each node v an element of V

[Kjaerulff and Madsen, 2012].

BBN uses Bayes theorem and probability calculus to represent a causal linkage between

two connected stochastic variables. For instance X → Y, where X directly influences

Y, we need to drive the posterior probability distribution P (X|Y = y) using the prior

distribution P (X) and the conditional probability distribution P (Y |X).

Once a BBN is built it can be used to answer any question posed in a probabilistic

form and can be answered correctly and with a level of confidence. These questions are

usually restricted to determining the most likely hypothesis or, more specifically, the

belief in, or probability of, each possible hypothesis, given the available observations or

evidence [Daly et al., 2011]. Generally BBNs can be used to make two different types

of inferences. The first is top-down inference[predictive tool], this involves finding the

belief(probability) of query node(target node) being in certain state , given the other

nodes(variables) are set to a certain values. Second, bottom-up inference[diagnostic
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tool], is finding the probability of the states of a given set of nodes that best explain

why our target variable is set to certain value[Daly et al., 2011; Frank, 2015].

Designing a Bayesian belief network involves generally three steps that the modeler

must undertake [Cain, 2001a; Choi et al., 2011; Korb and Nicholson, 2010; Marcot

et al., 2006].(1)Variable selection and feature engineering , (2)Estimating the structure

of the network and (3) Populating the network with CPTs.

BBNs emerged from Artificial Intelligence field and widely used in diverse domains,

including medical field, environmental modeling and natural resources management and

forecasting Daly et al. [2011]; Korb and Nicholson [2010]; Uusitalo [2013]. Although

their application in farming system literature is limited, there are some application

of BBN. For example Cain [2001b] used BBN to explore the determinants of crop

yield. Sun and Müller [2013] combined Bayesian Belief network with opinion dynamics

modeling and agent based model for simulating land-use decision making under the

influence of payments for ecosystem services. The BBN was used to capture the choice

of farmers weather to participate or not in payment for environmental service program.

In similar work, Frayer et al. [2014] developed a BBN to analyze the proximate causes

and underlying drivers of the decision to plant of trees on previous cropland. Aalders

[2008] and Celio and Grêt-regamey [2016] built a Bayesian belief network to incorporate

farmers choices of different land use options. Rasmussen et al. [2013] developed a large

scale BBN tool for risk management in EU agriculture using Farmers Agricultural

Data Network data (FADN ). Pope and Gimblett [2017] used BBN in combination to

agent based modeling to explore the different ranching strategies farmers choose under

varying environmental conditions. When it comes to agricultural adoption literature, to

the best of our knowledge, this study is the first to apply the Bayesian belief network to

model farmers adoption decisions. And we argue that BBN can proved an alternative

and/or additions to existing and well established statistical models. BBNs provides

advantage of explicitly taking in to account uncertainty, integrate of wide range of

input data including expert knowledge and easily adaptability of both the structure

and dependencies between different influencing factors.
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2.2 Data and Study Area

2.2.1 Study Area

The Kilombero Valley, located in the Ulanga and Kilombero Districts in southern

Tanazania, forms one of the four principal sub-basins of the Rufiji River Basin and

comprises a myriad of rivers and seasonally flooded marshes and swamps [Dinesen,

2016]. The seasonal change in water dynamic is huge and the plains sometimes becomes

totally flooded during the wet season, while it dries up during the dry season with the

exception of the rivers and river margins as well as the areas with permanent swamps

and water bodies[Kato, 2007; Ntongani et al., 2014].

The Valley lies at the foot of the Great Escarpment of East Africa in the southern half

of Tanzania, about 300 km from the coast[Kato, 2007; Nindi et al., 2014b]. It covers an

area of about 11,600 km2, with a total length of 250 km and width of up to 65 km. The

elevation within the basin is about 300 m above sea level. Generally, the floodplain is

humid with high temperatures ranging from 26◦C to 32◦C. The KVFP is typical fertile

alluvial floodplain with loamy, clay, clay loamy and sandy soils and is an important

source of nutrients and sediment [Milder et al., 2013; Nindi et al., 2014b].

The KVFP is of global , regional , national importance in terms of ecology and bio-

diversity. It comprises the kilombero Game controlled area which approximately 7000

km2 and kilombero valley ramser site which covers 7,0679 km2 [Dinesen, 2016; Nindi

et al., 2014b].

As one of Africas largest wetlands, the Kilombero Valley has a long history of productive

activities, primary for farming [Kato, 2007; Rebelo et al., 2010]. And in resent year

an increase in agricultural land use has been widespread and rapid [Jones et al., 2012].

Immigration into the valley has increased dramatically due to the perceived availability

of high quality and cheap farmland. Conflicts between the pastoralists and farmers over

land use is a chronic and widespread problem, which has resulted in injury and litigation

disputes[MALF, 2015].

2.2.2 Data

We conducted a household survey in 21 villages in two Districts of the Kilombero

Valley, Ulanga and Kilombero. In total 304 farm households were interviewed using a
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Figure 2.1: Study Area

standard questionnaire, giving their opinions upon a wide range of topics designed to

discover the farming system in terms of resource availability and use, livelihood source.

The selection of households to be interviewed was based on a multi stage sampling

strategy. In the first stage 12 wards were selected purposively based on the availability

of floodplain farming. In the second stage 21 villages were selected randomly within

the wards. In the final stage households were selected randomly from the list pro-

vided by each villages leader. The number of interviewees per village ranges from 5 in

smaller villages to 15 in the biggest. A GIS coverage incorporating the land use map

form GLC30 [Jun et al., 2014] and the administrative boundary and census data from

Tanzania statistics office was use to estimate the boundaries and total population size

in the study area.

2.2.3 Variable Selection and Feature Engineering

From the sample survey we selected those variables considered most relevant to de-

termine the adoption of agricultural technologies pursued by particular households.

These variables are selected based on a systemic review of the key features from the
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literature. A significant body of research on farmers intensification decision informs us

about the processes driving intensification choices [Abay et al., 2016; Erenstein, 2006;

Headey et al., 2014; Howley et al., 2012; Okike, 2001; Shriar, 2000, 2001]. Feder et al.

[1985] reviewed the vast amount of literature on adoptions of different technologies in

developing countries. Looking at the broader perspective, the adoption of agricultural

technology depends on a range of personal, social, cultural, economic and ecological

factors, as well as on the characteristics of the strategy itself. In order, to select the fi-

nal subsets of variables, we used a decision tree algorithm and random forest algorithm

to check feature importance.

The selected variables span a combination of Household-level factors such as households

endowments(eg. Available income,off-farm income opportunities, access to credit,the

size of the farm household, availability of both family and hired labor, the quantity and

quality of land) , access to input and output markets which is expected to increase the

use of purchased inputs and the capital intensity of agriculture by increasing the prof-

itability and availability of such inputs. And variables representing the environment in

which the farmer is operating agro-ecological characteristics, such as soil quality and

the farming system also influence adoption choices. In addition a variables represent-

ing the farming system followed by a particular household and the crop choices also

influences the decision [Okike, 2001].

Our interest variable (target node) intensification is a discrete node that contains seven

states representing five strategies, one state to represent absence of intensification and

the others state that captures the remaining combinations of strategies that are not

observed in the data for this particular period. Here we can take the advantage of BBNs

to updating the conditional probabilities once new data become available. The following

table shows the description of 15 evidence nodes that are included in the final network.

We used per capita income as a surrogate for a resource endowment and availability

of capital. It comprises income from Agriculture(farming and fishing) ,income from

non farm activities, income from land rental and brick making. We also included

farmer type to represent the farming system followed by a particular household. A

farm type variable is a typology created through Non parametric Multivariate Analysis

to artificially stratify farmers in to clusters that are homogeneous according to their

livelihood and land use. In order to capture the quality and hydrological characteristics

of the farm, we generated a topographic wetness index using digital elevation model of

our study area(slope and upslope contributing area). The index provides an indication
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of the relative wetness with in the catchment and highly correlated with soil moisture

and ground level water [Sörensen et al., 2006]. Prices received by those who market their

crop will have an effect on the crop choices they make and also the income they receive

We included prices received by household for rice and maize(which is dependent on the

distance from the market) as expected prices for the two crops. Due to lack of past

price data, here we assume farmers received what they expected during the planting

period. Our distance variable measure the distance from the farm to the nearest big

market in km. Measuring the distance from the farm rather than homestead takes in

to account the access to and cost of transport from the farm to either farmers home

stead or the market(since most farms are located bottom valley quite far from home

stead).

Although BBNs are capable of handling continuous nodes, the existing software tools

are limited in terms of capability of including continuous variable as a node. Hence,

we discretized all continuous variables to different discrete bins. There a number of

ways to discretize continuous variables. We partition our continuous variables using a

heuristic method called equal frequencies where the variable is transformed to K equal

lengths or width [Clarke and Barton, 2000; Nojavan A. et al., 2017].
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Variable Description and Measurement

ageOfTheHouseholdHead age of the household head expressed in years

SizeOfTheHousehold total number of individuals living in the household

SizeOfTheCropLand total size of farm in Hectares

LabourInManDays Labour in man days available

ShareOfHiredLabour share of the hired labour

FarmerType farmer typology based on livelihood and landuse

CommercializationIndex share of output sold [a combined index of all crops]

DistanceFromTheBigestMarket Distance in Km from the main input and output market

Income total income per individual

PercentOfNonFarmIncome share of income from non agricultural activities

CreditAccess whether the household has access to credit services

Topographic Wetness Index surrogate for biophysical characteristics of the

plot[highly correlated with soil moisture]

ricePrice Expected Rice Price

maizePrice Expected maize Price

CropChoice farmer choice of crops to plant

ChoiceOfIntensificationStrategy choice of intensification strategy

A descriptive analysis of our variables in terms of distribution and correlation between

variables are provided in the appendix.
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3. Result

3.1 Structure Learning

Once the variables are selected and feature engineering is done[ discretising continuous

variables, define the nodes and their states] the next step is to learn the structure

of the network that encodes the interdependencies between variables. There are two

different approaches to build the structure of a BBN. (1) Learning through knowledge

engineering from experts and literature or theory (2) learning from empirical data. In

this study we used the second approach , learning the BBN directly from the data.

However,following [Sun and Müller, 2013] we augmented our approach based on theory

and conceptual intuition. In cases where the links are mathematically correct but

intuitively not acceptable either we reverse or remove the arc.

There exist different classes of algorithms for learning the structure of a Bayesian

network from a data[ For detailed explanation of learning algorithms see Koller and

Friedman [2009] Part III and chapter seven of [Nielsen and Jensen, 2009]].Generally

there are two different classes of algorithms for learning from a data:-

• Constraint-based structure learning: These approaches view a Bayesian structure

learning network as a representation of independences. Using some statistical

tests (such as chi-squared or mutual information),the approach try to test for

conditional dependence and independence in the data and use these relationships

as constraints to construct a BN [Koller and Friedman, 2009; Neapolitan et al.,

2004].

• Score-based structure learning: Score-based methods is an optimization-based

search approach that considers a Bayesian network as specifying a statistical

model and produce a potential of candidate Bayesian networks, calculate a score

for each candidate, and return a candidate of highest score [Kjaerulff and Madsen,

2012; Nielsen and Jensen, 2009].

For our study we adopted constraint based structure learning called tree-augmented

näıve Bayesian (TAN) network[Friedman et al., 1997]. TAN models are a restricted

family of Bayesian networks in which the class variable has no parents and each at-

tribute has as parents the class variable and at most one other attribute [Cerquides and
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De Màntaras, 2003]. Tree augmented naive Bayes is a semi-naive Bayesian Learning

method which has an advantage over the popular näıve Bayesian . It relaxes the naive

Bayes attribute independence assumption by employing a tree structure and choose

the tree that maximizes the likelihood of the training data[Friedman and Koller, 2003;

NorsysSoftwareCorp, 2016; Zheng and Webb, 2010]. According to [Friedman et al.,

1997], learning the structure of a network using TAN embodies a good trade-off be-

tween quality of estimation of correlation between predictors and the computational

complexity. And the learning procedure is guaranteed to find an optimal TAN structure

The structure was developed with the application and a Java API version of Netica

(5.4) [NorsysSoftwareCorp, 2016]. Netica provides a number of simplifying tasks for

the modeler including high visual capability to display the the network and advanced

algorithms to learn the structure and parameters of the network. Using the Java API for

construction of BBNs provides an advantage in terms of transparency, reproducibility

and easily integration with other modeling tools of interest.

3.2 Parameter Learning

As in the structure learning of BN, there are several possible ways of generating esti-

mates for the conditional probabilities (CPTs). In this study, the probabilities were

derived from survey data using maximum likelihood estimation since learning these pa-

rameters from observed data provide some level of objective probabilities rather than

completely subjective probabilities and can make the computational requirement easier

[Kocabas and Dragicevic, 2013]. Netica provides three algorithms to parameterize the

CPTs from data: Count learning, expectation-maximization (EM) and gradient de-

scent [Frank, 2015; NorsysSoftwareCorp, 2016]. In this study we explored both Count

learning algorithm and expectation maximization to populate the CPTs from the data.

Count learning also called Multinomial Parameterization (Spiegelhalter and Lauritzen

method) is the simplest and the most widely used [Korb and Nicholson, 2010; Norsys-

SoftwareCorp, 2016]. When learning using count learning , the net starts from state

of ignorance meaning each node’s states starts as uniform distribution, and for each

instances of data, we identify which state the node takes and update the distribution to

the corresponding parent instantiation [Korb and Nicholson, 2010]. On the other hand,

EM searches for maximum likelihood estimates even when there are missing values in

the data. The algorithm works through two steps, In the first step (expectation step

or E-step), we compute expected counts from the net and in the second step(M-step),
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we treat the expected counts like complete data, and compute the maximum likelihood

estimates from them. We typically repeat this iterative process until it no longer im-

proves the likelihood[Choi et al., 2011]. Although Count learning is the simplest and

true Bayesian learning [NorsysSoftwareCorp, 2016], our final network is based on EM

learning as it is more robust and provide better calibration to our data.

The final network is presented in figure 3.1. The network provides the prior probabilities

for all the variables in the network. Looking at our target node, while around 62% of

our sample households did not intensify their production, 38% of the households have

adopted one or more of the intensification strategy. 12% of the households have used

improved seed variates, 8% are planting in both short and long rainy season, 7% use

chemical fertilizers , 6.73% use irrigation and chemical fertilizer combined , while only

3.7% use irrigation. In terms of crop choices Rice is the dominant crop chosen by the

households.Around 42% of the farmers plant rice as a mono-crop and 27% produce rice

with combination of maize and 7.7% produces rice with combinations of maize and

vegetables. Majority of the households are small scale rice based farmers (60%), 30%

are small scale farmers that diversifier in terms of their land use and 10% represent

large scale ago-pastoralists who practiced crop production and livestock keeping. 70%

of the farmers own less than 3 hectares of crop land and 18% between 3 and 6 hectares.

And around 12 % owns more than 6 hectares. We can also see from the BBN that

farmers generally participate in output market, 41% of the farmers marketed between

30 and 60% of their output to the market and 34% sold more than 60 percent of their

output.
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Figure 3.1: The resulting BBN Using Estimation Maximization Algorithm

3.3 Validation of the BBN

An important aspect of constructing a Bayesian network is validation. Validation is

key to ensuring the high quality of the model. There are a number of ways to check

the validity of the constructed BBN both quantitative and qualitative. In case of

qualitative one can check the validity using expert opinion [Celio and Grêt-regamey,

2016; Frank, 2015]. The quantitative validation used a test data set to check the validity

of predictions on our target variable. We validate our BBN using to quantitative

validation techniques. we first performed five fold cross validation by partitioning our

data in to five disjoint sub sets and do the iterative validation for five folds. In order

to take in to account unbalanced nature of our target node intensification strategy and

ensure that all the states are equally represented in the split, we used stratified cross

validation tool from Caret [Kuhn, 2008]. Based on the avarage performance across the

folds, the error rate of our model was 45%.
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Table 3.1: Sensitivity of ’ChoiceOfIntensificationStrategy’ to a finding at another
node

Variable Variance Reduction(%) Entropy Reduction(%)
CropChoice 7.97 5.87
DistanceToBigMarket 6.26 3.77
PerCapitaIncome 2.01 2.05
FarmerType 1.97 2.01
ShareOfHiredLabour 1.42 1.72
TopgraphicWetnessIndex 1.36 1.64
SizeOfHousehold 1.18 1.62
CommercializationIndex 1.18 2.02
SizeOfCropLand 1.08 1.3
PercentOfNonFarmIncome 0.519 2.32
ExpectedPriceOfRice 0.284 0.225
LabourInManDays 0.262 1.42
ageOfTheHouseholdHead 0.209 2.19
ExpectedPriceOfMaize 0.0259 0.0158
creditaccess 0.00893 0.96

3.4 Sensitivity analysis

Since the final output of BBN is dependent on a priori assigned probabilities, we used

sensitivity analysis to measure changes in probabilities of target node when there are

changes in critical input parameters [Pollino et al., 2007].The sensitivity analysis based

on Bayesian Network also serves as an aid to identify the significant and informative

variables that affect our target variable intensification strategy [Sun and Müller, 2013].

Since the input parameters required for the sensitivity analysis contains discrete val-

ues, Entropy Reduction (Mutual Information) method is used here to determine the

sensitivity of the BBN model’s output to variation in a particular input parameter.The

entropy reduction method works by computing the expected reduction in entropy of

the target node due to finding at another node F . It is calculated as [Marcot et al.,

2006; NorsysSoftwareCorp, 2016; Pearl, 1988]:

I = H(Q)−H(Q|F ) =
∑
q

∑
f

P (q, f) log2 [P (q, f ]

P (q)P (f)

where H(Q) and H(Q|F ) are the entropy of Q before and after any new findings

respectively.
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Table 3.1 shows the output of the sensitivity of intensification strategy to influencing

variables. The result indicate that crop choices of the farmer is having the greatest

influence in choice of intensification strategy with 5.87 reduction in entropy, followed

by the distance from the nearest market with 3.8% variance reduction.In addition,

Per capita income,share of income from non farm activity, age, Farmer type ,share

of hired labor and topographic wetness index also influence the variation in choice of

intensification strategy. All other variables have less than 1% reduction in entropy.

Although the sensitivity analysis based on a measure of entropy provides us an inter-

esting insight regarding the main influencing factors for the choice of an intensification

strategy, it does not tell us much how the probability of each strategy is influenced by

the factors included in our model. In this study we made a further effort by conducting

a global sensitivity analysis using a combination of Design of Experiment (DEO) with

meta-modeling approach. In order to generate sample configurations of the evidence

nodes we used Nearly Orthogonal Latin Hypercubes(NOLH) [Sanchez, 2005] that cov-

ers the parameter space of our evidence nodes. After creating the sample points, we

provide the values to the network as evidence and we recorded the probabilities of each

strategy for each sample point. To determine the effect of the different nodes on the

variation of the probabilities of each strategy , we followed a meta modeling approach,

and applied a regression tree model for each of the strategies [Coutts and Yokomizo,

2014]. The regression tree modeling approach has the advantage of automatically in-

corporating higher level interactions and of dealing with nonlinearity, they make very

few assumptions about the structure of the data, and they are robust to outliers and

implicitly handle variable selection [Coutts and Yokomizo, 2014; Kuhn and Johnson,

2013]. In addition, it provides an analogy for an easy rule induction from the results.

The regression trees were implemented using Scikit-learn a machine learning tool in

Python [Pedregosa et al., 2011]. The resulting regression tree [Fig A.1 A.2 A.3 A.4

A.5] and feature importance Fig A.6 for each strategy is provided in the annex.

The feature importance from the regression tree [Fig A.6] revels that variation in prob-

abilities of choosing cropping multiple times is captured by variation in total labor

available during the year, commercialization index, topographic wetness index , in-

come and distance to central market. The variations in the probabilities of fertilizer

application are also affected by topographic wetness index, if the farmer is diversifier,

age, commercialization and distance to the market. On the other application of im-

proved seeds is influenced by share of non farm income, age, household size , distance
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to the market and farm size. The probability of use of irrigation and fertilizer applica-

tion is affected by distance to the market , farm size , share of non farm income and

topographic wetness index. The variation in probabilities of use of irrigation is affected

by variation in topographic wetness index , non farm income , farm size, if the farmer

is of type substance and availability of labor.
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4. Discussion and Conclusion

The present study was designed to explore the different factors that affects the choices

of intensification strategies by considering a diversity of pathways that are tailored to

the agro-ecological potential and production systems of floodplains. By building a data

driven BBN we tried to explore factors that affect the choices of intensification strategy

in KVFP. The probabilistic representation of BBN allow us to establish dependencies

between hypothesized factors and intensification strategy while taking in to account

uncertainties.

Based on our sample size, around 38% of farmers have intensified their production

according to our identified sets of strategies. Given the urge for increase in agriculture

production from the existing farm land we observe there is still room for intensifying

more. The results from the sensitivity analysis also revealed range of factors influencing

for farmers to choose one strategy over the others. In other words, we are able to identify

under which social, economic and environmental conditions a particular intensification

strategy is adopted.

In our study area, the choice of planted crops is the most import influencing factor

for the choice of intensification strategy. Given that rice is the main crop produced in

the area, the variations are more or less dependent on the mixed cropping of rice with

maize and vegetable. Income and availability of off-farm income also further modify

the choice of intensification strategy. Availability of income is a surrogate for farmers

endowment and their ability to invest additional resources required for adopting the

strategies.

Distance from the farm to nearest market and commercialization also has a strong

influence on the choice of intensification strategy. Access to market has an effect both

in terms of access to key inputs and also access to the output market and significantly

affect intensification[Erenstein, 2006]. Although the availability of both family and

hired labor is a crucial determinant of intensification choice, the sensitivity show a

moderate connection.

The global sensitivity analysis provides the factors leading to the choice of a particular

intensification strategy. In general, from the meta-modeling analysis we observe that

each strategy is influenced differently by factors under consideration. Although the
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variations in the probabilities of strategies are influenced by a common set of variables,

the magnitude and order of the effects are different across the strategies.

Closer inspection of the regression trees shows, farmers whose field is located in rela-

tively wetter areas, who sale less than 66% of their output and located relatively far

from the market and with higher market participation will have higher (33%) probabil-

ity to choose cropping multiple times a year. In case of applying fertilizer, farmers who

own relatively bigger land size and located in wetter areas will have on average 27%

probability to apply fertilizer. The highest probability (28%) for Adoption of improved

seed variety as strategy is found for households with less than 4 household members,

located less than 22 km from the central market and less than 10 hectares of land.

Looking at the characteristics of farmers who chooses to combine small-scale irrigation

with fertilizer application, farmers who receives more than 38% of non-farm income

with farm size greater than 7 hectares and located less 22 km from the market have

an average probability of 22%. As expected Irrigation use is affected by labor avail-

ability, farm type and topographic wetness index of the farm. The highest probability

for use of irrigation (5%) is for farmers with labor more than 109 man-days, a type of

small-scale subsistence and topographic wetness index of less than 28.

There are some limitations to our study and one should interpret our findings in light

of these limitations. Our limitations mainly arises from limited data set both for

training and validation of our BBN. In addition , our data also lacks combinations of

intensification strategies that might be choices for the farmer. The BBN presented in

this study is static in nature and does not take in to account the dynamics over time.

Discretization of the continuous variables also will result in loss of information from the

data and the choice of the method of discretization also might affect the structure and

parameters of the BBN. Although our objective is on land augmenting intensification

strategies adopted in our study area , farmers might have other strategies that they

might uptake which are not included in our research.
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A. Annex

21



Figure A.1: Fertilizer Application

Figure A.2: Crop Multiple times
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Figure A.3: Improved Seed

Figure A.4: Irrigation and Fertilizer
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Figure A.5: Irrigation Use

Figure A.6: Variable Importance
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Figure A.7: LandUse for 2000
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Figure A.8: LandUse for 2010

[Jun et al., 2014]
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Figure A.9: paired combinations of continuous variables.

Figure A.10: Correlation between
commercialization and Income

Figure A.11: Correlation between
family Size and Farm size
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Figure A.12: Distribution of farm
size

Figure A.13: violin plot between
income and intensification

Figure A.14: Distribution of
Household Size

Figure A.15: Proportion of Inten-
sifying
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