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Integrated Micro-Macro Structural Econometric Framework for Assessing Climate-

Change Impacts on Agricultural Production and Food Markets 

 

Abstract 

This paper combines a micro-level structural econometric model of farmland allocation and a 

market-level equilibrium supply-demand model in order to simulate the effects of climate 

changes on agricultural production, food prices and social welfare. The estimation accounts for 

corner solutions associated with disaggregated land-use data, whose usage enables treating 

prices as exogenous. We employ the model for assessing climate-change impacts in Israel, in 

which agriculture is protected by import tariffs. We find that projected climate changes are 

beneficial to farmers, particularly due to the positive impact of the forecasted temperature rise 

on field crops. Fruit production are projected to decline, and reduce consumer surpluses, but to 

a lower extent than the increase in total agricultural profits. Nearly 20% of the profit rise is 

attributed to farmers’ adaptation through land reallocation. Adaptation to the projected 

reduction in precipitation by increasing irrigation is found warranted from farmers’ perspective; 

however, it is not beneficial to society as a whole. Abolishing import tariffs effectively transfers 

surpluses from producers to consumers, but its impact on social welfare becomes positive only 

under large climate changes.  
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Introduction 

Owing to their ability to capture economic interactions among quantities and prices of 

multiple products and regions, general and partial equilibrium models have become powerful 

tools for assessing climate-change effects on agriculture. Such macro-level models are 

frequently linked with micro-level agricultural production models to represent farmers' 
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optimal responses to changes in exogenous variables, including climate, prices and policy 

instruments. The micro-level models are often based on the mathematical programming 

approach, in which agricultural production is represented explicitly, and thereby enables 

integration with the macro-level equilibrium models to reflect price feedback effects on 

supply changes (e.g., Howitt et al., 2003; Parry et al., 2004; Nelson et al., 2010; Arndt et al., 

2011; Arndt et al., 2012; Palatnik et al., 2011; Robinson et al., 2012; Shrestha et al., 2013). 

The agricultural production functions in such micro-level models are usually calibrated, or 

derived from estimates external to the model (Michetti, 2012). That is, there is no direct 

linkage between the macro-level equilibrium model and the dataset used to derive the 

agricultural production functions in the micro-level model. Consequently, the analysis may 

not capture the sample heterogeneity present in the data with regard to farmers’ productivity 

and production decisions. This paper develops a structural econometric framework for 

estimating a micro-level supply model which is consistently linkable to a macro-level market-

equilibrium model. 

Two types of econometric models are widely used in economic analyses of climate 

change, both are based on the notion that observed farm-management practices and profits 

reflect farmers’ optimal responses to external factors, including climate. The first are land-use 

models, which utilize spatial variability in climate conditions to explore climate-change 

adaptation measures (e.g., Mendelsohn and Dinar, 2003; Kurukulasuriya and Mendelsohn, 

2008; Seo and Mendelsohn, 2008; Fleischer et al., 2011). The second type of econometric 

models employs the Ricardian or Hedonic approach (Mendelsohn et al., 1994; Schlenker et 

al., 2005; Deschênes and Greenstone, 2007), in which spatial variation in farm profits or land 

values are explained by economic and environmental variables. However, both types of 

models are based on a reduced-form approach; that is, they do not explicitly estimate 
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production functions, and therefore can be linked to macro-level models only implicitly (e.g., 

Mendelsohn and Nordhaus, 1996).  

The structural model developed in this paper builds on the approach suggested by 

Kaminski et al. (2013). The approach relies on a recursive decision-making process (McGuirk 

and Mundlak, 1992): farmers allocate land across crop bundles (e.g., fruits, vegetables, field 

crops) at the beginning of the growing season based on their anticipated end-of-season 

optimal per-hectare profits, which are themselves based on farmers’ long-term experience 

with respect to weather during the growing season; that is, based on climate. Hence, spatial 

variation in climate conditions leads to spatial variation in the anticipated relative optimal 

profitability of bundles, which in turn dictates the observed spatial variation in land allocation 

across crop bundles. The structure of the profit function enables us to use disaggregated crop-

acreage data in combination with aggregate production quantities for estimating per-hectare 

production and cost functions, as well as testing whether the estimated profit functions 

comply with economic theory. Utilizing land-use data as opposed to land values allows us to 

avoid making assumptions regarding the presence of perfect markets for land and other inputs, 

which are common in the applications of the Ricardian/Hedonic approach. More important for 

the purpose of this study, agricultural production and output prices are expressed explicitly in 

the estimated model; this key property is exploited to consistently link this structural 

econometric micro-level supply model with a macro-level demand model. Consistency 

between the models is achieved by constraining the estimated coefficients of the micro-level 

model, such that the aggregate output-value shares of the various crops derived from the 

model would be equal to the observed output-value shares. Then, in simulations of exogenous 

changes, the two models feed into each other to determine the equilibrium quantities and 

prices of agricultural products, while capturing the heterogeneous supply responses in the 

entire sample used for estimating the micro-level model. 
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Our analysis deviates from the modeling strategy suggested by Kaminski et al. (2013) in 

two important aspects. First, by using regional land-allocation data, Kaminski et al. (2013) 

avoided the need to deal with corner solutions (land shares of 0 or 1). However, because 

output prices may be endogenous at the regional level, such a strategy would not be suitable 

for our purposes. Our analysis uses disaggregated data at the community level, where prices 

can be more safely considered as exogenous. This, however, requires us to use an estimation 

strategy that controls for the presence of non-negligible number of observations with corner 

solutions. Second, Kaminski et al. (2013) simulated the impact of climate change while 

ignoring the responses of output prices to supply changes. We account for these price-

feedback effects by linking the micro-level supply model to a macro-level demand model, and 

simulate partial equilibria. Thus, prices are exogenous in the estimation of micro-level 

production decisions, but become endogenous in the simulations under partial-equilibrium 

conditions. The importance of allowing prices to be endogenous in the assessment of climate-

change impacts has been highlighted by Fernández and Blanco (2015). Miao et al. (2016) 

have shown that ignoring the price effects of climate change may lead to an overestimation of 

the yield effects. 

The suggested methodology can be applied to various levels of spatial scales, employing 

partial- or general-equilibrium frameworks, wherein the prices of different crop bundles can 

be considered either exogenous or endogenous in the simulations. This feature enables using 

the model for analyzing the impacts of agricultural support policies, particularly those 

affecting international trade, that are a subject for continuous debate (see Matthews, 2014): in 

countries employing trade barriers such as import tariffs, the price of some crop bundles may 

be determined by equilibrium conditions in the local market, whereas in small open 

economies prices are set in the global markets and hence are exogenous to the local market. In 
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addition, our methodology can be used to derive local impacts of climate changes, which 

could be useful for spatially targeted policy responses (De Pinto et al., 2016). 

We illustrate our approach using Israeli data, assessing the impact of protective tariffs on 

the Israeli vegetative agriculture markets under climate change. Israel is particularly suitable 

for studying the impact of climate change on agriculture because of its diversified climate 

conditions, within a relatively small distance, from subtropical in the north to arid in the 

south. In addition, Israeli agriculture is technologically advanced, and has enjoyed decades of 

experience of adaptation to unfavorable climate conditions. Not surprisingly, previous studies 

of the impact of climate change on Israeli agriculture cover the entire range of methodologies 

described above. Specifically, Kan et al. (2007) applied the mathematical programming 

technique to regional data from Israel, while Fleischer et al. (2008) applied the Ricardian 

approach to micro-level data. The impact of climate change on agricultural decisions in Israel 

was analyzed further by Fleischer et al. (2011), who used a discrete choice model in which 

farmers choose among a set of crop-technology bundles, and by Kaminski et al. (2013) based 

on their aforementioned structural model. In all of these studies, output prices were assumed 

constant and exogenous in the simulations of climate change. This assumption is particularly 

problematic in the case of Israel, and might lead to considerable biases even if global food 

prices are stable; this is because the Israeli government limits imports of many agricultural 

products through import tariffs, quantity limitations, and other institutional means (OECD, 

2010); hence, many crop prices are determined within local markets. Therefore, a partial 

equilibrium model, in which prices are determined endogenously, is more suitable for 

assessing the ramifications of climate-change effects in the case of Israel. Furthermore, this 

also opens up a public economic perspective of the distribution of climate-change effects 

between producers and consumers (since the latter are affected by climate-driven price 
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changes) with both efficiency and equity concerns as to which public policies could better 

mitigate potentially-harmful climate-related impacts onto economic activities. 

We use changes in precipitation and temperature as projected under the various climate-

change scenarios adopted by the IPCC (IPCC 2014) in order to simulate changes in farmland 

allocations, agricultural production, output prices and producer and consumer surpluses. Our 

results point at positive impacts of the projected climate changes on the Israeli farming sector. 

These benefits are attributed to increased production of vegetables and field crops. On the 

other hand, fruit production is expected to shrink, entailing price increase up to the level 

where protection by import tariffs becomes ineffective. Consequently, local consumers of 

agricultural products face losses of surplus. However, the overall benefits to farmers exceed 

the losses to consumers, implying social welfare gains. We find the forecasted sharp 

temperature rise driving these results, with moderate counterbalance by the projected slight 

precipitation decline. 

We compare the above results to the case where import tariffs are abolished. This policy 

transfers surpluses from producers to consumers, and we find that social welfare increases 

only under large enough climate changes. We further show how the model can incorporate 

farmers’ adaptation through input-application changes, as well as to account for changes in 

prices and availability of inputs. Specifically, we find that offsetting the effect of precipitation 

reduction by increasing irrigation is an optimal strategy from the farmers’ perspective, but not 

from the point of view of the society as a whole. 

In the next two sections we describe the micro-level supply model and the link to the 

macro-level partial equilibrium model. We then present the data sources and the empirical 

results, including the estimation of the land-use supply model and the simulations of climate-

change impacts on profits and consumer surplus. The final section discuses policy 

implications and potential extensions. 
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Supply Model 

We model a vegetative agricultural sector that operates in a small economy where all goods 

are freely traded, except for a subgroup of agricultural products that are subject to import 

tariffs. Consider a sample of I farms where each farm i, 1, ...,i I , can grow J potential 

bundles of crops (i.e., groups of field crops, vegetables, etc.). Let jis  be the land share of crop 

bundle j, 1,...,j J , in farm i. The objective of some farmer i is to choose at the onset of the 

growing season the vector of land shares si ,  1 , ...,s i i Jis s , so as to maximize the farm’s 

anticipated end-of-season profit: 

    
1

max =
s

s
i

J

i ji j ji ji i
j

s y c c


    (1)
 

s.t. 
1

= 1 
J

ji
j

s

  and 0 1,...,   jis j J    

where i  is farm-i's economic profit (normalized to per-one-hectare profit), j  is the 

bundle's expected output price, jiy  is the farm-specific expected end-of-season per-hectare 

optimal yield of bundle j, and jic  stands for the expected end-of-season bundle-specific per-

hectare optimal economic costs. Both jiy  and jic  are anticipated by the farmer while 

accounting for bundle-specific per-hectare profit-maximization measures she expects to apply 

during the growing season (i.e., irrigation, fertilization, pesticides, herbicides, etc.) in 

response to foreseen exogenous events, the likelihood of which depends on various conditions 

including climate. The function  sic  is the implicit production and management-cost 

function, representing costs that are neither bundle-specific, nor independent across bundles; 

for example,  sic  incorporates risks, the costs associated with unfeasible production of 

certain crop bundles in rotating systems and the allocation of quasi-fixed inputs such as labor 

and machinery across crop bundles with different patterns and cultivation timing. The 
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function  sic  captures the constraints on farmers' acreage decisions as motives for bundle 

diversification and represents the non-linear effects of the allocative land-use variables s on 

farm profits – a pivotal feature in positive mathematical programming (Howitt, 1995). 

We further specify the expected optimal per-hectare output of each bundle j by the linear 

function b xji j iy  , where b j  is a vector of coefficients, and xi  is a set of farm-specific 

yield-related exogenous variables, including climate variables and farm characteristics.1 The 

expected optimal bundle-specific economic costs are specified by γ wji j ic  , where wi  is a 

vector of cost-attributable exogenous variables and γ j  is the corresponding vector of 

coefficients. Thus, the expected maximum per-hectare economic profit of bundle j is: 

 b x γ w v zji j ji j i j j i j jiy c      (2)
 

where  ,v b γj j j   and  ,z x wji i j i . Noteworthy, since γ wj i  incorporates the 

shadow values of constrained factors, it expresses the per-hectare economic costs rather than 

the explicit costs reported in bookkeeping records; hence, v zj ji  represents the per-hectare 

economic profit rather than the accounting profit. Also note that the vector of exogenous 

variables z ji  being bundle-specific due to the multiplication of the variables in xi  by the 

respective output price j  is crucial for the identification of the production-function 

coefficients, which in turn allows the link between the micro- and macro-level models. 

The function  sic  plays a key role in the econometric analysis, as its functional 

specification determines the attributes of the structural equations to be estimated, and 

therefore the required estimation procedure. Carpentier and Letort (2014) and Kaminski et al. 

(2013) assume the opposite-entropy function: 

    
1

1
lns

J

i ji ji
j

c s s
a 

   (3)
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where the a parameter, measured in land-per-money units (and therefore assumed positive), 

reflects the “weight” of the implicit costs in the economic-profit function. This is a negative, 

non-monotonic convex function with respect to jis . The non-monotonicity implies that, 

ceteris paribus, the implicit costs decline with jis  for  exp 1 0jis   , and increase with 

jis  when  1 exp 1jis   . Since land shares are negatively correlated among themselves 

through the land constraint,  sic  reaches its minimum value when 1jis J  for all 

1, ...,j J .  

Deriving the optimal solution from problem (1) above, given the per-hectare optimal 

expected profit specification (2) and the opposite-entropy specification (3) for  sic , yields 

the following multinomial logit functional form for the optimal land shares (see Appendix A): 

    
 

*

1

exp

exp

v z
z

v z

j ji

j i J

j ji
j

a
s

a





 (4)

 

where  * zj is  is the profit-maximizing land share of bundle j, and  1 ,...,z z zi i Ji . 

The land constraint implies that the parameters of only 1J   bundles can be identified; we 

specify bundle J as the reference bundle. As will be shown later, in order to simulate partial 

equilibrium one should identify the parameters of the linear yield function b j  for all the J 

bundles. We take advantage of the fact that farmers typically devote non-cultivated 

agricultural land to roads, storage lots and other uses that support the production in the 

cultivated areas, and treat these supportive lands as the reference bundle. As in crop cost-and-

return studies (e.g., see studies by UC Davis), the revenue contribution of the supportive lands 

is reflected only through the cultivated areas; that is, 0b J  . We divide and multiply *
jis  in 

Eq. (4) by  exp vJ Jia z  to obtain 
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1

*

1

exp expz V z V z
J

ji i j ji j ji
j

s





 
  

 
  (5)

 

where     , ,V b γ γ B Gj j j J j ja a    ; this implies that we cannot identify a  and v j , 

but only the coefficients Bj  and G j  in Vj . 

One could use Eq. (5) to obtain a system of 1J   linear land-share regression equations.2 

Indeed, being conveniently estimable due to linearity, flexible, and ensuring that for each 

observation the predicted land shares are between 0 and 1, and add up to 1, the multinomial 

logit functional form was favored over alternative specifications in land-use analyses (e.g., 

Wu and Segerson, 1995; Hardie and Parks, 1997; Miller and Plantinga, 1999). However, the 

set of linear regression equations derived by the multinomial logit specification cannot treat 

corner solutions (i.e., land shares of 0 or 1). This limitation may not emerge when estimation 

is based on regionally aggregated data, where zero land-share observations are rare; but at the 

regional level prices may be endogenous. Our disaggregated land-use dataset discards the 

endogeneity of prices,3 but on the other hand may involve a non-negligible number of 

observations with corner solutions. Hence, we estimate Eq. (5) by employing the quasi 

maximum-likelihood approach to the fractional multinomial logit likelihood function (Papke 

and Wooldridge, 1996; Buis, 2010): 

     *

1 1

ln ln z
I J

ji ji i
i j

L s s
 

   (6)
 

where jis  is the observed land share, and  * zji is  is as specified in Eq. (5). 

The land-use model developed thus far can be transformed into a supply model using the 

per-hectare profit-maximizing yield function b xji j iy  , such that the predicted total 

production of bundle j by farm i is  * z b xi ji i j il s , where il  is the total land area of farm i. 

Two obstacles emerge: first, output data are frequently available only at the macro level (e.g., 
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for the entire country); second, the coefficients b j  cannot be separated from the a parameter.4 

We handle these limitations by referring to production outputs in relative terms and by 

utilizing aggregate information as a constraint in the estimation of the land-use model. Let the 

sample’s total production value of bundle j be 

    *

1

=z z b x
I

j j i j i j i
i

A a l s

  (7) 

where  1,...,z z z I . Let bundle 1 be the reference, and denote by jr  the observed ratio of the 

aggregate country-wide production values of bundle j and bundle 1. We estimate Eq. (6) 

subject to the set of constraints 

 
 
 1

= 2,..., 1
z

  
z

j
j

A
r j J

A
    (8) 

It is easily seen that the parameter a in Eq. (7) is canceled out in Eq. (8). The additional 

benefit is that we can use the aggregate information embedded in the ratios jr , 2,..., 1j J  , 

to assign a meaningful production interpretation to the coefficients b j . 

Linking Micro- and Macro-Level Models 

The aggregate production value of bundle j,  zjA , also serves as the link between the micro-

level supply model and the macro-level demand model. Let 1
p
jt jt j    denote the 

simulated output-price index of crop bundle j at some year t relative to year 1 (the base year,), 

so that 1
p
j  is normalized to 1. We define a vector of price indices  1 1,..., 

p p p
t t J t   , and the 

corresponding set of explanatory variables  1 ,z x wp
ijt jt j it it   for every farm 1,...,i I , 

bundle 1,..., 1j J  , and year t, where xit  and wit  incorporate the values (observed for 1t  , 

forecasted for 1t  ) of farm-i’s variables at year t. Accordingly,  *ˆ zj its  is the predicted land 
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share calculated by Eq. (5) given the year-t’s set of variables  1,...,z z zit ijt iJ t  and the 

estimated coefficients B̂j  and Ĝ j . Then, the aggregate optimal output value for each bundle j 

is predicted by    *

1

ˆ ˆˆ=z z B x
I

p
j t jt j i j it j it

i

A l s 

 , where  1 ,...,z z zt t It . We use the Laspeyres 

quantity index to derive the change in the output of crop bundle j supplied by local producers 

in response to changes in the prices and the exogenous variables between year 1 and some 

year t. The local-supply quantity index is: 

    
 1

ˆ

ˆ
z

z
z

j ty
j t

j

A

A
   (9) 

The quantity index  zy
j t  depends on the output-price index p

jt  directly through the impact 

on the output value  ˆ zj tA , as well as indirectly through the effect on zt , which entails land-

use adaptation responses. Note that the parameter a vanishes in Eq. (9) as well, thereby 

enabling to simulate changes in the supply index based on ˆ
jB  without the need to identify a 

and b j .   

 We now turn to the demand side. Similar to the supply side, we formulate a bundle 

quantity index as a function of price indices, which is based on aggregate country-wide data 

on individual crops within each bundle. In order to simplify notation, and without loss of 

generality, assume that the number of different crops in each bundle j, 1, ..., 1j J  , is 

identical and equal to K. Denote the price of crop k, 1, ...,k K , of bundle j in year t as kj
tp , 

and the aggregate quantity of this crop demanded by local consumers as kj
tQ . Also assume 

that the country-wide aggregate demand function is of the constant-elasticity form: 

  
kj

kj kj kj
t tQ h p


   (10) 
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where kj  is a known demand elasticity and kjh  is a calibrated parameter. Assume further 

that all crops in each bundle j satisfy the criteria of a composite commodity; that is, their 

prices change proportionately.5 Define the Laspeyres demanded-quantity index, q
jt , which 

based on Eq. (10) becomes a function of the simulated price index p
jt , as: 

  
1 1

1

1 1
1

( )
kj

K
kj kj p kj

jt
q p k
j jt K

kj kj

k

p h p

p Q


  







 (11) 

If the markets for bundle-j products are in equilibrium in the base period ( 1t  ), then 

   1 1 1zq p y
j j j    . In future years, xt  incorporates the modified values of all climate 

variables in relation to the base year, such that plugging xt  into the supply-quantity index in 

Eq. (9) breaches the equilibrium. Without trade restrictions, prices change only if world prices 

change,6 and the gap between the demand quantity index  q p
j jt   and the supply quantity 

index  zy
j t  represents the change in import or export of bundle-j's products. If trade is 

restricted by import tariffs, the set of local price indices p
t  would change so as to meet 

equilibrium conditions in the local markets, unless price changes are large enough so as to 

turn import-tariff restrictions ineffective. Let   1 1,...,p p p
J    be the set of import prices, 

which equals the world prices plus the country’s import tariffs. We simulate partial 

equilibrium by solving 

 
    

1 2

1

min

. .

 

 

z

 

p
t

J
q p y
j jt j t

j

p p
ts t

  











 
 (12) 
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Eq. (12) links the supply quantity index, which incorporates all the sample data points, to the 

demand quantity index, which is based on aggregate data, while taking into account trade 

restrictions through the implementation of import tariffs. 

The model provides the information required for calculating changes in welfare elements. 

The change in consumer surplus from the base period to some year t is computable for every 

bundle j, 1, ..., 1j J  , based on Eq. (10): 1 1
1

1

( ) 1 ( )
1

kj kj
kjK

p kj
jt jtkj

k

h
CS p 


 



     . 

Aggregate local-farming revenues and imports at time t are given by   1 1
1

z
K

y kj kj
j t

k

p Q

  and 

    1 1
1

z
K

y q p kj kj
j t j jt

k

p Q  


   , respectively. To compute local aggregate accounting profits one 

needs to subtract the explicit costs from the production value. However, as aforementioned, 

the estimated economic-cost function G wj i  differs from farm-i’s explicit costs by the 

presence of constrained factors multiplied by their respective shadow values. We distinguish 

between these two types of costs by defining  1 ,...,we e Ne
i i iw w  as a subset of wi  that 

incorporates those variables associated with explicit costs (e.g., purchased production factors). 

Accordingly, farm-i‘s predicted total explicit cost at time t is 

      
1

*

1

z z w
J

e
it it i ji it j it

j

C l s C




   (13) 

where  we
j itC  is a bundle-specific total per-hectare explicit-costs function, which is 

derivable from macro-level information and cost-and-return studies. We specify 

   1

1 1 1

w
neK N

e kj kj kj it
j it j n ne

k n i

w
C L L C

w


 

    (14) 

where kjL  is the country-wide aggregate land allocated to crop k in bundle j; jL  is the 

aggregate land allocated to bundle j such that 
1

K
kj

j
k

L L


 ; kjC  is the per-hectare production 
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costs of crop k in bundle j; kj
n  is the share of explicit-cost item n , 1,...,n N , in kjC , and 

ne
itw  is the level of farm-i’s explicit-cost variable n at time t. Noteworthy, the explicit costs can 

serve as an additional link between the micro-level supply model and macro-level input-

demand models so as to treat input-prices endogenously. 

Data and Variables 

Our dataset for estimating the micro-level land-allocation model is a panel of 7,569 

observations, encompassing 743 agricultural communities (about 85% of all agricultural 

communities in Israel) over the years 1992-2002, provided by the Israeli Ministry of 

Agriculture and Rural Development (IMARD).7 Altogether the sample covers 264,000 

hectares per year—more than 60% of the agricultural land in Israel. The land allocated to each 

crop bundle is reported for the community as a whole, so we must treat each community as if 

it was a single decision-making unit. This is in fact true for about 40% of the sample 

communities, which are Kibbutzim, in which all economic activities, including agriculture, 

are managed collectively. Another 51% of the sample communities are Moshavim 

(cooperative villages with individual farms). While each Moshav member can make her own 

land-allocation decisions, being a member of a cooperative imposes some constraints on these 

decisions (Kimhi, 1998). In only 9% of the sample (private communities) agricultural 

decisions of the different farmers are completely independent of each other. 

Our data comprise aggregate land shares of four crop bundles: vegetables, field crops, 

fruits, and the reference bundle of non-cultivated land. In Table 1 we present the number of 

observations and average land shares (weighted by total community agricultural land) of the 8 

different portfolios of crop bundles. In only 62% of the observations land is allocated to all 

three crop bundles; this highlights the need to account for corner solutions in the estimation 

procedure. As expected, the land share of field crops is the largest with 54.7%, ahead of fruits 



16 
 

(26.0%), then vegetables (15.0%), and non-cultivated areas (4.3%); the latter varies across 

portfolios between 20% in the communities that produce vegetables only, and 2% when 

production of vegetables is combined with field crops.     

Table 1 about here 

Table 2 reports sample means and standard deviations of the explanatory variables used in 

the estimation of the production value (x and j for the three bundles) and cost (w) functions. 

As aforementioned, the interaction of x with j enables to identify the production- and cost-

impacts of variables that appear in both x and w; however, since prices vary only with time, 

multicollinearity may still emerge. Herein we assign variables to either x or w based on our 

preliminary expectations of their dominant impact.   

Table 2 about here 

Precipitation and temperature data are from reports by the Israeli Meteorological Service 

(IMS) for 594 and 70 meteorological stations, respectively, covering the entire state of Israel 

during the years 1981-2002. We assign the data from station locations to the coordinates of 

each agricultural community in our sample using the Inverse Distance Weighting (IDW) 

method. We choose the power 1 IDW specification due to its superior robustness (Kurtzman 

and Kadmon, 1999). The climate variables we use are annual average temperature and 

cumulative annual precipitation. For each year in the sample we consider the average 

temperature and precipitation along the previous 10-year period as those that have been 

considered by farmers in their agricultural land-use decisions. 

In the simulations of climate conditions in future periods we use forecasts provided by 

three Global Circulation Models (GCMs): CCSM4 (Gent et al. 2001), MIROC5 (Watanabe et 

al. 2010) and NorESM1-M (Bentsen et al. 2013); each GCM provides projections for a 

representative year in two future periods (2040-2060 and 2060-2080) under each of the four 

Representative Concentration Pathways (RCP2.6, RPC4.5, RPC6 and RPC8.5) adopted by the 
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IPCC for its fifth assessment report (IPCC 2014). Table 3 presents the statewide average of 

the forecasted climate variables. The three models generally predict a considerable increase in 

average temperature throughout Israel at both future periods, from 19Co up to 25Co. Annual 

precipitation is expected to slightly decline during 2040-2060, and then decline more sharply 

during 2060-2080 (by about 14% relative to the base-period level). 

Table 3 about here 

In addition to the climate variables, we explain production by dummy variables for the 

type of community (Moshav and private communities; Kibbutz is the reference category), 

representing the production impacts of decision-making process and level of cooperation 

within each community (Kimhi, 1998). A dummy variable indicating whether agricultural 

land is dominated by light soils stands for the suitability of farmland to the different crop 

bundles. We also include dummy variables for Israel’s 19 Ecological Regions (as defined by 

Israel Central Bureau of Statistics (ICBS)) to capture spatial differences that may affect 

outputs (e.g., topographic and additional climate variables). 

Output prices (j) are homogeneous across Israel, as evidenced by official data (IMARD, 

2011). Hence, we use country-wide annual output price indices reported by the ICBS for each 

bundle over the sample years. To reflect price differences between bundle outputs we multiply 

each bundle’s price index by the average price of its main crops, 1 1 1 1
1 1

K K
j kj kj kj

k k

p p Q Q
 

    

(recall 1
kjp  and 1

kjQ  in Eq. (11)), where 1
kjp  is taken from cost-and-return studies (IMARD) 

and 1
kjQ  is ICBS’s data on the crop’s country-wide annual output in 2002 (see Appendix B; 

all monetary values are in terms of US dollars in 2000). Following Kaminski et al. (2013), we 

use lagged moving averages to reflect price expectations that farmers use when making land-

use decisions. Since land shares of field crops and vegetables can be adjusted from year to 
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year, their price indices were constructed based on the two previous years, whereas the 

previous four years were used for fruits.8 

The production-value ratios jr  used in Eq. (8) are computed by 1 1
1 1 1 1

1 1

K K
kj kj k k

j
k k

r p Q p Q
 

   , 

where Field-crops is used as the reference bundle ( 1j  ). 

For the per-hectare cost functions we use the distance to Tel Aviv to represent peripheral 

effects such as transportation costs and availability of purchased inputs and services, as well 

as alternative non-farm employment opportunities (Kimhi and Menahem, 2017). Water 

resources are officially controlled by the state in Israel, and per-village total irrigation-water 

quotas are set administratively by the authorities; these quotas are introduced to capture the 

impact of water availability on production costs. Land assignment to farming is also centrally 

managed in Israel. The total agricultural land owned by the community represents potential 

diseconomies of land fragmentation and economies of scale. Finally, we include the previous-

year annual price index of purchased agricultural inputs that are relevant for the vegetative 

sector (Kislev and Vaksin, 2003); this variable represents the explicit costs  w e
jC  (recall 

eq. (13)). To reflect explicit-cost differences across bundles we multiply this price-inputs 

index by a bundle-specific factor, which is computed by 
1 1

K K
kj kj kj

k k

L C L
 
   (recall eq. (14)), 

where kjL  is country-wide agricultural lands (IMARD) and kjC  is the per-hectare costs9 taken 

from cost-and-return studies (IMARD) (Appendix B). 

In addition to the already mentioned data on kjL , kjC , 1
kjQ  and 1

kjp , the macro-level model 

requires the demand elasticities kj  (Eq. (10)). Israel is a net exporter of vegetables and 

fruits, whose imports are constrained by import tariffs, and a net importer of field-crop 

products, which are traded freely. Hence, the output prices faced by growers of vegetables and 

fruits are affected by both the local and international markets. As our micro-level 
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disaggregated land-use data do not enable distinguishing between production to the local and 

international markets, we assume constant export shares of 29% and 22% of the total 

production value of vegetables and fruits, respectively (Finkelshtain et al. 2011).10 For the 

local markets of vegetables and fruits we adopt demand-elasticity parameters from Hadas 

(2001) (Appendix B). Both growers and consumers of field crops face the world prices of 

field crops; hence, the demand elasticity equals the sum of import demand and local-supply 

elasticities, weighted by the relative import and local-production quantities. Import demand 

elasticities, estimated based on the methodology developed by Kee et al. (2008), were taken 

from the World Bank (2012), and import quantities of field-crop products were obtained from 

the ICBS (Appendix B). With these elasticities and import values we employ Eq. (12) for 

simulating import response to price changes, obtaining a field-crops import demand elasticity 

of -1.60. To calculate the local-supply elasticity we use our estimated micro-level supply 

model to simulate field-crop production response to a price change, obtaining supply elasticity 

of 0.55. As local production of field crops constitutes 24% of the total consumption, the 

demand elasticity equals -1.08. Figure 1 presents the resultant demand curves based on the 

calibrated  q p
j j   functions. 

Figure 1 about here 

As aforementioned, our analysis assumes partial equilibrium in the base period 

(represented by the year 2000). According to Finkelshtain et al. (2011), the local prices of 

vegetables and fruits are generally similar to their corresponding world prices. Therefore, 

imports of vegetables and fruits to Israel are negligible due to the presence of high import 

tariffs (reported in Appendix B). We calculate the average import price for the bundles of 

vegetables and fruits, weighted by crop-production quantities, and use these averages as the 

upper limit of prices ( p
t ) in the simulation of the restricted-trade scenario (Eq. (12)). The 

calculated average import prices (world prices + import tariffs) are higher by 36% and 23% 
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than the average local prices for vegetables and fruits, respectively. As to forecasts of world 

prices, we take the trends projected by Eboli et al. (2010) by the use of a global CGE model.11 

Estimation Results 

We use the Stata fractional multinomial logit command (�� �����) for estimating the 

coefficients Vj  for the three crop bundles, through maximization of the quasi likelihood 

function in Eq. (6) subject to the constraints in Eq. (8). We control for potential 

spatiotemporal autocorrelations in the residuals by clustering observations according to years 

and 60 natural regions.12 We include quadratic levels of the precipitation, temperature, 

agricultural land and water-quota variables to capture non-linear responses. The estimated 

coefficients are reported in Table 4. 

Table 4 about here 

Interpretation of the estimation results is facilitated by Table 5, where we present the 

marginal effects of the explanatory variables on optimal land shares and economic profits.13 

Table 5 about here 

On the production side, both precipitation and temperature have positive and significant 

marginal effects on the overall cultivated land, implying that farmers in wetter and warmer 

regions benefit from devoting more arable land to agricultural production. These climate 

variables also positively affect the total economic profit, yet, with different impacts across 

bundles. Farmers in higher-precipitation areas benefit from growing field crops and fruits 

more than vegetables; this result is congruent with the relative advantage of the southern arid 

part of Israel in vegetable production, as mentioned by Fleischer et al. (2008). Recall that the 

per-hectare expected outputs in our model are associated with anticipated optimal responses 

of farmers to various events during the growing season. A possible explanation for the relative 

disadvantage of vegetables in the wetter areas is the enhancement of plant disease by rainfall 

(see Agrios, G. N., 2005; Burdman and Walcott, 2012). Farmers may apply costly protective 
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inputs so as to obtain profit-maximizing per-hectare yield levels that are lower than those 

obtainable in the drier regions. Higher temperatures increase field-crops profitability, but 

reduce profits in fruit cultivation, which may be explained by the deciduous-trees’ chilling 

requirements to bloom. 

Moshavim tend to allocate less land to field crops than Kibbutzim and private 

communities, and their total economic profits in field crops are lower. Light soils are 

associated with more farmland allocated to fruits and less to vegetables and field crops, and 

this is also reflected in the profit differentials associated with soil type. Regarding output 

prices, as expected theoretically, all bundles exhibit statistically significant positive own-price 

impacts and negative cross-bundle impacts on economic profits. 

The marginal effects of the cost variables on total economic profits also exhibit expected 

signs. Peripheral communities face lower profits, which is explainable by higher 

transportation costs and lower availability of production factors. Larger irrigation-water 

quotas increase profitability. However, the effect is statistically insignificant, indicating that 

water quotas do not constitute effective constraints; this matches the conclusion of Feinerman 

et al. (2003) that since the early 1990s, agricultural water consumption in Israel was dictated 

by water prices rather than by water quotas. By examining the water-quotas effects in relation 

to those of precipitation, we find that irrigation water is a substitute to precipitation in the 

production of fruits and vegetables, and is a complement to precipitation in field-crops 

production; this finding coincides with the fact that, while vegetables and fruits are usually 

irrigated, the field-crops bundle includes both rain-fed and irrigated crops. The positive sign 

of the community’s total agricultural land points at the presence of economies of scale. 

Finally, prices of production inputs negatively affect total economic profits (although without 

statistical significance). Thus, the effect of both input and output prices on economic profits 

complies with economic theory. 
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Simulations 

Using the estimated model we simulate production of the three crop bundles, where, ceteris 

paribus, climate variables change as reported in Table 2,14 and world prices vary according to 

Eboli et al. (2010). That is, we assess the impact of changes in the climate conditions and the 

associated world prices as if they have occurred at the base period. We study the 

consequences of these changes under six scenarios with respect to policies and farming 

adaptation strategies. 

Scenario 1 simulates variation in the climate variables under the prevailing policy of 

constraining trade by use of import tariffs. Tables 6 and 7 report the results in terms of 

changes relative to the base-period climate, averaged across the three GCMs. All four RCPs 

for the two future climate periods exhibit similar trends of changes in output prices ( p
jt ), 

quantities demanded ( q
jt ) and supplied ( y

jt ), and land shares ( 1jt js s ) (Table 6). The supplies 

of vegetables and field crops increase, whereas that of fruits declines. Local output prices of 

vegetables decline, while those of fruits rise up to their respective upper bound, p
jt ; 

consequently, the demanded quantity of fruits exceeds the local supply such that import 

emerges. The prices of field crops change marginally with world prices; hence, the demanded 

quantity remains stable, and the increased supply of field-crop outputs may reduce the imports 

of field-crop products. 

Table 6 about here 

By comparing the local supply indices ( y
jt ) to the land-share indices ( 1jt js s ) one can 

assess the role played by the changes in per-hectare production versus changes in land 

allocation. The simulations indicate that field-crops productivity is predicted to increase more 

than two-fold, which in turn leads to expanding the land allocated to field-crop by about 10% 

at the expense of vegetables and fruits. Per-hectare production of vegetables also increases, 

but to a lower extent than that of field crops; therefore, the land allocated to vegetables 
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declines. Fruit production declines sharply by about 40-60%, leading to a land-share reduction 

of about 25%. 

Table 7 about here 

Table 7 reports changes in aggregate agricultural accounting profits, consumer surplus and 

their sum (i.e., social welfare) under Scenario 1. Apparently, climate change is generally 

beneficial to Israeli farmers, particularly to field-crop growers. Vegetable farms also benefit 

from climate change, but to a much lower extent, while fruit farms suffer losses. Altogether, 

the Israeli vegetative agricultural sector is expected to enjoy an increase in its accounting 

profits by about 7%. Surpluses of local consumers are projected to decline moderately, 

particularly due to the increase in fruit prices. Thus, the overall expected welfare-change is 

positive. This result prevails under both future climate periods and the four RCPs, with the 

largest (lowest) change under RPC8.5 (RCP2.6).  

We turn to study trade-policy implications. According to OECD (2014), the PSE 

(Producer Support Estimate) measure for Israel indicates that the overall support to farmers is 

lower than in the average OECD country, but the fraction of trade-distorting support policies, 

particularly the MPS (Market Price Support), is considerably larger; hence, compliance with 

the WTO (World Trade Organization) rules requires removing import tariffs. This policy is 

examined in Scenario 2, where we simulate abolishment of tariffs such that import prices of 

all vegetative agricultural products equal their world-price counterparts, as forecasted based 

on Eboli et al. (2010). Table 8 reports the simulated climate-change effects on the welfare 

measures under the free trade scenario. 

Table 8 about here 

To comprehend the impact of the free-trade policy, compare Table 8 with Table 7. The 

accounting profits of vegetable and field-crop growers slightly increase under the free trade 

scenario, whereas fruit growers face a considerable drop in profits, particularly because 
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imports of fruits climb to more than 50% of local consumption compared to merely 20% 

under the prevailing constrained-trade regime (Scenario 1). Consumer surpluses associated 

with vegetables rise more than under the current trade barriers, while the surplus associated 

with fruits drops much more moderately. Figure 2 summarizes the effect of the removal of 

import tariffs by depicting the difference it makes to the accounting profit, consumer surplus 

and social welfare (i.e., the values in Table 8 minus their counterparts in Table 7). In general, 

under the relatively large climate-change scenarios, which are driven by large CO2 

concentrations (i.e., RCP 8.5 in 2040-2060 and RCPs 4.5, 6 and 8.5 in 2060-2080), the 

benefits to consumers from removing the import tariffs exceed the losses to producers such 

that social welfare increases. 

Figure 2 about here 

In Scenarios 3 and 4 we isolate the effects of changes in precipitation and temperature, 

respectively. To this end, we rerun Scenario 1 while changing only one of the two climate 

variables. This exercise (Table 9) reveals that the aforementioned climate-change-driven 

welfare benefits stem from the considerable rise in temperature, as forecasted by all GCMs 

(Table 2). The precipitation changes lead in most cases to welfare losses that are much smaller 

in magnitude than the welfare benefits of the temperature changes.15 

Table 9 about here 

Under each of the latter four scenarios, farmers adapt to the changes in climate conditions 

by reallocating their land across the three crop bundles. In Scenario 5, we assume that farmers 

also adapt by offsetting the change in precipitation by applying additional irrigation water. 

This scenario is equivalent to Scenario 4, except that the input-price index varies according to 

the costs associated with changing the irrigation so as to compensate for the change in 

precipitation. The share of irrigation costs in the total explicit costs of each crop in each 

bundle ( kj
n  in Eq. (14)) is computed using cost-and-return studies (IMARD).16 Note that 
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increasing irrigation implies higher agricultural water consumption, which is possible if water 

quotas are not binding, or otherwise they should be extended; as aforementioned, we find 

water quotas ineffective, and assume that this is also the case under the simulated change. 

Scenario 5 (Table 9), compared to Scenario 1 (Table 7), shows that offsetting the precipitation 

changes by increasing irrigation is socially unbeneficial. Nevertheless, from the farmers’ point 

of view, this adaptation strategy is warranted. 

Our last issue is the role played by land reallocation in the adaptation to the projected 

climate changes. In this case, rather than the accounting profit, the economic profit  

(  *

1 1

z V z
I J

jit it j jit
i j

s
 
 ) is the appropriate measure, as it dictates land-use adaptation. Based on 

comparison to the economic profits without land responses ( 1
1 1

V z
I J

ji j jit
i j

s
 
 ), we attribute 

about 18% of the overall profit increase due to climate change  

(     * *
1 1 1

1 1 1 1

z V z z V z
I J I J

jit it j jit ji i j ji
i j i j

s s
   

  ), to land adaptation.17 

Concluding Remarks 

This paper develops an integrated micro-macro structural econometric framework for 

assessing climate-change impacts on vegetative agricultural production under equilibrium in 

the food markets. The linkage between micro and macro levels is particularly important as 

governments and international organizations alike are called upon to revise current policies in 

order to provide adaptation options to climate change, and to integrate agricultural policies 

within a broader set of policies targeting sustainable development and natural resource 

management (Howden et al., 2007). Taking food prices into consideration is extremely 

important given their relevance to the critical issues of poverty, food security and malnutrition 

around the world. Indeed, our empirical analysis for the case of Israel shows different 
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simulation results when import tariffs are abolished compared with the more realistic case of 

restricted trade. 

Agricultural adaptation to climate change calls for government interventions because of 

equity concerns and prioritization (e.g., Lobell et al. 2008). Impacts of some interventions can 

be directly identified from the results of this paper. The results also indicate directions for 

further research and extensions. First, heterogeneous impacts of climate change on both 

producer and consumer welfare may call for specific policy attention; e.g., under our 

specifications, consumers are adversely affected whereas producers benefit from the projected 

future climate conditions. This would suggest that a transfer scheme (e.g. food price consumer 

subsidies financed by export or production taxes) from producers to consumers could be 

politically acceptable. 

Second, improved adaptation technologies require R&D investments with a public good 

component. Identification of the technological channels through which projected consumer 

and producer surpluses change is useful to promote a “directed technological change” with 

higher benefit-cost ratio and more effective public and private spending. For example, our 

simulations predict that the surpluses of both producers and consumers of fruits in Israel are 

projected to decline, whereas the surpluses associated with vegetables are projected to 

increase for both producers and consumers. Hence, proactive adaptation efforts should be 

directed toward fruits. Likewise, specific technology components of the agricultural systems 

could also be targeted, as done by Kaminski et al. (2013). 

Third, our empirical framework can be generalized to derive a broader and integrated 

assessment of climate-change agricultural-related impacts on social welfare by considering 

agricultural amenities and environmental externalities in the simulations. Upon availability of 

sufficient valuation studies and applicability of benefit-transfer methods, the impact of climate 

change on ecosystem services and landscape values through agricultural productivity 
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adjustments and land-use adaptation (e.g., Kan et al., 2008) could also be assessed (e.g., 

Bateman et al. 2013). This would also require a refinement of the econometric model to 

enable estimation of intra-growing season input applications and environmental effects such 

as polluting effluents. In turn, this could alter the conclusions about the efficiency and equity 

of agricultural policies and public investments targeted at climate-change adaptation, since 

total climate-driven effects on overall social welfare may significantly differ from the effects 

on private consumers and producer surpluses. For instance, the projected conversion of land 

planted with fruit orchards and vegetables into land used for field-crop production is 

presumably coming along with benefits in agricultural amenities such as landscape and 

recreational services (open fields versus greenhouses and protected crops) as well as changes 

in the use of polluting inputs and irrigation water. 

Finally, as aforementioned, the model can be linked to input-supply models through the 

cost variables. For example, integrating the agricultural supply model into a hydro-economic 

model (e.g., Reznik et al., 2017) would enable considering water prices endogenously. 

Moreover, applying the model in conjunction with more sophisticated macro models such as 

CGE can be used for assessing a range of additional issues associated with agricultural 

production and policies; for example, the development of production supportive 

infrastructures and changing other agricultural protection policies such as subsidies. 
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Table 1 - Observations and land shares in crop-production portfolios 

 Number of Land sharesa 
Portfolio  observations Vegetables Field crops Fruits Not cultivated

Fruits 608 0.000 0.000 0.830 0.170 

Field crops 44 0.000 0.963 0.000 0.037 

Field crops & Fruits 1,173 0.000 0.606 0.343 0.050 

Vegetables 53 0.800 0.000 0.000 0.200 

Vegetables & Fruits 817 0.319 0.000 0.543 0.138 

Vegetables & Field crops 158 0.182 0.794 0.000 0.024 

Vegetables & Field crops & Fruits 4,716 0.181 0.532 0.241 0.046 

Total 7,569 0.150 0.547 0.260 0.043 

a. Weighted by communities’ total agricultural land.
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Table 2 - Descriptive statistics of the explanatory variables 

Variable Units Mean Std. 

Production (x)    

Precipitation mm/year 449.8 87.83 

Temperature Co 19.29 0.546 

Moshav dummy 0.544 0.498 

Private community dummy 0.094 0.292 

Light soil dummy 0.566 0.496 

Output price indices (j)    

Vegetables price index index 0.526 0.068 

Field-crops price index index 0.663 0.081 

Fruits price index index 0.654 0.127 

Costs (w)    

Distance to Tel-Aviv km 71.79 41.45 

Water quota 106×m3/year 1.393 0.949 

Agricultural land 103×m2 6,217 5,963 

Vegetables inputs price index index 0.522 0.107 

Field-crops inputs price index index 0.489 0.100 

Fruits inputs price index index 1.654 0.338 
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Table 3 – Future forecasts of state-wide average climate variables 

Climate Period RCP 
Climate 
Model 

Precipitation 
(mm/year) 

Temperature 
(Co) 

Base   450 19 

2040-2060 

2.6 

CCSM4 463 22 

MIROC5 424 23 

NorESM1 464 23 

Average 450 23 

4.5 

CCSM4 443 23 

MIROC5 439 24 

NorESM1 387 23 

Average 423 23 

6 

CCSM4 428 23 

MIROC5 433 23 

NorESM1 500 23 

Average 454 23 

8.5 

CCSM4 381 24 

MIROC5 406 24 

NorESM1 395 24 

Average 394 24 

Average  430 23 

2060-2080 

2.6 

CCSM4 423 23 

MIROC5 426 23 

NorESM1 397 23 

Average 415 23 

4.5 

CCSM4 421 23 

MIROC5 398 25 

NorESM1 336 23 

Average 385 24 

6 

CCSM4 401 24 

MIROC5 399 24 

NorESM1 381 23 

Average 393 24 

8.5 

CCSM4 367 25 

MIROC5 360 25 

NorESM1 334 25 

Average 353 25 

Average  387 24 
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Table 4 - Estimated coefficients of land-share equations (Eq. (6))a 

Log likelihood -7657.6   

Wald 2(91) 29144.1   

Variable Vegetables Field crops Fruits 

Production    

j × Precipitation 0.008** 0.002 0.008*** 

j × Precipitation2 -1.53×10-5*** 1.17×10-6 -4.96×10-6* 

j × Temperature -4.615** -0.622 -0.557 

j × Temperature2 0.125** 0.027 0.015 

j × Moshav -2.019*** -2.917*** -1.032*** 

j × Light soil -0.661*** -0.511*** 0.171*** 

j 47.683** 3.310 5.831 

Costs    

Distance to Tel-Aviv -0.006*** -0.011*** 0.005*** 

Water quota 0.546*** 0.441*** 0.105 

Water-quota2 -0.147*** -0.113*** -0.103*** 

Agricultural land 0.096*** 0.132*** 0.090*** 

Agricultural-land2 -0.002*** -0.002*** -0.002*** 

Inputs price index -1.750*** 0.780*** -1.547*** 

Constant -0.293 1.370*** 0.604*** 

*** indicates significance at 1%, ** indicates significance at 5%, * indicates significance at 10% 

a. Coefficients for Ecological Regions are not reported. The dummy variable for private communities was 
omitted due to collinearity. 
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Table 5 - Marginal effects 

  Land share Economic Profit 

Variable Vegetables Field crops Fruits 
Total 

cultivated Vegetables Field crops Fruits Total 

Production         

Precipitation -0.001*** 3.23×10-4*** 4.35×10-4*** 6.46×10-5** -0.001*** 0.002*** 0.002*** 0.002*** 

Temperature -0.007 0.062*** -0.047*** 0.008** 0.009 0.260*** -0.084** 0.185*** 

Moshav 0.033*** -0.294*** 0.192*** -0.069*** -0.131*** -1.499*** 0.118*** -1.512***

Light Soil -0.027*** -0.076*** 0.093*** -0.010*** -0.082*** -0.314*** 0.204*** -0.191***

Vegetables price index (v) 0.455*** -0.245*** -0.179*** 0.03*** 1.005*** -0.515*** -0.321*** 0.168*** 

Field-crops price index (f) -0.020*** 0.068*** -0.042*** 0.007*** -0.020*** 0.269*** -0.075*** 0.174*** 

Fruits price index (p) -0.102*** -0.300*** 0.439*** 0.037*** -0.105*** -0.631*** 1.445*** 0.709*** 

Costs         

Distance to Tel-Aviv -3.3×10-4 -0.003*** 0.003*** -2.3×10-4*** -0.001*** -0.011*** 0.007*** -0.005***

Water quota 0.002*** 0.005*** -0.007*** -1.06×10-4 0.004*** 0.016*** -0.018*** 0.002 

Agricultural land -0.001 0.011*** -0.005*** 0.004*** 0.010*** 0.069*** 0.013*** 0.093*** 

Inputs price index -0.205*** 0.552*** -0.372*** -0.024* -0.482*** 1.517*** -1.181*** -0.147 

*** indicates significance at 1%, ** indicates significance at 5%, * indicates significance at 10% 

 

  



41 
 

Table 6 – Climate-change impact on partial-equilibrium indices under constrained-trade policy (Scenario 1)  

  Price Index ( p
jt ) Demand Quantity Index ( q

jt ) Supply Quantity Index ( y
jt ) Land Share Index ( 1jt js s )

Climate 
Period RCP Vegetables 

Field 
Crops Fruits Vegetables

Field 
Cropsa Fruits Vegetables

Field 
Crops Fruits Vegetables

Field 
Crops Fruits

2040-
2060 

2.6 0.877 1.033 1.259 1.164 0.997 0.755 1.163 2.258 0.682 0.946 1.079 0.846

4.5 0.822 1.033 1.259 1.254 0.997 0.755 1.253 2.387 0.603 0.941 1.088 0.826

6.0 0.868 1.033 1.259 1.178 0.997 0.755 1.177 2.368 0.659 0.943 1.084 0.836

8.5 0.733 1.033 1.259 1.435 0.997 0.755 1.433 2.750 0.489 0.931 1.106 0.790

Average 0.825 1.033 1.259 1.258 0.997 0.755 1.257 2.441 0.608 0.940 1.089 0.824

2060-
2080 

2.6 0.837 1.057 1.281 1.226 0.995 0.742 1.225 2.258 0.609 0.944 1.084 0.835

4.5 0.740 1.057 1.281 1.429 0.995 0.742 1.427 2.708 0.480 0.932 1.105 0.792

6.0 0.755 1.057 1.281 1.386 0.995 0.742 1.385 2.632 0.502 0.933 1.102 0.798

8.5 0.634 1.057 1.281 1.728 0.995 0.742 1.726 3.313 0.353 0.918 1.127 0.747

Average 0.741 1.057 1.281 1.442 0.995 0.742 1.441 2.728 0.486 0.932 1.104 0.793
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Table 7 – Climate-change impact on aggregate welfare measures under restricted-trade policy (Scenario 1), (106 $/year) 

  Accounting Profita Consumer Surplus Social Welfare 

Climate 
Period RCP Vegetables 

Field 
Crops Fruits Total Vegetables

Field 
Crops Fruits Total Vegetables

Field 
Crops Fruits Total 

2040-
2060 

2.6 36 253 -61 228 70 -26 -145 -101 107 228 -207 128 

4.5 44 279 -121 201 105 -26 -145 -66 150 253 -267 135 

6.0 39 275 -78 236 76 -26 -145 -95 115 249 -224 141 

8.5 62 350 -208 204 167 -26 -145 -3 230 325 -354 200 

Average 45 289 -117 217 105 -26 -145 -66 150 264 -263 151 

2060-
2080 

2.6 41 263 -110 194 95 -44 -156 -105 136 219 -266 89 

4.5 61 354 -209 206 164 -44 -156 -36 225 310 -365 170 

6.0 57 339 -192 204 152 -44 -156 -48 209 295 -349 155 

8.5 90 477 -306 261 251 -44 -156 50 341 433 -463 312 

Average 62 359 -204 217 166 -44 -156 -34 228 314 -361 182 

a. Accounting profits at the base period amount to $119, $656, $2,146 and $2,921 million/year for vegetables, field crops, fruits and overall, respectively.  
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Table 8 – Climate-change impact on aggregate welfare measures under abolishment of import tariffs (Scenario 2), (106 $/year) 

  Accounting Profit Consumer Surplus Social Welfare 

Climate 
Period RCP Vegetables 

Field 
Crops Fruits Total Vegetables

Field 
Crops Fruits Total Vegetables

Field 
Crops Fruits Total

2040-
2060 

2.6 40 266 -250 57 77 -26 -15 36 117 240 -265 93 

4.5 48 291 -289 49 112 -26 -15 71 160 265 -304 120 

6.0 43 288 -263 68 82 -26 -15 41 125 262 -277 110 

8.5 66 361 -346 82 174 -26 -15 133 239 336 -361 214 

Average 49 302 -287 64 111 -26 -15 70 160 276 -302 134 

2060-
2080 

2.6 45 275 -281 39 102 -44 -26 32 147 231 -307 71 

4.5 65 365 -346 85 170 -44 -26 99 235 321 -372 184 

6.0 61 350 -335 77 158 -44 -26 87 219 306 -361 164 

8.5 94 487 -409 172 256 -44 -26 186 350 443 -435 358 

Average 66 370 -343 93 171 -44 -26 101 238 325 -369 194 
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Table 9 - Impacts on welfare measures of changes in precipitation only (Scenario 3), temperature only (Scenario 4), and offsetting 
precipitation change by irrigation (Scenario 5) (106 $/year) 

  
Scenario 3 

Change in Precipitation Only  
Scenario 4 

Change in Temperature Only 

Scenario 5 
Offsetting Precipitation Change by 

Irrigation 

Climate 
Period RCP 

Accounting 
Profit 

Consumer 
Surplus 

Social 
Welfare 

Accounting 
Profit 

Consumer 
Surplus 

Social 
Welfare

Accounting 
Profit 

Consumer 
Surplus 

Social 
Welfare 

2040-
2060 

2.6 10 -11 -1 218 -106 112 222 -104 118 

4.5 -5 -13 -17 229 -88 141 212 -96 115 

6.0 12 -11 1 223 -96 127 230 -92 138 

8.5 -21 -19 -40 266 -43 223 227 -63 164 

Average -1 -13 -14 234 -83 151 223 -89 134 

2060-
2080 

2.6 -4 -35 -39 238 -134 104 214 -146 68 

4.5 -20 -48 -68 284 -81 204 239 -104 135 

6.0 -16 -40 -56 271 -90 181 232 -110 122 

8.5 -37 -60 -97 358 -11 347 292 -46 246 

Average -19 -45 -65 288 -79 209 244 -102 143 
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Figure 1 - Demand curves of the three crop bundles 
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Figure 2 – Difference in welfare elements between the free- and restricted-trade scenarios (free-
trade (Table 8) minus restricted trade (Table7)). 
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Appendix A – Derivation of the optimal land-share in Eq. (3) 

The farmer's problem is (we omit the farm index for notation brevity): 

  
1 1 1

1
max = ln . . 1

s
v z      

J J J

j j j j j j
j j j

s s s s t s
a  

      (A1) 

Using the FOC 
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ln 1 0v zj j j

j

s
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 (A2) 

we get the land share: 
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 (A3) 

Substituting Eq. (A3) into the land constraint in (A1), 
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      (A4) 

we get the shadow value 
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which we substitute back into the land share in Eq. (A3) to get Eq. (4). 
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Appendix B – Nationwide data at the base year for the crops in the three crop bundles  

 
Crop 

Land 
( kjL , 

hectares) 

Quantity 

(  1
kjQ , 

ton/year) 

Price 

( 1
kjp , 

$/ton) 

Demand 
Elasticity

( kj 

Explicit 
cost 

( kjC , 
$/hectare)

Import 
tariff 

(% of world 
price) 

Vegetables       

Watermelon 15,461 184,596 216 -0.7 8,917 29 

Melon 2,888 48,993 654 -0.7 2,004 47 

Tomato 4,291 288,621 1,178 -0.7 23,320 42 

Strawberry 454 9,614 2,493 -0.7 66,511 35 

Potato 12,742 196,680 461 -2.2 10,060 78 

Cucumber 1,827 67,870 536 -0.3 35,211 12 

Eggplant 798 28,517 423 -0.3 6,994 20 

Pepper 2,475 50,946 818 -1.3 21,586 32 

Zucchini 971 17,968 560 -1.1 2,059 17 

Onion 3,210 53,860 313 -1.1 8,811 61 

Carrot 1,265 50,938 332 -1.5 24,443 58 

Lettuce 1,262 22,441 540 -1.1 26,771 10 

Cabbage 1,980 37,082 292 -1.1 15,029 39 

Cauliflower 1,579 18,177 413 -1.1 12,813 29 

Celery 521 10,606 551 -1.3 5,357 19 

Radish 415 7,243 421 -1.1 5,384 111 

Field crops – local      

Cotton, raw 11,646 92,668 991 - 2,663 0 

Chickpea 7,558 9,328 998 - 296 0 

Corn 5,233 98,766 358 - 3,215 0 

Pea 2,162 8,945 626 - 597 0 

Peanuts 3,744 24,169 1,592 - 1,196 0 

Sunflowers 7,680 19,447 1,340 - 994 0 

Wheat 83,646 160,260 260 - 74 0 

Barley 8,364 5,342 257 - 60 0 

Hay 64,294 86,188 146 - 73 0 

Field crops - import      

Cotton, lint - 12,381 16,213 -0.06 - - 

Chickpea - 8,000 998 -0.7 - - 

Corn - 796,836 358 -1.6 - - 

Pea - 2,400 626 -1.5 - - 

Peanuts - 2,901 1,592 -0.3 - - 
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Wheat - 1,582,069 260 -2.0 - - 

Barley - 233,808 257 -0.85 - - 

Fruits      

Apple 5,506 119,316 987 -1.9 6,186 39 

Pear 1,676 25,055 1,190 -1.3 4,274 39 

Peach 5,630 51,298 1,177 -0.7 7,839 21 

Grapes 11,740 95,295 923 -1.0 5,959 31 

Banana 2,382 94,590 762 -1.5 6,456 37 

Avocado 5,709 69,157 1,180 -3.8 2,082 40 

Dates 3,441 12,276 3,297 -5.3 6,640 48 

Orange 3,303 376,476 377 -0.4 1,277 5 

Grapefruit 7,763 520,864 343 -0.2 2,332 24 

Lemon 1,726 45,122 432 -1.4 2,696 27 

Olive 20,034 34,450 1,262 -1.7 1,664 49 

Almond 2,979 4,086 2,110 -1.7 1,074 9 
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Notes 

1   While the linear function is adopted to facilitate the analysis, the model can be easily 

extended; for example, Kaminski et al. (2013) specified jy  as a quadratic function of per-

hectare bundle-specific endogenous inputs with structural parameters, and thereby 

accounted for the impact of climate change through optimal input applications and 

identified the effect of climate variables on attributes of agricultural production 

technologies. 

2   The resultant linear equations are of the form  * *ln V zji Ji j ji jis s u  , where jiu  is an 

error term. 

3   In case that only regional data are available one may overcome endogeneity by employing 

simultaneous estimation of both prices and land shares; however, this poses two 

challenges: (i) an identification strategy and the availability of instrumental variables for 

regional prices in the micro-level estimations of the econometric model, (ii) a tractable 

partial or general-equilibrium model with simultaneous and endogenous price 

determination adjusting with the outputs of the micro-level estimations. 

4   Kaminski et al. (2013) show that, to enable identification of the parameters jv  for

1,..., 1j J  , a can be calibrated by the use of panel data and additional information on 

crop profitability. 

5   We employ this assumption to derive bundle-level quantity indices, since disaggregated 

land-use data are usually available only for bundles of crops, whereas aggregated quantities 

and prices may be available for the various crops in each bundle.  

6   According to Finkelshtain and Kachel (2009), Israel's agriculture is small enough for not 

affecting world food prices. While the herein methodology can be employed in a world-
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level CGE model for simulating climate-change impacts on world prices under equilibrium, 

our analysis is limited to the case of Israel’s local market under partial equilibrium.   

7   Data is not available for later years due to changes in the data collection procedure.  

8   The number of lags was determined after ARIMA estimations using R² and Akaike-

Schwartz information criteria.  

9   For consistency with the estimated coefficients   ,V b γ γj j j Ja a   , we computed kjc  

while subtracting the overhead assigned in the cost-and-return studies to the non-cultivated 

agricultural lands; i.e., the reference bundle. 

10  The allocation of products between the local and international markets frequently occurs at 

the wholesale markets; that is, beyond the control of farmers (Kachel, Y., personal 

communication, May 2014).  

11  These projections represent the effect of climate change in comparison to a baseline 

scenario without the climate-change impact. In our case we simulate changes in climate 

variables and prices where all other elements of the economy are assumed to remain at 

their base-year levels.  

12  These regions were determined by the ICBS (2010) based on criteria such as topography, 

climate, demography and history. Thus, the clusters capture those spatial autocorrelations 

of measurement errors in the dependent and independent variables between communities of 

the same region that are not necessarily diminishing with Euclidean distance (e.g., as 

assumed by the Moran’s I statistic). For example, due to the presence of topographic (and 

therefore climatic) boundaries (e.g., between valleys and highlands) and intra-regional 

processing and marketing cooperatives, the correlation in measurement errors between two 

adjacent communities from different regions may be considerably lower than the 

correlation of each one of them with remote communities within the region. 

13  Standard errors were estimated using the bootstrap procedure. 
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14  The predicted responses to temporal changes in climate variables are based on the spatial 

variations of these variables across communities in the sample period. Hence, the larger the 

spatial variability in comparison to the temporal variation, the larger the validity of the 

simulation predictions for changed climate conditions; in our case, the spatial variance 

among communities captures 96% and 69% of the total spatiotemporal variance of 

precipitation and temperature, respectively. 

15  Kawasaki and Uchida (2016) also found that a rise in temperature benefits farmers by 

increasing crop yields. However, they also found that at the same time crop quality may 

decline. We cannot account for this effect with our data. A number of recent articles (e.g., 

Salazar-Espinoza et al., 2015 and Khanal and Mishra, 2017) have focused on climate 

uncertainty rather than climate trends. However, Yang and Shumway (2015) have found 

that farmers' adjustment to climate change is not affected much by ignoring climate 

uncertainty. 

16  Irrigation constitutes 9%, 38% and 17% out of total explicit costs of vegetables, field crops 

and fruits, respectively. 

17  While this seems to be a small number, farmers could adapt in other ways in addition to 

land reallocation. Burke and Emerick (2016) have found that the adaptation capacity of US 

farmers is quite limited. However, Miao at al. (2016) have found that the price 

responsiveness of land allocation is larger than that of yield. Also, Trapp (2014) has found 

that farm-level adaptation, especially cropland expansion and crop portfolio adjustments, 

can largely mitigate negative impacts of climate change on regional crop production in the 

EU. 

 


