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Abstract:

Fluctuations in water availability, either in the form of precipitation or stored water in surface and
groundwater bodies, will affect agricultural productivity and farmers” income. Climate science tells us that
much of these fluctuations will be in the form of shifts in the timing and intensity of precipitation.
Understanding these relationships and the accurate estimation of their economic effects may, therefore,
help in the designing of effective agricultural public policies to mitigate drought and climate change
impacts on agriculture. In this context, this paper introduces a novel hydro-economic model in which the
timing of rainfall and supplementary irrigated water supplies affect the productivity of a partially irrigated
agricultural system. The specification of the production function and water availability is designed to reflect
shifts in monthly precipitation totals and to show how the opportunity cost of supplementary irrigation
supply varies with changes in the timing of precipitation. Results show that shifts in monthly precipitation
parterns have indeed significant impacts on agricutltural income and that the coarser the temporal
resolution that the modeler chooses, the lower is her ability to precisely measure them.
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ABSTRACT

Fluctuations in water availability, either in the form of precipitation or stored water in
surface and groundwater bodies, will affect agricultural productivity and farmers
income. Climate science tells us that much of these fluctuations will be in the form of
shifts in the timing and intensity of precipitation. Understanding these relationships and
the accurate estimation of their economic effects may, therefore, help in the designing
of effective agricultural public policies to mitigate drought and climate change impacts
on agriculture. In this context, this paper introduces a novel hydro-economic model in
which the timing of rainfall and supplementary irrigated water supplies affect the
productivity of a partially irrigated agricultural system. The specification of the
production function and water availability is designed to reflect shifts in monthly
precipitation totals and to show how the opportunity cost of supplementary irrigation
supply varies with changes in the timing of precipitation. Results show that shifts in
monthly precipitation parterns have indeed significant impacts on agricutltural income
and that the coarser the temporal resolution that the modeler chooses, the lower is her
ability to precisely measure them.

Keywords: Applied microeconomics, water resources, agricultural income, positive
mathematical programming, temporal resolution, hydroeconomic modeling.

INTRODUCTION

Climate change and shifts in the timing and intensity of precipitation is widely
acknowledged as being already in evidence in Australia and other parts of the southern
hemisphere. A common characteristic of these climate change effects is that while the
mean rainfall quantity may be relatively unchanged, climate change will result in
significant shifts in the timing of the rainfall and its variability. In several regions this
timing is predicted to be relatively subtle and may take the form of a one to two month
shift in the rainfall pattern. It follows that economic and social analysis to measure the
impact of this important change must be able to reflect the differences in both the timing
and quantity of rainfall.

The effects of fluctuations in precipitation and water availability on agriculture
have been recently investigated by a wide array of methods and approaches. Surveys of
agricultural models that include precipitation, temperature and water as determinants of
productivity, land price, profits and yields have been compiled in Dell et al (2014) and
in Booker et al (2012). In the former, the focus is on econometric studies and in the
latter, the focus is on constrained optimization models. Examples are Hidalgo et al
(2010), Fishman (2011), Deschéne and Greenstone (2007), Schlenker and Lobell
(2010), Torres et al (2011), Welch (2010), Maneta et al (2009), Torres et al (2016),
Wang et al. (2016) and Olayide et al. (2016). Other studies, outside the economic
literature, show how crop productivity impacts estimates from changes in water
availability and precipitation vary according to different spatial resolutions (global,
regional etc), such as Carbone et al (2003), Eastering et al (1998) and Mearns et al
(2001). In these papers, however, rainfall is generally specified on an annual, or at best,
a seasonal basis and thus they are unable to reflect the results of shifts in the timing of
rainfall that climate modelers tell us will be one the main results of global climate
change (Feng et al 2012, Carbone et al 2003, Mearns et al 1999 and Trenberth 2005).

To examine whether the timing of water availability and rainfall is an important
economic variable, this paper uses a novel hydro-economic model in which the timing
of rainfall and supplementary irrigated water supplies can affect the productivity of a



partially irrigated agricultural system. The specification of the production function and
water supply either in the form of surface water or precipitation is designed to reflect
shifts in monthly precipitation totals and to show how the opportunity cost of
supplementary irrigation supply varies with changes in the timing of precipitation.

The paper opens with a review of literature on estimation methods and then
introduces the analytical model with a brief discussion of its calibration and verification
against an empirical case study in central Brazil. In the empirical section the model is
run to generate results that compare the costs of shifts in precipitation under the
standard hydro-economic model, which is specified on an annual or seasonal basis, with
the new model that is able to analyze a monthly distribution of precipitation and its
resulting opportunity costs. The results are followed by the conclusions section with a
discussion of the policy cost of this particular aspect of climate change and the effects
of shifting precipitation patterns on the increasing value of supplementary irrigation that
may be able to offset some of the effects. Additional discussion explores the generality
of the approach and the ability to extend it to areas other than Brazil.

METHODOLOGY

Generally researchers follow one of the two main approaches to model the effects of
changes in precipitation and water supply on agricultural productivity and income:
econometrics and mathematical optimization. The first approach relies on cross-section
or panel data econometric estimation of production functions, or Ricardian land price,
profit and crop yield equations. Besides the usual production and crop output and input
price data, researchers that follow this approach may complement their datasets with
information on precipitation and temperature from gridded data, satellite data and
reanalysis data, Dell et al (2014). Some examples of this approach are Adams et al
(1995), Deschénes and Geenstone (2007), Schlenker and Lobell (2010), Hidalgo (2010),
Welch et al (2010), Fisher et al (2012), Wang et al. (2016) and Olayide et al. (2016).

As seen in Booker et al, empirical water researchers also rely on mathematical
optimization models that involve the maximization of an economic objective function
(e.g., net-revenue) subject to a set of physical and institutional constraints including
hydrological and agronomic factors. Two types of models can be highlighted: holistic
and coupled. In the first, economic, hydrologic and agronomic aspects are spatially
integrated in a single model characterized by a system of water supply and demand
nodes. Examples of this approach are the SWAP model as in Howitt et al (2001), the
WEAP model as in Yates at al (2009) and the CalSim model in Draper and Lund
(2004). In the coupled modeling approach, distinct economic, hydrological and
agronomic models are built separately and integrated iteratively via linking equations.
Examples of coupled models are Maneta et al (2009), Torres et al (2012) and Torres et
al (2016).

For this study we follow the mathematical optimization approach for two main
reasons. The first is that when extensively reviewing the econometric studies on climate
and agriculture, Dell et al. highlighted a couple of classical problems related to models
based on cross-section data, such as inconsistent estimators and unobservable relevant
variables correlated with climate, that can be smoothed out with the use of
econometrically estimated fixed-effects panel data models. This latter approach,
however, requires at least two years of observations, a condition that cannot be met by
the database used here, which is based on a single year of farmer level primary data.
Another reason is that mathematical optimization allows for a richer representation of
the physical constraints that real farmers face when deciding on what and when to crop.



The precise characterization of these constraints is key for this study as alternative time
resolutions concerning water availability and use imply different specifications for the
set of constraints facing by the farmers.

The model is divided in two components: economic and hydrological. In the
economic component, crop and farm specific production functions that characterize the
agriculture system within a watershed, located near Brasilia, Brazil, are parameterized
using Positive Mathematical Programming (PMP), Howitt (1995), and adapted to the
study site as in Torres et al (2016). These functions are then used in a regional net-
revenue maximization model subject to a set of physical constraints. The hydrological
component uses a mass-balance model to estimate the monthly, seasonal and yearly
water available for irrigation to farmers in the watershed. This information is than used
to set the physical constraints on water and precipitation used in the economic
component. These two components are then sequentially coupled to allow for the
measurement of the effects of variations in precipitation and the volume of stored water
in small reservoirs on agricultural income given alternative model temporal resolutions.

Economic Component

We make the usual assumption that the multiproduct and multi-input farmers maximize
net-revenues associated with growing irrigated and rain fed crops, designated in the
model by the superscripts ir and r respectively. For the ith irrigated crop, inputs used are
land (land;), applied water (aw;), materials (m;) and labor (I;). For the jth rain fed crop
the input set includes land (land;), materials (m;) and labor (1;). In this model, applied
water only comes in the form of precipitation that is exogenous. Crop production is
modeled by a Constant Elasticity of Substitution (CES) production function that yields
the maximum output for a crop given the amounts of the inputs used to grow it. For
irrigated and rain fed crops, the CES production functions are respectively specified as

Qiir = Aﬁ(blandi Iandiyir + bawi aWiyir + bmi miﬂ/ir + bIi Iiyir )7/T (1)
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and rain fed crops, respectively. ¢ and ¢ are the parameter associated with returns to

scale in the production of crops i and j.
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Precipitation is handled as a shifter in the rain fed production function and is
a

defined as Precip; = Where pr* and pr; are the actual and expected amounts of
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precipitation to fall onto the area covered by crop j. In the irrigated production function
precipitation is part of total applied water, that is aw; = sw; + pr; . Where sw; is the total

amount of surface water used in the irrigation of crop i, which can be controlled by the



farmer, and pr; is the amount of precipitation that falls onto the area covered by crop i,
and is assumed to be exogenous.

The crop and farmer-specific share parameter estimates in the production
functions are analytically calculated under the assumption that the farmers’ objective is
to maximize net-revenue. In other words, as a first-order condition for a maximum,
farmers will choose the optimal amounts of the inputs under their control such that the
value of the input marginal productivity equals input marginal cost. For instance, for an
irrigated crop i, the first order condition for labor can be specified as

| o (Iandia ,IaWi,mi"i) =MC,, K

aq’" (land,, aw;, m;, I.)
ol;
product of labor in crop i and MC, is the marginal cost of labor when used in crop i.

where p; is the unit price of the ith crop, and

is the marginal

Assuming constant returns to scale, so that for each crop and farmer the sum over the
estimated share parameters equals 1, expressions for the share parameter estimates can
be analytically derived. These expressions are functions of input quantities, unit crop
prices, marginal input costs and the elasticities of input substitution.*

For unrestricted inputs such as materials and labor, marginal costs are defined,
respectively, as the unit prices of materials (fertilizers, pesticides, seeds etc) and the
price of a man-hour of labor. For the restricted supply inputs such as land and stored
water, marginal costs are constructed as follows. For water, the marginal cost each
farmer faces is a sum of its unit surface water cash cost sw;, such as a water fee, if it

exists, plus an estimate of the farmer’s water scarcity shadow value. The idea here is
that for whatever water fee paid, markets for water are non-existent or highly imperfect.
By adding a measure of its scarcity value, we more accurately reflect its true cost.

For land costs, we follow the same reasoning. That is, to the unit land cash cost,
a land shadow value is added to the measure of its marginal cost. Besides these two
components of the marginal cost of land, a third component is added to it: the implicit
marginal cost of land, also known as PMP term. This term represents all other marginal
costs faced by the farmers when allocating land to the different irrigated and rain fed
crops that cannot be directly observed by the researcher. In a nutshell, a farmer could
have, in theory, allocated an additional unit of land to the nominally more profitable
crop from the least profitable crop that was actually observed to be grown in the base
year. Since the farmer didnt make this reallocation, under profit maximization, we
conclude that it was because there were some other costs associated with this land
allocation to the nominally more profitable crop at the margin. In other words, the PMP
term measures how much the farmer lost by not reallocating crops. That is, he lost the
difference in the net-revenue per unit of land of the more profitable crop deducted from
the net-revenue per unit of land of the least profitable crop. Since each farmer has a
different set of crops, with different profitability, the PMP term becomes crop and
farmer specific.

! A more detailed display of how the parameter estimates are derived can be seen in
Maneta et al (2009).



The stored water and the land shadow values as well as the PMP terms are estimated by
a linear programming model (LPM). In the LPM, the goal is to find the allocation of
land and all other input quantities, assumed to be in fixed proportions to land, across all
farmers and crops that maximize regional net-revenue. This maximization is subject to a
set of constraints on the amount of stored water available and land. The set also contains
a calibration constraint that restricts the amount of land allocated to a given crop to be
less or equal to the amount of land allocated in the base year. The value of the Lagrange
multipliers associated with the water, land and calibration constraints are then used as
the water and land shadow values and the PMP term respectively.

With data on input quantities, market input prices, shadow values for the limited
availability inputs (land and stored water) and the PMP term, the only missing
information necessary for the estimation of the share parameters in (1) and (2) are the
elasticities of input substitution. There are several studies on estimates of elasticities of
input substitution between owned and purchased inputs in agricultural production.
Salhofer (2001), with his survey on 32 econometric studies, found the range of Allen
elasticities to be between 0.3 and 1.5. Gomez et al (2004) also provide some estimates.
In particular, they found an elasticity of input substitution for irrigated crops between
land and an aggregate of capital-water of 0.7, within the range showed in Salhofer
(2001). Based on these studies we use a value for the elasticity of input substitution of
0.7 for irrigated crops and 0.3 for rain fed crops, given the reduced ability for input
substitution in the production of crops that rely solely on exogenous precipitation.

Once we have the values for the share parameters we substitute them in (1) and
(2), along with data on output and input quantities and the values of the elasticities of
input substitution, to derive the estimates for the rain fed and irrigated crops scale
parameters A; and A;, respectively. With the parameterized production functions we can
then define the non-linear regional net-revenue function that is subsequently used for
simulations. The regional net-revenue function is specified as
_ max netY > [p;,dj; (land ;. my, 1) + piy Gig (land;, , aws, , myg 1y ) —
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Where p;, and pj,are respectively the unit price of the jth rain fed and ith irrigated

crops received by farmer g. ' ig (land 5, mq , Jg)andq (landiy ,awiy,my, I ) are the

crop- and farmer-specific parameterized production functions for rain fed and irrigated
crops. mat, and mat;, are the costs with materials used in the ith and irrigated jth

crops respectively. That is, instead of using prices separated from quantities, we use a
measure of the total material expenditures per crop (the sum, by crop, of the unit price
paid of each material used - fertilizer, pesticide, seeds etc - times quantity).? P, is the

labor price defined as the price of a man-hour of work and Pow, is the unit price of
stored water used by farmer g and is defined as the marginal cost of stored water

2 Materials are composed by several inputs used in a single crop, including different types of pesticides
and fertilizers used along the different stages of planting. To use a separate price for each material would
leave the model intractable.



discussed above. Since famers do not directly pay a unit fee for the water, we use, as a
proxy for its cash cost, an average irrigation cost estimated as the sum, over all crops, of
the irrigation costs with labor, electricity and annualized capital value divided by the
number of crops irrigated.

Last, but not least, notice that in (5) two terms are added to the regional net-

revenue function: Iéi‘g (land;) and Ié}g (land ;). These are parameterized functional

forms for the cost of land a farmer g faces when allocating land to the ith irrigated and
jth rain fed crops. By adding these terms, the model calibrates without the need to add
calibration constraints, as done in LPM describe above.® More specifically, cost with
land is assumed to follow an exponential functional form with respect to land. That is,

I6¥ (land ) = 5,67 , and I€™, (land ) = 5,,¢”**™» with crop- and farmer specific
estimated parameters$ and 7.* The parameters 5and y are estimated by finding their
values that minimize the sum of squared errors associated with a system of two
equations. One parameter is obtained by setting the land marginal cost equal to the

derivative ofléii; (land;y) and Ié}g (land ;) , respectively, while the other is derived from

the definition of the elasticity of land use in in crop i or j, with respect to crop prices.
This requires prior information on the value of the elasticities. As done in Torres et al.
2016, we use a value of 0.7 for all crops.

Maximization of the problem represented by Equation (5) is subject to the
following set of constraints:

Land availability

> (Land; +Land; ) <by (6)
i

Water availability and water application

Annual

aw;, =sw_+ pr, ()
stig <b,, (8)
pr, <P, ©)
aw, )

L > Kk *wuse; 10
land; : (10)

Seasonal
aw, = (SW; +Pr;) (11)
S

* By calibration we mean that the optimal results of the contrained maximization model in terms of the
input and output quantities associated with each irrigated and rain fed crop match the values seen in the
field in the baseyear.

* Assuming an exponential functional form for the land cost function allows us to restrict the estimated
costs to be positive. A more detailed discussion on the exponential land cost function can be found in
Medellin-Azzuara (2010).



stﬁg <bg, (12)

pre <P? (13)
Swisg ’ prij >k *wuse’ (14)
land? 9
Monthly
aw, = Sw +pr’ (15)
m
> sw <bg, (16)
i
pr™ < P (17)
sw, + pr;"
—— >k*wuse], (18)
land;” 9

Equation (6) establishes that the total annual amount of land farmer g can use in the
production of crops i and j throughout the agricultural year must be less or equal to the
annual total amount of land available, B4 . With respect to water, three alternative sets
of constraints are utilized. If the temporal resolution is yearly, seasonal or monthly, the
constraints on water use are represented by equations (7) — (10), (11) — (14) and (15) —
(18), respectively. More especially, equation (7) shows that the total amount of water

used by crop i throughout the agricultural year, aw; , must be equal to the annual
amount of surface water farmer g decides to apply, SW; plus the total annual amount of
water in the precipitation that falls over the land area where crop i is grown, pr;, -

Constraint (8) says that the annual amount of surface water farmer g uses to irrigate all
irrigated crops,sti , must be less than or equal to the annual amount of surface
" 9

water available, by, . Constraint (9) establishes the total amount used from precipitation
9
pr. must be less or equal to actual amount of precipitation that falls onto crop i, grown

by farmer g, Pi;"‘. Constraint (10) puts an upper limit on the amount of water stress that

can be applied to a given crop i. That is, the annual ratio of applied water to a hectare of

aw,
Iand,ﬁ, cannot fall below a certain threshold, k * wuseig , where k is a parameter
and;
g

ranging from 0% to a 100% and wuseigq is the applied water to hectare of land ratio used
by farmer g on crop i in the baseline year. In this study k is assumed to be 0.85.

Constraints represented by equations (11) — (14) set up the scenario for the
seasonal temporal resolution. Now, with equation (11), the total amount of water used

by crop i throughout the agricultural year (awig) must be equal to the sum of the



seasonal amounts of surface water and precipitation used. Where s refers to one of the 2
seasons within the agricultural year: the wet season from October of a given year
through March of the following year; and the dry season, from April through
September. Equation (12) says that the total amount farmer g uses to irrigate its crops in

season s, stﬁg , must be less than or equal to the amount of surface water available at
i

season s to farmer g, bsswg . Equation (13) establishes that the total amount used from
precipitation in season s, prij, must be less or equal to actual amount of precipitation
that falls onto crop i, grown by farmer g, in season s, Pigs. Equation (14) assures that

W+ pr®

ratio of applied water to a hectare of land in crop i, in season s, ————, must be
iG

land

greater or equal to k”‘wuseifJ , Where Kk is defined as above and Wuseisg is the applied

water to hectare of land ratio used by farmer g on crop i in season s during the baseline
year. Finally, analogously to the seasonal temporal resolution, equations (14) — (16) set
up the constraints at the monthly temporal resolution in which m refers to one of the 12
months of the year.

The economic model was calibrated with data on input and output (prices and
quantities) collected in situ during the agronomic base year of 2007/2008 and validated
to the values observed in the field. Surface water use by farmer and crop was calculated
based on information on the frequency of irrigation, duration of irrigation, considering
irrigation technology. Precipitation data in daily millimeters were drawn from
Rodrigues et. al (2012). On total there were 26 farmers operating in the basin. Small
farmers (4 hectares on average) form the majority of farmers in the area. Most of them
grow a mix of vegetables and fruits and can be considered as small for Brazilian
standards (3 to 5 hectares). The exception is the farmer that operates a center pivot that
can be considered large (more than 100 hectares under cultivation yearly).

Hydrological Component

With the regional net-income model calibrated, simulations of restrictions on the
amount of water either in the form of precipitation or surface water stored in reservoirs
are used to derive the estimates of impacts on net-revenue under different model
temporal resolutions: annual, seasonal and monthly. The method of analysis is as
follows. We first analyze the impacts by assuming that cuts in surface water volume are
directly proportional to cuts in precipitation volume. For example, a 10% cut in
precipitation implies a 10% cut in surface water volume for all farmers. Alternatively,
we assume that they are not proportional and that they relate to each other in a non-
linear manner. The idea behind the non-linearity is that although a given cut or increase
in precipitation affects all farmers in the same way, in terms of how much rain falls onto
their crops, the effect of this cut or increase on their access to surface water may not be
the same across the basin. For example, let’s assume that in a given period in time it
started to rain more heavily on the river mouth area, which caused a 5% increase in the
volume of water along the water stream. At first, a similar increase of 5% is then seen in
the volumes of the reservoirs along the river. But part of the water that fell in mouth
area may infiltrate in the soil and percolates more heavily into the reservoir that is
closest to the creek mouth. Therefore a 5% increase in precipitation may imply a more



than a 5% increase in volume of surface water available to farmers that withdraw water
from this closest reservoir.

Figure 1 — The Buriti Vermelho Watershed

Channel 1a

Channel 1b

Buriti Vermelho
Creek Mouth

Torres et al, 2016.

How much and where water infiltrates and percolates depends on several variables such
as geographic position, soil porosity and declivity etc. In order to more precisely
measure the relationship between precipitation and reservoir volumes we build a
hydrological model. The Figure 1 above shows the Buriti Vermelho River watershed.
Farmers located within the basin draw water for irrigation from three of the five
reservoirs. The black and gray dots represent small farmers and CP3 represents the
location of a center pivot managed by a larger farmer. From Reservoir #1 water reaches
first the farmers located near Channels 1a and 1b. The remaining water goes first to
Reservoir 2 that feeds farmers through Channel 2, and then to Reservoir 5 used by CP3.

The hydrologic model simulates the river discharge and a canal model is used to
simulate the daily amount of water diverted from the small dam to the canal and the
amount of water that each farm gets. In the Buriti Vermelho basin, infiltration rates are
high and the storm durations short. Most of the infiltration excess infiltrates after the
storm ends and before it reaches an open water body.

The daily river discharge was simulated using the procedure described by
Steenhuis et al (2009) and Liebe et al. (2009). Basically the overland flow from
contributing areas starts when rainfall exceeds evapotranspiration and fully saturates the
soil. In this case, any moisture above saturation becomes runoff that can be estimated by



adding the change in soil moisture from the previous time step to the difference between
precipitation and actual evapotranspiration (Steenhuis et al, 2009), equation (19),

R =S,_n + (P — AET) AT. (19)

Where P is the precipitation (mm/day), AET is the actual evapotranspiration (mm/day),
St at is the previous time step storage (mm), R is the saturation excess runoff (mm/day)
and At is the time step.

The model was calibrated based on measured daily discharge for the period of
2005-2009 and validated for the period of 2010-2012. With the model validated, river
discharge and the amount of water diverted to the canals was calculated. In particular,
the canal model was built taking into account that the canals in the BV are not operated.
This means that the amount of water diverted to the canals is a function of both pressure
head and pipe diameter only (Figure 2).

Figure 2 — Hydrological Sequence

{2

J dide

Where 1 is the pipe diameter and 2 is the pressure head. The pressure head was
calculated daily for each reservoir using a stage discharge curve. The needed parameters
were obtained from Rodrigues and Liebe (2013) and Rodrigues et. al (2012). The

discharge in the channel was calculated using Manning equation with roughness
coefficient for concrete.

RESULTS

Table 1 shows the impacts on regional net-revenue from alternative cuts in precipitation
(0 to 70%), assuming that they imply directly proportional cuts in the water volumes
stored in the reservoirs. Impacts are displayed by the temporal resolutions in which
surface water and precipitation are modeled, namely: annual, seasonal and monthly. In
the baseline year, regional income was 734.5 thousand Brazilian reais. A 10% cut in
precipitation volume however would imply, ceteris paribus, a decrease of 3.4% in net
revenue no matter the temporal resolution. When the cut in precipitation increases to
20%, the annual and seasonal models predict a drop in net-revenue of 6.8% and the
monthly model a slightly higher impact of 6.9%. As the cuts get deeper, impacts
become more significant in magnitude, as expected. For example, with the annual
model, impacts increase from 3.4% to 38%.

Table 1 — Regional Yearly Net-Revenue Impacts due to Cuts
in Precipitation

% Cuts in Annual Seasonal Monthly
Precipitation from
The Baseline Value® % Value % Value %
0 734.5 - 7345 - 7345 -
10 709.2 -34 709.2 -34 709.2 -34
20 684.3 -6.8 684.3 -6.8 683.8 -6.9
30 659.9 -10.2 658.3 -10.4 649.1 -11.6

40 632.7 -13.9 608.5 -17.2 569.8 -22.4



50 586.7 -20.1 529.1 -28,0 487.8 -33.6
60 5142 -30.0 473.1 -35.6 4255 -42.1

70 458.2 -37.6 401.7 -45.3 370.4 -49.6
(a)Values in Thousands of Brazilian Reais as of 2008.

More interestingly, we can see how the impacts differ under alternative temporal
resolutions. Consider a 30% cut in precipitation. While the annual model would predict
a 10.2% drop in net-revenue, the seasonal model predicts a drop of 10.4% and the
monthly model, 11.6%. And as the cuts get deeper, the differences in the predictions
become higher. For example, in the event of a 50% cut in precipitation, the annual,
seasonal and monthly predictions would be 20%, 28% and 34% respectively. The same
pattern is repeated in the successive cuts. In other words, the coarser the temporal
resolution of the model the more the regional impacts are underestimated.

This underestimation can also be seen by looking at Table 2 below which shows
the months in which constraints start to become binding and positive shadow values are
triggered®. For example, in the event of a 10% cut in precipitation the shadow values
associated with the surface water constraints (equations 8, 12 and 16) are all zero, no
matter the temporal resolution. While the shadow values associated to the precipitation
constraints (equations 9, 13 and 17) are invariant to the temporal resolution. But as the
cuts become larger, not only the shadow values on surface water and precipitation
constraint costs become larger, but they also start to differ depending on the temporal
resolution. For example, consider a 50% cut in precipitation level and a specific farmer
called v10. Under this 50% cut in precipitation and the directly proportional cut in
surface water availability, the annual model predicts that the annual available surface
water would be 10655m® and the farmer would use only 8297m?3, triggering a null
shadow value on surface water. Now if we consider the monthly temporal resolution
model, we can see that surface water would be binding in the month of October,
triggering a shadow value of 2.097.

Table 2 — Monthly and Annual Surface Water Shadow Values in the
Event of a 50% drop in Precipitation and Surface Water Availability.

Monthly Annual

Shadow Shadow
Farmer | Month | Value | Farmer | Month | Value | Farmer | 50%

vl0 Oct 2.097 V22 Oct 0.778 v10 0.000
vl3 Dec 4.002 v23 Dec 1.406 v1l3 0.009
vl4  Feb 1.347 v24 Feb 5.403 v16 0.251

Oct 0.510 v25 Dec 2.623 v18 0.015
vl Feb 0.606 v26 Oct 1.082 v24 0.334

Dec 2.954 v27 Dec 2.419 v26 0.015
vl7 Dec 11.382 v28 Feb 1.314 v27 0.005

vl8 Oct 2.274 Oct 1.543 v28 0.261
vl9 Dec 4,718 v31l Feb 4,182 v31l 2.513
v20 Feb 3.137 Oct 14.614

Dec 12.849 v32 Dec 4.210
v21 Dec 4.695

For another farmer called v13, the annual model would predict a shadow value of 0.009,
while the monthly model would trigger a positive shadow value in December of 4.002.
That is, under a 50% cut of surface water, the annual model is saying that one additional

> For farmers and months that do not appear in the table, shadow values are null.



unit of water per year for farmer v13 would increase its net-revenue by 0.009 Brazilian
Reais no matter the time the farmer applies it. Alternatively, the monthly model says
that if the farmer had one more unit of surface water and applied it in December, their
profits would increase by 4 Brazilian reais. In summary, the annual model assumes that
the impact of water scarcity is uniform throughout the year, or in other words that
farmers can freely allocate water between the months. Under this assumption, water
becomes artificially cheaper. There are several other examples with different farmers
and different time periods in which the annual model underestimates water scarcity
values, particularly when water scarcity starts to become severe.

As already mentioned, the above discussion considers that cuts in precipitation
imply a proportional cut in surface water volumes stored in the reservoirs. In order to
allow for a non-linear relationship we consider the predicted surface water supply by
farmer vyielded by the hydrological model described above. Two scenarios are
considered in the hydrological model predictions: a 30% and a 50% cut in precipitation.
For example, a 30% cut in precipitation would impact surface water supply by taking
into account the farmers’ position, soil characteristics across the basin and monthly
precipitation patterns. Table 3 below shows the monthly values of surface water supply
considered in the proportional approach and the ones given by the hydrological model
for example for farmers v10 and v30. Consider a 30% cut in precipitation in January.
The hydrological model estimates a supply of surface water to farmer v10 of 1447.8m°,
while by using the proportional approach the cut would imply a surface water volume
30% lower than the baseline value at 1266.8m°. We can then see that sometimes the
proportional approach yields a higher water supply than the hydrological model and
vice versa.



Table 3 — Monthly Surface Water Supply Predictions by Hydrological (H)
versusProportional (P) Approaches from a 30% and 50% cut in precipitation.

Farmers
v10 v30

30% 50% 30% 50%

H® P H P H P H P
January 1447.8 1266.8 10858 9049 20146 17628 15110 1259.1
February 1307.8 11444 9809 817.4 1819.9 15924 1364.9 1137.4
March 14480 1267.0 10860 9050 20149 17630 1511.1 1259.3
April 13137 12261 9634 8758 18280 17061 13405 1218.7
May 12670 1267.0 9050 9050 17630 17630 1259.3 1259.3
June 11385 12261 7882 8758 15843 17061 10968 1218.7
July 11765 1267.0 8145 9050 1637.1 17630 11334 1259.3
August 11765 1267.0 8145 9050 1637.1 17630 11334 1259.3
September 1313.7 1226.1 9634 8758 18280 17061 13405 1218.7
October 13575 1267.0 1086.0 9050 1888.9 17630 15111 1259.3
November 14013 1226.1 10509 875.8 1949.9 1706.1 14624 12187

December 1448.0 1267.0 1086.0 905.0 2014.9 1763.0 1511.1 1259.3
(a) Values in cubic meters

Months

To investigate how the impacts differ across the basin, farmers were divided in
groups according to their access to surface water. Farmers in groups 1 and 2
receive water from the first reservoir through the channels la and 1b
respectively (see Figure 1). Channel 1a has a 50% higher conveyance capacity
than channel 1b. Farmers in group 3 withdraw water from Reservoir 2, through
channel 2, which is filled with the remaining water from Reservoir 1 after
farmers in groups 1 and 2 have used up their surface water. Results can be seen
in Table 4 below.

Table 4 — Regional Yearly Net-Revenue Impacts due to a 30 and 50%
Cuts in Precipitation — Hydrological Supply Predictions.

Scenarios
and Temporal
Resolutions Regional Group 1 Group 2 Group 3
30%
Annual -10.5 -7.3 -7.4 -9.0
Seasonal -11.2 -7.2 -7.8 -13.0
Monthly -15.8 -1.4 -18.9 -33.6
50%
Annual -36.1 -11.8 -20.2 -28.3
Seasonal -41.6 -45.2 -29.5 -41.9
Monthly -53.0 -46.0 -46.5 -64.8

In general, they corroborate the hypothesis that the coarser the temporal
resolution, the higher the underestimation of the water scarcity impacts on net-
revenue. The magnitude of the discrepancy gets more significant in situations of



more severe water scarcity. For example, the annual model predicts a drop of
10.5% in net-revenue in the case of a 30% drop in the precipitation level. Under
this scenario, the impact estimates would increase in absolute terms by 0.7%
(11.2%-10.5%) and 5.3% had the modeler used a finer resolution such as
seasonal and monthly respectively. Now, in the event of a more severe drought,
as represented by a 50% drop in the precipitation level, the impact estimates
would increase by 5.5% in the seasonal model and by 16.9% in monthly model
compared to the estimates yielded by the annual model. This underestimation
pattern is also found when we look at the impacts by groups.

The analysis by groups allows us also to see that the impacts of a given
cut in precipitation are not uniform across the basin. For example, farmers in
group 3 are hit relatively harder. Given that they grow similar crops and use
similar input mixes compared to the other farmers in groups 1 and 2, they
probably face a higher profit impact due to their geographical position and
access to surface water, since they withdraw water from reservoir 2 that is filled
with the remaining water from reservoir 1 used first by the more upstream users.

Measuring the Cost of Seasonal Shifts in Precipitation

Several research papers have noted that climate change is likely to shift the
seasonality of precipitation as well as its magnitude. Feng et al (2013) conclude
that “...increases in rainfall variability were accompanied by shifts in its
seasonal magnitude, timing and duration, thus underscoring the importance of
analyzing seasonal rainfall regimes in a context that is most relevant to local
ecological and social processes.” Feng et al in their figure 3, show the changes
in monthly precipitation for Parau, Brazil .

For the BV region, we simulated a possible two month shift in
seasonality as well as a reduction in precipitation. The seasonality change was a
shift to earlier precipitation events, with the shifted January precipitation being
represented by the current March precipitation measure. Table 5 shows the
economic effects of of the shift by comparing the net-revenue estimates, under
the monthly model, with and without the precipitation two-month shift. Under
current precipitation levels, the two month shift would result in a loss of 7.8% in
net-revenue as the regional annual net-revenue is reduced from 734.5 to 677.3.
The maximum loss associated with the shift would be under a 30% precipitation
cut scenario (-18.8%).

Table 5 - Annual Net-Revenue Impacts due to a Two-Month
Shift in Precipitation
Monthly ~ Monthly Model
Cuts (%) Model® (2 Month Shift) Shift Cost (%)

0 734.5 677.3 -7.8
10 709.2 607.4 -14.4
20 683.8 573.7 -16.1
30 649.1 527.3 -18.8
40 569.8 483.6 -15.1
50 487.8 443 -9.2
60 425.5 400.1 -6.0
70 370.4 357.9 -3.4

(a) Values in Thousands of Brazilian Reais as of 2008.


https://www.nature.com/nclimate/journal/v3/n9/pdf/nclimate1907.pdf#auth-1

Now, if we compare the results in Table 5 with the ones in Table 1, we can see
that on average the annual hydroeconomic model would underestimate the
annual regional impacts by 7.8% since it yields net return values that are
unchanged under a shift scenario. A seasonal model may capture small changes
at the seasonal margins but this would not accurately reflect the two rainfall
seasons in the BV region. The annual model would tend also to underestimate
the impacts when shifts in precipitation occur simultaneously with precipitation
shortages. For example, for a 30% cut in precipitation, while the annual model
would predict a reduction in net-revenue from 734.5 to 659.9 (a 10.2% drop),
the monthly model would predict a decrease from 677.3 to 527.3 (a 22.2%
drop). These results further emphasize the point raised by Feng et al. that a
disaggregated monthly analysis is required to accurately reflect both the changes
the levels and the seasonality of precipitation under climate change.

CONCLUSIONS

This paper shows that the temporal resolution of models biases the estimates of
the cost of precipitation changes. Using a multiproduct calibrated agricultural
production model coupled with a hydrological model, we show that the
opportunity costs associated with water availability in the form of precipitation
or surface water vary considerably. The variation depends on the temporal
resolution with which these water supply variables are considered by the
modelers. The results show that the coarser the temporal resolution, the more
the impacts on agricultural income are underestimated. For example, in the
event of a 30% cut in precipitation, while the annual model would predict a
10.2% drop in net-revenue, the seasonal model predicts a drop of 10.4% and the
monthly model, 11.6%. And as the cuts get deeper, the differences in the
predictions become higher. For example, in the event of a 50% cut in
precipitation, the annual, seasonal and monthly models would predict a drop of
20%, 28% and 34% respectively. Between the annual and the monthly model,
impacts are higher in absolute terms, in the latter by 14%.

The ability of models with finer temporal resolutions to reflect the
opportunity costs of precipitation and surface water to agriculture is based on
the fact that plant water requirements vary across the life span of the plant and
also to the time of crop planting and land coverage. For example, in the example
described above of farmer v13, the monthly model was able to show that water
was needed the most in the month of December, and if the farmer could apply
one more unit of water in that month, their profits would increase more than if
applied it in any other month of the agricultural year. This could only be
measured because the water supply and the timing of water use were set at the
monthly temporal resolution. In summary, since the annual model assumes that
the impact of water scarcity is uniform throughout the year, or in other words
that farmers can freely allocate water across the months of the year, water
becomes artificially cheaper. This ability to model the monthly water use is
therefore essential for the precise estimation of the costs with expected shifts in
seasonality due to climate change. This cost is shown to be significant for a two
month earlier rain season in this part of Brazil.

These results have clear implications for the study of water scarcity
impacts on agricultural income and ultimately on the design of cost-effective
public policies that aim to lift up farmers from poverty conditions prevalent in
many rural areas of the world that are subject to water scarcity. While the spatial



extent of the current empirical example is too small to be scaled up, results do
indicate that time resolution with respect to climatic variables such as
precipitation and surface water supply may significantly influence the precise
quantification of water scarcity impacts.
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