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ABSTRACT 

Fluctuations in water availability, either in the form of precipitation or stored water in 

surface and groundwater bodies, will affect agricultural productivity and farmers´ 

income. Climate science tells us that much of these fluctuations will be in the form of 

shifts in the timing and intensity of precipitation. Understanding these relationships and 

the accurate estimation of their economic effects may, therefore, help in the designing 

of effective agricultural public policies to mitigate drought and climate change impacts 

on agriculture. In this context, this paper introduces a novel hydro-economic model in 

which the timing of rainfall and supplementary irrigated water supplies affect the 

productivity of a partially irrigated agricultural system. The specification of the 

production function and water availability is designed to reflect shifts in monthly 

precipitation totals and to show how the opportunity cost of supplementary irrigation 

supply varies with changes in the timing of precipitation. Results show that shifts in 

monthly precipitation parterns have indeed significant impacts on agricutltural income 

and that the coarser the temporal resolution that the modeler chooses, the lower is her  

ability to precisely measure them.     

Keywords: Applied microeconomics, water resources, agricultural income, positive 

mathematical programming, temporal resolution, hydroeconomic modeling. 

INTRODUCTION 

Climate change and shifts in the timing and intensity of precipitation is widely 

acknowledged as being already in evidence in Australia and other parts of the southern 

hemisphere. A common characteristic of these climate change effects is that while the 

mean rainfall quantity may be relatively unchanged, climate change will result in 

significant shifts in the timing of the rainfall and its variability. In several regions this 

timing is predicted to be relatively subtle and may take the form of a one to two month 

shift in the rainfall pattern. It follows that economic and social analysis to measure the 

impact of this important change must be able to reflect the differences in both the timing 

and quantity of rainfall.  

The effects of fluctuations in precipitation and water availability on agriculture 

have been recently investigated by a wide array of methods and approaches. Surveys of 

agricultural models that include precipitation, temperature and water as determinants of 

productivity, land price, profits and yields have been compiled in Dell et al (2014) and 

in Booker et al (2012).  In the former, the focus is on econometric studies and in the 

latter, the focus is on constrained optimization models. Examples are Hidalgo et al 

(2010), Fishman (2011), Deschêne and Greenstone (2007), Schlenker and Lobell 

(2010), Torres et al (2011), Welch (2010), Maneta et al (2009), Torres et al (2016), 

Wang et al. (2016) and  Olayide et al. (2016). Other studies, outside the economic 

literature, show how crop productivity impacts estimates from changes in water 

availability and precipitation vary according to different spatial resolutions (global, 

regional etc), such as Carbone et al (2003), Eastering et al (1998) and Mearns et al 

(2001). In these papers, however, rainfall is generally specified on an annual, or at best, 

a seasonal basis and thus they are unable to reflect the results of shifts in the timing of 

rainfall that climate modelers tell us will be one the main results of global climate 

change (Feng et al 2012, Carbone et al 2003, Mearns et al 1999 and Trenberth 2005).  

To examine whether the timing of water availability and rainfall is an important 

economic variable, this paper uses a novel hydro-economic model in which the timing 

of rainfall and supplementary irrigated water supplies can affect the productivity of a 



partially irrigated agricultural system. The specification of the production function and 

water supply either in the form of surface water or precipitation is designed to reflect 

shifts in monthly precipitation totals and to show how the opportunity cost of 

supplementary irrigation supply varies with changes in the timing of precipitation.  

The paper opens with a review of literature on estimation methods and then 

introduces the analytical model with a brief discussion of its calibration and verification 

against an empirical case study in central Brazil. In the empirical section the model is 

run to generate results that compare the costs of shifts in precipitation under the 

standard hydro-economic model, which is specified on an annual or seasonal basis, with 

the new model that is able to analyze a monthly distribution of precipitation and its 

resulting opportunity costs. The results are followed by the conclusions section with a 

discussion of the policy cost of this particular aspect of climate change and the effects 

of shifting precipitation patterns on the increasing value of supplementary irrigation that 

may be able to offset some of the effects. Additional discussion explores the generality 

of the approach and the ability to extend it to areas other than Brazil.  

METHODOLOGY 

Generally researchers follow one of the two main approaches to model the effects of 

changes in precipitation and water supply on agricultural productivity and income: 

econometrics and mathematical optimization. The first approach relies on cross-section 

or panel data econometric estimation of production functions, or Ricardian land price, 

profit and crop yield equations. Besides the usual production and crop output and input 

price data, researchers that follow this approach may complement their datasets with 

information on precipitation and temperature from gridded data, satellite data and 

reanalysis data, Dell et al (2014). Some examples of this approach are Adams et al 

(1995), Deschênes and Geenstone (2007), Schlenker and Lobell (2010), Hidalgo (2010), 

Welch et al (2010), Fisher et al (2012), Wang et al. (2016) and Olayide et al. (2016).     

 As seen in Booker et al, empirical water researchers also rely on mathematical 

optimization models that involve the maximization of an economic objective function 

(e.g., net-revenue) subject to a set of physical and institutional constraints including 

hydrological and agronomic factors. Two types of models can be highlighted: holistic 

and coupled. In the first, economic, hydrologic and agronomic aspects are spatially 

integrated in a single model characterized by a system of water supply and demand 

nodes. Examples of this approach are the SWAP model as in Howitt et al (2001), the 

WEAP model as in Yates at al (2009) and the CalSim model in Draper and Lund 

(2004). In the coupled modeling approach, distinct economic, hydrological and 

agronomic models are built separately and integrated iteratively via linking equations. 

Examples of coupled models are Maneta et al (2009), Torres et al (2012) and Torres et 

al (2016).  

For this study we follow the mathematical optimization approach for two main 

reasons. The first is that when extensively reviewing the econometric studies on climate 

and agriculture, Dell et al. highlighted a couple of classical problems related to models 

based on cross-section data, such as inconsistent estimators and unobservable relevant 

variables correlated with climate, that can be smoothed out with the use of 

econometrically estimated fixed-effects panel data models. This latter approach, 

however, requires at least two years of observations, a condition that cannot be met by 

the database used here, which is based on a single year of farmer level primary data. 

Another reason is that mathematical optimization allows for a richer representation of 

the physical constraints that real farmers face when deciding on what and when to crop. 



The precise characterization of these constraints is key for this study as alternative time 

resolutions concerning water availability and use imply different specifications for the 

set of constraints facing by the farmers.  

The model is divided in two components: economic and hydrological. In the 

economic component, crop and farm specific production functions that characterize the 

agriculture system within a watershed, located near Brasília, Brazil, are parameterized 

using Positive Mathematical Programming (PMP), Howitt (1995), and adapted to the 

study site as in Torres et al (2016). These functions are then used in a regional net-

revenue maximization model subject to a set of physical constraints. The hydrological 

component uses a mass-balance model to estimate the monthly, seasonal and yearly 

water available for irrigation to farmers in the watershed. This information is than used 

to set the physical constraints on water and precipitation used in the economic 

component. These two components are then sequentially coupled to allow for the 

measurement of the effects of variations in precipitation and the volume of stored water 

in small reservoirs on agricultural income given alternative model temporal resolutions.     

Economic Component 

We make the usual assumption that the multiproduct and multi-input farmers maximize 

net-revenues associated with growing irrigated and rain fed crops, designated in the 

model by the superscripts ir and r respectively. For the ith irrigated crop, inputs used are 

land (landi), applied water (awi), materials (mi) and labor (li). For the jth rain fed crop 

the input set includes land (landj),  materials (mj) and labor (lj). In this model, applied 

water only comes in the form of precipitation that is exogenous. Crop production is 

modeled by a Constant Elasticity of Substitution (CES) production function that yields 

the maximum output for a crop given the amounts of the inputs used to grow it. For 

irrigated and rain fed crops, the CES production functions are respectively specified as  
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r
 are the elasticity of input substitution for irrigated 

and rain fed crops, respectively. εi and εj are the parameter associated with returns to 

scale in the production of crops i and j. 

Precipitation is handled as a shifter in the rain fed production function and is 

defined as 
e
j
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Precip  . Where a

jpr  and e
jpr  are the actual and expected amounts of 

precipitation to fall onto the area covered by crop j. In the irrigated production function 

precipitation is part of total applied water, that is iii prswaw  . Where swi is the total 

amount of surface water used in the irrigation of crop i, which can be controlled by the 



farmer, and ipr is the amount of precipitation that falls onto the area covered by crop i, 

and is assumed to be exogenous. 

 The crop and farmer-specific share parameter estimates in the production 

functions are analytically calculated under the assumption that the farmers’ objective is 

to maximize net-revenue. In other words, as a first-order condition for a maximum, 

farmers will choose the optimal amounts of the inputs under their control such that the 

value of the input marginal productivity equals input marginal cost. For instance, for an 

irrigated crop i, the first order condition for labor can be specified as  
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where pi is the unit price of the ith crop, and 
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 is the marginal 

product of labor in crop i and 
il

MC is the marginal cost of labor when used in crop i. 

Assuming constant returns to scale, so that for each crop and farmer the sum over the 

estimated share parameters equals 1, expressions for the share parameter estimates can 

be analytically derived. These expressions are functions of input quantities, unit crop 

prices, marginal input costs and the elasticities of input substitution.
1
    

For unrestricted inputs such as materials and labor, marginal costs are defined, 

respectively, as the unit prices of materials (fertilizers, pesticides, seeds etc) and the 

price of a man-hour of labor. For the restricted supply inputs such as land and stored 

water, marginal costs are constructed as follows. For water, the marginal cost each 

farmer faces is a sum of its unit surface water cash cost isw , such as a water fee, if it 

exists, plus an estimate of the farmer’s water scarcity shadow value. The idea here is 

that for whatever water fee paid, markets for water are non-existent or highly imperfect. 

By adding a measure of its scarcity value, we more accurately reflect its true cost.  

For land costs, we follow the same reasoning. That is, to the unit land cash cost, 

a land shadow value is added to the measure of its marginal cost. Besides these two 

components of the marginal cost of land, a third component is added to it: the implicit 

marginal cost of land, also known as PMP term. This term represents all other marginal 

costs faced by the farmers when allocating land to the different irrigated and rain fed 

crops that cannot be directly observed by the researcher. In a nutshell, a farmer could 

have, in theory, allocated an additional unit of land to the nominally more profitable 

crop from the least profitable crop that was actually observed to be grown in the base 

year. Since the farmer didn´t make this reallocation, under profit maximization, we 

conclude that it was because there were some other costs associated with this land 

allocation to the nominally more profitable crop at the margin. In other words, the PMP 

term measures how much the farmer lost by not reallocating crops. That is, he lost the 

difference in the net-revenue per unit of land of the more profitable crop deducted from 

the net-revenue per unit of land of the least profitable crop. Since each farmer has a 

different set of crops, with different profitability, the PMP term becomes crop and 

farmer specific.        

                                                           
1
 A more detailed display of how the parameter estimates are derived can be seen in 

Maneta et al (2009). 



 The stored water and the land shadow values as well as the PMP terms are estimated by 

a linear programming model (LPM). In the LPM, the goal is to find the allocation of 

land and all other input quantities, assumed to be in fixed proportions to land, across all 

farmers and crops that maximize regional net-revenue. This maximization is subject to a 

set of constraints on the amount of stored water available and land. The set also contains 

a calibration constraint that restricts the amount of land allocated to a given crop to be 

less or equal to the amount of land allocated in the base year. The value of the Lagrange 

multipliers associated with the water, land and calibration constraints are then used as 

the water and land shadow values and the PMP term respectively. 

With data on input quantities, market input prices, shadow values for the limited 

availability inputs (land and stored water) and the PMP term, the only missing 

information necessary for the estimation of the share parameters in (1) and (2) are the 

elasticities of input substitution. There are several studies on estimates of elasticities of 

input substitution between owned and purchased inputs in agricultural production. 

Salhofer (2001), with his survey on 32 econometric studies, found the range of Allen 

elasticities to be between 0.3 and 1.5. Gomez et al (2004) also provide some estimates. 

In particular, they found an elasticity of input substitution for irrigated crops between 

land and an aggregate of capital-water of 0.7, within the range showed in Salhofer 

(2001). Based on these studies we use a value for the elasticity of input substitution of 

0.7 for irrigated crops and 0.3 for rain fed crops, given the reduced ability for input 

substitution in the production of crops that rely solely on exogenous precipitation.   

 Once we have the values for the share parameters we substitute them in (1) and 

(2), along with data on output and input quantities and the values of the elasticities of 

input substitution, to derive the estimates for the rain fed and irrigated crops scale 

parameters Ai and Aj, respectively. With the parameterized production functions we can 

then define the non-linear regional net-revenue function that is subsequently used for 

simulations. The regional net-revenue function is specified as 
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Where jgp  and igp are respectively the unit price of the jth rain fed and ith irrigated 

crops received by farmer g. ),,,(ˆ and ),,(ˆ igigigig
ir
igjgjgjg

r
jg lmawlandqlmlandq are the 

crop- and farmer-specific parameterized production functions for rain fed and irrigated 

crops. igmat  and jgmat  are the costs with materials used in the ith and irrigated jth 

crops respectively. That is, instead of using prices separated from quantities, we use a 

measure of the total material expenditures per crop (the sum, by crop, of the unit price 

paid of each material used - fertilizer, pesticide, seeds etc - times quantity).
2

gl
p is the 

labor price defined as the price of a man-hour of work and 
gswp is the unit price of 

stored water used by farmer g and is defined as the marginal cost of stored water 

                                                           
2
 Materials are composed by several inputs used in a single crop, including different types of pesticides 

and fertilizers used along the different stages of planting. To use a separate price for each material would 

leave the model intractable.  



discussed above. Since famers do not directly pay a unit fee for the water, we use, as a 

proxy for its cash cost, an average irrigation cost estimated as the sum, over all crops, of 

the irrigation costs with labor, electricity and annualized capital value divided by the 

number of crops irrigated. 

Last, but not least, notice that in (5) two terms are added to the regional net-

revenue function: )(ˆ and )(ˆ jg
r
jgig

ir
ig landcllandcl . These are parameterized functional 

forms for the cost of land a farmer g faces when allocating land to the ith irrigated and 

jth rain fed crops. By adding these terms, the model calibrates without the need to add 

calibration constraints, as done in LPM describe above.
3
 More specifically, cost with 

land is assumed to follow an exponential functional form with respect to land. That is, 
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estimated parameters ̂ and ̂ .
4
 The parameters  and   are estimated by finding their 

values that minimize the sum of squared errors associated with a system of two 

equations. One parameter is obtained by setting the land marginal cost equal to the 

derivative of )(ˆ and )(ˆ jg
r
jgig

ir
ig landcllandcl , respectively, while the other is derived from 

the definition of the elasticity of land use in in crop i or j, with respect to crop prices. 

This requires prior information on the value of the elasticities. As done in Torres et al. 

2016, we use a value of 0.7 for all crops.           

Maximization of the problem represented by Equation (5) is subject to the 

following set of constraints:  
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3
 By calibration we mean that the optimal results of the contrained maximization model in terms of the 

input and output quantities associated with each irrigated and rain fed crop match the values seen in the 

field in the baseyear.    
4
 Assuming an exponential functional form for the land cost function allows us to restrict the estimated 

costs to be positive. A more detailed discussion on the exponential land cost function can be found in 

Medellín-Azzuara (2010).    
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Equation (6) establishes that the total annual amount of land farmer g can use in the 

production of crops i and j throughout the agricultural year must be less or equal to the 

annual total amount of land available, .landB With respect to water, three alternative sets 

of constraints are utilized. If the temporal resolution is yearly, seasonal or monthly, the 

constraints on water use are represented by equations (7) – (10), (11) – (14) and (15) – 

(18), respectively. More especially, equation (7) shows that the total amount of water 

used by crop i throughout the agricultural year, 
gi

aw , must be  equal to the annual 

amount of surface water farmer g decides to apply,
gi

sw , plus the total annual amount of 

water in the precipitation that falls over the land area where crop i is grown, .
gi

pr

Constraint (8) says that the annual amount of surface water farmer g uses to irrigate all 

irrigated crops,
i

ig

sw , must be less than or equal to the annual amount of surface 

water available, 
gsw

b . Constraint (9) establishes the total amount used from precipitation 

gi
pr  must be less or equal to actual amount of precipitation that falls onto crop i, grown 

by farmer g, 
a

ig
P . Constraint (10) puts an upper limit on the amount of water stress that 

can be applied to a given crop i. That is, the annual ratio of applied water to a hectare of 

land,

g

g

i

i

land

aw
, cannot fall below a certain threshold, igwusek * , where k is a parameter 

ranging from 0% to a 100% and igwuse is the applied water to hectare of land ratio used 

by farmer g on crop i in the baseline year. In this study k is assumed to be 0.85.  

Constraints represented by equations (11) – (14) set up the scenario for the 

seasonal temporal resolution. Now, with equation (11), the total amount of water used 

by crop i throughout the agricultural year (
gi

aw ) must be equal to the sum of the 



seasonal amounts of surface water and precipitation used. Where s refers to one of the 2 

seasons within the agricultural year: the wet season from October of a given year 

through March of the following year; and the dry season, from April through 

September. Equation (12) says that the total amount farmer g uses to irrigate its crops in 

season s, 
i

s
ig

sw , must be less than or equal to the amount of surface water available at 

season s to farmer g, s
swg

b . Equation (13) establishes that the total amount used from 

precipitation in season s, s
ig

pr , must be less or equal to actual amount of precipitation 

that falls onto crop i, grown by farmer g, in season s, s
ig

P . Equation (14) assures that 

ratio of applied water to a hectare of land in crop i, in season s, 
s
i

s
i

s
i

g

gg
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prsw 
, must be 

greater or equal to 
s
igwusek * , where k is defined as above and 

s
igwuse is the applied 

water to hectare of land ratio used by farmer g on crop i in season s during the baseline 

year. Finally, analogously to the seasonal temporal resolution, equations (14) – (16) set 

up the constraints at the monthly temporal resolution in which m refers to one of the 12 

months of the year. 

The economic model was calibrated with data on input and output (prices and 

quantities) collected in situ during the agronomic base year of 2007/2008 and validated 

to the values observed in the field. Surface water use by farmer and crop was calculated 

based on information on the frequency of irrigation, duration of irrigation, considering 

irrigation technology. Precipitation data in daily millimeters were drawn from 

Rodrigues et. al (2012). On total there were 26 farmers operating in the basin. Small 

farmers (4 hectares on average) form the majority of farmers in the area. Most of them 

grow a mix of vegetables and fruits and can be considered as small for Brazilian 

standards (3 to 5 hectares). The exception is the farmer that operates a center pivot that 

can be considered large (more than 100 hectares under cultivation yearly). 

Hydrological Component 

With the regional net-income model calibrated, simulations of restrictions on the 

amount of water either in the form of precipitation or surface water stored in reservoirs 

are used to derive the estimates of impacts on net-revenue under different model 

temporal resolutions: annual, seasonal and monthly. The method of analysis is as 

follows. We first analyze the impacts by assuming that cuts in surface water volume are 

directly proportional to cuts in precipitation volume. For example, a 10% cut in 

precipitation implies a 10% cut in surface water volume for all farmers. Alternatively, 

we assume that they are not proportional and that they relate to each other in a non-

linear manner. The idea behind the non-linearity is that although a given cut or increase 

in precipitation affects all farmers in the same way, in terms of how much rain falls onto 

their crops, the effect of this cut or increase on their access to surface water may not be 

the same across the basin. For example, let’s assume that in a given period in time it 

started to rain more heavily on the river mouth area, which caused a 5% increase in the 

volume of water along the water stream. At first, a similar increase of 5% is then seen in 

the volumes of the reservoirs along the river. But part of the water that fell in mouth 

area may infiltrate in the soil and percolates more heavily into the reservoir that is 

closest to the creek mouth. Therefore a 5% increase in precipitation may imply a more 

 



than a 5% increase in volume of surface water available to farmers that withdraw water 

from this closest reservoir.  

Figure 1 – The Buriti Vermelho Watershed 

 
Torres et al, 2016. 

How much and where water infiltrates and percolates depends on several variables such 

as geographic position, soil porosity and declivity etc. In order to more precisely 

measure the relationship between precipitation and reservoir volumes we build a 

hydrological model. The Figure 1 above shows the Buriti Vermelho River watershed. 

Farmers located within the basin draw water for irrigation from three of the five 

reservoirs. The black and gray dots represent small farmers and CP3 represents the 

location of a center pivot managed by a larger farmer. From Reservoir #1 water reaches 

first the farmers located near Channels 1a and 1b. The remaining water goes first to 

Reservoir 2 that feeds farmers through Channel 2, and then to Reservoir 5 used by CP3. 

The hydrologic model simulates the river discharge and a canal model is used to 

simulate the daily amount of water diverted from the small dam to the canal and the 

amount of water that each farm gets. In the Buriti Vermelho basin, infiltration rates are 

high and the storm durations short. Most of the infiltration excess infiltrates after the 

storm ends and before it reaches an open water body. 

The daily river discharge was simulated using the procedure described by 

Steenhuis et al (2009) and Liebe et al. (2009). Basically the overland flow from 

contributing areas starts when rainfall exceeds evapotranspiration and fully saturates the 

soil. In this case, any moisture above saturation becomes runoff that can be estimated by 

• 
• • 
• 

                 Channel 1a 

               Channel 1b 

           
Channel 2 

Buriti Vermelho 

Creek Mouth 

• 
• 

• 

 

• 

Reservoir #1 



adding the change in soil moisture from the previous time step to the difference between 

precipitation and actual evapotranspiration (Steenhuis et al, 2009), equation (19), 

  𝑅 = 𝑆𝑡−∆𝑡 +  𝑃 − 𝐴𝐸𝑇  ∆𝑇.      (19) 

Where P is the precipitation (mm/day), AET is the actual evapotranspiration (mm/day), 

St_Δt is the previous time step storage (mm), R is the saturation excess runoff (mm/day) 

and Δt is the time step.  

The model was calibrated based on measured daily discharge for the period of 

2005-2009 and validated for the period of 2010-2012. With the model validated, river 

discharge and the amount of water diverted to the canals was calculated. In particular, 

the canal model was built taking into account that the canals in the BV are not operated. 

This means that the amount of water diverted to the canals is a function of both pressure 

head and pipe diameter only (Figure 2). 

Figure 2 – Hydrological Sequence 

 

Where 1 is the pipe diameter and 2 is the pressure head. The pressure head was 

calculated daily for each reservoir using a stage discharge curve. The needed parameters 

were obtained from Rodrigues and Liebe (2013) and Rodrigues et. al (2012). The 

discharge in the channel was calculated using Manning equation with roughness 

coefficient for concrete. 

RESULTS 

Table 1 shows the impacts on regional net-revenue from alternative cuts in precipitation 

(0 to 70%), assuming that they imply directly proportional cuts in the water volumes 

stored in the reservoirs. Impacts are displayed by the temporal resolutions in which 

surface water and precipitation are modeled, namely: annual, seasonal and monthly. In 

the baseline year, regional income was 734.5 thousand Brazilian reais. A 10% cut in 

precipitation volume however would imply, ceteris paribus, a decrease of 3.4% in net 

revenue no matter the temporal resolution. When the cut in precipitation increases to 

20%, the annual and seasonal models predict a drop in net-revenue of 6.8% and the 

monthly model a slightly higher impact of 6.9%. As the cuts get deeper, impacts 

become more significant in magnitude, as expected. For example, with the annual 

model, impacts increase from 3.4% to 38%. 

                          Table 1 – Regional Yearly Net-Revenue Impacts due to Cuts 

                     in Precipitation  
% Cuts in 

Precipitation from 

The Baseline 

Annual Seasonal Monthly 

Value
a 

% Value % Value % 

0 734.5 - 734.5 - 734.5 - 

10 709.2 -3.4 709.2 -3.4 709.2 -3.4 

20 684.3 -6.8 684.3 -6.8 683.8 -6.9 

30 659.9 -10.2 658.3 -10.4 649.1 -11.6 

40 632.7 -13.9 608.5 -17.2 569.8 -22.4 



50 586.7 -20.1 529.1 -28,0 487.8 -33.6 

60 514.2 -30.0 473.1 -35.6 425.5 -42.1 

70 458.2 -37.6 401.7 -45.3 370.4 -49.6 
(a)Values in Thousands of Brazilian Reais as of 2008. 

More interestingly, we can see how the impacts differ under alternative temporal 

resolutions. Consider a 30% cut in precipitation. While the annual model would predict 

a 10.2% drop in net-revenue, the seasonal model predicts a drop of 10.4% and the 

monthly model, 11.6%. And as the cuts get deeper, the differences in the predictions 

become higher. For example, in the event of a 50% cut in precipitation, the annual, 

seasonal and monthly predictions would be 20%, 28% and 34% respectively. The same 

pattern is repeated in the successive cuts. In other words, the coarser the temporal 

resolution of the model the more the regional impacts are underestimated.  

This underestimation can also be seen by looking at Table 2 below which shows 

the months in which constraints start to become binding and positive shadow values are 

triggered
5
. For example, in the event of a 10% cut in precipitation the shadow values 

associated with the surface water constraints (equations 8, 12 and 16) are all zero, no 

matter the temporal resolution. While the shadow values associated to the precipitation 

constraints (equations 9, 13 and 17) are invariant to the temporal resolution. But as the 

cuts become larger, not only the shadow values on surface water and precipitation 

constraint costs become larger, but they also start to differ depending on the temporal 

resolution. For example, consider a 50% cut in precipitation level and a specific farmer 

called v10. Under this 50% cut in precipitation and the directly proportional cut in 

surface water availability, the annual model predicts that the annual available surface 

water would be 10655m
3
 and the farmer would use only 8297m

3
, triggering a null 

shadow value on surface water. Now if we consider the monthly temporal resolution 

model, we can see that surface water would be binding in the month of October, 

triggering a shadow value of 2.097.  

Table 2 – Monthly and Annual Surface Water Shadow Values in the  

Event of a 50% drop in Precipitation and Surface Water Availability. 
Monthly Annual 

Farmer Month 

Shadow 

Value Farmer Month 

Shadow 

Value Farmer 50% 

v10 Oct 2.097 v22 Oct 0.778 v10 0.000 

      v13 Dec 4.002 v23 Dec 1.406 v13 0.009 

v14 Feb 1.347 v24 Feb 5.403 v16 0.251 

 Oct 0.510 v25 Dec 2.623 v18 0.015 

v16 Feb 0.606 v26 Oct 1.082 v24 0.334 

 Dec 2.954 v27 Dec 2.419 v26 0.015 

v17 Dec 11.382 v28 Feb 1.314 v27 0.005 

v18 Oct 2.274  Oct 1.543 v28 0.261 

v19  Dec 4.718 v31 Feb 4.182 v31 2.513 

      v20 Feb 3.137  Oct 14.614   

 Dec 12.849 v32 Dec 4.210   

      v21 Dec 4.695      

For another farmer called v13, the annual model would predict a shadow value of 0.009, 

while the monthly model would trigger a positive shadow value in December of 4.002. 

That is, under a 50% cut of surface water, the annual model is saying that one additional 

                                                           
5
 For farmers and months that do not appear in the table, shadow values are null. 



unit of water per year for farmer v13 would increase its net-revenue by 0.009 Brazilian 

Reais no matter the time the farmer applies it. Alternatively, the monthly model says 

that if the farmer had one more unit of surface water and applied it in December, their 

profits would increase by 4 Brazilian reais. In summary, the annual model assumes that 

the impact of water scarcity is uniform throughout the year, or in other words that 

farmers can freely allocate water between the months. Under this assumption, water 

becomes artificially cheaper. There are several other examples with different farmers 

and different time periods in which the annual model underestimates water scarcity 

values, particularly when water scarcity starts to become severe.  

As already mentioned, the above discussion considers that cuts in precipitation 

imply a proportional cut in surface water volumes stored in the reservoirs. In order to 

allow for a non-linear relationship we consider the predicted surface water supply by 

farmer yielded by the hydrological model described above. Two scenarios are 

considered in the hydrological model predictions: a 30% and a 50% cut in precipitation. 

For example, a 30% cut in precipitation would impact surface water supply by taking 

into account the farmers’ position, soil characteristics across the basin and monthly 

precipitation patterns. Table 3 below shows the monthly values of surface water supply 

considered in the proportional approach and the ones given by the hydrological model 

for example for farmers v10 and v30. Consider a 30% cut in precipitation in January. 

The hydrological model estimates a supply of surface water to farmer v10 of 1447.8m
3
, 

while by using the proportional approach the cut would imply a surface water volume 

30% lower than the baseline value at 1266.8m
3
. We can then see that sometimes the 

proportional approach yields a higher water supply than the hydrological model and 

vice versa.     

                



 

 

Table 3 – Monthly Surface Water Supply Predictions by Hydrological (H) 

versusProportional (P) Approaches from a 30% and 50% cut in precipitation. 

(a) Values in cubic meters 

To investigate how the impacts differ across the basin, farmers were divided in 

groups according to their access to surface water. Farmers in groups 1 and 2 

receive water from the first reservoir through the channels 1a and 1b 

respectively (see Figure 1). Channel 1a has a 50% higher conveyance capacity 

than channel 1b. Farmers in group 3 withdraw water from Reservoir 2, through 

channel 2, which is filled with the remaining water from Reservoir 1 after 

farmers in groups 1 and 2 have used up their surface water. Results can be seen 

in Table 4 below. 

  Table 4 – Regional Yearly Net-Revenue Impacts due to a 30 and 50%  

  Cuts in Precipitation – Hydrological Supply Predictions.    

In general, they corroborate the hypothesis that the coarser the temporal 

resolution, the higher the underestimation of the water scarcity impacts on net-

revenue. The magnitude of the discrepancy gets more significant in situations of 

Months 

 

 

Farmers 

v10 v30 

30% 50% 30% 50% 

H
(a) 

P H P H P H P 

January 1447.8 1266.8 1085.8 904.9 2014.6 1762.8 1511.0 1259.1 

February 1307.8 1144.4 980.9 817.4 1819.9 1592.4 1364.9 1137.4 

March 1448.0 1267.0 1086.0 905.0 2014.9 1763.0 1511.1 1259.3 

April 1313.7 1226.1 963.4 875.8 1828.0 1706.1 1340.5 1218.7 

May 1267.0 1267.0 905.0 905.0 1763.0 1763.0 1259.3 1259.3 

June 1138.5 1226.1 788.2 875.8 1584.3 1706.1 1096.8 1218.7 

July 1176.5 1267.0 814.5 905.0 1637.1 1763.0 1133.4 1259.3 

August 1176.5 1267.0 814.5 905.0 1637.1 1763.0 1133.4 1259.3 

September 1313.7 1226.1 963.4 875.8 1828.0 1706.1 1340.5 1218.7 

October 1357.5 1267.0 1086.0 905.0 1888.9 1763.0 1511.1 1259.3 

November 1401.3 1226.1 1050.9 875.8 1949.9 1706.1 1462.4 1218.7 

December 1448.0 1267.0 1086.0 905.0 2014.9 1763.0 1511.1 1259.3 

Scenarios   

and Temporal 

Resolutions Regional Group 1 Group 2 Group 3 

30% 

    Annual -10.5 -7.3 -7.4 -9.0 

Seasonal -11.2 -7.2 -7.8 -13.0 

Monthly -15.8 -7.4 -18.9 -33.6 

50% 

    Annual -36.1 -11.8 -20.2 -28.3 

Seasonal -41.6 -45.2 -29.5 -41.9 

Monthly -53.0 -46.0 -46.5 -64.8 

      



more severe water scarcity. For example, the annual model predicts a drop of 

10.5% in net-revenue in the case of a 30% drop in the precipitation level. Under 

this scenario, the impact estimates would increase in absolute terms by 0.7% 

(11.2%-10.5%) and 5.3% had the modeler used a finer resolution such as 

seasonal and monthly respectively. Now, in the event of a more severe drought, 

as represented by a 50% drop in the precipitation level, the impact estimates 

would increase by 5.5% in the seasonal model and by 16.9% in monthly model 

compared to the estimates yielded by the annual model. This underestimation 

pattern is also found when we look at the impacts by groups.  

           The analysis by groups allows us also to see that the impacts of a given 

cut in precipitation are not uniform across the basin. For example, farmers in 

group 3 are  hit relatively harder. Given that they grow similar crops and use 

similar input mixes compared to the other farmers in groups 1 and 2, they 

probably face a higher profit impact due to their geographical position and 

access to surface water, since they withdraw water from reservoir 2 that is filled 

with the remaining water from reservoir 1 used first by the more upstream users.     

Measuring the Cost of Seasonal Shifts in Precipitation  

Several research papers have noted that climate change is likely to shift the 

seasonality of precipitation as well as its magnitude. Feng et al (2013) conclude 

that “...increases in rainfall variability were accompanied by shifts in its 

seasonal magnitude, timing and duration, thus underscoring the importance of 

analyzing seasonal rainfall regimes in a context that is most relevant to local 

ecological and social processes.” Feng et al in their figure 3, show the changes 

in monthly precipitation for Parau, Brazil .  

           For the BV region, we simulated a possible two month shift in 

seasonality as well as a reduction in precipitation. The seasonality change was a 

shift to earlier precipitation events, with the shifted January precipitation being 

represented by the current March precipitation measure. Table 5 shows the 

economic effects of of the shift by comparing the net-revenue estimates, under 

the monthly model, with and without the precipitation two-month shift. Under 

current precipitation levels, the two month shift would result in a loss of 7.8% in 

net-revenue  as the regional annual net-revenue is reduced from 734.5 to 677.3. 

The maximum loss associated with the shift would be under a 30% precipitation 

cut scenario (-18.8%).  

Table 5 - Annual Net-Revenue Impacts due to a Two-Month  

Shift in Precipitation   

Cuts (%) 

Monthly 

Model
a 

Monthly Model  

(2 Month Shift) Shift Cost (%) 
0 734.5 677.3 -7.8 

10 709.2 607.4 -14.4 

20 683.8 573.7 -16.1 

30 649.1 527.3 -18.8 

40 569.8 483.6 -15.1 

50 487.8 443 -9.2 

60 425.5 400.1 -6.0 

70 370.4 357.9 -3.4 
(a) Values in Thousands of Brazilian Reais as of 2008. 

 

https://www.nature.com/nclimate/journal/v3/n9/pdf/nclimate1907.pdf#auth-1


Now, if we compare the results in Table 5 with the ones in Table 1, we can see 

that on average the annual hydroeconomic model would underestimate the 

annual regional impacts by 7.8% since it yields net return values that are 

unchanged under a shift scenario. A seasonal model may capture small changes 

at the seasonal margins but this would not accurately reflect the two rainfall 

seasons in the BV region. The annual model would tend also to underestimate 

the impacts when shifts in precipitation occur simultaneously with precipitation 

shortages. For example, for a 30% cut in precipitation, while the annual model 

would predict a reduction in net-revenue from 734.5 to 659.9 (a 10.2% drop), 

the monthly model would predict a decrease from 677.3 to 527.3 (a 22.2% 

drop). These results further emphasize the point raised by Feng et al. that a 

disaggregated monthly analysis is required to accurately reflect both the changes 

the levels and the seasonality of precipitation under climate change.  

CONCLUSIONS 

This paper shows that the temporal resolution of models biases the estimates of 

the cost of precipitation changes. Using a multiproduct calibrated agricultural 

production model coupled with a hydrological model, we show that the 

opportunity costs associated with water availability in the form of precipitation 

or surface water vary considerably. The variation depends on the temporal 

resolution with which these water supply variables are considered by the 

modelers. The results show that the coarser the temporal resolution, the more 

the impacts on agricultural income are underestimated. For example, in the 

event of a 30% cut in precipitation, while the annual model would predict a 

10.2% drop in net-revenue, the seasonal model predicts a drop of 10.4% and the 

monthly model, 11.6%. And as the cuts get deeper, the differences in the 

predictions become higher. For example, in the event of a 50% cut in 

precipitation, the annual, seasonal and monthly models would predict a drop of 

20%, 28% and 34% respectively. Between the annual and the monthly model, 

impacts are higher in absolute terms, in the latter by 14%.  

The ability of models with finer temporal resolutions to reflect the 

opportunity costs of precipitation and surface water to agriculture is based on 

the fact that plant water requirements vary across the life span of the plant and 

also to the time of crop planting and land coverage. For example, in the example 

described above of farmer v13, the monthly model was able to show that water 

was needed the most in the month of December, and if the farmer could apply 

one more unit of water in that month, their profits would increase more than if 

applied it in any other month of the agricultural year. This could only be 

measured because the water supply and the timing of water use were set at the 

monthly temporal resolution.  In summary, since the annual model assumes that 

the impact of water scarcity is uniform throughout the year, or in other words 

that farmers can freely allocate water across the months of the year, water 

becomes artificially cheaper. This ability to model the monthly water use is 

therefore essential for the precise estimation of the costs with expected shifts in 

seasonality due to climate change. This cost is shown to be significant for a two 

month earlier rain season in this part of Brazil. 

These results have clear implications for the study of water scarcity 

impacts on agricultural income and ultimately on the design of cost-effective 

public policies that aim to lift up farmers from poverty conditions prevalent in 

many rural areas of the world that are subject to water scarcity. While the spatial 



extent of the current empirical example is too small to be scaled up, results do 

indicate that time resolution with respect to climatic variables such as 

precipitation and surface water supply may significantly influence the precise 

quantification of water scarcity impacts.  
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