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1. Introduction  

The Committee on Twenty-First Century Systems Agriculture (NRC, 2010, p. 4) characterizes 

sustainable agriculture as the one satisfying human food, feed, fiber and biofuel needs; enhancing 

the quality of the environment and resource base; ensuring the economic viability of the 

agricultural sector; and improving the quality of life of farmers, farm workers and society. 

Sustainability can be pursued both at the aggregate (i.e. country or region) and at the individual 

(firm) level on which we focus. Through the concept of corporate social responsibility (CSR) the 

business model has embraced sustainability. Firms have progressively taken responsibility for their 

impact on society and on the environment, becoming better corporate citizens (CC) who adopt 

CSR strategies (Bowen, 1953; Carroll, 1999). Agricultural policies in developed countries have 

promoted adoption of such strategies among agricultural holdings. The European Union’s 

Common Agricultural Policy (CAP) has been no exception. Since its inception, it has undergone 

different reforms that reflect changing political priorities over time. While initially the CAP 

essentially aimed at guaranteeing food security by stimulating agricultural production and 

protecting farmers’ quality of life, a succession of changes have reformulated the CAP into a policy 

that embraces food safety, animal welfare, land management, rural development, environmental 

development and pollution control. In short, the CAP has leaned towards promoting a more 

sustainable agricultural sector. Consistently, farm payments have been progressively remodeled to 

reward those farms that meet different economic, environmental and territorial criteria. 

Noteworthy is the proposal to redistribute farm payments to better align the CAP with 

sustainability principles and objectives. 

Sound implementation of farm payment schemes requires appropriate tools to measure 

farms’ success in achieving policy goals. Since the pioneering work by Farrell (1957), the 

production economics literature has developed efficiency indices that can be used to assess this 

success. While the literature on efficiency measurement was initially focused on the desired output 

production technology, as sustainability of economic activities became relevant, firm-performance 

studies were extended to include environmental concerns (Coelli, Lauwers, & Van Huylenbroeck, 

2007; Färe, Grosskopf, Noh, & Weber, 2005; Murty, Russell, & Levkoff, 2012; O’Donnell & 

others, 2007; Oude Lansink & Van Der Vlist, 2008; Reinhard, Lovell, & Thijssen, 1999). Only 

recently, have these measures been extended to quantify the social dimension of firm performance 

(Chambers & Serra, 2016). By providing quantitative guidelines for benchmarking firm 

performance, efficiency measures can be very relevant in assisting public payment redistribution 

schemes. By building on the method proposed by Chambers & Serra (2016), this article is the first 

to derive farm-level productive, environmental and social efficiency measures by allowing for the 

stochastic nature of agricultural production. Assessing the environmental and social dimensions of 

performance requires data that are not usually available, especially at farm-level. We elicit this 

information through a survey conducted to a sample of Catalan farms. 

Extension of production efficiency measures to allow for the environmental dimension of 

economic activities has not been without debate. Late articles (Førsund, 2009; Murty et al., 2012) 

have criticized previous approaches because they fail to address the material balance principle. 

Murty et al. (2012) and Coelli et al. (2007) have led the development of environmental efficiency 

measures based on the materials balance concept. Serra, Chambers, & Oude Lansink (2014) extend 

Murty’s approach by incorporating the state-contingent framework to model the stochastic nature 

of production. We use this proposal to measure farm performance in minimizing nitrogen and 
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pesticide pollution. We also take the literature one-step further by extending Serra, Chambers, & 

Oude Lansink (2014)  to allow for the social output of firms.  

Substantial ambiguity surrounds the operationalization of the social dimension of 

sustainability (Dempsey, Bramley, Power, & Brown, 2011; Vifell & Soneryd, 2012; Dixon, 

Colantonio, & Lane, n.d.; Murphy, 2012; Thin, 2002), which has received much less attention than 

the other two pillars of sustainability (Cuthill, 2010; Vavik & Keitsch, 2010). An essential question 

is which indicators should be used to reflect the social outputs of a business. Lebacq et al. (2013) 

suggest taking a set of indicators that revolve around labor, including workload, employment 

quality and health. Our research focuses on one particular indicator that reflects worker exposure 

to different health and safety issues (Ridley, 2010; Myers, Layne, & Marsh, 2009): fatal and non-

fatal injuries suffered by farmers and farm workers. A second indicator that we use to represent 

farm social outputs is the generation of farmers’ satisfaction, which we measure using a Likert 

scale (Bacon, Getz, Kraus, Montenegro, & Holland, 2012; Pissourios, 2013). 

Ignoring the stochastic nature of an economic activity may lead to biased efficiency results 

(O’Donnell, Chambers, & Quiggin, 2010). Most empirical studies on efficiency have relied on the 

realized output to measure firm performance. These analyses, however, can confound poor 

outcomes related to the stochastic nature of production, with an inefficient use of the technology. 

As a result, it is relevant to model efficiency by allowing for the stochastic conditions in which 

production takes place. Our article follows the proposal by Chambers & Quiggin (1998, 2000) and 

models risk using the state-contingent approach. Our farm-level survey elicits ex-ante production 

data to empirically represent the state-contingent technology of sample farms.   

2. Methods 

Our theoretical framework builds on the papers by Murty et al. (2012), Chambers & Serra (2016) 

and Serra et al. (2014). The three articles contribute to the academic debate on how to properly 

model byproducts from production technologies. Murty et al. (2012) model a company’s 

production technology as the interaction of two sub-technologies; an intended output and an 

unintended output technology. Serra et al. (2014) extend Murty et al. (2012) by incorporating the 

state-contingent approach to modelling production risk. Chambers & Serra (2016) study the 

social dimension of firm performance by considering a third sub-technology in which social 

outputs are production netputs. Our work takes Chambers & Serra (2016) one-step further by 

modelling production risk.  

Production of our sample farms is the result of the interaction of five different sub-

technologies that shed light on firm’s economic, environmental and social outputs. The first sub-

technology models the production of intended agricultural outputs. The second and third sub-

technologies reflect unintended pollution caused by nitrate and pesticide, herbicide and insecticide 

(PHI). The fourth and fifth sub-technologies reflect farm social outputs and focus on the generation 

of farmers’ satisfaction and the minimization of work-related accidents. 

The production technology is defined as a function of different netputs. Desired agricultural 

production is represented by 𝑦̃ℎ for ℎ = 1, . . . , 𝐻. , where H is the number of stochastic desired 

outputs, and assumed to depend on crop growing conditions. A farmer’s overall satisfaction with 

her professional activity (s) is considered as another good output. Three types of unintended 

byproducts are considered: environmental impacts of PHI, fertilizer pollution and worker injuries. 

Nitrogen pollution is assumed to be contingent on the state of nature and denoted by 𝑧̃𝑘 for 𝑘 =
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1, . . . , 𝐾. Due to data constraints, farmer’s satisfaction (s), environmental impacts of PHI pollution 

(𝑝) and worker injuries (𝑖) are treated as non-stochastic outputs. Outputs are generated using 

several inputs. We consider a set of 𝑁 nonpolluting productive inputs, denoted by 𝑥 ∈  ℝ𝑁 for 𝑛 =
1, … , 𝑁. In our empirical application, variable 𝑥1 represents land planted to crops and 𝑥2 measures 

the capital replacement value. Variable 𝑥3 represents paid and unpaid family work. Inputs 𝑥4 and 

𝑥5 measure, respectively, the costs of energy and seeds. Organic and chemical fertilizers applied 

are denoted by 𝑟𝑘  ∈ ℝ𝐾  for 𝑘 = 1, … , 𝐾. PHI applications, measured in liters of active 

ingredients, are denoted by 𝑐𝑑 ∈ ℝD  for 𝑑 = 1, … , 𝐷. Working conditions are considered as an 

input and denoted by 𝑤𝑎  ∈  ℝ𝐴, 𝑎 = 1, … , 𝐴, with better working conditions being represented by 

higher values of 𝑤𝑎.   

T, the general production technology, is assumed to be composed by an intended output 

sub-technology 𝑇𝑌, a PHI pollution sub-technology 𝑇𝑃, a fertilizer runoff sub-technology 𝑇𝑍, a 

work satisfaction sub-technology 𝑇𝑆, and a work injuries sub-technology 𝑇𝐼. The general 

production technology, integrated by the different sub-technologies, can be expressed as follows: 

 

𝑇 = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘 , 𝑝, 𝑠, 𝑖) : (𝑥𝑛, 𝑟𝑘, 𝑐𝑑 , 𝑤𝑎) can produce (𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖)} (1) 

 

Following previous research (Coelli et al., 2007; Serra et al., 2014), our representation of 

T meets material balance conditions requirements. In this regard, the applications of the runoff 

inputs (organic and chemical fertilizers – rk and PHI – cd) equal the quantity absorbed in the 

production of intended outputs plus the runoff byproducts. Fertilizer runoff is state-contingent 

since the quantity of fertilizer absorbed by plants depends on plant growth and can be represented 

by 𝑟𝑘 =  𝑞̃𝑘  +  𝑧̃𝑘,  where 𝑞̃𝑘 is the quantity of fertilizer input 𝑟𝑘 absorbed by agricultural 

production, and  𝑧̃𝑘 represents the runoff. Only the quantity of fertilizer that remains on the crop 

(𝑞̃𝑘) has an impact on the quantity of crop produced (Serra et al., 2014). Pollution derived from 

the application of PHI is assumed to have environmental and health impacts (p), which can be 

computed as the product of 𝑐𝑑 and an environmental impact quotient (EIQ) per unit of active 

ingredient (𝜀 𝑑 ∈  ℝ𝐷). Since PHI are damage abatement inputs that do not contribute to crop 

growth, runoff coincides with the amount applied 𝑝 = ∑ 𝜀𝑑𝑑 𝑐𝑑.  

The specification of the intended output technology is: 

 

𝑇𝑌 = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖): (𝑥𝑛, 𝑟𝑘 − 𝑧̃𝑘, 𝑐𝑑, 𝑤𝑎) can produce 𝑦̃ℎ}. (2) 

 

Following Serra et al. (2014), fertilizer runoff could be affected, for example, by the quality 

of the fertilizer applicator. Hence, fertilizer pollution is assumed to depend on productive inputs 

(xn) such as labor and capital. To the extent that working conditions (𝑤𝑎) can influence labor 

performance, they could also influence farmers’ judgement regarding the need to apply fertilizers 

and consequently nitrogen runoff. As a result, the fertilizer runoff byproduct technology is 

expressed by: 

 

  𝑇𝑍 = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖): (𝑥𝑛, 𝑟𝑘, 𝑤𝑎) can produce 𝑧̃𝑘}  (3) 

 

The PHI pollution technology models the environmental impact derived from PHI 

application. Since we do not observe the environmental impact, we construct an estimate (p) by 

weighting the amount of active ingredients applied by an EIQ. We assume that an increase in 

conventional inputs (𝑥𝑛) such as quantity of land sprayed, will increase the environmental impact 

of PHI. An exception is the amount of seeds, as a larger quantity of seed implies a higher crop 
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density, thus less space for weeds which should reduce the need for herbicides. The PHI pollution 

technology is thus: 

 

𝑇𝑃 = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖): (𝑐𝑑, 𝑥𝑛≠5, 𝑥5)  can produce 𝑝} (4) 

 

This research considers two outputs related to the social dimension of economic activities, 

the level of work satisfaction as perceived by farmers (s) and the number of work injuries (i). 

Satisfaction is assumed to depend on working conditions (𝑤𝑎). Since the use of conventional inputs 

can ease the work burden of labor and affect farmers’ overall satisfaction with the work, they are 

also considered in the definition of  𝑇𝑆 as follows:  

 

𝑇𝑆 = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖): (𝑥𝑛, 𝑟𝑘, 𝑐𝑑 , 𝑤𝑎) can produce 𝑠} (5) 

 

The last sub-technology is related to preventing or reducing farmers’ injuries and fatalities. 

In order to avoid zeros in the dataset, the injuries variable is transformed so that high positive 

values represent little or no injuries and small values represent numerous injuries (see next section 

for further details). Conventional agricultural inputs such as PHI, agricultural machinery, or labor 

hours are assumed to increase injuries. An improvement in 𝑤𝑎, in contrast, is likely to reduce 

injuries. The 𝑇𝐼 sub-technology is thus specified as:   

 

  𝑇𝐼 = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖): (𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎) can produce 𝑖}  (6) 

 

The overall technology 𝑇 is then defined as the intersection of these five production sets:  

𝑇 = 𝑇𝑌 ∩ 𝑇𝑍 ∩ 𝑇𝑃 ∩ 𝑇𝑆 ∩ 𝑇𝐼 .   
 

  To empirically estimate the model, we use a nonparametric Data Envelopment Analysis 

(DEA). Constant returns to scale (CRS) and free disposability are assumed to characterize the 

intended output technology 𝑇𝑌. The intended output technology can be expressed as follows: 

 

𝑇𝑌(𝐽) = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖):   (7) 

𝑥𝑛 ≥ ∑ 𝛽𝑗𝑥𝑛
𝑗

𝑗

, 𝑛 = 1, … , 𝑁 

𝑟𝑘 − 𝑧̃𝑘 ≥ ∑ 𝛽𝑗

𝑗

(𝑟𝑘
𝑗

− 𝑧̃𝑘
𝑗
), 𝑘 = 1, … , 𝐾 

𝑐𝑑 ≥ ∑ 𝛽𝑗𝑐𝑑
𝑗

𝑗

, 𝑑 = 1, … , 𝐷 

𝑤𝑎 ≥ ∑ 𝛽𝑗

𝑗

𝑤𝑎
𝑗
, 𝑎 = 1, … , 𝐴 

 𝑦̃ℎ ≤ ∑ 𝛽𝑗
𝑗 𝑦̃ℎ

𝑗
 , ℎ = 1, … , 𝐻,   

𝛽𝑗 ∈ 𝑅+
𝑁}     

 

where j indexes the number of observations.  

𝑇𝑃 is approximated as follows. An increase in the quantity of PHI applied (𝑐𝑑) increases 

the environmental impacts. We assume that PHI pollution cannot be disposed without additional 

cost, which implies weak disposability of the byproduct. Thus 𝑇𝑃can be approximated as follows:  
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𝑇𝑃(𝐽) = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖): (8) 

𝑐𝑑 ≤ ∑ 𝛼𝑗𝑐𝑑
𝑗

𝑗

, 𝑑 = 1, … , 𝐷 

𝑥𝑛≠5 ≤ ∑ 𝛼𝑗𝑥𝑛
𝑗

𝑗

, 𝑛 ≠ 5 

𝑥5 ≥ ∑ 𝛼𝑗𝑥5
𝑗

𝑗

 

𝑝 = ∑ 𝛼𝑗𝑝𝑗

𝑗

, 𝛼𝑗ϵ 𝑅+
𝑁} 

 

𝑇𝑍, the nitrogen runoff technology, imposes free disposability on non-polluting inputs and costly 

disposability of  𝑧̃𝑘 (Serra et al., 2014)  

 

 𝑇𝑍(𝐽) = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖):    (9) 

𝑥𝑛 ≥ ∑ 𝛾𝑗𝑥𝑛
𝑗

𝑗

, 𝑛 = 1, … , 𝑁 

𝑟𝑘 ≤ ∑ 𝛾𝑗𝑟𝑘
𝑗

𝑗

, 𝑘 = 1, … , 𝐾 

𝑤𝑎 ≥ ∑ 𝛾𝑗

𝑗

𝑤𝑎
𝑗
, 𝑎 = 1, … , 𝐴 

𝑧̃𝑘 ≥ ∑ 𝛾𝑗𝑧̃𝑘
𝑗

𝑗

, 𝑘 = 1, … , 𝐾, 𝛾𝑗ϵ 𝑅+
𝑁}  

 

Usually, adults spend much of their time working, which gives the workplace a very 

important dimension in people's life and impacts heavily on their well-being. The fourth sub-

technology reflects satisfaction from work. As a qualitative factor, 𝑠 is measured on a Likert scale. 

Traditional DEA models are not appropriate for non-continuous data. Cook et al. (1996, 1993) 

proposed the first modified DEA model including ordinal data. Cooper et al. (1999)’s imprecise 

DEA (IDEA) allows for imprecise measurements such as bounded data, ordinal data and Likert 

scales, into standard DEA. This results in a non-linear and non-convex DEA model. Cook & Zhu 

(2006) present a unified DEA structure allowing the integration of rank order or Likert scale 

information. As shown by Chen et al. (2015), however, in the radial DEA approach used by Cook 

& Zhu (2006), the projected points on the frontier do not necessarily correspond to Likert Scale 

information. We therefore adopt the adjusted DEA model proposed by Chen et al. (2015). As 

noted, we assume the use of conventional and good working conditions to ease the work burden 

of labor and thus increase work satisfaction. The approximation to 𝑇𝑆 can be expressed as:  

 

𝑇𝑆(𝐽) = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖):  (10) 

𝑐𝑑 ≥ ∑ 𝛿𝑗𝑐𝑑
𝑗

𝑗

, 𝑑 = 1, … , 𝐷 

𝑥𝑛 ≥ ∑ 𝛿𝑗𝑥𝑛
𝑗

𝑗

, 𝑛 = 1, … , 𝑁 

𝑤𝑎 ≥ ∑ 𝛿𝑗

𝑗

𝑤𝑎
𝑗
, 𝑎 = 1, … , 𝐴 
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𝑠 ≤ ∑ 𝛿𝑗𝑠𝑗

𝑗

, 𝛿𝑗 ϵ 𝑅+
𝑁, 

 

The last process concerns prevention of injuries at the farm level and assumes that 

increased input use such as pesticide, machinery, etc. tends to increase the number of injuries, 

while improved working conditions helps reducing them. By assuming free disposability of worker 

injuries, TI can be expressed as: 

 

𝑇𝐼(𝐽) = {(𝑥𝑛, 𝑟𝑘, 𝑐𝑑, 𝑤𝑎, 𝑦̃ℎ, 𝑧̃𝑘, 𝑝, 𝑠, 𝑖): (11) 

𝑥𝑛 ≤ ∑ 𝜂𝑗𝑥𝑛
𝑗

𝑗

, 𝑛 = 1, … , 𝑁 

𝑐𝑑 ≤ ∑ 𝜂𝑗𝑐𝑑
𝑗

𝑗

, 𝑑 = 1, … , 𝐷 

𝑤𝑎 ≥ ∑ 𝜂𝑗

𝑗

𝑤𝑎
𝑗
, 𝑎 = 1, … , 𝐴 

     𝑖 ≤ ∑ 𝜂𝑗𝑖𝑗

𝑗

, 𝜂𝑗 ϵ 𝑅+
𝑁, } 

 

Following Murty et al., (2012), the overall efficiency index is obtained by adding the five sub-

technologies as follows: 

 

𝐸(𝑥, 𝑟, 𝑐, 𝑤, 𝑦̃, 𝑧̃, 𝑝, 𝑠, 𝑖) =
1

5
min

𝜉1,𝜉2,𝜉3 ,𝜉4,𝜉5

∑ 𝜉1𝜔𝜔

𝛺
+ 𝜉2 +

∑ 𝜉3𝜔𝜔

𝛺
+ 𝜉4 + 𝜉5| 

 〈𝑥, 𝑟, 𝑐, 𝑤, 𝑦̃Ø𝜉1𝜔, 𝑝 ⊗ 𝜉2, 𝑧̃ ⊗ 𝜉3𝜔, 𝑠Ø𝜉4, 𝑖 ⊗ 𝜉5〉 ∈ 𝑇 )  (12) 

 

where 𝑦̃Ø𝜉1 = 〈𝑦1 𝜉11, … ,⁄ 𝑦𝛺 𝜉1𝛺⁄ 〉, 𝑝 ⊗ 𝜉2 = 𝑝𝜉2, 𝑧̃ ⊗ 𝜉3 = 〈𝑧1𝜉31, … , 𝑧𝛺𝜉3𝛺〉, 𝑠Ø𝜉4 = 𝑠/𝜉4, , 𝑖 ⊗ 𝜉5 = 𝑖𝜉5. In 

the following section a description of the data used is offered.  

 

3. The Data 

Our analysis is based on cross sectional, farm-level data collected from a sample of 173 Spanish 

holdings specialized in the production of cereal, oilseed and protein (COP) crops and located in 

the region of Catalonia.  

As noted by Chambers & Quiggin (2000), the key challenge to construct empirical 

representations of state-contingent technologies is the lack of information on the ex-ante 

distribution of the random variables. We follow Chambers, Serra, & Stefanou (2015) and use 

survey-elicited ex-ante outputs to empirically represent the stochastic technology. For this purpose, 

we conducted the survey before the beginning of the agricultural season (October 2015) to collect 

point estimates of anticipated yields for three alternative states of the nature: bad, normal and ideal 

growing conditions 𝑦 = (𝑦1, 𝑦2, 𝑦3) (see Chambers et al., (2015) and Serra et al., (2014) for further 

details). Table 1 provides summary statistics for the variables considered in this study and shows 

COP output value per farm to fluctuate from less than 30 thousand to more than 63 thousand euros, 

depending on the state of nature, being 46 thousand euros the most common. We also collected 

detailed information from each farm on planned input use, which includes crop land (𝑥1in 

hectares), capital (𝑥2 in replacement value), paid and unpaid labor (𝑥3 in hours), energy (𝑥4 in 

euros) and crop-specific inputs (crop protection products – 𝑐 in liters, seeds - 𝑥5 in euros, fertilizers 
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- 𝑟 in kilos). On average, sample farms cultivate 72 ha, have a capital replacement value of 145 

thousand euros, devote slightly less than 900 labor hours per year to the farm and spend around 

4,4 thousand and 3,9 thousand euros on energy and seeds, respectively. In order to estimate the 

sub-technologies representing farm social outputs, farmers’ degree of work satisfaction (𝑠) and 

information on the accidents and work injuries (𝑖) occurring in the farm was also collected.  

On average, sample farms apply 80 liters of PHI, which corresponds to a rate of slightly 

more than 1 liter per hectare. PAN Germany (2003) places this value around 1.84 Kg/ha in Spain, 

which involves our sample farms are below the national average. We use the environmental impact 

quotient (EIQ) developed at Cornell University to provide an estimation of the environmental and 

health impacts derived from PHI (Eshenaur, B., Grant, J., Kovach, J., Petzoldt, C., Degni, J., & 

Tette, 2017; Kovach, Petzoldt, & Degni, 1992)1. The EIQ was developed to help farmers formulate 

informed decisions on pesticide selection. More specifically, to estimate pesticide pollution by 

farm, we multiply the amount of active ingredient applied in liters by the corresponding EIQ. The 

resulting quantity is taken as the estimate of p, the output of the PHI pollution technology. 

Noteworthy is the relatively small standard deviation of 𝑝 for our sample farms (Table 1). In order 

to estimate pollution from fertilizers, we follow Serra et al. (2014). More specifically, our survey 

gathered information on the quantities of chemical and organic fertilizers applied and converted 

them into nitrogen quantities. While for chemical fertilizers the quantity of nitrogen can be easily 

found in the product specifications, we use Mercadé, Delgado, & Gil (2012) coefficients to 

approximate the quantity of nitrogen contained in organic fertilizers and the Spanish Ministry of 

Agriculture, Fisheries (2010) coefficients to quantify the nitrogen content in seeds. The nitrogen 

balance constraint requires estimation of crop nitrogen removal, which depends on yields, which 

in turn depend on the state of nature. Based on the Spanish Ministry of Agriculture, Fisheries (2010 

information, we estimated three possible nitrogen removal quantities per farm (𝑞1, 𝑞2, 𝑞3) (see 

Serra et al. (2014) for further details). By computing the difference between nitrogen applied and 

removed, three possible nitrogen balances (one for each state of nature) were generated (𝑧1, 𝑧2, 𝑧3). 

The nitrogen balance fluctuates from 5,9 thousand to 3,5 thousand kilos in bad and good crop 

growing conditions, which is compatible with higher amounts of nitrogen being absorbed by crops 

under good crop growing conditions. 

Few existing studies have considered the social dimension of firm performance. 

Contributing to this literature, we use two different sub-technologies that represent farm social 

outputs: the farmer’s satisfaction level with working conditions (𝑠) measured on four-point Likert 

scale and the number of work-related injuries (𝑏). Since farms in our sample are mainly family-

based farms employing a very small number of workers (mainly members of the manager's family), 

very few injuries have been reported (an average of 0.35 injuries per farm). 

As noted by Sueyoshi & Sekitani (2009); Thompson, Dharmapala, & Thrall (1993),  DEA 

models need to treat zeros in the data carefully. In order to avoid zero values in our dataset, the 

injuries variable is built as follows: we give a score of 100 for each farm, and for each minor injury 

we remove 5 points, while we remove 20 for a serious injury. For example2, a farm with 1 minor 

injury and 1 serious injury will have a score of 𝑖 = 100 − ((5) + (20)) = 75. 

                                                 
1 The coefficients have not been derived for Spanish agriculture and thus, they only represent and approximation. 

2 It should be noted that several combinations have been tried by the authors leading to the same results. 



Table 1. Descriptive Statistics 

 
Variable description Measurement Unit Symbol  Mean  

 Std. 

Deviation  

Inputs Land  Hectares  𝑥1 72,33 55,25 

Capital  Euros  𝑥2   145,250.21     153,940.09    

Labor (paid and unpaid) Hours  𝑥3  887,05 3 604,95 

Energy  Euros  𝑥4  4 428,08 4 313,45 

Seeds Euros  𝑥5  3 861,27 3 076,19 

Pesticide active ingredients applied  Liters  𝑐𝑑 81,23 85,09 

Nitrogen application through fertilizers and seeds  Kilograms  𝑟𝑘 8 982,42 8 865,51 

Nitrogen absorbed by crops under bad conditions Kilograms  𝑞1  3 235,65 2 679,60 

Nitrogen absorbed by crops under normal conditions Kilograms  𝑞2  4 725,69 3 661,22 

Nitrogen absorbed by crops under ideal conditions Kilograms  𝑞3  6 399,17 5 218,33 

Outputs Crop output value under bad conditions Euros  𝑦1  29 413,51 25 151,39 

Crop output value under normal conditions Euros  𝑦2  46 439,19 36 078,32 

Crop output value under ideal conditions Euros  𝑦3  63 120,70 50 472,89 

Nitrogen balance under bad conditions Kilograms  𝑧1  5 865,66 7 038,22 

Nitrogen balance under normal conditions Kilograms  𝑧2  4 559,28 6 359,11 

Nitrogen balance under ideal conditions Kilograms  𝑧3  3 471,60 5 569,09 

Injuries score Score  𝑖  97,28 6,37 

Farmer satisfaction level Likert Scale  𝑠  3,38 0,59 

Ecological impact of PHI Liters  𝑝  1 376,32 1 548,35 

 

Redefinition of  the injuries variable requires flipping the inequality sign in the last equation 

in (11). Farmers’ satisfaction is obtained by asking farmers to value their overall degree of 

satisfaction with their work on a Likert Scale (from 1 to 4, being 1 the lowest and 4 the highest 

degree of satisfaction). The average is 3.4, showing a relatively high satisfaction level. To derive a 

quantitative measure of working conditions, farmers were asked to value, based on a four-point 

Likert scale, 17 items reflecting different dimensions of working conditions (workload, difficulty 

of the work, creativity, skills development, freedom in decision making, flexibility of schedules, 

work motivation). To reduce the number of netputs and improve the discriminatory ability of DEA, 

we perform a principal component analysis (PCA)3   

 

4. Results 

Efficiency scores are derived using the General Algebraic Modeling system (GAMS) software. 

Results obtained imply heterogeneity in farm performance in the different sub-technologies 

considered (Table 2). Overall efficiency averages 77.5%, a score that results from equation (12). 

This overall efficiency score can be decomposed into the technical, the environmental and the 

social measures. The environmental efficiency, on the order of 54.9%, is the lowest and measures 

the farm businesses performance in minimizing pollution caused by both PHI and nitrogen. The 

desired output technical performance of the firm is on the order of 89.1%. As will be explained 

below, this efficiency is however sensitive to the state of nature that is realized. Social output 

                                                 
3 PCAs may contain negative values. Therefore all values were increased by the most negative value in the vector 

plus one, thus ensuring our data are strictly positive. 
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technologies display an efficiency level of 88.6%, which measures the performance of the farm 

business in minimizing work injuries, as well as in providing satisfaction to farmers. 

The efficiency results of the state-contingent desired output technology show a small 

difference across the different states of nature, from 85.5% for the bad state of nature to 91% for 

the normal and ideal crop growing conditions. Our results are in line with previous studies (Serra 

et al. 2014), suggesting that technical farm performance is increasing with the improvement in crop 

growth conditions. Overall nitrogen pollution efficiency has an average of 71.9%, suggesting that 

there is significant room for efficiency improvements. Our sample farms display nitrogen 

application efficiency levels on the order of 0.6 in good states of nature, which contrasts with 

efficiency levels of 0.76-0.79 for the bad and normal crop growing conditions. These results are 

compatible with those obtained by Serra et al. (2014) and show that over-fertilization is specially 

problematic under ideal crop growing conditions. This is due to the fact that farms prepare for the 

worst conditions, which implies that under good conditions, fertilizer use is far from the best 

practice. Table 2 shows that while there are 24 farms with a nitrogen pollution efficiency of less 

than 50% in the bad state, the equivalent is 64 farms in the ideal state of nature.  Serra et al. (2014) 

report an average nitrogen pollution efficiency larger than our results (80%), which can be 

explained by the fact that agricultural consumption of mineral nitrogen increased in Catalonia 

between 2011 and 2015 by more than 28% (MAPAMA, 2017). 

The average efficiency score of the PHI sub-technology is around 38%, which leads to an 

efficiency distribution function with strong right skewness, suggesting that farms have the 

possibility to reduce the current amount of PHI-related pollution by an average of 62%. We observe 

a weak positive association between the state-contingent nitrogen pollution efficiencies and PHI 

pollution efficiencies, with the Spearman Rank correlation coefficients ranging between 0.35 and 

0.45. Hence, to some extent, farmers who tend to overuse PHI may also tend to overuse fertilizers. 

The environmental impact of PHI does not depend exclusively on the amount used, the type of PHI 

may also play a major role. Zhu et al. (2014) reported relatively low eco-efficiency scores for some 

organophosphorus PHI such as Chlorpyrifos. These findings are in line with our results, as 

glyphosate and chlorpyrifos represent around 44% of the total amount of PHIs used by our sample 

farms. These active ingredients are characterized by their high environmental impact, which results 

in low efficiency scores. However, heterogeneity in our sample may also be responsible for the low 

ratings in PHI. Heterogeneity could come from the fact that while some farms may be placing 

greater weights on the environmental impacts of PHI use, others confer more relevance to yield 

improvement and crop loss prevention. 

Very few researchers have ventured into quantifying the performance of firms as providers 

of social outputs (Lebacq et al., 2013). Our article is among the pioneers and extends Chambers & 

Serra (2016) model to allow for stochastic agricultural production conditions. The average score 

of social efficiency is around 88.6%, which implies that most of the farms are highly efficient in 

providing social outputs. 
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Table 2. Distribution of sustainability efficiency scores 

Efficiency 

Interval 
𝑇𝑌1  𝑇𝑌2  𝑇𝑌3  𝑇𝑍1  𝑇𝑍2  𝑇𝑍3  𝑇𝑃 𝑇𝑆 𝑇𝐵 

<0,1 0 0 0 8 13 27 44 0 0 

0,1-0,2 0 0 0 5 4 12 26 0 0 

0,2-0,3 0 0 0 4 6 5 24 0 0 

0,3-0,4 1 0 0 4 7 11 14 0 0 

0,4-0,5 10 1 1 3 5 9 13 0 0 

0,5-0,6 2 0 0 6 0 17 8 1 2 

0,6-0,7 13 5 3 14 14 19 10 5 0 

0,7-0,8 28 21 21 14 14 8 5 35 34 

0,8-0,9 34 38 48 30 22 7 1 51 42 

0,9-1,0 85 108 100 85 88 58 28 81 95 

          

Average  0,855     0,910     0,908     0,792     0,765     0,599     0,380    0,883  0,899    
          

Average 

efficiency scores 

per sub-

technology 

Desirable output Nitrogen pollution 
PHI 

Pollution 
Satisfaction Injuries 

 0,891   0,719  0,380 0,883 0,899 

          

Average 

efficiency scores 

per sustainability 

dimension 

Economic Environmental Social 

0,891 0,549 0,886 

Overall score 
 

0,775 
 

 

The social performance level includes two efficiency measures. First, the efficiency in 

generating farmer’s satisfaction, with an average of 88.3%. Second, the efficiency in reducing work 

injuries, with an average of 89.9%. High 𝑇𝑆 ratings can be due to people’s tendency to think that 

they are happier than they actually are, which may lead farmers to overestimate their satisfaction 

with their work and working conditions (contentment) (Veenhoven, 1996, 1997).The high 𝑇𝐼 

ratings can be explained by the small number of work accidents occurring in sample farms.  

Our efficiency analysis allows to characterize farms receiving direct payments according 

to their efficiency levels. With the green revolution, agricultural productivity soared in developed 

countries. Increases in productivity brought however significant costs such as groundwater 

pollution, soil depletion, or decline in the number of family farms and disintegration of rural 

communities. The CAP has progressively taken responsibility for these problems. The CAP rural 

development measures pay farmers for the provision of environmental goods and services. The 

CAP cross-compliance sets different rules that need to be respected by farmers in order to receive 

the CAP direct payments. These rules concern environmental preservation, animal welfare, plant 

health, food safety and maintenance of agricultural land in good agricultural and environmental 

conditions.  
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5. Concluding remarks 

This study extends Chambers & Serra (2016) measure of firm-level sustainability to allow for the 

stochastic conditions under which production takes place using a state-contingent approach. The 

overall production technology is defined as a composite of several sub-technologies representing 

the economic, environmental and social dimensions of production. Our model is illustrated using 

a farm-level dataset from a sample of Catalan farms. Empirical findings suggest that our sample 

farms have overall efficiency scores on the order of 77.5%. The overall efficiency is specially 

penalized by the poor environmental performance. Overall nitrogen pollution efficiency is on the 

order of 71.9%, while PHI pollution efficiency scores are around 38%. Nitrogen pollution 

efficiency is found to decline as growing conditions improve, which suggests that farmers are risk-

averse and prepare for the worse states of nature. At the social level, farms show high efficiency 

scores (on the order of 88%) when it comes to injury prevention and the generation of farmer 

satisfaction.  Our measures of farm-level sustainability can be useful for policy purposes, such as 

the redistribution of CAP farm payments according to how well farms perform in the different 

sustainability dimensions. They also show that further efforts are required both by policy makers 

and farmers to find more environmentally friendly production processes. Specially worrisome is 

the low capacity of our sample farms to use PHI efficiently.  
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