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Adoption of diversified farm technologies in a semi-arid of northern 

Ethiopia: A Panel Data Analysis. 
 

Abstract  
  

Technological change in agriculture in climate risk exposed developing countries requires for 

three major reasons: First, the increased climate risk and increase the need for new 

agricultural technologies that are more robust to such variability. Second, a need for land use 

intensification to feed the growing populations and third, economic transformation that 

creates an opportunity for market-oriented production that is more focused on the production 

of crops for market. This study emphasizes to assess factors associated with the extent of and 

intensity of adoption of three farm technologies (high yield wheat, drought tolerant teff, and 

cash crops) in the semi-arid of northern Ethiopia. We estimate determinants of adoption of 

the three technologies using double hurdle models. We apply correlated random effects with 

control function approach to control for possible endogeneity associated with access to the 

technologies. Results show that high population density has a positive and significant effect 

on the adoption decision of improved wheat and, irrigation has positive and significant effect 

on adoption of cash crops. Adoption of drought-tolerant teff is access constrained. Hence, 

increasing access to drought-tolerant teff and promoting irrigation appears to be adoption 

stimulants of drought-resistant teff and cash crops in a climate risk environment.  

 

Keywords: Technology adoption; double hurdle; control function; northern Ethiopia. 
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1. Introduction  

There is a wide consensus that improved agricultural technologies are essential components 

in a pro-poor development  in a  changing climate, improving agricultural productivity,   and 

facilitates the transition from subsistence to high value and market-based farming (Bezu et al., 

2014; De Janvry & Sadoulet, 2002; Mendola, 2007; Minten & Barrett, 2005; Yu et al., 2011; 

Zilberman et al., 2012). Technological change in agriculture in climate risk exposed 

developing countries requires mainly for three reasons. First, climate change may cause 

increased climate risk and increase the need for new agricultural technologies that are more 

robust to such variability. This implies that the continual increasing of global temperature may 

enhance weather uncertainty and affects the productivity of rain-fed agriculture in developing 

countries(Holden & Fisher, 2015; Zilberman et al., 2012). Second, continued population 

growth implies a need for land use intensification to feed the growing populations and high 

yielding crop varieties are adopted more rapidly than other agricultural innovations (Wale & 

Chianu, 2015). Third, economic transformation through promotion of growth packages such 

as irrigation, physical infrastructure ( i.e, market, improved road, and communication) may 

create an opportunity for market-oriented production that is more focused on the production 

of crops for market (Gebremedhin et al., 2009).  

Farmers have certain demands and expectations from adoption of modern farming 

technologies. These in turn, explain their decision behavior whether to adopt or not. Producer- 

consumer-farmer often has multiple selection criteria of technology adoption including 

production, food, feed and uncertainty which is in contrast to adopters who focus on a single 

trait, for-profit  (Singh et al., 1986). Depending on the preference, resource endowment, risk, 

and constraints that an individual farmer encounters, a beneficial attribute to one farmer may 

be unfavorable to another. The technology with the desired benefit (s) can then reach out to 

farmers who are accessed and demanding (Amare et al., 2012). Hence, understanding the factors 

affecting farmers’ adoption decision of improved farm technologies has an important 

implication on prioritizing of technology improvement such as crop varieties and targeted 

agricultural extension. 

Ethiopia is the second most populated country in Africa, with more than 75 % of the 

population work in a highly diversified agro-ecology with erratic weather condition 

(Croppenstedt et al., 2003). The subsistence farming system, with limited landholding less 
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than one ha per household Gebremedhin et al. (2009) and rapidly declining this size is a 

challenge to meet the food requirement of the high population growth (Verkaart et al., 2017). 

The existence of missing or poor insurance and credit markets and low off-farm employment 

opportunity, the traditional agricultural system lacks to improve the well-being of the rural 

society and may stagnate the transformation process of subsistence agriculture to a market-

based economy. Addressing these problems, the Ethiopian government enacts pro-small 

farmer strategies allowing the agriculture sector responsive to food security, weather 

uncertainty, and rural transformation. As part of the strategies, provision of extension 

programs on adoption of agricultural technologies has launched since the mid of the 1990s 

(Wubeneh & Sanders, 2006). High yield wheat variety, drought tolerant teff and cash crops 

were among the technologies that were widely adopted by highland farmers of the country 

(Zilberman et al., 2012).  

    In this paper, we analyze the extent to which we observe these types of technological 

changes in the climate-changing agriculture of Tigrai regional state, northern Ethiopia. This 

is a densely populated semi-arid area dominated by smallholder agriculture. Over the last 

twenty years, the Ethiopian economy has had a take-off in economic growth and the economic 

transformation may also open the possibilities for further agricultural transformation through 

adoption of modern farming technologies. We employ three rounds of household panel data 

collected in 2005/06, 2009/10 & 2014/15 to assess the extent to which we see signs of 

technology adoption in response to climate change, population pressure, and transformation 

in the data. To stimulate our analysis, first, we apply constrained technology adoption 

framework in the imperfect factor market agriculture. Next, we estimate adoption, generally 

measured as a discrete choice and intensity of adoption, associated with a continuous indicator 

as shares of fixed resources (land) that utilize newly adopted technology using double hurdle 

model. We use correlated random effect models with a control function approach to fix the 

probable access endogeneity in modeling adoption decisions of the technologies. Agroecology 

and community level factors were used to instrument the endogenous access variables.  

     .  

The remaining parts of the paper is organized as follows. The next section presents 

constrained technology adoption theoretical framework. The empirical model part comprises 

the study area, data, estimation method, and strategies are presented in section three.  Section 
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four presents the main research findings and discussions. Finally, section five presents the 

conclusion and provides some inferences.  

Theoretical model 

 

Constrained technology adoption 

  

Technology adoption literature proposes various econometric methods that can be used in 

modeling the behavior of household’s demand for modern farming technology and identify 

the factors that can explain adoption decision (Heckman, 1979; Maddala & Nelson, 1975; 

Wooldridge, 2010). Household’s adoption decision of new technology is usually modeled as 

a choice between the traditional and the new technology. A farmer adopts the technology 

when the discounted expected benefit is higher from adoption than without adoption (Amare 

et al., 2012; Bezu et al., 2014; Ma & Shi, 2015). If adoption of the new technology is 

profitable, the speed of diffusion is high and demand for the new technology is derived from 

profit function. This infers that the number of aggregate adopters of technology is below the 

saturation point (Amare et al., 2012).  

      In this case, data are collected on whether a given technology is adopted or not, without 

additional information on the constraints that some farmers might face in accessing the 

technology. Under this circumstance, the censored Tobit model allows for modeling both the 

adoption choices and their intensity (Tobin, 1958). The underlying assumption of Tobit 

specification is that a farmer demands the new technology with unconstrained access and the 

non-adoption is rational decision-making. Practically, however, some farmers with positive 

demand have faced access problem. This might be due to violation of the full information 

assumption, i.e., farmers may lack the information at all or obtained insufficient information 

to allow them to adopt. Likewise, farmers may not adopt the new technology due to credit 

constraint, limited supply of the technology or underdeveloped the supply system (Amare et 

al., 2012). Thus, Tobit specification lacks to distinguish between households with a 

constrained positive demand and those with unconstrained positive demand for the new 

technology and yields inconsistent estimates (Amare et al., 2012; Bezu et al., 2014; 

Croppenstedt et al., 2003). 

     In developing countries including Ethiopia, due to imperfect or missing factor markets, 

farm household decides production and consumption simultaneously (Singh et al., 1986). In 
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this perspective, access to improved technology is a key point to overcome for farmers with 

positive desired demand. To this end, consistent estimates for models exhibited constrained 

demand specification can obtain using the double hurdle (DH) model (Croppenstedt et al., 

2003). There are two possible reasons that farmers declined to adopt new technology in a 

climate risk environment. First, farmers with full information and fully accessible to the new 

technology while, they are unwilling to adopt. This is because adoption may be risk full, 

expensive or less profitable at the current price (Amare et al., 2012; Antle, 1987). Second, 

farmers want the new technology but, they faced difficulty to get it either due to limited supply 

or poor supply system (transport is too difficult). Therefore, the DH model allows us to 

separate the sample of households into three groups. (1), some farmers are fully informed and 

access to the technology and, have positive demand and adopt it. (2), some farmers have an 

access but unwilling to adopt because they may be less benefited from adoption. (3), some 

farmers have the desire to adopt the new technology but, difficult to get it due to supply-side 

constrained.   

In this study, we have information whether or not farmers are access constrained to the 

technology. The information is prompted from macro level possibly measured by collective 

behavior with the diverse performance of strategy determined at agroecology or community-

level. This presumes that access to technology differs according to the feature of the agro-

ecology and accessibility of public services. Following this, households were characterized 

into three target groups. First, households residing in the mid and high land agro-ecologies 

were accessed to high yield wheat variety. This is because wheat is mid and high land crop. 

Second, households live in drought-affected agro-ecologies (districts) were accessed to 

drought-tolerant teff, implies the new crop variety grows with small rainfall intensity and 

matures early1. Third, households live in a community with irrigation were also accessed to 

get cash crops, as adoption of water-conserving technologies increases total water use and is 

an important input to grow cash crops. The availability of this information allows us to specify 

the technology demand equations using DH model in a better way than Tobit model. Assume 

that a farmer i with unobservable desired demand (𝐷 ∗) for new technology j where j = 1, 2, 

&32 at time t, in a panel data set represented as follows: 

 

𝐷 ∗𝑖𝑗𝑡= 𝛽′𝑋′𝑖𝑡 + 𝜋′𝐴 ∗𝑖𝑗𝑡+ 𝑈𝑖𝑗𝑡                                                                                                                  (1) 
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Where the vector 𝑋′ comprises the predetermined household features and endowment 

variables of the demand function. A refers access dummy with value one if household i is 

accessed   at least one technology, zero otherwise. β and 𝜋 denote the vector of parameters 

and 𝑈 is the unobservable effect of the model, assumed with zero mean and constant variance. 

Considering access to the specific improved technology, it is expressed as: 

  

𝐴 ∗𝑖𝑗𝑡= 𝜗′𝑍′𝑖𝑡 +  𝜇
𝑖𝑗𝑡

                                                                                                                 (2) 

 

Where A is an access to technology and we can identify only whether an individual has an 

access or not. 𝑍 is a vector of variables directly affect access to technology but indirectly affect 

technology demand decisions. ϑ is a vector of parameters in the access equation, and μ is 

random error term with mean zero and constant variance. The interaction of equation (1) and 

(2) reveals the observed model of technology that comprises three sub-sample groups. The 

first group is with farmers passed the positive demand threshold (D* > 0), providing that they 

have an access to the technology (A* > 0) and individuals are in a positive use of the 

technology (G1). The second group in the sample is households unwilling to demand the 

technology whether they are accessed or not (D* < 0, A* > 0 or A*< 0) (G2). Finally, 

individuals desired the technology while, they cannot adopt it as they do not have an access 

to the technology (D* > 0, but A*< 0) (G3). Therefore, the DH model applied here follows as 

of Amare et al. (2012); Croppenstedt et al. (2003); Ricker-Gilbert et al. (2011); Verkaart et al. 

(2017) and we assume that the access and demand equations are independent. Based on this 

assumption, the likelihood function for the sample- separated data can be specified as follows: 

𝑙𝑛𝐿 =  ∑ ln [Φ(
ϑ𝑍′𝑖𝑡

𝛿𝑢
𝐺1=1 ) ∗ 𝜙(

𝐷𝑖𝑡−𝛽′𝑋′𝑖𝑡

𝛿𝑢
)]  

          + ∑ ln [1 − Φ(
𝛽′𝑋′

𝑖𝑡

𝛿𝑢
)𝐺1=2 ] 

    + ∑ ln [𝐺1=3 Φ (
𝛽′𝑋′

𝑖𝑡

𝛿𝑢
) ∗ 1 − Φ (

ϑ𝑍′𝑖𝑡

𝛿𝑢
)]                                                                                        (3) 

Where 𝜙 and Φ are the probability density function (pdf) and cumulative distribution 

function (cdf) of the standard normal variable, respectively; G1, G2, and G3 are indicator 

functions showing whether a given observation belongs to group one, two or three, 
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respectively, as described above. Based on this, we hypothesized the following for empirical 

tests: 

H1: Farm households live in a community with irrigation are more likely to adopt cash crops. 

The testable implication is that the dummy irrigation increases land use efficiency, tends to 

increase yield and will have a positive and significant effect on adoption of cash crops (high-

value crops). 

. 

H2 : Households live in a dense population area are more likely to adopt yield enhancing 

wheat. The implication is that the higher population density, the lower per capita land size 

leads to apply land use intensification to meet the food requirement at the household level and 

the higher adoption rate of the improved wheat. 

H3: Lower average rainfall leads to less use of drought-tolerant teff.  The implication is that 

the coefficient of mean rainfall of the previous three years production seasons is negative and 

statistically significant in both probability and intensity models of drought-tolerant teff.   

 

3. Empirical model 

3.1 Description of the study area 

The study area is Tigrai regional state located in the northern part of Ethiopia where 

smallholder agriculture is the main livelihood of the rural society. Agriculture contributes 38.7 

% of the Regional Gross Domestic Product (RGDP) (BoFED Tigray 2010). Arable land of 

the study region accounts 1.03 million ha where 83 % of this area was covered with cereals in 

the 2013/14 production season. Wheat and teff take the major share in cereal harvesting. 

Population growth rate of the study region reaches 2.5 % per year and an average population 

density of 327 persons /km2 (BPF, 2014). About 41 % of the region’s population living in 

extreme poverty, defined as less than one dollar per day in purchasing power parity and the 

per capita income of the region reaches 234 dollars in the real term by 2009/10. The rainy 

season of the region is mid of June to mid of September (BOARD, 2014). The occurrence of 

recurrent drought due to weather variability is the feature of the region’s agriculture and using 

local crop variety is less robust to such climate shock and deters productivity of smallholder 

agriculture. As a result of public and developmental agents’ effort on irrigation, the proportion 



8 
 

of irrigated land from the total arable land of the study region has increased from 7.5 % in 

2005/06 to 15 % in 2013/14 (BoARDTigray, 2014). 

  

3.2 Method of data collection and data type  
 

The data used in this study come from a panel of three survey rounds conducted in 2005/06, 

2009/10 and 2014/15 production seasons. The sampling frame bases on a two-stage approach 

as defined by Hagos and Holden (2003). In the first stage, communities were selected from 

the rural districts of the region based on agricultural potential, population density, agro-

ecology diversification and accessibility of public services. In the second stage, about 24 to 

25 households were randomly sampled from a list of farm families in the selected 

communities. The surveys collected useful information on several factors including household 

composition and characteristics, land, and non-land endowments, adoption of improved farm 

technologies,  land used and technology-induced income, indicators of access to infrastructure 

( marketplace and road), and community level characteristics like population density and 

rainfall. Rainfall data were captured from monthly satellite record of the study communities. 

As the survey time difference is just about four to five years, it is expected that some 

households were left out in the subsequent surveys. On the other hand, additional households 

were included in the subsequent surveys and finally, the data end up with an unbalanced panel. 

Hence, attrition biased is an issue of unbalanced panel data and it should be handled to avoid 

biased estimates in the adoption models. We estimate a probit attrition model to assess and 

control the attrition bias through exploiting the baseline data from 2005/06. The dropout and 

remaining households in each survey round were used to construct attrition dummy dependent 

variable (attrite =1 and 0, otherwise) and estimated on household and community level control 

variables. If the explanatory variables explain the attrition dummy significantly (at the 5 % 

level), attrition is an issue in the analysis implying that it is systematic. Detail explanation is 

presented in the estimation method section.  

3.3 Estimation method  

Beginning from theoretical model equation (1), all farmers do not have equal access to the 

technologies. This implies that households belong to group one (G1) would have positive 

demand while households belong to group two and three (G2 &G3) would have zero demand. 

Then, the outcome variable is censored at zero. In this case, the adoption equation is best 
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explained in the framework of corner solution model (Wooldridge, 2010). Therefore, farmer 

i extent of adoption (area used for the adopted technology j ) at time t is formulated as follows: 

𝐷𝑖𝑗𝑡 = max (0, 𝐷 ∗𝑖𝑗𝑡)                                                                                                     (4) 

Where the latent variable 𝐷 ∗𝑖𝑗𝑡 refers to non- linear specification of the technology 

adoption equations. The censored Tobit model is popular for corner solution estimation (i.e., 

the probability and intensity of adoption). The is because the dependent variable of the linear 

regression is observed only for some part of the sample households and assumed that the error 

term is normally distributed 휀𝑖𝑗𝑡|𝑋𝑖𝑡~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝛿2) (Tobin, 1958). However, Tobit model 

has a limitation3. An alternative to the standard Tobit model, the Double Hurdle (DH) model 

allows the initial decision of positive demand 𝐷 > 0, versus 𝐷 = 0 to be handled separately 

from the decision of how much 𝐷 wanted providing that 𝐷 > 0 by the two separate equations 

(Burke, 2009). This was based on the likelihood ratio test that whether the censored Tobit 

model is nested in the two stage model. The likelihood ratio test rejects the censored Tobit 

molded in favor of the double hurdle model on the improved wheat adoption (𝜒(27)
2 =981. 

𝑃𝑟=0.0000), drought tolerant teff (𝜒(27)
2 = 740 , 𝑃𝑟 = 0.0000), and cash crop (𝜒(27)

2 =998, 

𝑃𝑟 =0.0000). Therefore, the separate estimation comprises the probit model in the first hurdle 

and the truncated normal regression in the second hurdle. This allows the likelihood of the 

positive outcome and the value of a given positive outcome to be determined by separate 

process. We apply this method to estimate the model specification in equation (5) as of Amare 

et al. (2012); Ricker-Gilbert et al. (2011). 

The non –leaner adoption equation (4) more specifically, can be expressed as a function of 

individual unobservable heterogeneity and other exogenous variables as follows:  

𝐷𝑖𝑗𝑡
∗ = 𝛽0 + 𝛽1𝐿𝑖𝑡 + 𝛽2𝐻𝑖𝑡 + 𝛽3𝑊𝑖𝑡 + 𝛽4𝐷𝑡 + 𝛽5𝑌𝑡 + 𝛽

6
𝐴 ∗

𝑖𝑗𝑡
+ 𝐶𝑖 + 휀𝑖𝑗𝑡                               (5) 

Where 𝐿 is household labor endowment proxy by the number of male and female active labor 

force. The human productive element of household presents the capability of undertaking the 

laborious task, apply their effort in rapidly adoption of modern farm technology and exploit 

new market opportunities. 𝐻 refers household’s composition and characteristics such as age 

and gender of household head. The variable W included the land and non-land endowments 

expressed in terms of Oxen and non-oxen livestock (in Tropical Livestock Units) that have a 

risk neutralize effect and expected to enhance the likelihood of farmer’s technology adoption 
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decision. D refers district dummy that captures across agro-ecological difference in the 

distribution of technologies among the adopters. The variable Y refers the time dummy to see 

adoption variations across time in reference to the 2005/06 survey. The term C is the 

unobservable heterogeneity of farm households which is captured to the adopter but not 

observed by the researcher. A* is the specific access dummy variable  where, a given farmer 

is accessed at least to one of the technologies with value one and zero, otherwise. This is an 

endogenous variable and assumed correlated with error term in the adoption equation. 휀 refers 

the unobservable effect of the model, assumed with mean zero and constant variance. i, j & t 

are individual, technology type and time identifiers, respectively. 

To handle the problem of attrition biased, a probit model was estimated in the baseline 

survey of 2005/06 and the subsequent survey rounds (i.e., 2009/10 and 2014/15). The probit 

attrition results are included in Appendix table 1. The results indicate that several of the 

variables are significant and attrition is therefore non-random and leads to bias estimates. To 

correct the bias, we construct an Inverse Millis Ratio (IMR) and included as a regressor in the 

Mundlack-Chamberlin specification. The insignificance of IMR in the adoption model results 

(Table 3) indicate that attrition does not have an effect on the adoption results. 

 

3.4 Estimation challenges and remedial 

While estimating the causal relationship between the control and the outcome variables 

using a panel data, there are two important issues take into consideration i.e., unobservable 

and observable household heterogeneities. The next section deals with these. 

The first estimation issue is the existence of unobservable individual heterogeneity. This 

affects adoption decisions by creating selection bias as some farmers are more likely to adopt 

the technology compared to the others. The intuitive is that the unobservable individual 

heterogeneity effect Ci in equation (5) is correlated with the explanatory variables and creates 

biased estimates. If we assumed that the unobservable household heterogeneity effect is 

uncorrelated with all of the control variables (strict exogeneity assumption), we estimate the 

model using random effect estimator considering a composite error term (i.e.,𝑢𝑖𝑡 = 𝐶𝑖 + 휀𝑖𝑡)  

of equation (5). Nevertheless, this is a strong assumption and we are not guaranteed that the 

unobservable individual heterogeneity is orthogonal and uncorrelated to the other explanatory 

variables. On the other hand, the fixed effect model can fix the problem of correlation between 
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individual unobservable heterogeneity effect and the explanatory variables through the 

demeaning process. However, fixed effect model is a workforce for linear models but not 

applicable for nonlinear model due to the incidential truncation problem (Verkaart et al., 

2017). Therefore, for nonlinear panel data models, the Correlated Random Effects (CRE), 

model of Mundlak (1978) and Chamberlain (1982) eases the assumption of strict exogeneity. 

This implies that the CRE approach expresses the unobservable heterogeneity variable (𝐶𝑖) as 

a function of the avearge of the time variant household i variables  denoted by �̅�𝑖 and includes 

as a regressor in the adoption model (Wooldridge, 2010). We rewrite equation (5) as follow: 

𝐷𝑖𝑗𝑡
∗ = 𝛽0 + 𝛽1𝐿𝑖𝑡 + 𝛽2𝐻𝑖𝑡 + 𝛽3𝑊𝑖𝑡 + 𝛽4𝐷𝑡 + 𝛽5𝑌𝑡 + 𝛽6𝐴 ∗𝑖𝑗𝑡+ 𝛽7�̅�𝑖+휀𝑖𝑗𝑡                                           (6) 

Intuitively, averaging the time-varying household i variables make the same value within 

households in each year whereas, varying across households. Thus, the Mundlack - 

Chamberlin approach solves as with fixed-effects while, avoiding the problem of incidential 

parameters in nonlinear models (Ricker-Gilbert et al., 2011). Finally, both the reduced form 

of access equations and the technology adoption equations are estimated using the Double 

hurdle -CRE estimator.  

The second estimation issues is related to the problem of endogeneity. Referring to the 

theoretical model section, not all farmers have access to the specific technology as access is 

based on some agro-ecology or community-level factors, which is non-random. Hence, the 

access variable in the adoption equation (5) is possibly correlated with the error term i.e., cov 

(𝐴 ∗𝑖𝑗𝑡, 휀𝑖𝑗𝑡)  ≠ 0. We apply a control function approach to handle for possible endogeneity 

of access variable. More specifically, we rewrite the adoption equation (5) as a system of two 

equations, (i.e., the access equation, first stage and the adoption equation, second stage) 

separately. 

𝐴 ∗𝑖𝑗𝑡=  𝛽′𝑋′
𝑖𝑡 + 𝜗′𝑍′𝑖𝑡 + ∅𝑋̅̅ ̅̅ 𝑖 + 𝜇𝑖𝑗𝑡                                                                                  (7) 

𝐷𝑖𝑗𝑡 = max[0, 𝛽( 𝑋′
𝑖𝑡 + 𝐴 ∗𝑖𝑗𝑡+ �̅�𝑖 + 𝜇𝑗

𝑖𝑡.
̂ ) + 휀𝑖𝑗𝑡]                                                                              (8)                                                                               

 

The control function approach requires exclusion restriction at least one variable (𝑍′
𝑖𝑡)  in 

the first stage equation (7), that is not in the adoption equation and uncorrelated with the error 

term in equation (8), c𝑜𝑣(𝑍′
𝑖𝑡  , 휀𝑖𝑗𝑡 ) = 0, but correlated with the potentially endogenous 

variable, 𝑐𝑜𝑣(𝑍′
𝑖𝑡, 𝐴 ∗𝑖𝑗𝑡) ≠ 0 . Following the work of Smith and Blundell (1986) for testing 
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and controlling the endogeneity in a censored adoption models of each technology in  equation 

(8), there are two steps. First, estimate the reduced form access model of each technology in 

equation (7) using correlated random effect probit model and captured the generalized 

residual. Second, include the generalized residual in the adoption equation (8) along with the 

endogenous access variable. 

 A significance test on the coefficient of the residuals test for the endogeneity of the access 

variable. As in a two-stage- instrumental variable model, the control function approach 

requires exclusion restrictions as discussed above. In this case, a dummy variable mid and 

high land altitude, a dummy variable agroecology with high rainfall variability in the previous 

three years rainy season, and an interaction of dummy irrigation and community dummy were 

used as an instrument for accessibility of high yield wheat variety, drought tolerant teff and 

cash crops, respectively. The intitutive is that wheat is mid and high land crop and households 

live in mid and high land were access to the improved wheat. Drought tolerant teff is low land 

crop since low land is often characterized as drought exposed agroecology (high rainfall 

variability) and households live in this agroecology were also deserve to access the drought-

tolerant teff. We see particular reason that in areas with existence of irrigation, there is less 

likely to adopt drought-tolerant teff as the crop is adaptable to moisture stress environment. 

Furthermore, access to cash crop is associated with the presence of irrigation. We tested the 

statistical validity of this by including the instrument in the adoption equation in one 

specification. If the instrument was insignificant in the adoption equation but significant in 

the access equation, and if the error term from the first stage access model is significant in the 

adoption model, then endogeneity is an issue and was corrected for with the control function. 

 

4. Results and discussions  

4.1 Descriptive analysis 

The mean and distribution of the outcome and explanatory variables used in the econometric 

analysis are presented in Table 1. Choice of explanatory variables is based on previous 

literature suggestions that a wide range of socio-economic, technical, and physical factors 

influence adoption and extent of adoption of farm technologies in developing countries (Feder 

et al., 1985). Table 1 also presents the adoption and extent of adoption of high yield wheat 

variety, drought tolerant teff and cash crops by survey year. The adoption rate is measured in 
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terms of the average households growing improved crop variety. For instance, we observe that 

the adoption rate of improved wheat increased from 13 % in 2005/06 to 19 % in 2009/10 and 

decreased to 14 % in 2014/15. Likewise, the adoption intensity is measured in terms of area 

used for improved wheat variety in the production season. The pattern of adoption intensity 

of improved wheat is similar to the adoption rate and it increased from 0.15 tsimdi in 2005/06 

to  

 

Table 1: Descriptive statistics of variables used in the analysis (mean value) 

 Survey year 

Varibale description (average households) 2005/06 2009/10 2014/15 Total  

Technology variables  

HYV_ Wheat adoption (yes =1) 0.13 0.19 0.14 0.15 

HYV_ Wheat area planted (tsimdi) 0.15 0.31 0.20 0.22 

Drough Tolerant Teff adoption ( yes=1) 0.06 0.04 0.11 0.08 

Drough tolerant Teff  area palnted (tsimdi) 0.09 0.08 0.22 0.14 

Cash crops adoption (yes =1) 0.11 0.19 0.16 0.15 

Cash  crop area planted (tsimdi) 0.04 0.19 0.21 0.14 

Irrigated area (tsimdi) 0.11 0.44 0.61 0.38 

Cash crop area planted/ irrigtaed plot (ratio) 0.36 0.43 0.34 0.37 

Household feature and endowment variables  

Gender of head (female =1) 0.27 0.27 0.28 0.27 

Age of head (year) 54.0 54.4 57.8 55.9 

Male adult (count) 1.44 1.55 1.93 1.69 

Female adult (count) 1.39 1.38 1.54 1.45 

Oxen own (count) 0.92 1.09 1.08 1.04 

TLU total (tropical livetsock unit) 2.11 2.52 4.39 3.25 

Own land (tsimsid) 5.26 5.56 5.34 5.39 

Community-level variables  

Distance to farmers training center (walking hr) 1.02 1.27 0.97 1.07 

Distance to district office (walking hr) 2.87 2.80 2.76 2.83 

Distance to market (walking hr) 0.32 1.27 1.27 1.04 

Access to irrigation (yes =1) 0.08 0.28 0.25 0.22 

Population size in a community (count) 5145 6128 9161 7233 

Previous three years  rainy season mean rainfall (mm) 52.19 56.95 54.43 56.5 

Previous three years  rainy season  mean rainfall variability 

(Std.dev) (mm) 

9.8 8.25 9.14 9.03 

 

Source: NMBU and MU household panel survey. 

 

 

      0.30 tsimdi in 2009/10 and decreased to 0.20 tsimdi in 2014/15. This indicates that adoption 

and extent of adoption of improved wheat in the study region remain small. Limited supply, 
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poor infrastructure, remoteness to the distribution and development area and land size 

disparity to test the technology may be the possible reasons for lower adoption and intensity 

of adoption of improved wheat. One can also observe the pattern of adoption rate and area 

used for drought tolerance teff and cash crop in each year from the same table (Table1). 

 

4.2 Econometric results 
 
The results from the first stage access equation of the three technologies are presented in Table 

2. The strength of the exclusion restrictions (instruments) in the first stage correlated random 

effect probit model is tested as of Ricker-Gilbert et al. (2011). These tests verify the significant 

relationship between the exclusion restrictions and the potential endogenous access to 

technology variables. In this context, the exclusion restrictions in the access of improved 

wheat variety is altitude. The access probit model result shows statistically significant and 

positive coefficient of altitude dummy (mid and high land = 1, 0 otherwise) at the 1 % level. 

That is expected. Wheat needs long growth period with humidity and it is suitable in the mid 

and high land agroecology. Therefore, households reside in the mid and high land area are 

associated with positive access to the improved wheat variety. Likewise, access to drought-

tolerant teff model results depict that households reside in agroecology experienced with high 

rainfall variable ( 1= yes, 0 otherwise) in the previous three years rainy season are accessed 

to drought-tolerant teff and the correlation is significant at the 1% level. Households live in a 

community with irrigation has positive and significant correlation with access to cash crops.   
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Table 2: Correlated Random Effect probit models of access to technologies  a  

 Technology type 

Variables  HYV Wheat Drought tolerant Teff Cash crop 

Altitude is mid and high 

land ( 1=yes)t (hr)b 

3.281*** 

(0.329) 

 
 

 

 

Drought-exposed districts 

(high rainfall variability  

in the previous 3yrs, 

yes=1 )b  

0.538***(0.151)    

 

Interaction of Irrigation  

and community dummy  

 
0.088***(0.016)    

Head sex ( Female =1) 0.091  (0.213) 

    
 

0.034   (0.265)    0.077   (0.185)    

Head age (Year) 0.005    (0.006)    

 
 

-0.005   (0.009)    -0.007   (0.006) 

Male adult (count) 0.024   ( (0.080)    

 
 

-0.046   (0.094)    0.042   (0.063)    

Female Adult (count) 0.047    (0.089)    

 
 

-0.245**  (0.105) -0.023   (0.072)    

Oxen_qty (count) 0.178    (0.113)    

 
 

-0.184   (0.141)    -0.114   (0.091)    

Tropical live stock (TLU) 0.095*** (0.032)    
 

0.042   (0.044)    -0.020   (0.021)    

Own land(tsimdi) -0.032** (0.016)    

  

0.001  (0.021) 0.025** (0.013) 

Year dummy=2009/10 0.922***(0.139)    

  

0.336** (0.165)    (0.110)   (0.119)    

Year dummy =2014/15 1.631***(0.183)    

  

1.590***(0.219)    0.831***(0.123)    

Constant -4.403*** (0.585)    

 
 

-0.099   (0.647)    1.450***(0.321)    

Wald chi2(16) 163.21 102.20 123. 93 

Pro >chi2  0.0000 0.0000 0.0000 

Observation  
1419 1419 1419 

 

a.The mean of time-varying variables is included as additional regressors in the correlated random 

effect model. The base year dummy is 2005/06. 

b .These variables are instruments. The significance of the coefficients indicates that these variables are 

appropriate instruments for accessibility of these technologies. Number in parenthesis are standard 

errors. ***, **, & * refers to 1, 5, & 10 % significant level, respectively. 

 Source: NMBU and MU household panel survey.  
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We also test whether smallholder farmers make demand decisions (adoption and extent of 

adoption of technology) simultaneously versus sequentially by examining how well the Tobit 

model fit to our data compared to the DH model.  We conduct a likelihood ratio test and the 

test favors the DH model over Tobit (see the estimation method section). Moreover, the 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) estimates also 

substantiated the same DH model to be better fit the data. Henceforth, we base our discussion 

on the results of the DH model and states adoption of the technologies need to be estimated 

conditional on technology access threshold. This proposes that farmers in northern Ethiopia 

make technology demand decision sequentially that first deciding to adopt or not and then 

deciding how much to adopt. 

The comprehensive results of the double hurdle models for adoption and intensity of 

adoption of the three technologies are presented in Table 3. The Wald chi2 test for instance, 

(𝜒2 (34)= 57.62, Pr = 0.0000) in hurdle 1 for the improved wheat is significant at the 1 % level. 

This indicates that the subset of coefficients of the hurdle 1 model is jointly significant and 

that the explanatory power of the variables comprised in the model is satisfactory. Hence, the 

model fits the data nicely. We observe the same model fitness for the other technologies also. 

As we mentioned earlier, we use a control function approach to handle sample selection bias 

related to accessibility of the technologies left out in the second stage model. Altitude dummy, 

dummy high rainfall variability in the previous three years rainy season and interaction of 

community dummy with irrigation were instruments in the first stage and included in the 

second stage model to assess the statistical validity. 

As shown the instruments are significant on the first stage model at the 1 % level (Table 2) 

while, insignificant in the standard test levels in the second stage mode (Table 3). Furthermore, 

the double hurdle mode results include the generalized residuals from the first stage access 

equations of these technologies along with the observed access variable. The inclusion of the 

residuals test and control for the endogeneity of access to the technologies. Standard errors 

are estimated using the bootstrap method to account for the two-stage estimation in this control 

function procedure. 
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Table 3: Double hurdle models of factors affecting demand for farm technologies (access to technology 

treated as endogenous variable)    

 Improved Wheat Drought Tolerant teff 

Explanatory variables 

Hurdle 1 

Probability of 

Adoption  

Probit 

estimator 

Hurdle 2 

Log of area planted 

upon adoption 

Truncation normal 

estimator 

Hurdle 1 

Probability of 

Adoption  

Probit estimator 

Hurdle 2 

Log of area 

planted 

upon adoption 

Truncation 

normal 

estimator 

IV from first stage  0.312(0.367) 
  

0.040 (0.256)    

  

0.146   (0.228)    -0.123   (0.280)  

Generalized error term -1.841***(0.708) 

  

-0.702  (0.542)    

  

-0.918  (0.829)    -1.361*  (0.825)    

Access to technology 8.396(440.921) 

  

0.000( 0.040)   

  

2.188** (0.910)    1.481   (0.977)    

Head sex (Female=1) -0.152(0.211) 

  

0.167 (0.143)    

  

-0.088  (0.239)    -0.266   (0.179)    

Head age (year) -0.015**(0.008) 

  

-0.003  (0.005)    

  

0.047   (0.029)    -0.073** (0.036)    

Male adult (count) 0.071(0.082) 

  

-0.047(0.054)    

  

0.010   (0.086)    -0.132   (0.083)    

Female Adult (count) -0.023(0.088) 

  

0.068  (0.057)    

  

0.028   (0.099)    -0.005   (0.082)    

Tropical Livestock (TLU) -0.033(0.033) 

  

0.029 (0.026)    

  

0.016   (0.022)    0.027   (0.018)    

Oxen_qty (count) 0.176*(0.105) 

  

-0.069(0.081)     

  

0.118   (0.104)    0.063   (0.095)    

Mobile own (yes=1) 0.792***(0.192) 

  

0.039 (0.135)    

  

0.530*  (0.271)    0.033   (0.112)    

Own land (tsimdi) -0.020(0.019) 

  

0.022 (0.014) 

  

0.000   (0.017)    0.009   (0.017)    

Population density (Highy=1) 0.237**(0.119) 

  

-0.054   (0.107) 

  

0.033   (0.116)  -0.066   (0.111)  

Access to irrigation ( yes =1) 0.279**(0.123) 

  

-0.06(0.078)    

  

0.092   (0.129)   -0.089   (0.109)   

Previous three years rainy 

season mean rainfall (mm) 

-0.015**(0.006) 

  

0.015 (0.009)   

  

0.018***(0.004)    0.009   (0.007)    

Previous three years  rainy 

season rainfall variability (std 

dev) (mm) 

0.006 (0.011)    0.004  0.011) 

  

-0.017  (0.019)    -0.001   (0.026)    
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Note:   Regressions include the mean of time-variant variables but not reported. Numbers in 

parenthesis are standard errors bootstrapped at 400 replications for the truncation 

estimation. ***, **, & *, refers to 1, 5, & 10 % level of significance, respectively. 

 Source: NMBU and MU household panel survey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Continue …. 

    

Inverse Millis Ratio (IMR) 4.589  (5.309) 

  

1.587 (3.396)    

  

-6.247   (5.363)    7.591*   (4.444)    

Year  dummy=2010 -0.326 (0.227) 

  

-0.015   (0.178)    

  

-0.467**(0.190)  0.071   (0.202)  

Year dummy =2015 -0.832***(0.252) 

  

-0.055 0.204)    

  

-0.146   (0.209)    -0.126   (0.193)    

Constant -13.923  (331.489)    0.395***(0.025)    -0.902   (4.038)    -7.731**(3.255)    

 Wald chie2 (34)  57.62 223.10 44.24 69.45 

District fixed effect yes yes yes yes 

 Prob<chi2  0.0000 0.0000 0.0000 0.0000 

AIC  224.36  147.4 

BIC  339.64  127.86 

 Observation  1419 213 1419 108 
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Table 3: continue…. 

 Cash crop 

Explanatory variables 

Hurdle 1 

Probability of 

Adoption  

Probit estimator 

Hurdle 2 

Log of area planted 

upon adoption 

Truncation normal 

estimator 

IV from first stage  0.018   (0.016)    0.016 (0.018)      

Generalized error term 2.352** (1.121)    0.643   (1.219)    

Access to technology -1.357   (1.135)    -0.265  (1.358)    

Head sex (Female=1) 0.184   (0.212)    -0.004   (0.231)    

Head age (year) -0.004   (0.007)    -0.009  (0.007)    

Male adult (count) 0.010   (0.088)    0.033   (0.111)    

Female Adult (count) 0.069   (0.086)    -0.038  (0.095)    

Tropical Livestock (TLU) 0.021  (0.024)     -0.007  (0.022)    

Oxen_qty (count) -0.043   (0.098)    -0.100  (0.091)    

Mobile own (yes=1) 0.129   (0.187)    0.199  (0.165)    

Own land (timidi) 0.021  (0.016)     -0.012   (0.018)    

Population density (high=1) 0.056   (0.124)    0.079   (0.151)    

Access to irrigation ( yes= 1) 0.950***(0.314)    -0.143   (0.460)    

Previous three years rainy season mean 

rainfall (mm) 

0.000   (0.009)    -0.038***(0.011)    

Previous three years rainy season rainfall 

variability (std dev) (mm) 

0.006   (0.015)    0.005   (0.023)    

Inverse Millis Ratio(IMR) 2.145   (5.430)    1.058   (6.482)    

Year  dummy=2010 -0.010   (0.171)    0.407   (0.272)    

Year dummy =2015 -0.292   (0.200)    0.676*  (0.387)    

Constant -2.867   (4.173)    0.960   (5.199)    

District fixed effect yes yes 

 Wald chie2 (34) 123.93 107.01 
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Note:   Regressions include the mean of time-variant variables and district dummies but not 

reported. Numbers in parenthesis are standard errors bootstrapped at 400 replications for 

the truncation estimation. ***, **, & *, refer to 1, 5, & 10 % level of significance, respectively. 

Source: NMBU and MU household panel survey. 

 

The coefficient for the generalized residual is significant in the improved wheat, drought-

tolerant teff and cash crop technologies, at the 1, 10 and 5% level, respectively. This implies 

that access to improved technology in the adoption model is potential endogenous as expected 

and, therefore, our approach works nicely. The coefficient of access to drought-tolerant teff is 

positive and significant in the probit component, while positive but insignificant in the linear 

component. This suggests that access to drought-tolerant teff affects positively the probability 

of adoption but not important in explaining the extent of adoption. This shows that access to 

drought-tolerant teff has a direct implication on teff production in areas with rainfall stress.  

Examining the other variables in the double hurdle model typify the variation of adoption 

and intensity of adoption of the three technologies among farm households. The model allows 

different explaining power of variables in the probit and linear component implies that a 

variable with a significant effect in Hurdle 1 may not necessarily significant in Hurdle 2. This 

confirms our assumption that the probability and degree of adoption are performed in a 

separate process.  

      Citrus paribus, we observe a negative and statistical significance relation between 

household head’s and the likelihood of improved wheat adoption and adoption intensity of 

drought-tolerant teff at the 5% level. The possible justification could be the risk aversion and 

a technology distrust behavior is widely associated with older headed households. This may 

also consider as a lifecycle hypothesis in which older people are less likely to adopt 

technologies that are embodied with capital goods or that require extra knowledge. We found 

similar results on the inverse relationship between head’s age and adoption of improved Maize 

verities in Malawi Bezu et al. (2014) and improved Chickpea variety adoption in Ethiopia 

(Verkaart et al., 2017). 

 Prob<chi2 0.0000 0.0000 

AIC  104.08 

BIC  226 

 Observation 1419 222 
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The presence of irrigation significantly and positively explains adoption of improved wheat, 

revealing a statistically significant effect at the 5 % level. As far as cash-crop is concerned, 

irrigation stimulates adoption significantly at the 1 % level. This suggests that promoting 

irrigation is an important factor in adoption of cash crop. Thus, we do not have solid evidence 

to reject the first hypothesis (H1). This is because households in a semi-arid economy become 

more willing to adopt the new technology that makes better to handle the weather uncertainty 

they faced.  

We wanted to test whether the households live in the community with high population 

density starts to make a visible positive impact on the adoption of improved wheat. Here, there 

are two competing arguments. On the one hand, the food security issue. In highly populated 

but land scarce economy like Ethiopia, there are more mouths that need continuous feeding. 

To do this, there should be land use intensification to increase productivity via adopting yield-

enhancing crop varieties. Then, high population density is an important factor for adoption of 

farming technology. On the other hand, the prevalence of endowment heterogeneity affects 

the timing and magnitude of technology adoption. The intuitive is that, in the land-scarce 

economy, higher population density means lower per capita farm size and is a great barrier to 

adoption of technologies due to risk aversion behavior. Therefore, the impact of population 

density on technology adoption is an empirical issue. Citrus paribus, the double hurdle results 

did indicate a positive and significant effect of population density on adoption of improved 

wheat. This is consistent with the descriptive finding (Table 2) and we fail to reject the second 

hypothesis (H2).  

Our third hypothesis stated that adoption of drought-tolerant teff is more likely when rainfall 

is low.  However, we found that high rainfall has a positive and significant effect on adoption 

of drought-tolerant teff. This indicates that although households with good rain in the previous 

three years rainy season were not accessed to drought-tolerant teff, but they adopted it. Thus, 

the result contradicts to the prior expectation that drought-tolerant Teff was anticipated to 

adopt in areas with minimum rainfall. Hence, we reject the third hypothesis (H3). 
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5. Conclusion and policy implications  

 
The implementation of Agricultural Development Led Industrialization (ADLI) policy of 

Ethiopia brought a significant reduction in the extent of poverty at country level. As part of 

this national policy, extensive rural development packages in response to food security, 

climate change and rural transformation were introduced since the mid of 1990s. The purpose 

of this study is to assess the pattern and determinants of demand decisions (probability and 

extent) of farm technologies in a semi-arid region of northern Ethiopia. Using unbalanced 

household panel data collected in 2005/06, 2009/10 & 2014/15, we estimate the demand 

decision of the three technologies using double hurdle model with correlated random effects 

estimator. A control function approach is applied to account for the endogeneity of access to 

technology in the adoption models. The data showed that several households were constrained 

from adopting the technologies and thus, adoption rate of these technologies is relatively low. 

The access estimation results show that the district or community level variables appear to 

have a significant effect on the supply-side of the three technologies as expected. We include 

the residuals from the first stage access estimations in the adoption models. The significance 

of the residual coefficients in the adoption models revealed that access variable is endogenous 

and fixes the problem of endogeneity. We include the exclusion restriction variables in the 

second stage model to assess the statistical validity and coefficients are strongly insignificant 

and thus, the control function approach works nicely. The DH results show that adoption of 

improved wheat is positively and significantly explained by high population density, suggest 

the food security implication of the crop. The result also shows a positive and significant 

relationship between young headed households and adoption probability of improved wheat 

and adoption level of drought-tolerant teff. The effect of irrigation on adoption of cash crop is 

positive and significant, suggest that public investment in irrigation stimulates the production 

of high-value products in a climate-changing environment. 

For policy implication, increase access to drought-tolerant teff and promoting irrigation 

appears to be a major adoption stimulants of drought-resistant teff and cash crop in a climate 

risk environment. 
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Endnotes  

1According to the discussion with the experts of the agricultural research institute of Tigrai, 

they used historical rainfall data of agro-ecologies (districts). Agro ecologies with a shortfall 

in rain in the previous production years used as a criteria for distributing the Drought tolerant 

teff. We compute the mean of rainfall variability of the previous three years rainy season of 

each district and used as a yardstick to identify a district with lower than the mean value is 

with low rainfall variability while above the mean is a district with high rainfall variability 

(drought exposed district). 

2 1 = refers improved Wheat, 2= Drought tolerant Teff and 3 = Cash crops. We used the 

same notations throughout the paper. 

3 The probability of a positive value (y > 0) and the actual value (y = 0), are estimated in a 

single equation and lacks to accommodate two nature equation suggest that the directional 

effect of the explanatory variables on the probability and intensity of adoption of the 

technology is identical.  

3 Since the bootstrapped models used to correct the standard errors for possible 

heteroscedasticity in Stata 13 do not allow with Inverse probability Weight (IPW), we use 

IMR to correct for attrition biased. 

4  The benchmark for sorting population density of the study region is 200 persons/km2.  

Above this number noted as high population density area while, below this number refers 

low population density area. See Fitsum (2002) at 

https://www.researchgate.net/publication/35211639. 

5  Distance to marketplace also defined as household live in areas above an hour walking 

time to reach the market palace refers long distance whereas, below an hour is short 

distance. See Fitsum (2002) at https://www.researchgate.net/publication/35211639 
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Appendix  

Annex table 1:  Probit estimation of attrition biased for panel data (Attrite=1) 

Explanatory variables                                            Coeffi.      Std.error                 

Head’s sex (Female=1) 0.011       (0.162)    

Head’s age (year) -0.001      (0.005)    

Male adult (count) -0.148**   (0.070)    

Female Adult (count) -0.134       (0.082)     

Oxen own (count) 0.153         (0.188)     

Tropical Livestock (TLU) -0.063       (0.040)     

Land holding (tsimdi) -0.017       (0.019)    

Distance to district office (hr) -0.136**   (0.054)    

Distance to nearby market (hr) -0.074      (0.082)    

Distance to farmer’s training center (hr) 0.109         (0.077)    

Constant -1.006*** (0.351)    

Prob >chi2                                      0.0000 

 Number of observation 1419 
 

 

    

***, **,* are 1, 5, & 10 % level of significance, respectively. Numbers in parenthesis are 

robust standard errors. Source: NMBU and MU household panel survey. 

 

 

 

 

 

 

 

 

 

 

 

 




