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1. Introduction

Uninsured risks are a major cause of low agricultural productivity in Sub-Saharan Africa.
The main uncertainty in Kenya’s agricultural economy is drought and other adverse weather
conditions that severely affect agricultural livelihoods. Moreover, lack of capital and perceived
risks limit farmers’ ability to purchase agricultural inputs and access credit, contributing to low
agricultural productivity. Lenders in Kenyan credit market limit the supply of credit to borrowers
because of the issue of asymmetric information caused due to uninsured risk. Kenyan farmers
can borrow only under relatively high collateral where farmers are not willing to expose to the
high risk of collateral loss. Borrowers voluntarily withdraw from the credit market because of
increased collateral requirement by the lenders as a result of uninsured risks. Ultimately, lack of
access to credit force farmers to adopt low-risk low-return activities and considered main driver
of persistent poverty (Barrett et al. 2006; Santos and Barrett 2006). To better understand
household’s credit rationing status, we conducted a qualitative survey and elicited the reasons for
farmers being credit constrained. Evidence from the survey suggests that the fear of losing
collateral if one cannot repay the loan is the primary deterrent to not borrowing from credit
market. This result is in line with recent studies in microfinance which showed limited demand
for microcredit at market rate (Johnston and Morduch 2008; Banerjee et al. 2015). Since the fear
of losing collateral comes from uninsured risk it is important to minimize the risk of credit

default to make the credit market work of Kenya.

With 80% of the population employed in agriculture and 22% of the country’s overall
GDP derived from agriculture, enhancing agricultural productivity is critical for Kenya.
According to Government of Kenya, four consecutive years (2008-2011) of drought amounted to

US $12.1 billion in losses, including losses in assets and from disruptions in the economy flow



across all sectors. Such severe shocks cannot be financed by the government and donor
community alone. Some market-based innovative risk management solutions are necessary to
manage agricultural weather risks and to provide access to credit to the farmers. We develop a
linked financial product in the form of Risk-Contingent Credit (RCC) that embeds within its
structure an insurance protection which, when triggered, offsets loan payments due to the lender
providing a risk-efficient balance between business and financial risks. The underlying risk is
captured through a satellite-derived rainfall data validated with weather station data based on
state-of-the-art remote sensors. The main objective of RCC is to provide a financial tool that
transfers drought risk-related perils from borrower to the lender via insurance and reinsurance
markets. The covariate nature of drought risk reduces lenders’ willingness to supply credit into
the agricultural market place, while inaccessible insurance markets to protect against covariate
risks, discourages farmers from borrowing in those markets that credit is accessible. In a single
financial product RCC reduces credit rationing and risk rationing, reversing these effects. With
RCC, a risk-transfer agreement by an insurance intermediary ensures that, when triggered by a
specific drought event, insurance indemnities are transferred directly to the farmer-borrower’s

loan account at the bank on behalf of the borrower.

Because the insurance component of RCC substitutes for collateral, it is more financially
inclusive than conventional credit products where a collateral is usually needed. Thus RCC can
bring risk-rationed farmers (who tend not to borrow or borrow less than optimal for fear of losing
collateral and falling into a credit-driven poverty trap) into the credit market. In RCC the
indemnity from the insurance is applied to the underlying debt obligation or debt service, thereby
reducing the probability of default on loans by producers, improving risk bearing ability and trust

which can encourage high uptake of RCC. It also eliminates the drawbacks of standalone index



insurance products by not requiring the farmers to pay premium upfront. As early as Bester
(1985) it was shown that there could be a tradeoff between higher interest rate and lower
collateral and that no credit rationing would occur if lenders offered different interest rates and
collateral requirements. RCC avoids the stringent collateral requirement by determining the
interest rates (risk premium) that breakeven for the lender linking repayments with underlying
risk by embedding weather insurance. RCC thus offers a market based solution that would

provide larger and long term credit to cater to the investment need for agriculture in Kenya.

There has in recent years been great interest in the design, piloting, and scaling up of
bundled or linked-credit products. In the fall of 2017 our group piloted RCC for the first time in
Machakos County in Kenya, with loan indemnities linked to long and short rains. The
implementation design was a randomized control experiment including no-loan, traditional loan,
and Risk Contingent credit, with a sub-experiment, also randomized, on RCC premium
subsidization. Uptake of offered traditional and RCC loans were about 40%. In time, our group
will evaluate the impact on agricultural productivity, household income, consumption
smoothing, savings and investment, household nutrition and so on using traditional credit vs

RCC against the no-credit counterfactual.

One of the challenges in deigning bundled credit products, in the absence of traded
securities, is the actuarial pricing and risk rating of the insurance and the loan product. Since few
attempts have been made on delivering RCC to farm households, it is important for agricultural
economists, insurance specialists, finance specialists and integrators to understand the financial
engineering employed in the design and rating of bundled insurance. In this paper we present the
details of our rating methodology as actually employed in the field with banking and insurance

partners. It is our belief that the innovative designs and methods are as important as the product



delivery mechanism itself, and with rising interest in bundled credit products like RCC this paper
will be of interest to specialists in development economics, agricultural finance, development
finance, agricultural insurance and agricultural micro insurance. The paper is structured as
follows. Section 2 develops the risk-contingent credit model. Section 3 describes the geographic
region and summarizes the data on which the model is based. Section 4 presents the empirical
structure and rate making of RCC. Section 5 provides concluding comments and implementation

challenges.

2. Risk-contingent credit model

Unlike traditional credit products, RCC structure facilitates risk management by layering
hedging protection into loan payment obligations. The payout from the insurance is applied to
the underlying debt obligation or debt service, thereby reducing the probability of default on
loans by producers, improving risk bearing ability, enhancing the supply of credit, and
facilitating investment and development. An emerging literature on RCC includes Shee and
Turvey (2012) who investigated an imbedded price option for pulse crops in India; Shee et al.
(2015) who conducted a field based feasibility of RCC with Kenyan pastoralists and dairy
farmers; Carter (2011) who examined the impacts of RCC on financial market deepening and its
impacts on farm households; Giné and Yang (2009) who investigated adoption of an operating
loan in Malawi in which the payoff was determined by rainfall; Karlan et al. (2011) who
investigate the adoption of price-contingent credit in Ghana; and Casaburi and Willis (2015) who
implemented insurance linked contract farming found 71.6% take-up rate. These papers

investigate linking risk to loans directly made to farmers or agribusiness. Miranda and Gonzalez-



Vega (2011) and Collier et al. (2011) provide conceptual frameworks in which financial

institutions themselves link their loan portfolios to EI Nino risks in Central America.

Below we provide a brief description of RCC and how it can protect farmers from
drought related production risk. In Figure 1 the upper graph shows loan repayment and the lower
graph illustrates the underlying insurance payout in relation to worsening conditions (to the left).
If the underlying risk (weather-related) worsens and crosses a certain threshold, or trigger, the
total repayment obligation of a farmer falls linearly with the difference deposited directly into the
borrowers loan account at the bank by the insurer. On the other hand, if the underlying risk is not
triggered the loan has to be repaid at the risk-contingent interest rate (which will be higher than
the market base rate). RCC is designed with an actuarially fair interest rate that is interlinked

with the underlying weather risk.

Loan amount /

Loan repayment

} Insurance premium reflected

in loan interest rate

Insurance payout

Figure 1 Illustration of Risk-Contingent Credit (RCC) mechanism

Most of the Kenyan medium and small farmers we met require operating loans for a crop
year (around 8 months to 1 year) starting in September before the beginning of the long rains and

ending in May, shortly after the end of short rains. Farmers take money for the investment on the
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crop production and generally repay the loan amount by selling their produce after the harvest.
Whether long rains, and/or short rains fail directly affects their repayment ability to the banks.
Facing these weather risks the proposed RCC is designed with a cumulative, dual trigger, weather
insurance based on the lower-partial moments of the rainfall probability distribution below a
specified rainfall coverage level. This coverage level is determined by the rainfall measured at the
15" percentile, which in probability amounts to a payout in about 15 of 100 years. The essence of
the RCC design is to insure the loan against adverse rainfall movements by directly imbedding
onto the operating loan contract weather insurance.

Losses can come from both the long rains and the short rains. We define the seasonal
rainfallsas R (t_,T,) for long rains starting around October 15 and ending around January 15, and
short rains starting around March 15 and ending around May 15. Since the rainfall distributions
differ by season and region, we treat each differently and define g; (Ri (t. ,Ti)), i =L,S as separate
probability distributions for long and short rains.

A particular problem is in defining the loss. To capture this we examine the historical
probabilities and determine a particular rainfall coverage (or trigger or strike) below which a loss
arises. This we do for both seasons. The loss is measured by Max(0,Z; —R,(t;,T;)) to capture the
rainfall deviation below the trigger level, Z,. We set this trigger level equal to that rainfall measure
recorded at the 15" percentile®. If actual rainfall is below the trigger then the rain shortfall is

Z,—R(t,T,)). Otherwise if Z, <R (t;,T,) rainfall is deemed sufficient to harvest a crop and repay

! Setting the trigger or strike level requires trade-off between coverage level and cost of insurance. We followed
Chantarat et al. (2013) and depicted the time series of cumulative sub-county level rainfall for last 35 year and
compared severe drought events reported by the communities and found that the rainfall levels at 15 percentile for
all short and long rain failures were able to trigger the reported drought events. Higher triggers of course can capture
any short and long rain failures but risk premium would become excessively high for farmers’ risk bearing ability.
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the loan. Across all possible rainfall outcomes defined by the probability distribution function

g; (Ri(t;,.T;)) the mean deviation below the trigger is defined by

E[Max(0,Z, =R (6, T]= 1 1 o

Z;-R(t,T))g (R, T))dR
To capture the economic loan loss we define a ‘tick’ by

f
~Z-Min(R(.T))’

Vi

Here, f is the loan principal (e.g. 10,000 shillings) and Min(R;(t;,T;))is the minimum
recorded rainfall recorded in our data series. The tick value is defined so that an amount y; is paid

on every mm of rainfall below Z,. If actual rainfall breaches the minimum rainfall then the loan

indemnity equals f exactly; in other words in the worst case scenario the farmer pays only the

interest on the loan.

Under these assumptions, we define the present value of loan repayment as
B=e" ( fei*T _(l//L [Max(O, Z -R (tL7TL))] tys [Max(O, Zs — R (t, ’Ts))])) )

where i”is the standard interest rate on operating loans (e.g. 12%). The amount of loan including

interest that would ordinarily be repaid at the end of the loan period is fe'" . This loan repayment
is discounted at the bank’s cost of capital, i. Across all possible long and short rain outcomes the

expected loan repayment is given by

E[B]=¢"(fe'" ~(y E[Max(0,Z, R (t,, T)]+E[Max(0,Z, ~ Ry (¢, T.)]))

In practice we have found that, while low, the correlation between rainfall in the long and

short rains is positive. We therefore draw from joint or correlated probability distribution functions



so that across all possible rainfall outcomes in both the long and short rains the expected loan

losses to the lender is given by

v [® J-zS (v (Z, Rt T))+vs (Z - R (. T)))a (R, Ry ) dR dR;

N Min(R_ (t,T;)) d Min(Rs (4;.,T;))
The value, v, is also equal to the actuarial value of the losses.
The present value of such an operating loan for a borrowed amount f and embedded

rainfall insurance can be written as,
(1) E[B]=¢T" ( fe'™ —v)
In the absence of rainfall risk the present value of the loan without the imbedded insurance is,
(2) B,=eTfel T,
Therefore, to hedge the weather risk with the embedded rainfall insurance, the interest rate charged
by the lender (i") can be calculated by equating (1) and (2);

3) e iT ( foi T —V) _ e ol ,

and solving for i";

m[peuﬂ
7 W e LI
4) T

or

In l: E I:lr//L (ZL - RL (tL’TL)?f_'_WS (ZS - RS (ts’Ts)):I +e(i**)'|'

G) Q=

T

Equation (5) provides the exact formula for calculating the interest rate on an operating loan with

payment protection against drought conditions arising from shortfalls in long and/or short rains.
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3. Geographic region, risk rationing and rainfall data

Machakos County is a semi-arid and hilly terrain area in Eastern province of Kenya. It receives
very low annual rainfall of around 700 mm per year with average rainfall in long and short rain
seasons being 315 and 266 mm, respectively (GOK 2014). Due to this semi-arid climate
agriculture is practiced smallholder farmers with maize being the main food crop. The RCC pilot
area covers eleven divisions in the Machakos County including Central Machakos, Yathui,
Yatta, Masinga, Matungulu, Kalama, Kathiani, Mwala, Kangundo, Ndithini, and Mavoko. Maize
is the dominant crop in the area with some intercropping with perennial fruits or other cash
crops. Most farms in this area are smallholder farms, with limited resources, and little to no
access to credit. It is universally acknowledged by farmers that the primary risk faced are failures
in the long and/or short rains. While rainfall is variable in the long and short rain periods
(October 15" — January 15", and March 15" -May 15) the infrequent failure of one or the other,
and sometimes both rainfalls causes great hardship, and almost certain default on loans if credit

were provided.
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Machakos

Figure 2 Geographical coverage area
From the project baseline household survey we found that almost half of the sample household
are credit rationed. Interestingly, 42% of the household are risk-rationed who voluntarily
withdraw themselves from the credit market. RCC mechanism is very relevant for this
population because RCC tool can bring these population into the credit market by acting as a

substitutes for collateral.

Credit rationing status of study household

B Unconstrained
B Quantity rationed

M Risk rationed
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Figure 3 Credit rationing status of study household (Source: project household survey)

We analyze Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS)
supported by National Aeronautics and Space Administration (NASA) and National Oceanic and
Atmospheric Administration (NOAA). 5km dekadal (10-daily) CHIRPS rainfall (satellite
validated with station data) data from 1981 to present are extracted from

http://chg.geoqg.ucsb.edu/data/chirps/. CHIRPS data are extracted every 10 days, i.e., 3 values per

month, for each pixel that falls into the contract coverage sub-county. These values are
accumulated over long rains (Oct 15-Jan 15) and short rains (Mar 15-May 15) to represent
cumulative rainfall conditions of a sub-county over a season. Hence, this measure is the best
practical indicator of a drought situation in marginal areas. Loan period extends from September
12017 to May 15 2018 (8 months). In discussions with farmers the rare events occur about 1 in
10 years, with hardship years about 15 in every 100 years. There is no discernable pattern to the
failure of the rains. Figure 1 illustrates the rainfall pattern for Central Machakos between 1981
and 2016 for long and short rains.

We estimate using Monte Carlo methods that rainfall will fall below 114.59mm and
94.14 mm for long and short rains in 15 of every 100 years (15" percentile) as marked.
Breaching the 114.59mm mark occurred in about 5 of 34 years for long years or about 14.7% of
years, while it breached the 94.14 mm mark for short rains about 6 times in the 35 year period
for about 17% of years.

We see no discernable patterns in the magnitudes of rainfall year-to-year. Simple
regressions marked in Figure 1 show that there is no statistical relationship between rainfall and

years for both long and short rain. The regressions are;
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LR = 201.94-0.3903Year, R* = 0.0027
SR =164.17 —0.8444Year, R* =0.0317

Both regressions suggest a decrease in rainfall over time, but these are not meaningful in

a statistical sense. The low R?values indicate that changes across time offers no explanation for

rainfall patterns.

Central Machakos Rainfall Summary, Long and Short Rains, 1981-2016

LR = -0.3903Year + 201.94
& R?=0.0027
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Figure 4 Central Machakos Rainfall Summary, Long and Short Rains, 1981-2016

Further, we compute in a following section the correlations between long and short rains
and find the correlations to be weak. In other words, if rainfall is low in the long rain it is not
jointly probable that rainfalls will also be lower in the short rains. On the other hand, correlation
assessment shows that the rainfall totals across all 11 regions are highly correlated within the

long rain period and within the short rain period, but not between long and short rains.

13



Statistical independence in year-over-year cumulative rainfall measures supports our use
of Monte Carlo simulation methods to measure weather risks, establish and compute the

indemnity structure, and compute interest rates on RCC. Using the distribution fitting tool in

@RISK (www.palisade.com) the best-fit probability distribution for virtually all regions across
both long and short rains is the PERT distribution. The PERT distribution is a 3-parameter
distribution fit to the lowest rainfall, most likely rainfall, and highest rainfall recorded. It is
appealing because it is bounded by the historical record and does not drift off to zero or infinite
in the tails as other distributions do. This important property ensures that probabilities below a
target are not over-stated and therefore do not introduce bias into indemnity structures and RCC
interest rate measures. An example of PERT distribution for long and short rains at Central

Machako is provided in Figure 2.

G PERT Rainfall Distribution, R208 Long Rain and Short Rain

0.007 {
0.006 1

0.005 4

0.004 1
PERT Mortte Carlo /
= SR8

0.003 {

0.002 {

75%
0.001 4 W 219.66

0.000
o

S
100
150
200
250
300 4
350
400
450
500
550

Figure 5 PERT Distribution of Long and Short Rains, Central Machakos, 1981-2016
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4. Empirical rating of RCC

This section provides the rating methodology as applied to the rating model in the previous
section. It describes a) the selection of rainfall trigger or strike, b) the calculation of the tick
value, ¢) the computation of indemnities, and d) the imputation of RCC interest rates to be
charged on the loans. On this latter point we explore two approaches to interest rate
determination. The first is the interest rate to be charged if the insurer is willing to be paid the
premium at the time the loan is repaid (ex post) and the second is if the insurer requires receipt of

insurance premiums up front (ex ante).

4.1 Determining Rainfall Triggers

The first step is to determine the rainfall triggers. As mentioned we use Monte Carlo simulation
techniques across correlated PERT distributions uniquely defined for each region in both long
and short rain seasons. Upon discussions with farmers and extension experts we are
recommending that rainfall triggers be based on the rainfall recorded at the 15" percentile. This
suggests that farmers would receive payouts from either the long rains or short rains (and
possibly both) on average, about once in every 6.7 years. Because of differences in location and
altitude, the records shows that minimum, maximum, and most likely rainfalls differ across
regions. To avoid excessive basis risk in rainfall measurement we have determined it best to
provide rainfall coverage at the regional or district level, rather than the Machakos region as a
whole. Thus we have 22 different rainfall triggers each determined by 22 uniquely defined PERT

distributions, covering each of 11 districts, across the 2 seasons.

Figure 6 shows the simulation output for long rains in Central Machakos showing minimum

recorded rainfall of 83.2mm, and trigger rainfall of 114.6mm imputed from 15th percentile of
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PERT distribution. In this case, the trigger is 114.6 mm, and RCC indemnities would not be
triggered unless cumulated rainfall between October 15 and January 15™ fell below this level, i.e.

Max(0,Z; —R.(t;,T,)) = Max(0,114.6 — R(10/15,01/15)) . For example if the actual rainfall was

only 100 mm then the rainfall deficit on which the loan indemnity would be paid is 14.6mm.

However, if the actual rainfall was 150 mm, then no indemnity would be paid.

PERT Monte Carlo / Central Machakos

83.2 1146
0.0 | 00% SN =0

0.005

0.004

PERT Monte Cado |
B ccoral vachakos
Huvmam 83,36
Haamum 1282
Hean 102.73
Mode 120,64
Hedian e
S Dev e
Swewmess 880

0.002

0.001

0.000

Figure 6 Simulation Output for Long Rains in Central Machakos showing Minimum recorded rainfall of 83.2mm, and Trigger
Rainfall of 114.6mm Imputed from 15th Percentile of PERT Distribution

Figure 7 shows the suggested rainfall triggers for long and short rains and for each of the 11
target regions. All triggers are computed at the 15" percentile, and all are drawn from jointly

distributed PERT distributions (i.e. correlated across space and time).
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Coverage Levels at 15% (Percentile), Cumulative mm Rain, Long Rain and Short Rain
180.00

160,00

140.00

120,00

100,00

80,00

40,00

0.00

Central . S I ; o Athian il y o ’
Machakos Yathwi Yama Maszinga Matungulu Kalama Kathiani Mwala Kangundo MNdithini Mavoko
M Long Rain 11458 13659 14154 15696 137.24 129564 11269 12542 10561 101.70 11418
W Short Rain 94.15 B9.47 109.47 13585 12033 9825 89.40 96.51 FE.04 109.89 10287

Figure 7 Coverage Levels at 15% (Percentile), Cumulative mm Rain, Long Rain and Short Rain

4.2 Determining the Tick Value

The conversion of rainfall shortfalls in mm to Kenyan Shillings is done using a ‘tick’ conversion.
We assume a 10,000 Ksh loan for convenience. This is scalable in the sense that a 50,000 Ksh
loan would pay 5-times the indemnity in nominal terms, but ultimately the interest rate charged
on RCC loans is independent of loan amount.

The tick conversion is computed using

- f _ 10,000Ksh
Z,—Min(R(t,,T;)) 114.6mm—83.2mm

v, =318.47 Ksh/mm.

We use the minimum recorded rainfall values from the history available to us. Beyond the pilot

program it may be determined that loan coverage should occur at a higher rainfall amount. For
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now, however, our design is to ensure that if rainfall is no more than 83.2mm then the full loan

principal is recovered by the insurance policy.

Although we recommend setting triggers at the 15" percentile as discussed above, there
may be occasion where a product might be reduced to the 10" percentile with a lower frequency
payout, or at the 20" percentile with a higher frequency payout.

Figure 8 illustrates the average triggers and tick across all 11 regions for different
percentile selection criteria. The rainfall triggers are recorded on the right axis and show the
increase in trigger corresponding to increased percentile. The left axis shows the tick values. The
tick values are decreasing but at a decreasing rate. In all cases they are anchored to the minimal
rainfall recorded. Regardless of coverage, and corresponding tick values, the maximum

indemnity cannot exceed the base 10,000 Ksh loan.

Relationship between Coverage Level (mm) and Tick (sh/mm) for 10,000
Sh loan. Average of 11 Regions, Long and Short Rain
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Figure 8 Relationship between Coverage Level (mm) and Tick (sh/mm) for 10,000 Sh loan. Average of 11 Regions, Long and
Short Rain

4.3 Calculation of Indemnities and Insurance Premiums

The indemnity is calculated by multiplying the tick, by the rainfall shortfall. For example, if the
actual rainfall in Central Machakos is 100 mm, the shortfall is 14.6mm. Each mm receives
318.47 shillings so that the indemnity paid on a 10,000 Ksh loan would be 4,649.66 Ksh. The
farmer would have to pay only 5,350.34 Ksh plus interest. If measured rainfall is 150mm there
would be no payout, but if rainfall is 83.2mm or lower then the rainfall shortfall of (114.6 — 83.2)
31.4 mm times the tick of 318.47 exactly equals 10,000 Ksh.

These indemnities are calculated for both the long and short rains. While it may be
possible to offer insurance only for long rain or only for short rain, our indemnity structure for
this pilot program is based on payments from either or both. In either case the maximum

indemnity is 10,000 Ksh.
| = Min(1oooo, v, [Max(0,Z, —R_(t_,T.))]+w, [Max(0,Z; — Ry (ts,Ts))]) .

Figure 9 shows the average of the expected indemnities across all 11 regions, by percentile. At

the 15" percentile
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Average Regional Indemnity by Coverage (Percentile) for Long and Short Rain
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Figure 9 Average Regional Indemnities by Coverage Level

On average the 15" percentile indemnities are 674.21 Ksh for long rains, 571.37 Ksh for short
rains and 1,243.45 for combined long and short rains, including years in which indemnities are
collected on both. In general these suggest that across years indemnities can be expected to cover
6.74%, 5.71%, and 12.43% of loan principle meaning on average that farmers would expect to
pay about 93.25%, 94.29%, and 87.57% of loan principal plus interest. In comparison if the 40"
percentile was selected, with a payment about 2 of every 5 years, the insurer could expect to pay
in indemnities about 35.28% of loan principal, while farmers would expect to pay on average
about 64.72% of loan principal. Of course, with high frequency events, insurers would anticipate
higher premiums and farmers would expect to pay much higher risk premiums on their RCC loan

interest rates.
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Insurance Loading
We use a 25% loading, ¢ =0.25, on expected indemnities to cover administrative, underwriting,

and settlement costs. The load-adjusted indemnity is given by

v=E[ Min(10000, y, [Max(0,Z, - R, (t,,T,))](1+5)+y; [Max(0, Zs - Ry (t,, T.)] (1+5))]

4.4 Imputing RCC Interest Rates

There are two approaches to computing RCC interest rates. The first is what we refer to as ex-
post pricing which is based on the insurer getting paid for the premium at the time that the loan is
repaid. The second, is ex ante in which the insurer is paid in advance. In the ex ante approach the

insurer is paid the premium up front and the premium is added to the base loan amount.

Interest Rate on Ex Post Risk Contingent Credit

As previously derived the formula used to impute the interest rate is given by

In E[V/L (ZL_RL(tL’TL))(1+5)+V/S (Zs _Rs(ts’Ts)(1+§)):|+e(i“)T

T

Based on the average values for all 11 regions use of the formula can be illustrated following
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w, =309.77Ksh

ws = 248.31Ksh

§=0.25

f =10,000Ksh

i”=12%

T =8months=.667 years

E[w, (Z, -R.(t,,T))](1+5)=309.77(125.12— R, (t_,T,))(1+.25) = 674.22Ksh

E[ws(Zs —Rs(t,.T,)) |(1+5) =248.31(102.26 - R, (t,,T,) ) (1+.25) = 571.37

In |:11 24353 + e0.12><0.667:|

I = 10,000 =32.14%
0.667

Interest Rate on Ex Ante Risk Contingent Credit
With ex ante risk contingent credit the insurer is paid the insurance premium up front. This
premium, measured in terms of the expected indemnity is added to the base loan. The formula

for computing ex ante interest rates is given by

In{(f +1 )eiﬂT }
.k f

1 =
T

Using the same values as above,

In |:(10, 000+1, 24353) @0-12x0.667

. 10,000 }
I = =33.67%
0.667

As expected the interest rate on the ex ante model is slightly higher than the ex post model
because of the additional compounding of interest on the up-front indemnity.

Figures 10 and 11 summarize the final simulated results for interest rates on RCC. Figure

7 summarizes ex-post results, while Figure 8 summarizes ex ante results. The ex ante results
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which assumes that insurance premiums are posted at the time the loan is made and added to
loan principal are about 1.5% points higher.

The three bars in Figures 7 and 8 represent three separate models; Only long rains are
insured, only short rains are insured and both long and short rains are insured.

Our interest is in the combined model. It is self-defeating to insure only one of the
rainfalls, since failure in the other would only lead to increased financial risk. The interest rates
for the combined insurance are naturally higher because it is possible that indemnities can be
received from both sources. Although correlations between long and short rains are weak, they
still have some effect on joint outcomes.

Because of the nature of insurance markets it is likely that the insurer would need to be
paid upfront so we will only focus on the ex ante model. Interest rates are remarkably consistent
across regions, with only slight variations due to different weather risks. The interest rates range
from 32.51% in Mavoko to 35.11% in Yatta. Recall that the base interest rates for basic loans is
12% and that these interest rates include a 25% loading factor. Beyond the loading factor they

are actuarially sound.
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Figure 10 Risk Contingent Credit Interest Rates (ex post) by Machakos District
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Risk Contingent Credit Interest Rates (ex ante) by Machakos District
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Figure 11 Risk Contingent Credit Interest Rates (ex ante) by Machakos District

4.5 Indemnities
Covariate risks are important considerations for any insurance product. If the failure in rains is
significant in one district it is highly likely that the rains have failed also in other districts. This
section provides an overview of the frequency of payments and number of regions likely to
receive payments. This does not speak to the magnitude of payments which, capped at 10,000
Ksh, are discussed separately.

The frequency of payouts, determined from Monte Carlo simulations are summarized in
Table 1. For long rains the probability that no district will receive an indemnity is 75.16%, for
short rains 72.41% and there is a 55.9% chance that neither long nor short rains will receive an
indemnity. This latter probability is equivalent to saying that at least one district will receive an

indemnity in either long or short rains 40.1% of the time, or at least once every 4 years.
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Table 1 Frequency of Regions Receiving Indemnity in a Season

Number Long Short Long
of Rain Rain and/or
Districts Short
Rain
0 75.16% 72.41% 55.90%
1 3.86% 5.02% 6.07%
2 2.27% 3.19% 4.14%
3 1.74% 2.11% 2.83%
4 1.31% 1.65% 2.40%
5 1.11% 1.34% 1.97%
6 1.03% 1.32% 2.02%
7 1.31% 1.39% 2.33%
8 1.33% 1.67% 2.63%
9 1.53% 2.03% 3.09%
10 2.21% 2.10% 3.85%
11 7.17% 5.80% 12.81%

That drought conditions are so severe that all 11 districts receive an indemnity in one year is rare.
There is only a 7.17% chance that all 11 districts would receive an indemnity in long rains, 5.8%
chance for short rains, and a 12.81% chance that all districts would receive indemnities in either
long or short rains. In other words, in about 13 of every 100 years it can be expected that the
insurer will pay indemnities in all districts for either the long or short rains.

Figure 12 illustrates the conditional probabilities by Baye’s rule on the frequency of indemnities
given that at least 1 district receives an indemnity. It is U-shaped as expected because of the high
degree of correlation amongst rainfalls. At the lower end the probability that only 1 district
receives a payment in either long and short rains is 13.76%. A season in which only 1 or a few
districts receive indemnities comes about by chance. This will arise as a result of uncorrelated

weather patterns or weather patterns that are not wide-spread across the regions. On the other
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hand, Figure 12 shows the significant of covariate risks. Given that at least one district receives
an indemnity there is a 28.86% chance that all 11 districts will receive a long rain indemnity; a
21.02% chance that all districts will receive a short rain indemnity, and a 29.03% chance that all

11 districts will receive an indemnity in either the long rain or short rain.

Conditional Frequency of Indemnity: Number of Regions Receiving Indemnity>0
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1 2 3 4 5 6 7 8 9 10
15.52% 9.14% 6.98% 5.27% 4.45% 41 5.25% 33 16
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®long Rain ®WShortRain  ®Long and/or Short Rain

Figure 12 Conditional Probabilities of Frequency of Indemnities across Districts

Table 2 summarizes the joint distribution between number of districts receiving indemnity in
long rains and receiving the stated number also receiving indemnities in the short rains. There is
a 55.89% chance that no district in either long rain or short rain receives an indemnity. If there is
no indemnity in the long rain there is a 3.515% chance that 1 district and 3.93% chance that all
11 districts will receive an indemnity in the short rains. Likewise there is a 4.595% chance that
all 11 districts will receive an indemnity in the long rains but 0 districts in the short rains. At the

lower right of Table 2, the likelihood that a total catastrophic failure of both long and short rains
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will result in indemnities for all 11 districts in both seasons is 0.62% or about 6 in every 1,000

years.

Table 2 Joint Distribution of Number of Districts Receiving Indemnity between Long and Short Rains

Long Rains
Short 0 1 2 3 4 5 6 7 8 9 10 11
Rain

0 | 55.895 2.505 1.555 1.065 0.890 0.680  0.745 0.955 0.960 1.005 1.555 4.595

1 3.515 0.235 0.140  0.115 0.075 0.105 0.090 0.060 0.090 0.080 0.085 0.425

2 2.245 0.145 0.085 0.070  0.055 0.055 0.030 0.040 0.040 0.070 0.070 0.285

3 1.465 0.135 0.040  0.045 0.045 0.015 0.000 0.015 0.030 0.035 0.045 0.235

4 1.105 0.080 0.060 0.050 0.040 0.025 0.010 0.030 0.020 0.035 0.045 0.150

5] 0.965 0.045 0.020 0.035 0.005 0.025 0.025 0.005 0.000 0.030 0.045 0.135

6 | 0.935 0.045 0.050  0.025 0.030  0.025 0.010 0.010 0.035 0.020  0.025 0.110

7 | 0.975 0.090 0.030 0.030 0.015 0.005 0.015 0.015 0.020  0.025 0.060 0.110

8 1.200 0.075 0.025 0.060  0.025 0.020 0.010 0.025 0.015 0.040  0.035 0.135

9 1.515 0.090 0.020 0.035 0.020  0.025 0.015 0.025 0.025 0.040  0.045 0.175
10 1.415 0.120  0.065 0.055 0.035 0.015 0.025 0.030 0.020 0.055 0.065 0.195
11 3930 0.290 0.180 0.150 0.075 0.110  0.055 0.095 0.070  0.095 0.130 0.620

Indemnity Payouts

Core to the successful application of Risk Contingent Credit is the effective transfer of risk from

lenders and borrowers to an insurer. Figure 13 shows the simulated loan repayment and

indemnity transfer structure of RCC for Central Machakos with long rain coverage at the 15"

percentile. The top panel shows the loan repayment schedule for the farmer-borrower with

rainfall on the x axis and loan repayment at the Y-axis. The trigger for insurance indemnities is

114.6 mm. Below this trigger the farmer’s loan repayment is decreased in proportion to the

rainfall deficit. If the rainfall shortfall is substantially high there is a chance that the farmer will

not have to repay any principal at all, paying only the interest on the loan.
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The lower panel of Figure 13 shows the indemnity transfer to the lender. The money is
deposited from the insurer into the borrower’s account at the bank. The loan transfer is

isomorphic to the loan repayment schedule.
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Loan Repayment Schedule by Farmer with Long Rain Trigger of 114.6mm (15%), Central Machakos

1146
12,000
11,000 IJ Cg’.
[ g
|
10,000 /
[
9,000 |
!
8,000 f
Paid by Farmer (Net ofloan ndemity) / £R208 vs PERT Monte Carlo / LR208
5 7,000 ;
£ | M
H / Kivean 93727
S 6,000 / X St Dev .08
B | ¥ Mean 1099989
°
] | st e 15006
S {
5,000 /
!
4,000 |
3,000 |
|
2,000 !
13.8%
1,000
8 8 8 g 8 g 8 8 8 8 8
S g 8 & 8 8 g 2 8 B
Accumulated Long Rain, mm
Indemnity paid by Insurer for RCC Long Rain Coverage at 114.6 mm (15%), Central Machakos
1146
10,000
9,000 1
1
8,000 |I|I
\
7,000 i
6,000 1
2 ||
£ 5000 Kwean  arm
2 X st Dev 77083
° ¥ Mean 668.09
g som | Vouber o
2 1
£ \
g
g 300 i
2,000 \
1,000 1
L 2
] \ s
8 8 3 g 5 8 3 8 2
a ] & 8 8 S 2 8 B

50

100

Cumulative Rainfall (mm)

Figure 13 Simulated Loan Repayment Schedules and Indemnity Transfer
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From the banker’s point of view the combined payment from the indemnity schedule plus the
repayment schedule, satisfies the loan principal repayment. Figure 14 shows the iso-repayment
line to the lender. The iso-repayment line shows the sources of loan repayment to lender from
borrower on the Y-axis and the insurer on the X-axis. In this example, the loan repayment
including interest is 12,376 Ksh. The vertical and horizontal lines show, e.g., that if the
indemnity is 4,000 Ksh paid by the insurer, borrower pays 8,376. This dollar-for-dollar
substitution assures that all combinations along the sloped line = 12,376. This, of course, is the
targeted and desired result: With assured repayment against drought risks the lender’s exposure
to repayment risk is virtually eliminated, which should increase the supply of credit to farmers,

while the reduction in business and financial risks facing the farmer should encourage loan

demand.
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Figure 14 Iso-Repayment Line with Risk-Contingent Credit

Distribution of Indemnities
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This section reviews the relationships between RCC indemnities and loan repayment. We use as
a base a 10,000 Ksh loan with indemnities arising from either long rains, short rains, or both. The
numbers reported are the averages across all 11 districts. The mean payments are going to be
sensitive to the trigger levels elected. Although we are recommending coverage at the 15"
percentile, Figure 15 shows the relationship between mean indemnity, mean repayment, and total
loan amount with increasing coverage to the 40™ percentile. The loan amounts (principal plus

interest) increase because of the increased interest rates with higher coverage.

Comparison of Average Indemnity, Average Loan Repayment and Total Loan (P&I) across 11
Regions,by Coverage (Percentile), Long Rain + Short Rain Combined
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W Average Loan (P&I) Gross, LR+SR 11,337.34 11,857.05 12,389.84 12,935.61 13,494.95 14,068.60 14,657.64 15,263.62
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Figure 15 Comparison of average indemnity

At the lowest coverage level (5™ percentile) the expected indemnity would be 403.19 Ksh. The
amount to be repaid is 11,337.34 Ksh so the expected amount that the farmer woul repay is
10,934.15 Ksh. At the 15" percentile, the insurer can expect to pay across all 11 districts about
1,234.45 Ksh/year on a loan of 12,289.84 Ksh. The farmer-borrower in the region will pay on

average 11,146.40 Ksh. As the coverage levels increase to 40% the mean indemnities increase to
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3,527 Ksh on a loan repayment amount of 15,263.62 Ksh, of which the average repayment by the
farmer would be 11,735.72 Ksh.

5. Conclusions and implementation challenges

This paper has described the design and rating of risk-contingent credit that has been
commercially piloted recently in Machakos County in Kenya. Looking at weather related
agricultural risks and limited access to credit for Kenyan farmers this paper designs a novel
insurance linked credit model. We develop a rainfall linked risk-contingent credit that transfers
drought risk related perils from borrower to lender via insurance mechanism that provide a
balance between business and credit risks for smallholder farmers. We describe the methodology
used to design and rating of a risk-contingent structured operating agricultural credit instrument
using CHIRPS rainfall data from 1981-2016 in Kenya. We illustrate the use of Monte Carlo
methods to risk modelling that can be integrated within general insurance and credit rating
framework. The step-by-step design could provide guidance to practitioners and policy makers
about the pricing and bundling of insurance and credit together. The methodology can be easily
replicated to other areas as similar high quality biophysical data would be available easily.

This RCC product has many innovative features: 1) It appears to be the first to develop
scientific bundling (bundling itself is not new, we developed scientific bundling technique in
financial engineering framework) of rainfall based index insurance and agricultural term loan
through actuarially fair pricing, 2) Because the insurance component of RCC substitutes for
collateral, it is more financially inclusive than conventional credit products, 3) It minimizes the
probability of default on loans by producers, improves their risk bearing abilities, and bridges
trust in the lender-borrower relationship, 4) The removal of critical liquidity constraints,
combined with the inter-temporal transfer of climate risk, an RCC mechanism can achieve better
targeting of poorer farmers, provide climate resilience, and eliminate climate-based poverty
traps, 5) Finally, it also eliminates the drawbacks of standalone index insurance products by not
requiring the farmers to pay a premium upfront.

Risk-Contingent Credit is a financial innovation that links loan repayment to some
underlying risk condition. In this paper we design a dual-trigger RCC linked to failures of either
long or short rains or both. Our target is grain and cash crop farmers from 11 Sub-Counties in
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Machakos County of Kenya. It is designed to balance the business and financial risks between
borrower and lender when long and or short rains fail.

1. RCC is not intended to cover common risks. We recommend that coverage be set at the
15" percentile; that is, at the district level rainfall triggers are established so that an
indemnity would be paid on average about 15 in every 100 years.

2. Across all 11 counties we compute an average RCC interest rate of 33.67%. This includes
a 25% load on the actuarially fair premium. To account for unmeasurable risks, we feel
that an annual interest rate of 36% or about 24% above the base rate of 12%/year would
be reasonable. A 36% annual interest rate is about the same as offered by NGO micro-
credit organizations. In addition, many farmers invest in a ROSCA in which they pay
100% per year. Nonetheless, financial outreach will be required to explain RCC to
borrowers. We have conducted games and focus groups in Marsabit and Machakos, as
well as dairy regions and all evidence points to a strong interest in RCC. This suggests
that the demand for credit is quite inelastic, suggesting that higher interest rates due to a
measurable and defined risk premium would not discourage farmers from borrowing at a
3% per month rate.

3. We recommend that loan terms not exceed 8 months for similar areas. Loans made in
September leading up to the long rains in October should be repaid by the end of May,
following the short rains.

There are a range of implementation challenges that are subject to future research. First, since
there might be local variation on rainfall realization and other factors that may lead to different
production outcome, RCC linked to only rainfall may be subject to basis risk. We plan on
developing a composite index using rainfall, vegetation and soil moisture data along with fitting
a response function with maize yield data in the region to minimize design related basis risk.
Second, our experience from the first round of RCC loan disbursement in Machakos has shown
the need of a carefully designed financial education and extension effort to building awareness
and making an informed decision for the farmers. Being an insurance bundled credit product
RCC is complex and difficult to understand, particularly for populations with low level of
literacy. In this regards we developed a participatory pictorial game to communicate RCC to
farmers (Shee at al. 2015) which is not only useful for understanding the product but shows

promise to generating demand for the RCC product. Finally, commercial financial institutions
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should be dedicated and see RCC as a new tool to expand their market and hence should build
capacity inside the institution. Financial institutions should explore various insurance and
reinsurance options depending on the number of target clients and risk profile in the area. The
RCC is currently being implemented in Machakos County in Kenya by Equity Bank Kenya Ltd.
with APA Insurance Ltd. as the underwriter. Notwithstanding the challenges, the RCC pilot has

shown a considerable promise within the smallholder farming communities.
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