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Abstract 
 
Weather related agricultural risks and limited access to credit are serious impediments to 
agricultural productivity and growth in developing countries. This paper describes a novel 
insurance linked credit model piloted in Kenya, where insurance markets are effectively absent 
and farmers do not borrow because of the risk of losing their collateral. One of the challenges in 
deigning bundled credit products, in the absence of traded securities, is the actuarial pricing and 
risk rating of the insurance and the loan product. We develop a rainfall linked risk-contingent 
credit that transfers drought risk related perils from borrower to lender via insurance mechanism 
that provide a balance between business and credit risks for smallholder farmers. We describe 
the methodology used to design and rating of a risk-contingent structured operating agricultural 
credit instrument using CHIRPS rainfall data from 1981-2016 in Kenya. We illustrate the use of 
Monte Carlo methods to risk modelling that can be integrated within general insurance and credit 
rating framework. The innovative design and methodology presented in this paper are as 
important as the product delivery mechanism and will be of interest to specialists in development 
economics and agricultural finance. 
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1. Introduction 

Uninsured risks are a major cause of low agricultural productivity in Sub-Saharan Africa. 

The main uncertainty in Kenya’s agricultural economy is drought and other adverse weather 

conditions that severely affect agricultural livelihoods.  Moreover, lack of capital and perceived 

risks limit farmers’ ability to purchase agricultural inputs and access credit, contributing to low 

agricultural productivity. Lenders in Kenyan credit market limit the supply of credit to borrowers 

because of the issue of asymmetric information caused due to uninsured risk. Kenyan farmers 

can borrow only under relatively high collateral where farmers are not willing to expose to the 

high risk of collateral loss. Borrowers voluntarily withdraw from the credit market because of 

increased collateral requirement by the lenders as a result of uninsured risks. Ultimately, lack of 

access to credit force farmers to adopt low-risk low-return activities and considered main driver 

of persistent poverty (Barrett et al. 2006; Santos and Barrett 2006). To better understand 

household’s credit rationing status, we conducted a qualitative survey and elicited the reasons for 

farmers being credit constrained.  Evidence from the survey suggests that the fear of losing 

collateral if one cannot repay the loan is the primary deterrent to not borrowing from credit 

market. This result is in line with recent studies in microfinance which showed limited demand 

for microcredit at market rate (Johnston and Morduch 2008; Banerjee et al. 2015). Since the fear 

of losing collateral comes from uninsured risk it is important to minimize the risk of credit 

default to make the credit market work of Kenya.    

With 80% of the population employed in agriculture and 22% of the country’s overall 

GDP derived from agriculture, enhancing agricultural productivity is critical for Kenya. 

According to Government of Kenya, four consecutive years (2008-2011) of drought amounted to 

US $12.1 billion in losses, including losses in assets and from disruptions in the economy flow 
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across all sectors. Such severe shocks cannot be financed by the government and donor 

community alone. Some market-based innovative risk management solutions are necessary to 

manage agricultural weather risks and to provide access to credit to the farmers. We develop a 

linked financial product in the form of Risk-Contingent Credit (RCC) that embeds within its 

structure an insurance protection which, when triggered, offsets loan payments due to the lender 

providing a risk-efficient balance between business and financial risks. The underlying risk is 

captured through a satellite-derived rainfall data validated with weather station data based on 

state-of-the-art remote sensors. The main objective of RCC is to provide a financial tool that 

transfers drought risk-related perils from borrower to the lender via insurance and reinsurance 

markets. The covariate nature of drought risk reduces lenders’ willingness to supply credit into 

the agricultural market place, while inaccessible insurance markets to protect against covariate 

risks, discourages farmers from borrowing in those markets that credit is accessible. In a single 

financial product RCC reduces credit rationing and risk rationing, reversing these effects. With 

RCC, a risk-transfer agreement by an insurance intermediary ensures that, when triggered by a 

specific drought event, insurance indemnities are transferred directly to the farmer-borrower’s 

loan account at the bank on behalf of the borrower.  

Because the insurance component of RCC substitutes for collateral, it is more financially 

inclusive than conventional credit products where a collateral is usually needed. Thus RCC can 

bring risk-rationed farmers (who tend not to borrow or borrow less than optimal for fear of losing 

collateral and falling into a credit-driven poverty trap) into the credit market. In RCC the 

indemnity from the insurance is applied to the underlying debt obligation or debt service, thereby 

reducing the probability of default on loans by producers, improving risk bearing ability and trust 

which can encourage high uptake of RCC. It also eliminates the drawbacks of standalone index 
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insurance products by not requiring the farmers to pay premium upfront. As early as Bester 

(1985) it was shown that there could be a tradeoff between higher interest rate and lower 

collateral and that no credit rationing would occur if lenders offered different interest rates and 

collateral requirements. RCC avoids the stringent collateral requirement by determining the 

interest rates (risk premium) that breakeven for the lender linking repayments with underlying 

risk by embedding weather insurance. RCC thus offers a market based solution that would 

provide larger and long term credit to cater to the investment need for agriculture in Kenya. 

There has in recent years been great interest in the design, piloting, and scaling up of 

bundled or linked-credit products. In the fall of 2017 our group piloted RCC for the first time in 

Machakos County in Kenya, with loan indemnities linked to long and short rains. The 

implementation design was a randomized control experiment including no-loan, traditional loan, 

and Risk Contingent credit, with a sub-experiment, also randomized, on RCC premium 

subsidization. Uptake of offered traditional and RCC loans were about 40%. In time, our group 

will evaluate the impact on agricultural productivity, household income, consumption 

smoothing, savings and investment, household nutrition and so on using traditional credit vs 

RCC against the no-credit counterfactual. 

One of the challenges in deigning bundled credit products, in the absence of traded 

securities, is the actuarial pricing and risk rating of the insurance and the loan product. Since few 

attempts have been made on delivering RCC to farm households, it is important for agricultural 

economists, insurance specialists, finance specialists and integrators to understand the financial 

engineering employed in the design and rating of bundled insurance. In this paper we present the 

details of our rating methodology as actually employed in the field with banking and insurance 

partners. It is our belief that the innovative designs and methods are as important as the product 
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delivery mechanism itself, and with rising interest in bundled credit products like RCC this paper 

will be of interest to specialists in development economics, agricultural finance, development 

finance, agricultural insurance and agricultural micro insurance. The paper is structured as 

follows. Section 2 develops the risk-contingent credit model. Section 3 describes the geographic 

region and summarizes the data on which the model is based. Section 4 presents the empirical 

structure and rate making of RCC. Section 5 provides concluding comments and implementation 

challenges.   

 

2. Risk-contingent credit model 

Unlike traditional credit products, RCC structure facilitates risk management by layering 

hedging protection into loan payment obligations. The payout from the insurance is applied to 

the underlying debt obligation or debt service, thereby reducing the probability of default on 

loans by producers, improving risk bearing ability, enhancing the supply of credit, and 

facilitating investment and development.  An emerging literature on RCC includes Shee and 

Turvey (2012) who investigated an imbedded price option for pulse crops in India; Shee et al. 

(2015) who conducted a field based feasibility of RCC with Kenyan pastoralists and dairy 

farmers; Carter (2011) who examined the impacts of RCC on financial market deepening and its 

impacts on farm households; Giné and Yang (2009) who investigated adoption of an operating 

loan in Malawi in which the payoff was determined by rainfall; Karlan et al. (2011) who 

investigate the adoption of price-contingent credit in Ghana; and Casaburi and Willis (2015) who 

implemented insurance linked contract farming found 71.6% take-up rate.  These papers 

investigate linking risk to loans directly made to farmers or agribusiness. Miranda and Gonzalez-
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Vega (2011) and Collier et al. (2011) provide conceptual frameworks in which financial 

institutions themselves link their loan portfolios to El Nino risks in Central America.  

Below we provide a brief description of RCC and how it can protect farmers from 

drought related production risk. In Figure 1 the upper graph shows loan repayment and the lower 

graph illustrates the underlying insurance payout in relation to worsening conditions (to the left). 

If the underlying risk (weather-related) worsens and crosses a certain threshold, or trigger, the 

total repayment obligation of a farmer falls linearly with the difference deposited directly into the 

borrowers loan account at the bank by the insurer. On the other hand, if the underlying risk is not 

triggered the loan has to be repaid at the risk-contingent interest rate (which will be higher than 

the market base rate). RCC is designed with an actuarially fair interest rate that is interlinked 

with the underlying weather risk. 

 

 

 

 

Most of the Kenyan medium and small farmers we met require operating loans for a crop 

year (around 8 months to 1 year) starting in September before the beginning of the long rains and 

ending in May, shortly after the end of short rains. Farmers take money for the investment on the 

Figure 1 Illustration of Risk-Contingent Credit (RCC) mechanism 
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crop production and generally repay the loan amount by selling their produce after the harvest. 

Whether long rains, and/or short rains fail directly affects their repayment ability to the banks. 

Facing these weather risks the proposed RCC is designed with a cumulative, dual trigger, weather 

insurance based on the lower-partial moments of the rainfall probability distribution below a 

specified rainfall coverage level. This coverage level is determined by the rainfall measured at the 

15th percentile, which in probability amounts to a payout in about 15 of 100 years. The essence of 

the RCC design is to insure the loan against adverse rainfall movements by directly imbedding 

onto the operating loan contract weather insurance.  

Losses can come from both the long rains and the short rains. We define the seasonal 

rainfalls as ( , )L L LR t T  for long rains starting around October 15 and ending around January 15, and 

short rains starting around March 15 and ending around May 15. Since the rainfall distributions 

differ by season and region, we treat each differently and define ( )( , )i i i ig R t T , ,i L S= as separate 

probability distributions for long and short rains.  

A particular problem is in defining the loss.  To capture this we examine the historical 

probabilities and determine a particular rainfall coverage (or trigger or strike) below which a loss 

arises. This we do for both seasons. The loss is measured by (0, ( , ))i i i iMax Z R t T−  to capture the 

rainfall deviation below the trigger level, iZ . We set this trigger level equal to that rainfall measure 

recorded at the 15th percentile1. If actual rainfall is below the trigger then the rain shortfall is 

( , ))i i i iZ R t T− . Otherwise if ( , )i i i iZ R t T≤  rainfall is deemed sufficient to harvest a crop and repay 

                                                 
1 Setting the trigger or strike level requires trade-off between coverage level and cost of insurance. We followed 
Chantarat et al. (2013) and depicted the time series of cumulative sub-county level rainfall for last 35 year and 
compared severe drought events reported by the communities and found that the rainfall levels at 15 percentile for 
all short and long rain failures were able to trigger the reported drought events. Higher triggers of course can capture 
any short and long rain failures but risk premium would become excessively high for farmers’ risk bearing ability.      
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the loan. Across all possible rainfall outcomes defined by the probability distribution function 

( )( , )i i i ig R t T  the mean deviation below the trigger is defined by 

[ ] ( )
( )

( )
( , )

(0, ( , )) ( , ) ( , )i

i i i

Z

i i i i i i i i i i i i iMin R t T
E Max Z R t T Z R t T g R t T dR− = −∫  

To capture the economic loan loss we define a ‘tick’ by  

( )( , )i
i i i i

f
Z Min R t T

ψ =
−

. 

Here, f is the loan principal (e.g. 10,000 shillings) and ( )( , )i i iMin R t T is the minimum 

recorded rainfall recorded in our data series. The tick value is defined so that an amount iψ is paid 

on every mm of rainfall below iZ . If actual rainfall breaches the minimum rainfall then the loan 

indemnity equals f exactly; in other words in the worst case scenario the farmer pays only the 

interest on the loan. 

Under these assumptions, we define the present value of loan repayment as 

[ ] [ ]( )( )*

(0, ( , )) (0, ( , ))iT i T
L L L L L S S S s sB e fe Max Z R t T Max Z R t Tψ ψ−= − − + − ,  

where *i is the standard interest rate on operating loans (e.g. 12%). The amount of loan including 

interest that would ordinarily be repaid at the end of the loan period is 
*i Tfe . This loan repayment 

is discounted at the bank’s cost of capital, i . Across all possible long and short rain outcomes the 

expected loan repayment is given by  

[ ] [ ] [ ]( )( )*

(0, ( , )) (0, ( , ))iT i T
L L L L L S S S s sE B e fe E Max Z R t T E Max Z R t Tψ ψ−= − − + −  

 

In practice we have found that, while low, the correlation between rainfall in the long and 

short rains is positive. We therefore draw from joint or correlated probability distribution functions 
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so that across all possible rainfall outcomes in both the long and short rains the expected loan 

losses to the lender is given by  

( ) ( )( )
( )( )

( )
( , ) ( , )

( , ) ( , ) ,L S

L i i S i i

Z Z

L L L L L S S S s s L S L SMin R t T Min R t T
v Z R t T Z R t T g R R dR dRψ ψ= − + −∫ ∫  

The value, v , is also equal to the actuarial value of the losses. 

The present value of such an operating loan for a borrowed amount f  and embedded 

rainfall insurance can be written as, 

(1) [ ] ( )*iT i TE B e fe v−= −  

In the absence of rainfall risk the present value of the loan without the imbedded insurance is, 

(2) 
**( )

1
iT i TB e fe−= . 

Therefore, to hedge the weather risk with the embedded rainfall insurance, the interest rate charged 

by the lender ( *i ) can be calculated by equating (1) and (2); 

(3) ( )* **( )iT i T iT i Te fe v e fe− −− = , 

and solving for *i ; 

(4) 

**( )

*

ln i Tv e
f

i
T

 
+ 

 =   , 

or 

(5) 

( ) ( ) **( )

*

( , ) ( , )
ln L L L L L S S S s s i TE Z R t T Z R t T

e
f

i
T

ψ ψ − + −   + 
  =  

 

Equation (5) provides the exact formula for calculating the interest rate on an operating loan with 

payment protection against drought conditions arising from shortfalls in long and/or short rains. 
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3. Geographic region, risk rationing and rainfall data 

Machakos County is a semi-arid and hilly terrain area in Eastern province of Kenya. It receives 

very low annual rainfall of around 700 mm per year with average rainfall in long and short rain 

seasons being 315 and 266 mm, respectively (GOK 2014). Due to this semi-arid climate 

agriculture is practiced smallholder farmers with maize being the main food crop. The RCC pilot 

area covers eleven divisions in the Machakos County including Central Machakos, Yathui, 

Yatta, Masinga, Matungulu, Kalama, Kathiani, Mwala, Kangundo, Ndithini, and Mavoko. Maize 

is the dominant crop in the area with some intercropping with perennial fruits or other cash 

crops. Most farms in this area are smallholder farms, with limited resources, and little to no 

access to credit. It is universally acknowledged by farmers that the primary risk faced are failures 

in the long and/or short rains. While rainfall is variable in the long and short rain periods 

(October 15th – January 15th, and March 15th -May 15th) the infrequent failure of one or the other, 

and sometimes both rainfalls causes great hardship, and almost certain default on loans if credit 

were provided.  
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From the project baseline household survey we found that almost half of the sample household 

are credit rationed. Interestingly, 42% of the household are risk-rationed who voluntarily 

withdraw themselves from the credit market. RCC mechanism is very relevant for this 

population because RCC tool can bring these population into the credit market by acting as a 

substitutes for collateral.   

 

                                  

 

 

 

 

 

 

 

                 Figure 2 Geographical coverage area 
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                     Figure 3 Credit rationing status of study household (Source: project household survey) 

 

We analyze Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) 

supported by National Aeronautics and Space Administration (NASA) and National Oceanic and 

Atmospheric Administration (NOAA). 5km dekadal (10-daily) CHIRPS rainfall (satellite 

validated with station data) data from 1981 to present are extracted from 

http://chg.geog.ucsb.edu/data/chirps/. CHIRPS data are extracted every 10 days, i.e., 3 values per 

month, for each pixel that falls into the contract coverage sub-county. These values are 

accumulated over long rains (Oct 15-Jan 15) and short rains (Mar 15-May 15) to represent 

cumulative rainfall conditions of a sub-county over a season. Hence, this measure is the best 

practical indicator of a drought situation in marginal areas. Loan period extends from September 

1 2017 to May 15 2018 (8 months). In discussions with farmers the rare events occur about 1 in 

10 years, with hardship years about 15 in every 100 years. There is no discernable pattern to the 

failure of the rains. Figure 1 illustrates the rainfall pattern for Central Machakos between 1981 

and 2016 for long and short rains.  

We estimate using Monte Carlo methods that rainfall will fall below 114.59mm and 

94.14 mm for long and short rains in 15 of every 100 years (15th percentile) as marked. 

Breaching the 114.59mm mark occurred in about 5 of 34 years for long years or about 14.7% of 

years, while it breached the 94.14 mm mark for short rains about 6 times in the 35 year period 

for about 17% of years. 

We see no discernable patterns in the magnitudes of rainfall year-to-year. Simple 

regressions marked in Figure 1 show that there is no statistical relationship between rainfall and 

years for both long and short rain. The regressions are; 

http://chg.geog.ucsb.edu/data/chirps/
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2

2

201.94 0.3903 , 0.0027
164.17 0.8444 , 0.0317

LR Year R
SR Year R

= − =

= − =
 

Both regressions suggest a decrease in rainfall over time, but these are not meaningful in 

a statistical sense. The low 2R values indicate that changes across time offers no explanation for 

rainfall patterns. 

 

                         Figure 4 Central Machakos Rainfall Summary, Long and Short Rains, 1981-2016 

 

 Further, we compute in a following section the correlations between long and short rains 

and find the correlations to be weak. In other words, if rainfall is low in the long rain it is not 

jointly probable that rainfalls will also be lower in the short rains. On the other hand, correlation 

assessment shows that the rainfall totals across all 11 regions are highly correlated within the 

long rain period and within the short rain period, but not between long and short rains.  
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Statistical independence in year-over-year cumulative rainfall measures supports our use 

of Monte Carlo simulation methods to measure weather risks, establish and compute the 

indemnity structure, and compute interest rates on RCC. Using the distribution fitting tool in 

@RISK (www.palisade.com) the best-fit probability distribution for virtually all regions across 

both long and short rains is the PERT distribution. The PERT distribution is a 3-parameter 

distribution fit to the lowest rainfall, most likely rainfall, and highest rainfall recorded. It is 

appealing because it is bounded by the historical record and does not drift off to zero or infinite 

in the tails as other distributions do. This important property ensures that probabilities below a 

target are not over-stated and therefore do not introduce bias into indemnity structures and RCC 

interest rate measures. An example of PERT distribution for long and short rains at Central 

Machako is provided in Figure 2. 

 

 
                   Figure 5 PERT Distribution of Long and Short Rains, Central Machakos, 1981-2016 

 
   

 

http://www.palisade.com/
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4. Empirical rating of RCC 

This section provides the rating methodology as applied to the rating model in the previous 

section. It describes a) the selection of rainfall trigger or strike, b) the calculation of the tick 

value, c) the computation of indemnities, and d) the imputation of RCC interest rates to be 

charged on the loans. On this latter point we explore two approaches to interest rate 

determination. The first is the interest rate to be charged if the insurer is willing to be paid the 

premium at the time the loan is repaid (ex post) and the second is if the insurer requires receipt of 

insurance premiums up front (ex ante). 

 
4.1 Determining Rainfall Triggers 
 
The first step is to determine the rainfall triggers. As mentioned we use Monte Carlo simulation 

techniques across correlated PERT distributions uniquely defined for each region in both long 

and short rain seasons. Upon discussions with farmers and extension experts we are 

recommending that rainfall triggers be based on the rainfall recorded at the 15th percentile. This 

suggests that farmers would receive payouts from either the long rains or short rains (and 

possibly both) on average, about once in every 6.7 years. Because of differences in location and 

altitude, the records shows that minimum, maximum, and most likely rainfalls differ across 

regions. To avoid excessive basis risk in rainfall measurement we have determined it best to 

provide rainfall coverage at the regional or district level, rather than the Machakos region as a 

whole. Thus we have 22 different rainfall triggers each determined by 22 uniquely defined PERT 

distributions, covering each of 11 districts, across the 2 seasons. 

 

Figure 6 shows the simulation output for long rains in Central Machakos showing minimum 

recorded rainfall of 83.2mm, and trigger rainfall of 114.6mm imputed from 15th percentile of 
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PERT distribution. In this case, the trigger is 114.6 mm, and RCC indemnities would not be 

triggered unless cumulated rainfall between October 15 and January 15th fell below this level, i.e. 

(0, ( , )) (0,114.6 (10 /15,01/15))i i i iMax Z R t T Max R− = − . For example if the actual rainfall was 

only 100 mm then the rainfall deficit on which the loan indemnity would be paid is 14.6mm. 

However, if the actual rainfall was 150 mm, then no indemnity would be paid. 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 6 Simulation Output for Long Rains in Central Machakos showing Minimum recorded rainfall of 83.2mm, and Trigger 
Rainfall of 114.6mm Imputed from 15th Percentile of PERT Distribution 

 
Figure 7 shows the suggested rainfall triggers for long and short rains and for each of the 11 

target regions. All triggers are computed at the 15th percentile, and all are drawn from jointly 

distributed PERT distributions (i.e. correlated across space and time). 
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                         Figure 7 Coverage Levels at 15% (Percentile), Cumulative mm Rain, Long Rain and Short Rain 

 
 
4.2 Determining the Tick Value 
 
The conversion of rainfall shortfalls in mm to Kenyan Shillings is done using a ‘tick’ conversion. 

We assume a 10,000 Ksh loan for convenience. This is scalable in  the sense that a 50,000 Ksh 

loan would pay 5-times the indemnity in nominal terms, but ultimately the interest rate charged 

on RCC loans is independent of  loan amount.  

 The tick conversion is computed using  

( )
10,000 318.47 /

( , ) 114.6 83.2i
i i i i

f Ksh Ksh mm
Z Min R t T mm mm

ψ = = =
− −

. 

We use the minimum recorded rainfall values from the history available to us. Beyond the pilot 

program it may be determined that loan coverage should occur at a higher rainfall amount. For 
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now, however, our design is to ensure that if rainfall is no more than 83.2mm then the full loan 

principal is recovered by the insurance policy.  

 

 Although we recommend setting triggers at the 15th percentile as discussed above, there 

may be occasion where a product might be reduced to the 10th percentile with a lower frequency 

payout, or at the 20th percentile with a higher frequency payout.  

 Figure 8 illustrates the average triggers and tick across all 11 regions for different 

percentile selection criteria. The rainfall triggers are recorded on the right axis and show the 

increase in trigger corresponding to increased percentile. The left axis shows the tick values. The 

tick values are decreasing but at a decreasing rate. In all cases they are anchored to the minimal 

rainfall recorded. Regardless of coverage, and corresponding tick values, the maximum 

indemnity cannot exceed the base 10,000 Ksh loan. 
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Figure 8 Relationship between Coverage Level (mm) and Tick (sh/mm) for 10,000 Sh loan. Average of 11 Regions, Long and 
Short Rain 

 
4.3 Calculation of Indemnities and Insurance Premiums 
 

The indemnity is calculated by multiplying the tick, by the rainfall shortfall. For example, if the 

actual rainfall in Central Machakos is 100 mm, the shortfall is 14.6mm. Each mm receives 

318.47 shillings so that the indemnity paid on a 10,000 Ksh loan would be 4,649.66 Ksh. The 

farmer would have to pay only 5,350.34 Ksh plus interest. If measured rainfall is 150mm there 

would be no payout, but if rainfall is 83.2mm or lower then the rainfall shortfall of (114.6 – 83.2) 

31.4 mm times the tick of 318.47 exactly equals 10,000 Ksh.   

 These indemnities are calculated for both the long and short rains. While it may be 

possible to offer insurance only for long rain or only for short rain, our indemnity structure for 

this pilot program is based on payments from either or both. In either case the maximum 

indemnity is 10,000 Ksh.  

[ ] [ ]( )10000, (0, ( , )) (0, ( , ))L L L L L S S S s sI Min Max Z R t T Max Z R t Tψ ψ= − + −  . 

Figure 9 shows the average of the expected indemnities across all 11 regions, by percentile. At 

the 15th percentile 
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                                                  Figure 9 Average Regional Indemnities by Coverage Level 

 

On average the 15th percentile indemnities are 674.21 Ksh for long rains, 571.37 Ksh for short 

rains and 1,243.45 for combined long and short rains, including years in which indemnities are 

collected on both. In general these suggest that across years indemnities can be expected to cover 

6.74%, 5.71%, and 12.43% of loan principle meaning on average that farmers would expect to 

pay about 93.25%, 94.29%, and 87.57% of loan principal plus interest. In comparison if the 40th 

percentile was selected, with a payment about 2 of every 5 years, the insurer could expect to pay 

in indemnities about 35.28% of loan principal, while farmers would expect to pay on average 

about 64.72% of loan principal. Of course, with high frequency events, insurers would anticipate 

higher premiums and farmers would expect to pay much higher risk premiums on their RCC loan 

interest rates. 
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Insurance Loading 
 
We use a 25% loading, 0.25δ = , on expected indemnities to cover administrative, underwriting, 

and settlement costs. The load-adjusted indemnity is given by 

 

[ ]( ) [ ]( )( )10000, (0, ( , )) 1 (0, ( , )) 1L L L L L S S S s sv E Min Max Z R t T Max Z R t Tψ δ ψ δ = − + + − +   

 
 
 
4.4 Imputing RCC Interest Rates 
 
There are two approaches to computing RCC interest rates. The first is what we refer to as ex-

post pricing which is based on the insurer getting paid for the premium at the time that the loan is  

repaid. The second, is ex ante in which the insurer is paid in advance. In the ex ante approach the 

insurer is paid the premium up front and the premium is added to the base loan amount.  

 
Interest Rate on Ex Post Risk Contingent Credit  
 
As previously derived the formula used to impute the interest rate is given by 
 

( )( ) ( )( ) **( )

*

( , ) 1 ( , ) 1
ln L L L L L S S S s s i T

E Z R t T Z R t T
e

f
i

T

ψ δ ψ δ  − + + − +  +
  =  

 
Based on the average values for all 11 regions use of the formula can be illustrated following 
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Interest Rate on Ex Ante Risk Contingent Credit 
 
With ex ante risk contingent credit the insurer is paid the insurance premium up front. This 

premium, measured in terms of the expected indemnity is added to the base loan. The formula 

for computing ex ante interest rates is given by  

 
( ) **

*
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Using the same values as above,  
 

( ) 0.12 0.667

*

10,000 1,243.53
ln

10,000
33.67%

0.667

e

i

× +
 
 = =  

 
As expected the interest rate on the ex ante model is slightly higher than the ex post model 

because of the additional compounding of interest on the up-front indemnity. 

 Figures 10 and 11 summarize the final simulated results for interest rates on RCC. Figure 

7 summarizes ex-post results, while Figure 8 summarizes ex ante results. The ex ante results 
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which assumes that insurance premiums are posted at the time the loan is made and added to 

loan principal are about 1.5% points higher.  

 The three bars in Figures 7 and 8 represent three separate models; Only long rains are 

insured, only short rains are insured and both long and short rains are insured. 

 Our interest is in the combined model. It is self-defeating to insure only one of the 

rainfalls, since failure in the other would only lead to increased financial risk. The interest rates 

for the combined insurance are naturally higher because it is possible that indemnities can be 

received from both sources. Although correlations between long and short rains are weak, they 

still have some effect on joint outcomes.  

 Because of the nature of insurance markets it is likely that the insurer would need to be 

paid upfront so we will only focus on the ex ante model. Interest rates are remarkably consistent 

across regions, with only slight variations due to different weather risks. The interest rates range 

from 32.51% in Mavoko to 35.11% in Yatta. Recall that the base interest rates for basic loans is 

12% and that these interest rates include a 25% loading factor. Beyond the loading factor they 

are actuarially sound. 
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                               Figure 10 Risk Contingent Credit Interest Rates (ex post) by Machakos District 
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                                       Figure 11 Risk Contingent Credit Interest Rates (ex ante) by Machakos District 

 
4.5 Indemnities 
 
Covariate risks are important considerations for any insurance product. If the failure in rains is 

significant in one district it is highly likely that the rains have failed also in other districts. This 

section provides an overview of the frequency of payments and number of regions likely to 

receive payments. This does not speak to the magnitude of payments which, capped at 10,000 

Ksh, are discussed separately. 

The frequency of payouts, determined from Monte Carlo simulations are summarized in 

Table 1. For long rains the probability that no district will receive an indemnity is 75.16%, for 

short rains 72.41% and there is a 55.9% chance that neither long nor short rains will receive an 

indemnity. This latter probability is equivalent to saying that at least one district will receive an 

indemnity in either long or short rains 40.1% of the time, or at least once every 4 years. 
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              Table 1 Frequency of Regions Receiving Indemnity in a Season 

Number 
of 

Districts 

Long 
Rain 

Short 
Rain 

Long 
and/or 
Short 
Rain 

0 75.16% 72.41% 55.90% 
1 3.86% 5.02% 6.07% 
2 2.27% 3.19% 4.14% 
3 1.74% 2.11% 2.83% 
4 1.31% 1.65% 2.40% 
5 1.11% 1.34% 1.97% 
6 1.03% 1.32% 2.02% 
7 1.31% 1.39% 2.33% 
8 1.33% 1.67% 2.63% 
9 1.53% 2.03% 3.09% 
10 2.21% 2.10% 3.85% 
11 7.17% 5.80% 12.81% 

 
That drought conditions are so severe that all 11 districts receive an indemnity in one year is rare. 

There is only a 7.17% chance that all 11 districts would receive an indemnity in long rains, 5.8% 

chance for short rains, and a 12.81% chance that all districts would receive indemnities in either 

long or short rains. In other words, in about 13 of every 100 years it can be expected that the 

insurer will pay indemnities in all districts for either the long or short rains. 

Figure 12 illustrates the conditional probabilities by Baye’s rule on the frequency of indemnities 

given that at least 1 district receives an indemnity. It is U-shaped as expected because of the high 

degree of correlation amongst rainfalls. At the lower end the probability that only 1 district 

receives a payment in either long and short rains is 13.76%.  A season in which only 1 or a few 

districts receive indemnities comes about by chance. This will arise as a result of uncorrelated 

weather patterns or weather patterns that are not wide-spread across the regions. On the other 
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hand, Figure 12 shows the significant of covariate risks. Given that at least one district receives 

an indemnity there is a 28.86% chance that all 11 districts will receive a long rain indemnity; a 

21.02% chance that all districts will receive a short rain indemnity, and a 29.03% chance that all 

11 districts will receive an indemnity in either the long rain or short rain.  

 
 

                          

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 12 Conditional Probabilities of Frequency of Indemnities across Districts 

 
 
Table 2 summarizes the joint distribution between number of districts receiving indemnity in 

long rains and receiving the stated number also receiving indemnities in the short rains. There is 

a 55.89% chance that no district in either long rain or short rain receives an indemnity. If there is 

no indemnity in the long rain there is a 3.515% chance that 1 district and 3.93% chance that all 

11 districts will receive an indemnity in the short rains. Likewise there is a 4.595% chance that 

all 11 districts will receive an indemnity in the long rains but 0 districts in the short rains. At the 

lower right of Table 2, the likelihood that a total catastrophic failure of both long and short rains 
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will result in indemnities for all 11 districts in both seasons is 0.62% or about 6 in every 1,000 

years.  

 
 
 
Table 2 Joint Distribution of Number of Districts Receiving Indemnity between Long and Short Rains 

 
    

Long Rains 
        

Short 
Rain 

0 1 2 3 4 5 6 7 8 9 10 11 

0 55.895 2.505 1.555 1.065 0.890 0.680 0.745 0.955 0.960 1.005 1.555 4.595 

1 3.515 0.235 0.140 0.115 0.075 0.105 0.090 0.060 0.090 0.080 0.085 0.425 

2 2.245 0.145 0.085 0.070 0.055 0.055 0.030 0.040 0.040 0.070 0.070 0.285 

3 1.465 0.135 0.040 0.045 0.045 0.015 0.000 0.015 0.030 0.035 0.045 0.235 

4 1.105 0.080 0.060 0.050 0.040 0.025 0.010 0.030 0.020 0.035 0.045 0.150 

5 0.965 0.045 0.020 0.035 0.005 0.025 0.025 0.005 0.000 0.030 0.045 0.135 

6 0.935 0.045 0.050 0.025 0.030 0.025 0.010 0.010 0.035 0.020 0.025 0.110 

7 0.975 0.090 0.030 0.030 0.015 0.005 0.015 0.015 0.020 0.025 0.060 0.110 

8 1.200 0.075 0.025 0.060 0.025 0.020 0.010 0.025 0.015 0.040 0.035 0.135 

9 1.515 0.090 0.020 0.035 0.020 0.025 0.015 0.025 0.025 0.040 0.045 0.175 

10 1.415 0.120 0.065 0.055 0.035 0.015 0.025 0.030 0.020 0.055 0.065 0.195 

11 3.930 0.290 0.180 0.150 0.075 0.110 0.055 0.095 0.070 0.095 0.130 0.620 

 

 Indemnity Payouts 
 
Core to the successful application of Risk Contingent Credit is the effective transfer of risk from 

lenders and borrowers to an insurer. Figure 13 shows the simulated loan repayment and 

indemnity transfer structure of RCC for Central Machakos with long rain coverage at the 15th 

percentile. The top panel shows the loan repayment schedule for the farmer-borrower with 

rainfall on the x axis and loan repayment at the Y-axis. The trigger for insurance indemnities is 

114.6 mm. Below this trigger the farmer’s loan repayment is decreased in proportion to the 

rainfall deficit. If the rainfall shortfall is substantially high there is a chance that the farmer will 

not have to repay any principal at all, paying only the interest on the loan. 
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 The lower panel of Figure 13 shows the indemnity transfer to the lender. The money is 

deposited from the insurer into the borrower’s account at the bank. The loan transfer is 

isomorphic to the loan repayment schedule.  
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Figure 13 Simulated Loan Repayment Schedules and Indemnity Transfer 
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From the banker’s point of view the combined payment from the indemnity schedule plus the 

repayment schedule, satisfies the loan principal repayment. Figure 14 shows the iso-repayment 

line to the lender. The iso-repayment line shows the sources of loan repayment to lender from 

borrower on the Y-axis and the insurer on the X-axis. In this example, the loan repayment 

including interest is 12,376 Ksh. The vertical and horizontal lines show, e.g., that if the 

indemnity is 4,000 Ksh  paid by the insurer, borrower pays 8,376. This dollar-for-dollar 

substitution assures that all combinations along the sloped line = 12,376. This, of course, is the 

targeted and desired result: With assured repayment against drought risks the lender’s exposure 

to repayment risk is virtually eliminated, which should increase the supply of credit to farmers, 

while the reduction in business and financial risks facing the farmer should encourage loan 

demand. 

 

 
                                                Figure 14 Iso-Repayment Line with Risk-Contingent Credit 

 
Distribution of Indemnities 
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This section reviews the relationships between RCC indemnities and loan repayment. We use as 

a base a 10,000 Ksh loan with indemnities arising from either long rains, short rains, or both. The 

numbers reported are the averages across all 11 districts. The mean payments are going to be 

sensitive to the trigger levels elected. Although we are recommending coverage at the 15th 

percentile, Figure 15 shows the relationship between mean indemnity, mean repayment, and total 

loan amount with increasing coverage to the 40th percentile. The loan amounts (principal plus 

interest) increase because of the increased interest rates with higher coverage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the lowest coverage level (5th percentile) the expected indemnity would be 403.19 Ksh. The 

amount to be repaid is 11,337.34 Ksh so the expected amount that the farmer woul repay is 

10,934.15 Ksh. At the 15th percentile, the insurer can expect to pay across all 11 districts about 

1,234.45 Ksh/year on a loan of 12,289.84 Ksh. The farmer-borrower in the region will pay on 

average 11,146.40 Ksh. As the coverage levels increase to 40% the mean indemnities increase to 

                                    Figure 15 Comparison of average indemnity  
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3,527 Ksh on a loan repayment amount of 15,263.62 Ksh, of which the average repayment by the 

farmer would be 11,735.72 Ksh. 

 

5. Conclusions and implementation challenges  

This paper has described the design and rating of risk-contingent credit that has been 

commercially piloted recently in Machakos County in Kenya. Looking at weather related 

agricultural risks and limited access to credit for Kenyan farmers this paper designs a novel 

insurance linked credit model. We develop a rainfall linked risk-contingent credit that transfers 

drought risk related perils from borrower to lender via insurance mechanism that provide a 

balance between business and credit risks for smallholder farmers. We describe the methodology 

used to design and rating of a risk-contingent structured operating agricultural credit instrument 

using CHIRPS rainfall data from 1981-2016 in Kenya. We illustrate the use of Monte Carlo 

methods to risk modelling that can be integrated within general insurance and credit rating 

framework. The step-by-step design could provide guidance to practitioners and policy makers 

about the pricing and bundling of insurance and credit together. The methodology can be easily 

replicated to other areas as similar high quality biophysical data would be available easily.  

This RCC product has many innovative features: 1) It appears to be the first to develop 

scientific bundling (bundling itself is not new, we developed scientific bundling technique in 

financial engineering framework) of rainfall based index insurance and agricultural term loan 

through actuarially fair pricing, 2) Because the insurance component of RCC substitutes for 

collateral, it is more financially inclusive than conventional credit products, 3) It minimizes the 

probability of default on loans by producers, improves their risk bearing abilities, and bridges 

trust in the lender-borrower relationship, 4) The removal of critical  liquidity constraints, 

combined with the inter-temporal transfer of climate risk,  an RCC mechanism can achieve better 

targeting of poorer farmers, provide climate resilience, and eliminate climate-based poverty 

traps, 5) Finally, it also eliminates the drawbacks of standalone index insurance products by not 

requiring the farmers to pay a premium upfront.  

Risk-Contingent Credit is a financial innovation that links loan repayment to some 

underlying risk condition. In this paper we design a dual-trigger RCC linked to failures of either 

long or short rains or both. Our target is grain and cash crop farmers from 11 Sub-Counties in 
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Machakos County of Kenya. It is designed to balance the business and financial risks between 

borrower and lender when long and or short rains fail.  

1. RCC is not intended to cover common risks. We recommend that coverage be set at the 

15th percentile; that is, at the district level rainfall triggers are established so that an 

indemnity would be paid on average about 15 in every 100 years. 

2. Across all 11 counties we compute an average RCC interest rate of 33.67%. This includes 

a 25% load on the actuarially fair premium. To account for unmeasurable risks, we feel 

that an annual interest rate of 36% or about 24% above the base rate of 12%/year would 

be reasonable. A 36% annual interest rate is about the same as offered by NGO micro-

credit organizations. In addition, many farmers invest in a ROSCA in which they pay 

100% per year. Nonetheless, financial outreach will be required to explain RCC to 

borrowers. We have conducted games and focus groups in Marsabit and Machakos, as 

well as dairy regions and all evidence points to a strong interest in RCC.  This suggests 

that the demand for credit is quite inelastic, suggesting that higher interest rates due to a 

measurable and defined risk premium would not discourage farmers from borrowing at a 

3% per month rate. 

3. We recommend that loan terms not exceed 8 months for similar areas. Loans made in 

September leading up to the long rains in October should be repaid by the end of May, 

following the short rains.  

There are a range of implementation challenges that are subject to future research. First, since 

there might be local variation on rainfall realization and other factors that may lead to different 

production outcome, RCC linked to only rainfall may be subject to basis risk. We plan on 

developing a composite index using rainfall, vegetation and soil moisture data along with fitting 

a response function with maize yield data in the region to minimize design related basis risk. 

Second, our experience from the first round of RCC loan disbursement in Machakos has shown 

the need of a carefully designed financial education and extension effort to building awareness 

and making an informed decision for the farmers. Being an insurance bundled credit product 

RCC is complex and difficult to understand, particularly for populations with low level of 

literacy. In this regards we developed a participatory pictorial game to communicate RCC to 

farmers (Shee at al. 2015) which is not only useful for understanding the product but shows 

promise to generating demand for the RCC product. Finally, commercial financial institutions 
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should be dedicated and see RCC as a new tool to expand their market and hence should build 

capacity inside the institution. Financial institutions should explore various insurance and 

reinsurance options depending on the number of target clients and risk profile in the area. The 

RCC is currently being implemented in Machakos County in Kenya by Equity Bank Kenya Ltd. 

with APA Insurance Ltd. as the underwriter. Notwithstanding the challenges, the RCC pilot has 

shown a considerable promise within the smallholder farming communities.  
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