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Sébastien Lecocq
Food and Social Science Research Unit (ALISS)

The French National Institute for Agricultural Research (INRA)
Paris, France

sebastien.lecocq@ivry.inra.fr

Jean-Marc Robin
Sciences Po
Paris, France

and University College London
London, UK

jeanmarc.robin@sciencespo.fr

Abstract. In this article, we present the new aidsills command for estimat-
ing almost-ideal demand systems and their quadratic extensions. In contrast with
Poi’s (2012, Stata Journal 12: 433–446) quaids command, which is based on
the nonlinear nlsur command, aidsills uses the computationally attractive iter-
ated linear least-squares estimator developed by Blundell and Robin (1999, Jour-
nal of Applied Econometrics 14: 209–232). The new command further allows one
to account for endogenous prices and total expenditure by using instrumental-
variable techniques. Elasticities and their standard errors can be obtained using
the aidsills elas postestimation command.

Keywords: st0393, aidsills, aidsills pred, aidsills elas, almost ideal, demand system,
quadratic, endogeneity, iterated, linear, least squares

1 Introduction

In a series of three articles, Poi shows how to fit Deaton and Muellbauer’s (1980) original
almost-ideal demand system (AIDS) and Banks, Blundell, and Lewbel’s (1997) quadratic
almost-ideal demand system (QUAIDS) in Stata. The first two articles are based on
Stata’s ml (Poi 2002) and nlsur (Poi 2008) commands, respectively, which require the
user to write or modify one or more program files. The third introduces the quaids

command (Poi 2012), which obviates the need for any programming and further allows
for the inclusion of demographic variables as well as the computation of expenditure and
price elasticities through postestimation tools. Although the quaids command shows
undeniable qualities, it has two main shortcomings.

The first, and most important, is that it does not allow one to handle endogeneity.
This point is crucial because endogeneity is a typical ingredient of demand systems.
Several right-hand-side variables—such as prices and total expenditure—may indeed be

© 2015 StataCorp LP st0393
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correlated with the equation errors. This may be because of the simultaneous equation
nature of demand models (total expenditure is the sum of expenditures on individual
commodities and, because these expenditures are assumed to be endogenous, it might
be expected to be jointly endogenous); because of some unobserved (or uncontrolled
for) features of the commodities (goods may differ in quality from one household to
another, and their prices may reflect these differences in quality and, therefore, depend
on tastes); or because of measurement errors. If expenditure or prices are correlated
with the equation errors, resulting estimators will be both biased and inconsistent.

The other shortcoming of the quaids command is that it requires the use of nonlinear
techniques (nlsur) that can be computationally demanding, especially for large and
disaggregated demand systems. A fundamental problem in demand estimation is the
number of parameters to estimate. The nlsur estimates are obtained by iterating a
series of linear regressions on a first-order linear expansion of the model. If there are 20
commodities and 20 equations, the linear expansion is a system of 20 equations with a
number of the order of 400 parameters in each equation. Yet the number of products
in most markets is often higher than 20, and even when using a multistage budgeting
approach (Hausman, Leonard, and Zona 1994), the number of goods in each segment
may still be large.

In this article, we present an alternative to the quaids command, called aidsills,
where the potential endogeneity of prices and total expenditure can be tested and con-
trolled for and where the estimation is performed using linear techniques. aidsills is
based on Gauss’s aids.src program written by J.-M. Robin to estimate the AIDS and
QUAIDS using Blundell and Robin’s (1999) iterated linear least-squares (ILLS) estima-
tor. Although nonlinear, almost-ideal (AI) demand models, as most popular parametric
demand systems, share a common property: they are conditionally linear. That is, they
are linear in all the parameters conditional on a set of functions of explanatory vari-
ables and parameters. Browning and Meghir (1991) exploited this conditional linearity
to construct a simple ILLS estimator for the AI demand model, and Blundell and Robin
(1999) generalized it and derived the conditions for its consistency and asymptotic nor-
mality. Blundell and Robin (1999) also showed how to account for the endogeneity
of total expenditure by using the instrumental-variable (IV) and augmented regression
techniques of Hausman (1978) and Holly and Sargan (1982).

ILLS is a preferred alternative to nonlinear seemingly unrelated regressions (SUR)
and nonlinear three-stage least squares for large demand systems. By exploiting the
conditional linearity property, the ILLS estimator requires only a series of linear SUR

when using the reg3 command. This makes the estimation much faster, which may
be helpful for models with many equations and to those estimated on large datasets.
In the above example of 20 commodities and 20 equations, the aidsills estimates
are obtained by iterating least squares applied to a system of 20 equations, each of
approximately 20 (instead of 400) parameters.

Other advantages of the new command compared with Poi’s are that it allows the
user to fit unconstrained, homogeneity constrained, or homogeneity and symmetry con-
strained models, and it allows the user to test whether these theoretical restrictions
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hold. On the other hand, aidsills does not provide the vce() option available with
quaids. Eventually, expenditure and price (compensated or not) elasticities can be
obtained using the postestimation command aidsills elas. This postestimation com-
mand does not compute elasticities for individual observations, as can be done with
Poi’s postestimation commands, but it computes elasticities at the mean point of a
user-defined sample with their standard errors.

This article is organized as follows. In section 2, we present the model and the
estimation procedure. In section 3, we provide the aidsills syntax and options. In
section 4, we give some examples.

2 AI demand systems

In this section, we briefly describe AI demand models and elasticities, we show how
endogenous regressors can be dealt with, and we present the principle of the ILLS esti-
mator.

2.1 Overview

Let’s consider the quadratic extension of Deaton and Muellbauer’s (1980) AIDS. In the
QUAIDS, introduced by Banks, Blundell, and Lewbel (1997), the budget share whi on
good i = 1, . . . , N for household h = 1, . . . , H with log total-expenditure xh and the log
price N -vector ph is given by

whi = αi + γ′
ip
h + βi

{
xh − a

(
ph,θ

)}
+ λi

{
xh − a

(
ph,θ

)}2

b(ph,θ)
+ uhi (1)

with the nonlinear price aggregators

a
(
ph,θ

)
= α0 +α′ph +

1

2
ph′Γph

b
(
ph,θ

)
= exp

(
β′ph

)

where α = (α1, . . . , αN )′, β = (β1, . . . , βN )′, Γ = (γ1, . . . ,γN )′, θ is the set of all
parameters, and uhi is an error term.1 These parameters must satisfy three sets of
theoretical restrictions: all must sum to zero over all equations except the constant
term, which must sum to one (additivity); log price-parameters must sum to zero within
each equation (homogeneity); and the effect of log price i on budget share j must equal
the effect of log price j on budget share i (symmetry). The additivity constraint is
mechanically satisfied in AI-type demand models. This is not the case for homogeneity
and symmetry constraints, which can be tested and imposed.

There are different ways to introduce demographic variables in a demand system.
Here households’ heterogeneity enters the demand system through the α’s, which are

1. Parameter α0 in the first price aggregator is unidentified and can be set to 0 or to any other fixed
value.



S. Lecocq and J.-M. Robin 557

modeled as linear combinations of a set of sociodemographic variables (sh) observed in
the data

αh = Ash, A = (α′
i)

This is called the translating approach (Pollak and Wales 1981), and it allows the level
of demand to depend upon demographic variables. Note that modeling heterogeneity
like this does not mean that heterogeneity enters the model linearly. As seen in (1),
heterogeneity appears not only linearly in the intercepts but also nonlinearly in all
expenditure terms through the first price aggregator. Although this approach is more
restrictive than the scaling approach (Ray 1983) used by Poi (2012), which allows the
level and slope (of total expenditure terms) to depend upon demographic variables, it
preserves the conditional linearity of the model.

2.2 Elasticities

One of the main motivations for estimating demand systems is to derive expenditure
and price elasticities. Omitting h superscripts, differentiating (1) with respect to x and
pj yields, respectively,

µi = βi + 2τi
{x− a (p,θ)}

b(p,θ)

µij = γij − µi(αj + γjp)− λiβj
{x− a(p,θ)}2

b(p,θ)

Expenditure elasticities are then given by ei = µi/wi + 1; uncompensated price elas-
ticities by euij = µij/wi − δij , where δij is the Kronecker delta; and compensated price
elasticities by ecij = euij + eiwj .

2.3 Handling endogeneity

Ordinary least squares (OLS) or SUR (linear or nonlinear) generally do not provide
consistent estimators for (1) because of the potential endogeneity of some right-hand-
side variables. In each share equation, the error term uhi may be correlated with the log
total-budget variable xh (common shocks determine both taste and total expenditure
changes). It may also be correlated with log prices ph. In most empirical studies,
prices are unit values that are computed for each good as the ratio of expenditures and
physical quantities. These unit values mostly depend on actual market prices. Because
a given good may differ in quality by household, its calculated unit values may reflect
these differences in quality and, therefore, may depend on tastes (see Deaton [1988]).
These correlations, which are sources of potential biases, can be accounted for with IV

and augmented regression techniques (Hausman 1978; Holly and Sargan 1982).
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Assuming that there exists a set of IVs (for budget alone or for prices alone, or for
both), the specification in (1) can be augmented with the error vector v̂h predicted
from estimating reduced forms for xh and ph. The error uhi is written as the orthogonal
decomposition

uhi = ρiv̂
h + εhi

and E(εhi |xh,ph) = 0 is assumed for all i and h. The SUR estimator of the demand
parameters in this augmented regression framework is identical to the three-stage least-
squares estimator, and testing for the significance of the coefficients of v̂h is a direct test
of the exogeneity of xh and each element of ph. Independent variables in the reduced-
form equations are all the variables included in sh (sociodemographic variables, but it
could also include time dummies), the log prices or log total-expenditure if exogenous,
and the proper identifying instruments.

2.4 ILLS estimator

As mentioned previously, an attractive feature of (1) is that it is conditionally linear in
price aggregators: all equations are linear in all parameters conditional on price aggrega-
tors. Estimation using the iterated moment estimator developed in Blundell and Robin
(1999) is, therefore, straightforward. This estimator consists of the following series of
iterations: for given values of price aggregators, we estimate the parameters using a
linear moment estimator, we use these estimates to update price aggregators, and then
we continue the iteration until numerical convergence occurs. If numerical convergence
occurs, this procedure yields a consistent and asymptotically normal estimator of θ.

Specifically, unbiased estimates of parameters in (1) are obtained by iterating a series
of SUR or OLS regressions of whi on sh, ph, {xh−a(·)}, {xh−a(·)}2/b(·), and v̂h. 2 The
Stone price index, which can be written as w′ph (where w is the N -vector containing
the sample average budget shares), and the unit vector are used as initial values for
a(·) and b(·), respectively. Within each iteration, the estimation is performed by SUR,
whether constraining for homogeneity or not. Additivity is automatically satisfied and
homogeneity can easily be imposed by considering N − 1 relative prices instead of N
absolute prices in each equation (see Deaton and Muellbauer [1980, 318]). Convergence
occurs when the relative-difference criterion max |(θn+1 − θn)⊘ (θn + 1)| ≤ tol, where
⊘ is the element-by-element division operator and tol is a predefined tolerance level
(10−5, for instance), is satisfied. Once convergence has occurred, a last estimation can be
performed imposing the symmetry constraint.3 Standard errors of all parameters in all
equations are then simultaneously calculated using the asymptotic variance–covariance
matrix given in Blundell and Robin (1999), which takes into account the predicted
regressors v̂h introduced in each equation as well as the correlation of the error terms
εhi across equations.

2. OLS and SUR give strictly identical parameter estimates because the same set of variables appears
in the right-hand side of each equation.

3. We could have imposed symmetry within the iteration process, but we did not do this because
it increases the number of estimations where convergence fails while also giving almost identical
results.
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3 The aidsills command

In this section, we present the syntax of the aidsills command, its available options,
and its two postestimation commands, aidsills pred and aidsills elas.

3.1 Syntax

The syntax for aidsills is as follows:

aidsills varlistshares
[
if
] [

in
]
, prices(varlistprices) expenditure(varname)

[
intercept(varlist) ivprices(varlist) ivexpenditure(varlist) quadratic

homogeneity symmetry nofirst tolerance(#) iteration(#) alpha 0(#)

level(#)
]

where varlistshares is a list of N variables for budget shares, the last being used as the
reference. They must sum to one for each observation.

Note that, within the program, the first N − 1 prices listed in prices() are intro-
duced as relative prices, using the Nth price as the reference. Formally, omitting the
unnecessary terms, the ith equation of the unconstrained model (1) can be written as

whi = · · ·+ γi1
(
ph1 − phN

)
+ · · ·+ γiN−1

(
phN−1 − phN

)
+ γiNp

h
N + · · ·

where phj is the logarithm of the jth price listed in prices(). Under the null hypothesis

of homogeneity and for real total expenditure {xh − a(·)} held constant, only relative
prices matter. Therefore, the impact of the reference (absolute) price on each budget
share must be zero (γiN = 0 for all i). A direct test of homogeneity then consists in
fitting the unconstrained model, keeping the Nth absolute price as a regressor, and
testing whether it has a jointly significant impact. Of course, a simple way to constrain
for homogeneity is to remove this Nth price from the list of regressors. Further note
that absolute price effects are easily recovered from relative price effects and that the
output displays the absolute (not the relative) price effects.

The postestimation command aidsills pred can be used following aidsills to obtain
the linear prediction (xb, the default) or residuals using the estimates of the equation
specified in equation(). Predictions are available both in and out of sample; type
aidsills pred . . . if e(sample) . . . if predictions are wanted only for the estimation
sample. The syntax is as follows:

aidsills pred newvar
[
if
] [

in
]
, equation(varnameshare)

[
residuals

]
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The postestimation command aidsills elas can be used following aidsills to obtain
budget and uncompensated and compensated price elasticities computed at the mean
point of the sample defined by if and in with their standard errors. Results are
presented using Jann’s (2005) estout command, which can be downloaded from within
Stata by typing search estout.4 The syntax is as follows:

aidsills elas
[
if
] [

in
]

3.2 Options for aidsills

prices(varlistprices) specifies a list of N variables for prices, in level (not logarithm).
Prices must appear in the same order as shares. prices() is required.

expenditure(varname) specifies the total expenditure variable, in level (not loga-
rithm). varname must represent the total amount of money spent on the N goods
of the system for each observation. expenditure() is required.

intercept(varlist) specifies the variables used as sociodemographic shifters; a constant
term is added by default, whether the intercept() option is specified or not.

ivprices(varlist) specifies that the potentially endogenous prices (or unit values) are
to be instrumented by all exogenous variables listed in varlist of intercept(), the
log of varname in expenditure() if expenditure is exogenous, and identifying IVs
listed in varlist of ivprices()—the number of variables in ivprices() must be at
least equal to the number of prices—and ivexpenditure().

ivexpenditure(varlist) specifies that the potentially endogenous total expenditure is
to be instrumented by all exogenous variables listed in varlist of intercept(), the
log of variables listed in varlist of prices() if prices are exogenous, and identifying
IVs listed in varlist of ivprices() and ivexpenditure().

Note: Variables in varlist of ivprices() cannot enter varlist of ivexpenditure(),
and vice versa.

quadratic indicates that the quadratic version of the AIDS must be considered.

homogeneity indicates that the log price-parameters must satisfy the homogeneity con-
straint; a homogeneity chi-squared test is provided when the unconstrained model
is fit.

symmetry indicates that the log price-parameters must satisfy the homogeneity and sym-
metry constraints; a symmetry chi-squared test is provided when the homogeneity
constrained model is fit.

nofirst indicates that the output from the first-stage instrumental regressions must be
omitted.

4. See http://www.ats.ucla.edu/stat/stata/faq/estout.htm for more information.
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tolerance(#) specifies the criterion used to declare convergence of the ILLS estimator.
The default is tolerance(1e-5).

iteration(#) specifies the maximum number of iterations; iteration(0) estimates
the linearized version of the model, where a(·) is replaced by the Stone price index
and b(·) = 1. The default is iteration(50).

alpha 0(#) specifies the value of α0 in the price index a(·). The default is alpha 0(0).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95).

3.3 Options of aidsills pred

equation(varnameshare) specifies the variable for which predictions are calculated.
equation() is required.

residuals calculates the residuals rather than the linear prediction (xb, the default)
for the specified equation.

3.4 Stored results

aidsills stores the following in e():

Scalars
e(N) number of observations
e(alpha 0) value of α0

e(iteration) maximum number of iterations

Macros
e(cmd) aidsills
e(model) name of the model
e(const) constraint label used in the output header
e(shares) budget share variables
e(prices) price variables
e(expenditure) expenditure variable
e(ivprices) IVs for price variables
e(ivexpenditure) IVs for expenditure variable
e(intercept) demographic variables

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(alpha) estimated α vector
e(gamma) estimated Γ matrix
e(beta) estimated β vector
e(lambda) estimated λ vector
e(rho) estimated ρ vector

Functions
e(sample) marks estimation sample
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4 Examples

For comparison, we apply aidsills to the dataset used by Poi (2012) to illustrate his
quaids command. We drop variables lnp1 to lnp4 and lnexp because they are not
used in estimation (but they could be kept, it does not matter). We randomly generate
two demographic variables.

. version 13

. webuse food

. drop lnp1 lnp2 lnp3 lnp4 lnexp

. set seed 1

. generate nkids = int(runiform()*4)

. generate rural = (runiform() > 0.7)

AI demand models are singular (the dependent variables sum to one), and one equa-
tion must be eliminated when estimating. In the aidsills command, it is the last
equation (here the fourth), which does not matter because singular systems are invari-
ant to this choice. Estimated parameters for the dropped equation and corresponding
elements in the variance–covariance matrix are recovered from additivity.

In the base output, the header gives information on which model is estimated; a first
table gives some overall statistics for each equation; and a second table gives (equation
by equation) the detailed parameter estimates, their asymptotic standard errors, and the
usual related statistics. Independent variables include the four logs of (absolute) prices,
lnp1= ln(p1) to lnp4= ln(p4), and the log of expenditure terms: lnx= ln(expfd)−a(·)
and lnx2 = (lnx2)/b(·), sociodemographic variables, and a constant. The name of the
corresponding parameter vector or matrix (alpha, gamma, beta, and [if applicable]
lambda and rho) is added in front of each independent variable.

An issue raised by using food.dta above is that lnx and lnx2 are so strongly
correlated that we cannot get satisfying estimates for any quadratic demand system
(many parameters are unusually insignificant).5 Indeed, estimating any equation of any
quadratic model by using regress and typing estat vif shows a very strong collinear-
ity between expenditure terms, with the highest variance inflation factors ranging from
around 60 when the iteration(0) option is specified to around 200 when it is not.
Models presented below are thus nonquadratic AIDS.

4.1 Comparisons

We consider a model without demographic variables and that assumes exogeneity for
all regressors, given that symmetry constrained estimates and elasticities obtained from
aidsills and quaids commands must be almost identical. Indeed, except small differ-
ences due to rounding precision, the estimates below are equivalent to those obtained
using Poi’s quaids command: quaids w1-w4, prices(p1-p4) expenditure(expfd)

noquadratic anot(10).

5. Because this issue does not occur when we use other much larger datasets, it seems to be specific
to these data.
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. aidsills w1-w4, prices(p1-p4) expenditure(expfd) symmetry alpha_0(10)

Iteration = 1 Criterion = .17980229
Iteration = 2 Criterion = .00611116
Iteration = 3 Criterion = .00012707
Iteration = 4 Criterion = 1.563e-06

AIDS - PROPER ESTIMATION WITH FIXED ALPHA_0 = 10
HOMOGENEITY AND SYMMETRY CONSTRAINED ESTIMATES

Equation Obs Parms RMSE "R-sq" F( 5, 4042) Prob > F

w1 4048 5 .1326944 0.1233 142.18 0.0000
w2 4048 5 .1024636 0.0753 82.34 0.0000
w3 4048 5 .0537182 0.1442 170.28 0.0000
w4 4048 5 .1064814 0.0515 54.93 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

w1
gamma_lnp1 .1230886 .0059509 20.68 0.000 .111425 .1347521
gamma_lnp2 -.0546438 .006042 -9.04 0.000 -.0664859 -.0428017
gamma_lnp3 -.0352279 .0045005 -7.83 0.000 -.0440487 -.0264071
gamma_lnp4 -.0332169 .0046497 -7.14 0.000 -.0423302 -.0241036

beta_lnx .0157531 .0036641 4.30 0.000 .0085717 .0229345
alpha_cons .3947989 .0238983 16.52 0.000 .3479591 .4416387

w2
gamma_lnp1 -.0546438 .0045337 -12.05 0.000 -.0635296 -.045758
gamma_lnp2 .0680193 .0045612 14.91 0.000 .0590794 .0769591
gamma_lnp3 -.0012362 .0034042 -0.36 0.717 -.0079083 .0054359
gamma_lnp4 -.0121393 .0036722 -3.31 0.001 -.0193366 -.0049419

beta_lnx -.0260689 .002678 -9.73 0.000 -.0313176 -.0208201
alpha_cons .1408526 .0174654 8.06 0.000 .1066211 .1750841

w3
gamma_lnp1 -.0352279 .0023811 -14.79 0.000 -.0398948 -.030561
gamma_lnp2 -.0012362 .0023942 -0.52 0.606 -.0059287 .0034563
gamma_lnp3 .0425736 .0017881 23.81 0.000 .0390689 .0460782
gamma_lnp4 -.0061095 .0018934 -3.23 0.001 -.0098205 -.0023985

beta_lnx .0013848 .0018103 0.76 0.444 -.0021634 .004933
alpha_cons .1109648 .0118041 9.40 0.000 .0878292 .1341004

w4
gamma_lnp1 -.0332169 .0046833 -7.09 0.000 -.042396 -.0240378
gamma_lnp2 -.0121393 .0047169 -2.57 0.010 -.0213843 -.0028943
gamma_lnp3 -.0061095 .0035087 -1.74 0.082 -.0129864 .0007674
gamma_lnp4 .0514657 .0036728 14.01 0.000 .0442671 .0586642

beta_lnx .008931 .0037124 2.41 0.016 .0016548 .0162072
alpha_cons .3533837 .0242125 14.60 0.000 .305928 .4008394
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Comparing elasticities at the sample mean point shows that values calculated after
the aidsills and quaids commands are very close. After running aidsills, the
postestimation command aidsills elas gives the predicted shares, budget, and price
elasticities with their standard errors.

. aidsills_elas

PREDICTED SHARES, BUDGET AND (UN)COMPENSATED OWN-PRICE ELASTICITIES

shares budget u_price c_price
b/se b/se b/se b/se

w1 0.401*** 1.039*** -0.713*** -0.296***
(0.002) (0.009) (0.015) (0.015)

w2 0.239*** 0.891*** -0.708*** -0.494***
(0.001) (0.011) (0.019) (0.019)

w3 0.102*** 1.014*** -0.585*** -0.481***
(0.001) (0.018) (0.018) (0.018)

w4 0.257*** 1.035*** -0.811*** -0.545***
(0.002) (0.014) (0.015) (0.014)

* p<0.05, ** p<0.01, *** p<0.001

UNCOMPENSATED CROSS-PRICE ELASTICITIES

p1 p2 p3 p4
b/se b/se b/se b/se

w1 -0.713*** -0.139*** -0.092*** -0.095***
(0.015) (0.015) (0.011) (0.012)

w2 -0.174*** -0.708*** 0.007 -0.017
(0.020) (0.019) (0.014) (0.014)

w3 -0.351*** -0.013 -0.585*** -0.064***
(0.025) (0.024) (0.018) (0.019)

w4 -0.147*** -0.050** -0.028* -0.811***
(0.019) (0.019) (0.014) (0.015)

* p<0.05, ** p<0.01, *** p<0.001

COMPENSATED CROSS-PRICE ELASTICITIES

p1 p2 p3 p4
b/se b/se b/se b/se

w1 -0.296*** 0.110*** 0.014 0.172***
(0.015) (0.015) (0.011) (0.012)

w2 0.184*** -0.494*** 0.098*** 0.212***
(0.019) (0.019) (0.014) (0.014)

w3 0.055* 0.230*** -0.481*** 0.197***
(0.023) (0.023) (0.018) (0.018)

w4 0.269*** 0.198*** 0.078*** -0.545***
(0.018) (0.019) (0.014) (0.014)

* p<0.05, ** p<0.01, *** p<0.001
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After fitting the same model with Poi’s quaids command—that is, quaids w1-w4,

prices(p1-p4) expenditure(expfd) noquadratic anot(10)—elasticities and their
standard errors can be obtained as follows:

. estat expenditure, atmeans stderrs

. matrix list r(expelas)

r(expelas)[1,4]
c1 c2 c3 c4

r1 1.0401845 .89145306 1.0141862 1.0331519

. matrix list r(sd)

r(sd)[1,4]
c1 c2 c3 c4

r1 .00851918 .01091724 .01347971 .01066943

. estat uncompensated, atmeans stderrs

. matrix list r(uncompelas)

r(uncompelas)[4,4]
c1 c2 c3 c4

r1 -.71352724 -.13889921 -.09181671 -.09594133
r2 -.17218979 -.70896104 .00636933 -.01667156
r3 -.34971894 -.01450851 -.58618298 -.0637758
r4 -.14692494 -.04962317 -.02731562 -.80928815

. matrix list r(sd)

r(sd)[4,4]
c1 c2 c3 c4

r1 .01480274 .00999946 .00549943 .0092104
r2 .01704632 .0187432 .00830413 .01257617
r3 .02214005 .01961331 .01727322 .01622405
r4 .01489985 .01187526 .00645927 .01430764

. estat compensated, atmeans stderrs

. matrix list r(compelas)

r(compelas)[4,4]
c1 c2 c3 c4

r1 -.29659618 .11092802 .0144787 .17118946
r2 .18512612 -.49485551 .09746602 .21226337
r3 .05679139 .22907457 -.48254431 .19667835
r4 .26718728 .198515 .07826113 -.54396341

. matrix list r(sd)

r(sd)[4,4]
c1 c2 c3 c4

r1 .01427661 .00980769 .00543718 .00904256
r2 .01636742 .0185529 .00822818 .01236247
r3 .02132646 .01933838 .01721192 .01599929
r4 .0141134 .01156203 .00636639 .01417522

The main difference between the two commands is computing time. aidsills takes
4 iterations and lasts less than 1 second, which is very fast, while Poi’s quaids command
is slower, taking 14 iterations and lasting 3 seconds—see table 1 below, part 1. After
adding two demographic variables, estimation still requires 4 iterations and lasts 1
second using aidsills and requires 41 iterations and lasts 16 seconds using quaids.
Note that the number of iterations does not matter as long as the process converges.
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But time matters, especially when the dataset and the number of equations become
large—see table 1, part 2. For the same model, but with almost twice as many equations
and estimated on data more than 6 times larger than in part 1, aidsills needs only
7 seconds versus more than 1 minute for quaids. This difference becomes much bigger
with the two demographic variables added because of the way they are incorporated in
the model: computation time does not change much for the aidsills command (only
3 seconds longer), but it really explodes for the quaids command (more than 5 min-
utes). Given that demand systems can be expected to cover more than 20 commodities
and several thousands of individual observations characterized by tens of demographic
variables, this is a huge difference.

Table 1. Convergence speed of Stata commands (Stata/MP 13.1)

aidsills quaids

Data and model iterations time iterations time

(1) Obs. = 4048, eq. = 4,
demo. = 0: 4 <1s 14 3s
demo. = 2: 4 1s 41 16s

(2) Obs. = 25776, eq. = 7,
demo. = 0: 5 7s 19 1min31s
demo. = 2: 6 10s 68 5min09s

Note: HP Z400 Workstation, Intel Xeon CPU, 3.20 GHz, 7.98 Go RAM.

4.2 Endogenous regressors

Beyond the computation speed, the main interest of the aidsills command is to allow
for endogenous regressors. Indeed, most articles dealing with demand-system estima-
tions at least consider that the total budget is endogenous.

Let’s consider that total expenditure might be endogenous and generate a variable—
say, lninc—for the logarithm of income, partly random and partly correlated to total
expenditure. This variable is used as the identifying IV (of course, using more than one
IV is possible). It is indicated by the addition of the ivexpenditure(lninc) term in
the aidsills command. Let’s also incorporate our two demographic variables (nkids,
rural) in the model.

Except when the nofirst option is specified, the output now contains an additional
table presenting the reduced-form estimates. The dependent variable is the log total-
expenditure, and the independent variables are all exogenous variables entering the
model (here four log prices and two demographic variables) and the identifying IV. From
these estimates, residuals vexpfd (that is, v+ varname in expenditure(varname)) are
computed and introduced in the demand model as additional variables.
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When prices are not exogenous, each log price is regressed on exogenous variables
(that is, total expenditure if exogenous, demographic variables) and the identifying IVs,
which there are at least four of in ivprices(). Again results from these first-stage
regressions are reported in a series of tables preceding the demand-system estimates.
Residuals vp1 to vp4 (that is, v + varlist in prices(varlist)) are then predicted and
added to the set of regressors in each demand equation.

. generate lninc = ln(100+(runiform()*1000)+10*expfd)

. aidsills w1-w4, prices(p1-p4) expenditure(expfd) intercept(nkids rural)
> ivexpenditure(lninc) symmetry alpha_0(10)

INSTRUMENTAL REGRESSION(S)

Source SS df MS Number of obs = 4,048
F(7, 4040) = 401.62

Model 552.014066 7 78.8591523 Prob > F = 0.0000
Residual 793.261605 4,040 .196351883 R-squared = 0.4103

Adj R-squared = 0.4093
Total 1345.27567 4,047 .332413064 Root MSE = .44312

lnexpfd Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnp1 .1439361 .0209383 6.87 0.000 .1028978 .1849745
lnp2 -.0616234 .0224917 -2.74 0.006 -.1057064 -.0175405
lnp3 -.0139445 .0151455 -0.92 0.357 -.0436292 .0157401
lnp4 .0035425 .0165306 0.21 0.830 -.028857 .0359419
lninc .8736148 .0168881 51.73 0.000 .8405147 .9067149
nkids .008288 .006216 1.33 0.182 -.0038951 .0204712
rural .0021161 .0151447 0.14 0.889 -.0275671 .0317992
_cons -2.429511 .1187146 -20.47 0.000 -2.662188 -2.196835

Iteration = 1 Criterion = .2153067
Iteration = 2 Criterion = .00907554
Iteration = 3 Criterion = .00024835
Iteration = 4 Criterion = 5.910e-06

AIDS - PROPER ESTIMATION WITH FIXED ALPHA_0 = 10
HOMOGENEITY AND SYMMETRY CONSTRAINED ESTIMATES

Equation Obs Parms RMSE "R-sq" F( 8, 4039) Prob > F

w1 4048 8 .1327288 0.1235 81.33 0.0000
w2 4048 8 .1024318 0.0766 47.87 0.0000
w3 4048 8 .0536455 0.1471 99.57 0.0000
w4 4048 8 .1064861 0.0522 31.76 0.0000
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

w1
gamma_lnp1 .1233584 .0059918 20.59 0.000 .1116147 .1351022
gamma_lnp2 -.055359 .0061231 -9.04 0.000 -.0673601 -.043358
gamma_lnp3 -.0347832 .0045051 -7.72 0.000 -.043613 -.0259533
gamma_lnp4 -.0332162 .0046255 -7.18 0.000 -.042282 -.0241504

beta_lnx .0169582 .0059297 2.86 0.004 .0053361 .0285802
rho_vexpfd -.0013014 .0076341 -0.17 0.865 -.0162639 .0136612
alpha_nkids .001139 .0019357 0.59 0.556 -.0026549 .0049328
alpha_rural .0028354 .0047168 0.60 0.548 -.0064095 .0120802
alpha_cons .3997159 .0378613 10.56 0.000 .3255091 .4739226

w2
gamma_lnp1 -.055359 .004543 -12.19 0.000 -.0642632 -.0464549
gamma_lnp2 .0702557 .0047201 14.88 0.000 .0610045 .079507
gamma_lnp3 -.0023602 .0034068 -0.69 0.488 -.0090374 .0043169
gamma_lnp4 -.0125365 .0037755 -3.32 0.001 -.0199364 -.0051365

beta_lnx -.031956 .0040512 -7.89 0.000 -.0398962 -.0240158
rho_vexpfd .011132 .0054667 2.04 0.042 .0004175 .0218465
alpha_nkids -.0007932 .0014412 -0.55 0.582 -.0036179 .0020314
alpha_rural .0032516 .0035104 0.93 0.354 -.0036287 .010132
alpha_cons .104769 .0259033 4.04 0.000 .0539994 .1555386

w3
gamma_lnp1 -.0347832 .0023909 -14.55 0.000 -.0394692 -.0300971
gamma_lnp2 -.0023602 .0024528 -0.96 0.336 -.0071676 .0024471
gamma_lnp3 .042702 .0017913 23.84 0.000 .039191 .0462129
gamma_lnp4 -.0055586 .0019351 -2.87 0.004 -.0093514 -.0017658

beta_lnx .0068281 .0035393 1.93 0.054 -.0001088 .013765
rho_vexpfd -.0105338 .0040452 -2.60 0.009 -.0184623 -.0026053
alpha_nkids .000036 .000759 0.05 0.962 -.0014516 .0015236
alpha_rural -.0005303 .0018491 -0.29 0.774 -.0041545 .0030939
alpha_cons .14483 .0225554 6.42 0.000 .1006223 .1890377

w4
gamma_lnp1 -.0332162 .0046813 -7.10 0.000 -.0423915 -.024041
gamma_lnp2 -.0125365 .0048012 -2.61 0.009 -.0219466 -.0031263
gamma_lnp3 -.0055586 .0035068 -1.59 0.113 -.0124318 .0013146
gamma_lnp4 .0513113 .0037496 13.68 0.000 .0439623 .0586603

beta_lnx .0081698 .0074473 1.10 0.273 -.0064266 .0227662
rho_vexpfd .0007032 .0083846 0.08 0.933 -.0157304 .0171367
alpha_nkids -.0003817 .0014938 -0.26 0.798 -.0033096 .0025461
alpha_rural -.0055566 .0036396 -1.53 0.127 -.0126901 .0015769
alpha_cons .3506851 .0474526 7.39 0.000 .2576797 .4436905

Postestimation commands test and testnl can be used to perform tests on param-
eters. For instance, testing whether vexpfd is significant in each equation separately
provides direct (and independent) tests of total expenditure exogeneity in each equation.
A joint test can be obtained as follows:
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. test rho_vexpfd

( 1) [w1]rho_vexpfd = 0
( 2) [w2]rho_vexpfd = 0
( 3) [w3]rho_vexpfd = 0
( 4) [w4]rho_vexpfd = 0

Constraint 2 dropped

chi2( 3) = 11.05
Prob > chi2 = 0.0114

Additivity implies that Stata must drop one constraint (here the second, but it could
have been any other): if the coefficient of vexpfd is zero in three equations, then it must
also be zero in the fourth. Jointly, the null hypothesis of exogeneity can be rejected at
the 5% level. It can be rejected at the 5% level in the second equation and at the 1%
level in the third equation, separately.

When the ivprices() option is used—with at least as many arguments as there are
prices—in addition to (or instead of) ivexpenditure(), four additional independent
variables, vp1-vp4, appear in each equation, preceding (or replacing) vexpfd. Testing
the exogeneity of a given price or all prices in the whole demand system, or in each
equation separately, can then be done exactly the same way as above. This option can
be used, for example, to fit Deaton’s (1988) AI model with endogenous unit values, or
it can be used to fit the lower level of Hausman, Leonard, and Zona’s (1994) multistage
budgeting model.

4.3 Other features

The aidsills command allows the user to fit proper AI models as well as linearized,
constrained, and unconstrained models. It also allows one to test the validity of these
constraints. For example, assuming the exogeneity of all regressors and removing the
symmetry option while specifying the iteration(0) option, we fit the unconstrained
linearized AIDS.

Note that when the estimation is unconstrained, a joint test of homogeneity is re-
ported between the two tables. This is also the case when fitting the proper version
of the unconstrained AIDS model (that is, without the iteration(0) option). Here
homogeneity is jointly rejected at the 1% level. Testing for homogeneity can also be
done after the estimation for each equation separately or jointly.
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. aidsills w1-w4, prices(p1-p4) expenditure(expfd) intercept(nkids rural)
> iteration(0) alpha_0(10)

AIDS - LINEARIZED WITH STONE PRICE INDEX
UNCONSTRAINED ESTIMATES

Equation Obs Parms RMSE "R-sq" F( 7, 4040) Prob > F

w1 4048 7 .1325483 0.1259 83.13 0.0000
w2 4048 7 .1023763 0.0776 48.55 0.0000
w3 4048 7 .0530703 0.1653 114.31 0.0000
w4 4048 7 .1064415 0.0530 32.27 0.0000

HOMOGENEITY TEST: Chi2( 3) = 121.84 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

w1
gamma_lnp1 .1372222 .006269 21.89 0.000 .1249352 .1495093
gamma_lnp2 -.0333321 .0068252 -4.88 0.000 -.0467092 -.019955
gamma_lnp3 -.0588387 .0045422 -12.95 0.000 -.0677412 -.0499362
gamma_lnp4 -.0314309 .0052674 -5.97 0.000 -.0417548 -.021107

beta_lnx .0210047 .0036465 5.76 0.000 .0138578 .0281517
alpha_nkids .0010471 .0018576 0.56 0.573 -.0025937 .0046879
alpha_rural .0031973 .0045257 0.71 0.480 -.005673 .0120676
alpha_cons .2376424 .0151096 15.73 0.000 .208028 .2672568

w2
gamma_lnp1 -.0467974 .004842 -9.66 0.000 -.0562876 -.0373073
gamma_lnp2 .0709456 .0052716 13.46 0.000 .0606136 .0812777
gamma_lnp3 .0044428 .0035082 1.27 0.205 -.0024332 .0113188
gamma_lnp4 .0095794 .0040684 2.35 0.019 .0016056 .0175533

beta_lnx -.0233401 .0028164 -8.29 0.000 -.0288602 -.01782
alpha_nkids -.0008194 .0014347 -0.57 0.568 -.0036314 .0019927
alpha_rural .0033278 .0034955 0.95 0.341 -.0035233 .0101789
alpha_cons .3928153 .0116702 33.66 0.000 .3699421 .4156885

w3
gamma_lnp1 -.0389351 .00251 -15.51 0.000 -.0438546 -.0340155
gamma_lnp2 -.0168701 .0027327 -6.17 0.000 -.0222261 -.0115141
gamma_lnp3 .0399693 .0018186 21.98 0.000 .0364049 .0435337
gamma_lnp4 -.0172411 .002109 -8.18 0.000 -.0213747 -.0131076

beta_lnx -.0038375 .00146 -2.63 0.009 -.006699 -.0009759
alpha_nkids .0001842 .0007437 0.25 0.804 -.0012735 .001642
alpha_rural -.0006798 .001812 -0.38 0.708 -.0042314 .0028717
alpha_cons .1008339 .0060497 16.67 0.000 .0889767 .112691

w4
gamma_lnp1 -.0514897 .0050343 -10.23 0.000 -.0613567 -.0416227
gamma_lnp2 -.0207434 .0054809 -3.78 0.000 -.0314858 -.0100011
gamma_lnp3 .0144266 .0036476 3.96 0.000 .0072775 .0215757
gamma_lnp4 .0390926 .0042299 9.24 0.000 .030802 .0473831

beta_lnx .0061728 .0029283 2.11 0.035 .0004335 .0119121
alpha_nkids -.000412 .0014917 -0.28 0.782 -.0033357 .0025117
alpha_rural -.0058453 .0036343 -1.61 0.108 -.0129685 .0012779
alpha_cons .2687084 .0121336 22.15 0.000 .2449269 .2924899



S. Lecocq and J.-M. Robin 571

When homogeneity constrained models are fit, a test for symmetric price effects is
provided, as can be seen in the proper AIDS below.

. aidsills w1-w4, prices(p1-p4) expenditure(expfd) intercept(nkids rural)
> homogeneity alpha_0(10)

Iteration = 1 Criterion = .179615
Iteration = 2 Criterion = .0061031
Iteration = 3 Criterion = .0001267
Iteration = 4 Criterion = 1.567e-06

AIDS - PROPER ESTIMATION WITH FIXED ALPHA_0 = 10
HOMOGENEITY CONSTRAINED ESTIMATES

Equation Obs Parms RMSE "R-sq" F( 7, 4040) Prob > F

w1 4048 7 .1327138 0.1235 94.90 0.0000
w2 4048 7 .1024759 0.0756 55.05 0.0000
w3 4048 7 .0537307 0.1442 113.49 0.0000
w4 4048 7 .1064734 0.0522 37.06 0.0000

SYMMETRY TEST: Chi2( 3) = 62.07 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

w1
gamma_lnp1 .1317659 .0058962 22.35 0.000 .1202096 .1433221
gamma_lnp2 -.0474768 .0059874 -7.93 0.000 -.059212 -.0357416
gamma_lnp3 -.0628936 .0044601 -14.10 0.000 -.0716353 -.054152
gamma_lnp4 -.0213955 .0046054 -4.65 0.000 -.0304219 -.012369

beta_lnx .0166045 .0036438 4.56 0.000 .0094629 .0237461
alpha_nkids .0011289 .0019139 0.59 0.555 -.0026222 .00488
alpha_rural .0031723 .0046638 0.68 0.496 -.0059685 .0123131
alpha_cons .4131347 .0240166 17.20 0.000 .366063 .4602065

w2
gamma_lnp1 -.055147 .0045336 -12.16 0.000 -.0640327 -.0462613
gamma_lnp2 .0670054 .0045601 14.69 0.000 .0580678 .075943
gamma_lnp3 .0021435 .0034037 0.63 0.529 -.0045276 .0088146
gamma_lnp4 -.0140018 .0036739 -3.81 0.000 -.0212026 -.006801

beta_lnx -.0261695 .00268 -9.76 0.000 -.0314223 -.0209168
alpha_nkids -.0008039 .0014395 -0.56 0.577 -.0036253 .0020176
alpha_rural .0031937 .0035067 0.91 0.362 -.0036794 .0100667
alpha_cons .1379505 .0176701 7.81 0.000 .1033177 .1725833

w3
gamma_lnp1 -.0296808 .0023732 -12.51 0.000 -.0343323 -.0250293
gamma_lnp2 -.0029737 .0023855 -1.25 0.213 -.0076491 .0017017
gamma_lnp3 .0446189 .0017819 25.04 0.000 .0411264 .0481114
gamma_lnp4 -.0119644 .001887 -6.34 0.000 -.0156629 -.0082659

beta_lnx .0012039 .0018237 0.66 0.509 -.0023705 .0047782
alpha_nkids .0001089 .0007499 0.15 0.885 -.001361 .0015787
alpha_rural -.000582 .0018271 -0.32 0.750 -.0041631 .0029991
alpha_cons .1019298 .0119737 8.51 0.000 .0784617 .125398
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w4
gamma_lnp1 -.0469381 .0047305 -9.92 0.000 -.0562097 -.0376664
gamma_lnp2 -.0165549 .0047642 -3.47 0.001 -.0258926 -.0072172
gamma_lnp3 .0161312 .0035437 4.55 0.000 .0091858 .0230767
gamma_lnp4 .0473617 .0037069 12.78 0.000 .0400964 .054627

beta_lnx .0083612 .0037706 2.22 0.027 .000971 .0157513
alpha_nkids -.0004339 .0015107 -0.29 0.774 -.0033947 .002527
alpha_rural -.005784 .0036811 -1.57 0.116 -.0129989 .0014309
alpha_cons .3469849 .0247559 14.02 0.000 .2984641 .3955057

Again, testing for symmetry (or for any other hypotheses on parameters) can be
done after the estimation.

. quietly test [w1]gamma_lnp2=[w2]gamma_lnp1, notest

. quietly test [w1]gamma_lnp3=[w3]gamma_lnp1, notest accumulate

. test [w2]gamma_lnp3=[w3]gamma_lnp2, accumulate

( 1) [w1]gamma_lnp2 - [w2]gamma_lnp1 = 0
( 2) [w1]gamma_lnp3 - [w3]gamma_lnp1 = 0
( 3) [w2]gamma_lnp3 - [w3]gamma_lnp2 = 0

chi2( 3) = 62.07
Prob > chi2 = 0.0000

These values correspond to those reported in the output. Symmetry is rejected at
any conventional level.
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