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Abstract. trabinor calculates the population transition matrix between two dis-
cretized variables when the original continuous variables follow a bivariate normal
distribution. The user can specify the five parameters of bivariate normal and how
to discretize the two variables by choosing either a given number of quantiles or a
set of absolute boundaries.
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1 Introduction

A transition matrix is a useful tool to describe a stochastic process that involves a finite
number of states. Examples include transitions among employment statuses (unem-
ployed, employed part-time, and full-time) for a population of workers or among rating
classes for companies and governments. Often the variable of interest is continuous,
such as income; for instance, one might be interested in the association between an
individual’s income and the income of his or her father. After a proper discretization
in a finite number of classes, a transition matrix can help answer questions like the
following: given that the father earns less than x, what is the probability that a child
earns more than y (that is, undergoes upward mobility) or less than x itself (that is,
falls into a “poverty trap”)?

trabinor calculates the transition matrix between two variables (after being appro-
priately discretized) if they follow a bivariate normal distribution. It can be used mostly
for the following two purposes:

• It can be used when sample size is too small to have a reliable estimate of the
transition matrix, especially when there are many cells to estimate. If one is
willing to assume that the two variables are jointly normal, then sample moments
can be computed from data and passed to trabinor.

© 2015 StataCorp LP st0392



548 Transition matrix

• It can be used in Monte Carlo simulations to study the properties of estimators
related to a transition matrix. For example, in intergenerational mobility analysis,
the trace of a matrix (that is, the sum of the elements of the main diagonal in a
square matrix) is an important summary measure of persistence of socioeconomic
status1 (for a recent survey, see Black and Devereux [2011]). The behavior of
this type of estimator when variables are contaminated by measurement errors is
studied in O’Neill, Sweetman, and Van de gaer (2007). trabinor can be used to
compute the “true” (that is, population) value of such estimators under different
parameter values.

2 Statistical background

Assume that [
Y
X

]
∽ N

[(
µY
µX

)
,

(
σ2
Y ρσY σX

ρσY σX σ2
X

)]

where the parameters (µY , σY , µX , σX , ρ) are known or can be estimated from data.

Let FY,X(y, x) also denote the joint normal cumulative distribution function (CDF),
where FY (·) and FX(·) are the marginal CDF. Assume that Y and X are discretized
according to the rules (−∞ < Y ≤ y1, y1 < Y ≤ y2, . . . , yK−1 < Y ≤ yK , yK < Y <
∞) and (−∞ < X ≤ x1, x1 < X ≤ x2, . . . , xJ−1 < X ≤ xJ , xJ < X <∞).

Let M be the transition matrix between the discretized versions of Y and X,

MJ+1,K+1 =




p1,1 p1,2 · · · p1,K+1

p2,1 p2,2 · · · p2,K+1

...
...

. . .
...

pJ+1,1 pJ+1,2 · · · pJ+1,K+1




where the generic element pjk gives the probability that Y falls in the kth class given
that X falls in the jth class.

pjk = Pr(yk−1 < Y < yk | xj−1 < X < xj)

=
Pr(yk−1 < Y < yk, xj−1 < X < xj)

Pr(xj−1 < X < xj)

=
FY,X(yk, xj) + FY,X(yk−1, xj−1)− FY,X(yk, xj−1)− FY,X(yk−1, xj)

FX(xj)− FX(xj−1)

The last equality exploits the Stata functions binormal(h, k, r) (for the numerator)
and normal(z) (for the denominator).

1. The higher the trace, the higher the elements on the first diagonal and the stronger the association
between a father’s and a son’s socioeconomic statuses.
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3 The trabinor command

3.1 Description

Besides the five parameters of the bivariate normal distribution (µY , σY , µX , σX , ρ),2

Y and X can be discretized by choosing either a given number of quantiles or a set
of absolute boundaries. If the user sets a number Q of quantiles, then the resulting
transition matrix will obviously be of size Q×Q. If the user sets K absolute boundaries
for Y and J absolute boundaries for X, then the resulting transition matrix will be
rectangular of size (J+1)×(K+1).3 In this case, boundaries for X must be chosen such
that all the states of X have a nonzero probability of occurrence; otherwise, we will be
conditioning on an impossible event.4 A warning message appears if any of the marginal
probabilities of (the discretized) X are smaller than 5,000,000−1; a second message
appears if this probability is so small that the corresponding row of the transition
matrix cannot be computed.

If neither the number of quantiles nor the absolute boundaries are specified, the
trabinor command computes a 5× 5 quantile matrix by default.

Results are displayed in percentage points, so the row sums of the transition matrix
sum to 100.

3.2 Syntax

The syntax of trabinor is the following:

trabinor
[
, quant(#) y(numlist) x(numlist) muy(#) sy(#) mux(#) sx(#)

rho(#) format(string)
]

3.3 Options

quant(#) specifies in how many quantiles Y and X should be divided. The default is
quant(5). quant(#) must be an integer greater than 1 and cannot be combined
with the options y() and x().

y(numlist) sets the boundaries of the marginal distribution of Y . It cannot be combined
with quant().

2. The default values are those of a standard bivariate normal with ρ = 0.5.
3. To see this, imagine that we set the boundary 0 for both Y and X; then, both variables will be

divided in two levels, namely, (−∞, 0) and (0,∞).
4. From a theoretical point of view, the normal distribution assigns a nonzero probability on any

interval defined on the real line, but these probabilities can be very small. For example, if Φ(·)
denotes the standard normal CDF, then Φ(−5) ≈ 0.00000028665 < 3, 000, 000−1. Therefore, a
wrong choice of the boundaries might induce some issue of numerical approximation, given that the
conditional probabilities are computed as the ratios between the joint and marginal probabilities.
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x(numlist) sets the boundaries of the marginal distribution ofX. It cannot be combined
with quant().

If none of the options quant(), y(), or x() are specified, trabinor computes a
5× 5 quantile transition matrix (as if quant(5) were invoked). If only y() is specified,
the same boundaries are applied to X; analogously, if only x() is specified, the same
boundaries are applied to Y .

muy(#) defines the mean of Y . The default is muy(0).

sy(#) defines the standard deviation of Y . The default is sy(1).

mux(#) defines the mean of X. The default is mux(0).

sx(#) defines the standard deviation of X. The default is sx(1).

rho(#) defines the correlation coefficient between Y and X. The default is rho(.5).
This must be between −1 and 1.

format(string) controls how to display results. The default is format(%9.3f).

3.4 Stored results

trabinor stores the following in r():

Scalars
r(muy) mean of Y r(sy) standard deviation of Y
r(mux) mean of X r(sx) standard deviation of X
r(rho) correlation coefficient between

Y and X

Matrices
r(M) resulting transition matrix r(chk100) consistency check on r(M) (that
r(PY) matrix of marginal is, row sums are equal to 100)

probabilities of Y r(J) matrix of joint probabilities
r(PX) matrix of marginal

probabilities of X

4 Examples

Here I discuss three examples of trabinor. Let Θ1, Θ2, and Θ3 represent the five
parameters of the bivariate normal distribution in each of the three examples.

In the first example, trabinor computes the quantile transition matrix of size 4 for
a bivariate standard normal distribution with ρ = 0.5. Moreover, it uses the output
program to obtain the trace of the transition matrix. Interpreting the results for the
quantile transition matrix is straightforward: the probability that Y is smaller than its
first quartile, given that X is smaller than its first quartile, is 48.1%. Analogously, using
a formal notation, Pr{F−1

Y (0.50) < Y ≤ F−1
Y (0.75) | X ≤ F−1

X (0.25);Θ1} = 16.8%, and
so on.
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. trabinor, quant(4) format(%9.1f)

Mean Std. Dev. Corr(Y,X)

Y 0 1 .5
X 0 1

Discretization of Y and X

Y 4 quantiles of the marginal distribution of Y
X 4 quantiles of the marginal distribution of X

Population Transition Matrix of Y given X

symmetric M[4,4]
y1 y2 y3 y4

x1 48.1 27.8 16.8 7.2
x2 27.8 29.6 25.8 16.8
x3 16.8 25.8 29.6 27.8
x4 7.2 16.8 27.8 48.1

. scalar mytrace = trace(r(M))

. display mytrace
155.32692

In the second example, let’s specify different parameters for the bivariate distribution.
The variable X is discretized in 4 classes [(−∞,−3], (−3, 0], (0, 3], (3,∞)] and Y in 6
classes [(−∞, 2], (2, 3], (3, 5], (5, 7.5], (7.5, 10], (10,∞)]. From the output, we observe that
Pr(Y < 2 | X < −3;Θ2) = 0.4%, or that Pr(7.5 ≤ Y < 10 | −3 ≤ X < 0;Θ2) = 23.0%,
and so on. We then look at the marginal probabilities for both variables, presented as
row vectors: Pr(7.5 ≤ Y < 10;Θ2) = 15.5% and Pr(−3 ≤ X < 0;Θ2) = 43.3%.

. trabinor, y(2 3 5(2.5)10) x(-3(3)3) sx(2) muy(5) sy(3) rho(-0.6) f(%9.1f)

Mean Std. Dev. Corr(Y,X)

Y 5 3 -.6
X 0 2

Discretization of Y and X

Y 2 3 5 7.5 10
X -3 0 3

Population Transition Matrix of Y given X

M[4,6]
y1 y2 y3 y4 y5 y6

x1 0.4 0.9 6.7 26.7 38.1 27.1
x2 5.0 5.7 22.2 38.1 23.0 6.1
x3 22.7 13.6 30.9 25.4 6.7 0.7
x4 57.6 14.8 19.6 7.3 0.8 0.0

. matrix define py=r(PY)´

. matrix define px=r(PX)´

. matrix list py

py[1,6]
r1 r2 r3 r4 r5 r6

c1 15.865525 9.3837284 24.750746 29.767162 15.453803 4.7790352
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. matrix list px

px[1,4]
r1 r2 r3 r4

c1 6.6807201 43.31928 43.31928 6.6807201

In the last example, we pass the empirical sample moments to trabinor using a dataset
containing measures of blood pressure in 2 time periods (bp before and bp after) for
a sample of 120 patients characterized by high blood pressure. Then, we look at the
conditional probability of being in hypertension (bp after ≥ 140) given the level of
bp before. We note that this conditional probability is 80% given hypertension in the
past and 69% given no hypertension in the past.

. sysuse bpwide, clear
(fictional blood-pressure data)

. quietly summarize bp_before

. scalar mu_0 = r(mean)

. scalar sd_0 = r(sd)

. quietly summarize bp_after

. scalar mu_1 = r(mean)

. scalar sd_1 = r(sd)

. quietly correlate bp_before bp_after

. scalar corr = r(rho)

. trabinor, muy(`=mu_1´) sy(`=sd_1´) mux(`=mu_0´) sx(`=sd_0´) rho(`=corr´)
> x(140)

Mean Std. Dev. Corr(Y,X)

Y 151.36 14.178 .15912
X 156.45 11.39

Discretization of Y and X

Y 140
X 140

Population Transition Matrix of Y given X

M[2,2]
y1 y2

x1 30.654 69.346
x2 20.389 79.611
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