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Abstract. In this article, we describe the gmentropylogit command, which im-
plements the generalized maximum entropy estimation methodology for discrete
choice models. This information theoretic procedure is preferred over its maxi-
mum likelihood counterparts because it is more efficient, avoids strong parametric
assumptions, works well when the sample size is small, performs well when the
covariates are highly correlated, and functions well when the matrix is ill con-
ditioned. Here we introduce the generalized maximum entropy procedure and
provide an example using the gmentropylogit command.

Keywords: st0390, gmentropylogit, generalized maximum entropy, maximum en-
tropy, logit, discrete choice

1 Introduction

Maximum entropy (ME) estimation for discrete choice problems is an alternative to tra-
ditional maximum-likelihood (ML) estimation methods such as logit and probit. How-
ever, of all multinomial probability distributions, ME estimation is the most noncom-
mittal option available to the econometrician looking to avoid parametric assumptions
(Mittelhammer, Judge, and Miller 2000). Under the principle of ME, the econometri-
cian selects the probabilities with the minimal information content for the multinomial
problem (Mittelhammer, Judge, and Miller 2000). The ME procedure consists in maxi-
mizing Shannon’s (1948) entropy measure,

H(p) ≡ −
∑

j

pj ln pj

where pj is the probability of observing outcome j. Jaynes (1957a, 1957b) proposed
applying the ME procedure to recover unknown probabilities. Denzau, Gibbons, and
Greenberg (1989) and Soofi (1992) used the suggested procedure to solve the multino-
mial choice problem. Soofi (1992) established the link and equivalence between the ME

procedure and the traditional logit and referred to the ME procedure as the ME logit.

Golan, Judge, and Perloff (1996) expanded the ME procedure by including the noise
terms in the multinomial information constraints of the ME. This generalized maximum
entropy (GME) estimation method accounts for unknown disturbances that impose chal-
lenges on the ME and ML methods (Golan, Judge, and Miller 1996). Adding the noise
terms to the ME procedure results in an estimator with the same sampling properties as

© 2015 StataCorp LP st0390
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the ME counterpart for large samples (Golan, Judge, and Miller 1996). However, given
finite samples, the GME outperforms its ME and ML counterparts. Specifically, the GME

has the following preferred properties (Golan, Judge, and Perloff 1996):

1. It is more efficient.

2. It avoids strong parametric assumptions.

3. It works well when the sample size is small.

4. It works well when the covariates are highly correlated.

5. It works well when the matrix is ill conditioned.

We begin this article by familiarizing readers with the GME estimator using the method-
ology proposed by Golan, Judge, and Miller (1996) and Golan, Judge, and Perloff
(1996). We then introduce the new command gmentropylogit, which can be used
as an alternative to logit or probit to fit discrete choice models.

2 GME logit

Logit and probit models are widely used in the social sciences. These model the prob-
ability (p) that agent i will choose or face a certain outcome from the set of possible
outcomes (Soofi 1992). These two estimation methods entail finding the probability
that an outcome is observed, and they assume that the most likely outcome is the one
observed (Soofi 1992). However, logit and probit impose a parametric structure on the
probabilities. The underlying distribution for the probabilities is unknown, and the
choice of logit and probit relies on this strong assumption (Golan, Judge, and Perloff
1996). Thus Golan, Judge, and Miller (1996) and Golan, Judge, and Perloff (1996) pre-
fer to use estimation strategies that do not rely on such heavy assumptions: ME and
GME.

ME entails finding the probability distribution (p1, p2, . . . , pn) for the set of values
(x1, x2, . . . , xn) given their moments of these values. GME builds upon ME by adding
natural noise components. For the GME solution, we consider an experiment consisting
of T trials. In each experiment with J unordered possible outcomes, a binary random
variable yi1, . . . , ytj is observed, where yij for i = 1, 2, . . . , T takes one of the J unordered
categories j = 1, 2, . . . , J . On each trial i, each J alternative is observed in the form of
a binary variable, yij , that equals unity if alternative j is observed and zero otherwise.
Let pij be the probability of alternative j on trial i and be related to a set of variables
through the model

pij = Prob(yij = 1|xi,βj) = F (x′
iβj) > 0 for all i and j

where βj is a (K × 1) vector of unknowns, x′
i is a (1 × K) vector of covariates, and

F (·) is a function linking the probabilities pij with the covariates x′
iβj , such that∑

j F (x
′
iβj) = 1.
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For the logit model, F (·) would be the logistic cumulative density function. For the
probit model, F (·) would be the standard Gaussian cumulative density function. If we
accommodate the model to have noisy data, then the model becomes

yij = F (·) + eij = pij + eij

where pij denotes the unknown multinomial probabilities and eij denotes the natural
noise components for each observation and is contained in the [−1, 1] support space for
each observation.

To recover the unknown and unobservable p and e, one must use the noisy observable,
yij , and the known covariates, xi, to formulate the problem. In the GME formulation of
the multinomial problem, this information is used as the cross-moments between the x
matrix and all the other quantities

(Ij ⊗X′)y = (Ij ⊗X′)p+ (Ij ⊗X′)e (1)

where X is a (T ×K) matrix and there are TJ data points for yij . The yij data points
are vectorized and thus are (TJ × 1) vectors. The same applies for e and p, which are
also vectors of dimension (TJ × 1). As can be seen from (1), it is an ill-posed problem
where there are {T × (J − 1)} unknown parameters but only (K × J) < {T × (J − 1)}
data points.

To use Shannon’s entropy measure to estimate the problem, we must reparameterize
the noise components. Because p is already in a probability form, only the elements
of e need to be reparameterized to proceed with GME, as suggested by Golan, Judge,
and Perloff (1996). Because each eij will range between [−1, 1], we can include a set
of discrete points (vij) ranging between [0, 1]. The error terms are characterized by
an H-dimensional support space, v, and an H-dimensional vector of weights, w, that
correspond to each v. The unknown weights have the properties of probabilities with∑
h wijh = 1. Thus the resulting reparameterization is

eij ≡
∑

h

vijhwijh

where the H-dimensional errors’ support suggested by Golan, Judge, and Miller (1996,
253) as a conservative choice is v = (−1/

√
T , 0, 1/

√
T ) for each eij . Hence, in this case,

H = 3.

Under this reparameterization, (1) takes the form

(Ij ⊗X′)y = (Ij ⊗X′)p+ (Ij ⊗X′)(wv)

where now both p and w are in the form of probabilities, w is a TJ ×H matrix, and
v is an H × 1 matrix.

As noted before, the difference between GME and ME estimation arises because of the
inclusion of the noise terms, which give the GME the desired properties we enumerated
before. The resulting solutions for ML multinomial logit and ME p are equivalent, even



P. Corral and M. Terbish 515

though their formulations are different (see Soofi [1992]). As Mittelhammer, Judge,
and Miller (2000) discuss, this equivalence can be explained by the following: 1) the
estimating equations or moment constraints in the ME formulation are the ML logit
first-order conditions; and 2) the ME solution resulting from the optimization has the
same form as the logistic multinomial probabilities. As we illustrate in the following
section, the GME gains the advantage over the ME because the GME is a product of two
logits for the p and for the w (Golan, Judge, and Perloff 1996).

2.1 GME formulation and solution

The objective function for the GME discrete choice problem is a dual objective function.
The dual objective function is composed of the entropy of the probabilities (p) and the
entropy for the weights (w) (Golan, Judge, and Perloff 1996; Golan, Judge, and Miller
1996). This implies the assumption of independence between the two. The objective
function of the GME multinomial problem is the maximization of the Shannon entropy
measure and takes the following form specified in Golan, Judge, and Perloff (1996),

maxp,wH(p, w) = maxp,w(−p′lnp−w′lnw)

subject to the JK information-moment conditions,

(Ij ⊗X′)y = (Ij ⊗X′)p+ (Ij ⊗X′)(wv) (2)

the normalization constraints,

(IT1IT2 . . . ITJ)p = 1 for i = 1, 2, . . . , T (3)

and
1′wij = 1 for i = 1, 2, . . . , T and j = 1, 2, . . . , J

where 1 is a (1×H) vector of 1s.

The corresponding Lagrangian is

L = −p′ lnp−w′ lnw

+ λ′ {(IJ ⊗X′)p+ (IJ ⊗X′)Vw − (IJ ⊗X′)y}
+ µ′ {1− (I1JI2J . . . ITJ)p}+ ρ′ (1− 1′w)

where λ, µ, and ρ are the corresponding Lagrange multipliers. Under this specification,
the parameters of interest are λ. Note that these provide the coefficients −λj = βj .

To simplify the math, we proceed with the Lagrangian in scalar form,

maxp,wH(p, w) = maxp,w


−

∑

ij

pij ln pij −
∑

ijh

wijh ln wijh




subject to the JK information-moment conditions, where the JKth condition is
∑

i

yijxik =
∑

i

xikpij +
∑

ih

xikvhwijh (4)
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and ∑

j

pij = 1

and ∑

h

wijh = 1

The resulting first-order conditions are

∂L
∂pij

= − ln pij − 1−
∑

k

λjkxik − µi = 0

∂L
∂wijh

= − ln wijh − 1−
∑

k

λjkxikvh − ρi = 0

∂L
∂λjk

=
∑

i

yijxik −
∑

i

xikpij −
∑

i

xikvhwijh = 0

∂L
∂µi

= 1−
∑

j

pij = 0

∂L
∂ρi

= 1−
∑

h

wijh = 0

Note that for the Lagrange parameters βjk = −λjk,

pij = exp

(
−1− µi −

∑

k

λjkxik

)

and

wijh = exp

(
−1− ρi −

∑

k

λjkxikvh

)

We sum the probability equation over j and sum the noise component weights over h
and have

∑

j

pij = exp(−1− µi)
∑

j

exp

(
−
∑

k

λjkxik

)
= 1

and
∑

h

wijh = exp(−1− ρi)
∑

h

exp

(
−
∑

k

λjkxikvh

)
= 1

Then, by setting λ1 = 0, where 0 is a (K × 1) zero vector, we obtain

p̂ij =

exp

(
−∑

k

λ̂jkxik

)

∑
j

exp

(
−∑

k

λ̂jkxik

) =

exp

(
−∑

k

λ̂jkxik

)

1 +
J∑
j=2

exp

(
−∑

k

λ̂jkxik

) ≡
exp

(
−∑

k

λ̂jkxik

)

Ωi
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and

ŵijh =

exp

(
−∑

k

xikλ̂jkvh

)

∑
h

exp

(
−∑

k

xikλ̂jkvh

) ≡
exp

(
−∑

k

xikλ̂jkvh

)

Ψij

(
λ̂
)

As we can with the traditional logit, we can also define log odds-ratios, which we
calculate as follows (Mittelhammer, Judge, and Miller 2000):

ln

(
pij
pi1

)
= −xiλj

Concurrently, the exponentiated coefficients may be interpreted as odds ratios.

The dual unconstrained formulation of the GME problem demonstrates that the GME

is related to a class of generalized logit formulations (Golan, Judge, and Perloff 1996;
Golan, Judge, and Miller 1996). Building on the Lagrangian, the dual unconstrained
GME formulation as a function of the Lagrangian multipliers, λ, is, according to Golan,
Judge, and Perloff (1996) and Golan, Judge, and Miller (1996),

M(λj) = −p(λ)′ ln p(λ)−w(λ)′ ln w(λ)

+ λ′{(Ij ⊗X′)y − (Ij ⊗X′)p− (Ij ⊗X′)(wv)}
= −p(λ)′(−x′

iλj − ln Ωi)−w(λ)′(−x′
iλjvj − ln Ψij)

+ λ′{(Ij ⊗X′)y − (Ij ⊗X′)p− (Ij ⊗X′)(wv)}
= y′(Ij ⊗X)λ+

∑

i

ln {Ωi(λj)}+
∑

i

∑

j

ln {Ψi(λj)} (5)

By minimizing the dual objective function with respect to λ, we obtain the multipli-
ers λ̂. From these, we obtain the values of p̂ij and ŵijh. Compared with the primal GME

problem, the dual unconstrained estimation is computationally more efficient because it
requires estimation of KJ λ̂ to estimate the same T ×J p as in the primal problem. The
objective function constitutes a generalized log-likelihood function where the right-hand
side involves the error terms introduced in the GME formulation. As the sample size
increases, the error terms converge to zero, and the GME estimations approach the ME

and ML solutions because these have zero moment conditions.

The average marginal effects (AMEs) are considered the more informative parame-
ters, as in a probit or logit specification. The AME for a continuous variable is (Bartus
2005)

AMEk = βk
1

T

T∑

i=1

pi(1− pi)

If xk is a dummy variable, then the equation for the AME is (Bartus 2005)

AMEk =
1

T

T∑

i=1

[{xkipi(1− pi)|xk=1} − {xkipi(1− pi)|xk=0}]
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3 The gmentropylogit command, output, and statistics

3.1 gmentropylogit

gmentropylogit is implemented via the optimize() function in Mata, where we op-
timize the dual unconstrained model (5). It is executed as a d0 evaluator, and Stata
obtains the numerical first and second derivatives for the objective function. The com-
mand also allows estimation of the marginal effects, which provide the impact of each
x on the probability of a positive outcome. The syntax is as follows:

gmentropylogit depvar
[
indepvars

] [
if
] [

in
] [

, mfx generate(varname)
]

Options

mfx displays, instead of the coefficients, the impact of each x on the probability of
a positive outcome. mfx considers dummy variables and provides their estimates
accordingly.

generate(varname) creates a new variable with a user-selected name that will contain
the predicted probability of the fitted model.

Example

Here we illustrate the use of the gmentropylogit command to estimate the probability
of a car being foreign using Stata’s auto.dta.

. sysuse auto
(1978 Automobile Data)

. gmentropylogit foreign price mpg weight trunk
Iteration 0: log likelihood = -213.88751
Iteration 1: log likelihood = -184.47517
Iteration 2: log likelihood = -184.17173
Iteration 3: log likelihood = -184.16896
Iteration 4: log likelihood = -184.16896

Generalized Maximum Entropy (Logit) Number of obs = 74
Degrees of freedom = 4
Entropy for probs. = 24.4
Normalized entropy = 0.4750
Ent. ratio stat. = 53.9
P Val for LR = 0.0000

Criterion F (log L) = -184.16896 Pseudo R2 = 0.5250

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

price .0005633 .0001571 3.59 0.000 .0002554 .0008713
mpg -.0878192 .0831957 -1.06 0.291 -.2508797 .0752413

weight -.0043673 .0010259 -4.26 0.000 -.006378 -.0023566
trunk .0367 .1159334 0.32 0.752 -.1905252 .2639253
_cons 9.373785 3.919642 2.39 0.017 1.691428 17.05614
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However, the marginal effects are the more informative parameters because these
inform us of the expected change in the probability.

. sysuse auto, clear
(1978 Automobile Data)

. gmentropylogit foreign price mpg weight trunk, mfx
Iteration 0: log likelihood = -213.88751
Iteration 1: log likelihood = -184.47517
Iteration 2: log likelihood = -184.17173
Iteration 3: log likelihood = -184.16896
Iteration 4: log likelihood = -184.16896

Generalized Maximum Entropy (Logit), dF/dx Number of obs = 74
Degrees of freedom = 4
Entropy for probs. = 24.4
Normalized entropy = 0.4750
Ent. ratio stat. = 53.9
P Val for LR = 0.0000

Criterion F (log L) = -184.16896 Pseudo R2 = 0.5250

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

price .0000584 .0000114 5.12 0.000 .0000361 .0000808
mpg -.0091075 .0083781 -1.09 0.277 -.0255283 .0073132

weight -.0004529 .0000473 -9.58 0.000 -.0005456 -.0003603
trunk .0038061 .011915 0.32 0.749 -.0195469 .0271591
_cons .9721323 .3524144 2.76 0.006 .2814127 1.662852

Partial effect for dummy is E[y|x,d=1] - E[y|x,d=0]

If we were to also specify the generate() option, the command would provide the
following results:

. sysuse auto, clear
(1978 Automobile Data)

. gmentropylogit foreign price mpg weight trunk, generate(p_foreign)
Iteration 0: log likelihood = -213.88751
Iteration 1: log likelihood = -184.47517
Iteration 2: log likelihood = -184.17173
Iteration 3: log likelihood = -184.16896
Iteration 4: log likelihood = -184.16896

Generalized Maximum Entropy (Logit) Number of obs = 74
Degrees of freedom = 4
Entropy for probs. = 24.4
Normalized entropy = 0.4750
Ent. ratio stat. = 53.9
P Val for LR = 0.0000

Criterion F (log L) = -184.16896 Pseudo R2 = 0.5250

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

price .0005633 .0001571 3.59 0.000 .0002554 .0008713
mpg -.0878192 .0831957 -1.06 0.291 -.2508797 .0752413

weight -.0043673 .0010259 -4.26 0.000 -.006378 -.0023566
trunk .0367 .1159334 0.32 0.752 -.1905252 .2639253
_cons 9.373785 3.919642 2.39 0.017 1.691428 17.05614

Percent correctly predicted:87.837838
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Notice that the output report the percentage of correctly predicted results for the
fitted model in the bottom left-hand corner.

3.2 Inference and diagnostic statistics

Along with the β coefficients, the marginal effects, and the traditional statistics, the
gmentropylogit command returns inference and diagnostic statistics that are specific
to the GME methodology. The maximum possible entropy in the model occurs when
the distribution over the outcomes is uniform (Soofi 1992). Soofi (1992) explains that
this occurs when the moment constraints (2) are not included or when the moment
constraints are linearly dependent with the normalizing constraints (3). Once we add
relevant data, we move away from the uniform distribution and reduce uncertainty
(Golan, Judge, and Perloff 1996). The normalized entropy measures “the proportion
of the remaining total uncertainty” (Golan, Judge, and Perloff 1996) for discrete choice
models. Golan, Judge, and Perloff (1996) and Soofi (1992) present the following:

S(p̂) =

(
−∑

i

∑
j

p̂ij ln p̂ij

)

(T ln J)
=

−p′ ln p

(T ln J)

Here S(p̂) ∈ (0, 1) and (T ln J) is maximum uncertainty. S(p̂) = 0 indicates a complete
lack of uncertainty, whereas S(p̂) = 1 indicates that the probability measure is uniform
for i and j or that there is perfect uncertainty. This measure of uncertainty helps the user
to compare different model specifications. For example, if eliminating an explanatory
variable does not alter the S(p̂) measure, then, based on the data, the eliminated variable
has no informational contribution and does not help explain the uncertainty of the
unknown pij .

Because the normalized entropy measures the level of uncertainty in the model,
its counterpart, the information index, measures the level of information in the model
(Soofi 1992). The index provides a goodness-of-fit measure, and Soofi (1992) defines it
as I(p̂) = 1 − S(p̂). Because I(p̂) measures the proportion of variation in the model’s
data, it is often referred to as pseudo-R2 (Golan 2008).

Another diagnostic statistic that is characteristic of the discrete choice ME method
is the entropy ratio statistic. The equivalence between ML and ME methods allows for
deriving the relationship between the log-likelihood value and the entropy ratio statistic.
Golan, Judge, and Perloff (1996) indicate that in the GME formulation, the ME will be
attained if the information-moment conditions (4) are not enforced and will therefore
have a uniform distribution of probabilities over each choice set. The log-likelihood
value of the unconstrained problem where λ = 0 is ln lω = T ln J (Golan 2008). The
constrained likelihood is the value of max(H) and ln lΩ = −p lnp. Therefore, the
entropy ratio statistic is

W = 2 ln lω − 2 ln lΩ = 2T ln J{I(p̂)}
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4 Conclusion

In this article, we describe the user-written command gmentropylogit, which pro-
vides users with an alternative to probit and logit estimation methods. The estimation
method is preferable over logit and probit because of the aforementioned desired char-
acteristics. The command also provides the user with a new set of information statistics
that are relevant to ME estimation. Finally, the command includes the option mfx to
provide users with the AMEs, which are usually the values of interest to the econome-
trician.
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