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458 Heaped count data

1 Introduction

Heaped data result when subjects who recall the frequency of events demonstrate a
preference for reporting from a limited set of rounded responses or preferred digits over
reporting exact counts. Examples of these rounded responses and digit preferences (also
referred to as data coarsening) can be characterized by reported frequencies (or counts)
favoring multiples of 20 (for example, number of cigarettes smoked), reporting counts
ending with 0 or 5, or a preference for reporting an even number over an odd number.
This mixture of exact and coarsened values is a type of measurement error (pattern of
misreporting) that induces increased variance and can lead to biased estimation and
imprecision in predicted probabilities for discrete quantitative data.

Sometimes this pattern in data can be explained, but its effect on the statistical
inference is harder to anticipate. Researchers will need to notice the way survey ques-
tions are worded. For instance, in response to the question “How many cigarettes per
day did you smoke in the past 30 days?”, there might be heaping on the 5s because of
the number of days in a normal work week or heaping on the 7s because of the total
number of days in a week. Another example of survey question wording is “In the past
12 months, how many days did you miss work?” In response, there might be heaping
on the 5s because of the number of days in a normal work week or heaping on the 12s
because of the number of months in the question itself. If asked “What year did you
learn to drive?”, most respondents would round to years ending in 5 or 0 because they
lack recall of the exact year.

A visual representation of heaped data is illustrated in a frequency distribution
(histogram or spikeplot), where the heaps are represented as periodic peaks or spikes
within the overall data layout. However, the researcher would need to evaluate the
survey questions and data carefully to investigate the presence of heaping.

Heaped counts are reported in cigarette cessation studies (Wang and Heitjan 2008;
Klesges, Debon, and Ray 1995; Lewis-Esquerre et al. 2005). Participants in these types
of smoking studies tend to round their cigarette counts to multiples of 20, 10, or 5, which
reflects a preference for heaping counts into “packs” or fractions of a pack. Another
study type where heaping (observer bias) can occur is health studies that collect blood
pressure measurements. These reported measurements often display terminal digit pref-
erence (Nietert et al. 2006), where blood pressure readings tend to be recorded in mea-
surements ending in 0 or 5 and even numbers are preferred over odd numbers. Other
examples of heaped data include unemployment duration (Wolff and Augustin 2003),
reported age (Pardeshi 2010), reported weight, frequency of sexual intercourse, number
of months breastfeeding (Roberts and Brewer 2001), number of menstrual cycles before
pregnancy (Ridout and Morgan 1991; McLain et al. 2014), and reported birth weight
(Channon, Padmadas, and McDonald 2011).

We develop two statistical models for heaped count data using a mixture of likelihood
functions for the heaped and nonheaped count data. In the first method, we assume that
the reported outcome is not exactly known but is actually censored over the half-width
of the heaping multiple. Simultaneously, we assume that nonheaped (not censored)
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data follow the same count distribution’s likelihood for exact counts. For example,
count data that are heaped at multiples of 10 have a probability function as follows:
P{Y ∈ (y − ⌊10/2⌋, y + ⌊10/2⌋)}, where ⌊x⌋ is the greatest integer that is less than or
equal to x. The count data that are reported at nonmultiples of 10 will be treated as
exact results using P (Y = y) for exact counts.

For the second proposed method, we again assume that the reported outcome is not
exactly known but is a mixture of rescaled distributions. For this mixture, the reported
outcome rates are equivalent, so the count distributions [Poisson, generalized Poisson
(GP), negative binomial (NB)] differ only in the reciprocal of the heaping number on the
specified time period. For both methods, the investigator specifies the heaping multi-
ples in the count data via the interval-regression approach or the mixture of rescaled
distributions approach.

In terms of model selection criteria (Akaike information criteria and Bayesian in-
formation criteria), the interval-censored approach and rescaled-mixture approach de-
scribed herein will have approximately the same preference over the standard model
as does a zero-inflated version of the standard model. Both approaches, however, will
produce predicted probabilities that are closer to the data than will be produced by the
standard model.

Herein, we propose two methods for modeling heaped count data using the Poisson,
GP, and NB distributions along with their zero-inflated versions. In section 2, we review
appropriate count-data regression models for both approaches. In section 3, syntax is
presented for each new command, followed by real-world data examples in sections 4
and 5. Finally, the summary and conclusions are presented in section 6.

2 The methods

2.1 Interval-censored method

For a random variable Yi, we have a response vector Y = (Y1, . . . , Yn)
T , where n is the

sample size and Yi, Yj are independent and identically distributed for i 6= j. In this
section, yLi and yRi denote the right and left endpoints, respectively, of the interval-
censored count observations.

yLi = max(0, yi −∆i)

yRi = yi +∆i

∆i = max
j=1,...,H

{⌊hj/2⌋ × I(yi mod hj = 0)}

where I(ℓ) is an indicator function equal to 0 if ℓ is false and equal to 1 if ℓ is true,
⌊hj/2⌋ is the half-width of the heaping interval, h1 = 1, and H is the total number
of heaping intervals. If all observations are exact (no heaping), then H = 1 and these
formulas simplify to that of Poisson, GP, and NB regression, respectively.
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Poisson model

Poisson regression analysis is the most common approach to modeling response variables
comprising count data. This distribution describes the probability of the number of
event occurrences, and the parameter is the expected number of occurrences that can
be modeled through explanatory variables. Covariates are included in the regression
model by an invertible link function describing the relationship of the linear predictor
xiβ = ηi to the expected value of the responses µi. The probability mass function of
the Poisson distribution is

f(yi;µi) =
µyii e

−µi

yi!
, yi = 0, 1, 2, . . . , µi > 0

The expected outcome in terms of the inverse of the log link function is given by µi =
exp(xiβ), where xi is a row vector of covariates for the ith observation and β is a vector
of regression parameters to be estimated. The Poisson model assumes equidispersion;
that is, it assumes that the mean (µi) and variance (µi) of the outcomes are equal for a
given set of covariates. For a random sample of observations y1, y2, . . . , yn, the Poisson
regression log-likelihood function is given by

L =

n∑

i=1

{yi ln(µi)− µi − ln Γ(yi + 1)}

For the interval-censored regression method, the log likelihood is given in terms of
the log of the probability of being in an interval. The probability of being in the interval
is calculated using the survival probabilities

p1i = P (Y > yLi − 1|Y ∼ Poisson) = ΓI(yLi, µi) = 1− P (Y ≤ yLi − 1|Y ∼ Poisson)

p2i = P (Y > yRi|Y ∼ Poisson) = ΓI(yRi + 1, µi) = 1− P (Y ≤ yRi|Y ∼ Poisson)

where

ΓI(y, µ) =
1

Γ(y)

∫ y

0

tµ−1e−tdt

is the regularized incomplete gamma function, and p1i and p2i are survival probabili-
ties. (Their difference represents the probability of the event occurring in the interval.)
Hence, the interval-censored Poisson regression model has a log likelihood of

L =
n∑

i=1

lnP {Y ∈ (yLi, yRi) |yi ∼ Poisson}

=

n∑

i=1

ln(p1i − p2i)

We will use the command heapcr with the poisson option to refer to our proposed
interval-censored regression method for Poisson regression of heaped data.
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GP model

We consider a regression model based on the GP distribution for equidispersed or for pos-
sibly overdispersed or underdispersed count data Y . This model assumes the response
variable Yi has probability mass function

f(yi;µi, α) =
µi(µi + αyi)

yi−1e−µi−αyi

yi!
, yi = 0, 1, 2, . . .

where α is the dispersion parameter, µi > 0, max(−1,−µi/4) < α < 1, and µi =
exp(xiβ). The mean and variance for the GP distribution is as follows (also see Hardin
and Hilbe [2012]):

E(Yi) =
µi

1− α
and Var(Yi) =

µi
(1− α)3

For a random sample of observations y1, y2, . . . , yn, the GP log-likelihood function is

L =
n∑

i=1

{lnµi + (yi − 1) ln(µi + αyi)− µi − αyi − ln Γ(yi + 1)}

Consul and Famoye (1992) and Consul (1989) illustrated that covariates can be in-
troduced into a regression model via the relationship

ln
µi

1− α
=

p∑

r=1

xirβr

where xir is the ith observation of the rth covariate, p is the number of covariates in the
model, and βr is the rth regression parameter. The probability of being in the interval
is calculated using the survival probabilities

p1i = P (Y > yLi − 1|Y ∼ Gen. Poisson) = ΓI(yLiα, µi)

p2i = P (Y > yRi|Y ∼ Gen. Poisson) = ΓI{(yRiα) + 1, µi}

Therefore, the log-likelihood function suitable for heaped data under a GP model is

L =

n∑

i=1

ln(p1i − p2i)

where p1i and p2i are survival probabilities for which the difference represents the prob-
ability of the event occurring in the interval. We will use the command heapcr with
the gpoisson option to refer to our proposed method for GP regression of heaped data.
Even addressing some of the overdispersion through the censored approach of the heaped
data regression model, the likelihood-ratio test (LRT) of the dispersion parameter is still
important, and when significant, it indicates a preference for the heaped GP model over
the heaped Poisson model.
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NB model

If the probability of success in each trial is given by pi and the probability of failure is
given by (1 − pi), then the general probability mass function of the NB distribution is
given by

f(yi;α, pi) =
Γ
(
yi +

1
α

)

Γ(yi + 1)Γ
(
1
α

)p1/αi (1− pi)
yi , yi = 0, 1, 2, . . .

where α is the dispersion parameter. When α → 0, this reduces to the Poisson distri-
bution. The mean and variance for the NB distribution are as follows:

E(Yi) =
1− pi
αpi

Var(Yi) =
1− pi
αp2i

=
pi(1− pi) + (pi − 1)2

αp2i

The NB can be parameterized using the inverse of the log-link specification g(xi;β) =
exp(xiβ) (Lawless 1987), where xi is the p × 1 vector of explanatory variables and
β is a vector of regression parameters. Lawless (1987) states that a Poisson model
would stipulate that the distribution of Y |x is Poisson with a mean equal to µi(xi) =
T{g(xi;β)}. Consequently, the NB regression model is

f(yi;α, µi) =
Γ
(
yi +

1
α

)

Γ(yi + 1)Γ
(
1
α

)
(

1

1 + αµi

)1/α(
αµi

1 + αµi

)yi
, yi = 0, 1, 2, . . .

where α is the dispersion parameter. The common reparameterization pi = (1 + αµi)
−1,

where pi then depends on the covariates xi, results in the mean and variance of Yi as

E(Yi) = µi

Var(Yi) = µi + αµ2
i

Therefore, we have Y ∼ NB(µ, α). When α→ 0, this reduces to the Poisson model. For
a random sample of observations y1, y2, . . . , yn, the NB log-likelihood function is

L =

n∑

i=1

[
ln {Γ(yi + 1/α)} − ln {Γ(yi + 1)} − ln {Γ(1/α)}

+(1/α) ln

(
1

1 + αµi

)
+ (yi) ln

(
αµi

1 + αµi

)]

To obtain the log-likelihood function (interval-censored regression) for heaped NB

data, we define interval regression using the survival probabilities

p1i = P (Y ≥ yLi|Y ∼ Neg. Binomial) = BI{yLi, α, 1/(1 + αµi)}
p2i = P (Y ≥ yRi + 1|Y ∼ Neg. Binomial) = BI{yRi + 1, α, 1/(1 + αµi)}
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where BI(·) is the three-parameter incomplete beta function

BI(m;ψ, φ) =

∫ m

0

tψ−1(1− t)φ−1dt

The resulting log likelihood can be succinctly written as

L =

n∑

i=1

ln(p1i − p2i)

We will use the command heapcr with the nbreg option to refer to our proposed method
for NB regression of heaped data.

Zero-inflated models

In applications with an excess of 0s in count response data, Poisson (and other) dis-
tribution models may not be appropriate to use. Ridout, Demétrio, and Hinde (1998)
summarized some literature and cited examples from agriculture, econometrics, man-
ufacturing, patent applications, road safety, species abundance, medical consultations,
use of recreational facilities, and even sexual behavior. Hardin and Hilbe (2012) describe
the two origins of zero outcomes:

1. individuals who do not enter into the counting process, and

2. individuals who enter into the counting process and have a zero outcome.

Therefore, the model must be separated into different parts, one consisting of a zero
count yi = 0 and the other consisting of a nonzero count yi > 0.

P (Yi = yi) =

{
wi + (1− wi)f(yi) yi = 0
(1− wi)f(yi) yi = 1, 2, . . .

(1)

where wi is the probability of 0s (binary distribution), 0 ≤ wi < 1, and f(yi) is the dis-
crete probability function. For our interval-censored approach, the zero-inflated heaped
count-data log likelihoods for Poisson, GP, and NB distributions can be shown as

L =
∑

i∈Z

ln {wi + (1− wi)f(0)}+
∑

i/∈Z

ln {(1− wi)(p1i − p2i)}

where Z is the set of 0 outcomes, and p1i and p2i are from our interval-regression equa-
tions above. Zero-inflation models for heaped data are comprised under the ziheapcr

command using options poisson, gpoisson, and nbreg for zero-inflated Poisson, zero-
inflated GP, and zero-inflated NB distributions, respectively.

2.2 Mixture of rescaled distributions method

For the proposed mixture of rescaled distributions, we consider two behaviors of sub-
jects. Behavior 1 consists of those subjects who report an exact count of the requested
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frequency. Behavior 2 consists of those subjects who remember the requested frequency
over 1/kth of a specified period of time and then report k times that amount. Under

behavior 1, we consider covariates and parameters β are associated with the mean µ
[1]
i

under the log-link function ln(µ
[1]
i ) = Xiβ. In the same way, for behavior 2, we use the

same covariates and parameters for the associated mean, µ
[2]
i , as 1/k times µ

[1]
i (mean of

behavior 1) under the log-link function ln(kµ
[2]
i ) = Xiβ, which is ln(µ

[2]
i ) = Xiβ− ln(k).

Here, notice the only difference in the means for the two behaviors is the offset term
ln(k). We exponentiate the coefficients to show rates that will remain constant over all
time periods because of the reparameterization of the covariates and parameters.

We will denote a binary model B to represent a subject choosing behavior 2 as a
function of covariates J and coefficients φ. This model fits the likelihood of a subject
choosing behavior 2. This likelihood multiplies the likelihood of the unscaled outcome
(the reported outcome divided by the heaping number), where the reciprocal of the
heaping number serves as the exposure {ln(k)}, which is included as part of the linear
predictor. Therefore, the mixture probability model for a reported outcome is given by

P (Yi = yi) = PB(bi = 2|Ji,φ)P[2]

[
Yi =

yi
k
|µi = exp{Xiβ − ln(k)}

]
I(yi mod k=0)

+ PB(bi = 1|Ji,φ)P[1]{Yi = yi|µi = exp(Xiβ)}
(2)

where

PB(bi = 2|Ji,φ) = exp(Jiφ)/{1 + exp(Jiφ)} and

PB(bi = 1|Ji,φ) = 1− PB(bi = 2|Ji,φ) = 1/{1 + exp(Jiφ)}

Next, we consider s heaping numbers k2, . . . , ks, ks+1, where we assume each response
is the result of one of s+ 1 behaviors, which match the s heaping numbers and the one
behavior of reporting on the specified time period. This multinomial model S is then
used to estimate whether a subject chooses s+ 1, s, . . . , 2 as a function of covariates J
and coefficients φ using behavior 1 as the reference. Thus, the probability model for a
particular outcome is
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P (Yi = yi|xi,β,φ) = PS(bi = s+ 1|Ji,φ2, . . . ,φs+1)

× P[s+1]

[
Yi =

yi
ks+1

|µi = exp{Xiβ − ln(ks+1)}
]
I(yi mod ks+1=0)

+ PS(bi = s|Ji,φ2, . . . ,φs+1)

× P[s]

[
Yi =

yi
ks

|µi = exp{Xiβ − ln(ks)}
]
I(yi mod ks=0)

+ · · ·+ PS(bi = 2|Ji,φ2, . . . ,φs+1)

× P[2]

[
Yi =

yi
k2

|µi = exp{Xiβ − ln(k2)}
]
I(yi mod k2=0)

+ PS(bi = 1|Ji,φ2, . . . ,φs+1)P[1] {Yi = yi|µi = exp(Xiβ)} (3)

where

PS(bi = k|Ji,φ2, . . . ,φs+1) = exp(Jiφk)/{1 + exp(Jiφ2) + · · ·
+ exp(Jiφs+1)}, k = 2, . . . , s+ 1

PS(bi = 1|Ji,φ2, . . . ,φs+1) = 1/{1 + exp(Jiφ2) + · · ·+ exp(Jiφs+1)}

The log likelihood for a count-data model, in a general form, is the sum of the logs
of the probabilities of observed outcomes given by

L =
n∑

i=1

ln {P (Yi = yi|xi,β,φ)}

where P (Yi = yi|xi,β,φ) is from (3). When only one heaping multiple k exists and the
counting process is given by the Poisson distribution, the log likelihood is given by

L =
n∑

i=1

ln

({
exp(jiφ)

1 + exp(jiφ)

}
exp

[
− exp{xiβ − ln(k)}+ yi

k
{xiβ − ln(k)}

− ln Γ
(yi
k

+ 1
) ]
I(yi mod k=0) +

{
1

1 + exp(jiφ)

}
exp{− exp(xiβ)

+ yi(xiβ)− ln Γ(yi + 1)}
)
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Similarly, where the counting process is given by the GP distribution, the log likelihood
is given by

L =

n∑

i=1

ln

({
exp(jiφ)

1 + exp(jiφ)

}
exp

[
− exp{xiβ − ln(k)}+ yi

k
{xiβ − ln(k)}

− ln Γ
(yi
k

+ 1
) ]
I(yi mod k=0) +

{
1

1 + exp(jiφ)

}
exp[−(1− α)xiβ + αyi

+ (yi − 1) ln{(1− α)xiβ + αyi}+ ln(xiβ) + ln(1− α)− ln Γ(yi + 1)]

)

And lastly, for an NB distribution counting process, the log likelihood is given by

L =

n∑

i=1

ln

({
exp(jiφ)

1 + exp(jiφ)

}
exp

[
− exp{xiβ − ln(k)}+ yi

k
{xiβ − ln(k)}

− ln Γ
(yi
k

+ 1
) ]
I(yi mod k=0) +

{
1

1 + exp(jiφ)

}
exp

{
ln Γ

(
1

α
+ yi

)
− ln Γ

(
1

α

)

+
1

α
ln

(
1

1 + αµi

)
+ yi ln

(
αµi

1 + αµi

)
− ln Γ(yi + 1)

})

Zero-inflated models

As in (1), we use the same general definition of zero-inflation. However, for our mixture
of rescaled distributions approach, the zero-inflated heaped count-data log likelihoods
for Poisson, GP, and NB distributions can be shown as

L =
∑

i∈Z

ln {wi + (1− wi)f(0)}

+
∑

i/∈Z

ln
(
(1− wi)[PB(bi = 1|Ji,φ)P[1]{Yi = yi|µi = exp(Xiβ)}]

)

where Z, again, is the set of 0 outcomes and PB(bi = 1|Ji,φ)P[1]{Yi = yi|µi =
exp(Xiβ)} is from (2) above. Zero-inflation models for heaped data are comprised
under the ziheapr command using options poisson, gpoisson, and nbreg for zero-
inflated Poisson, zero-inflated GP, and zero-inflated NB distributions, respectively.

3 Syntax

The accompanying software includes the command files as well as supporting files for
prediction and help. In the following syntax diagrams, unspecified options include
the usual collection of maximization and display options available to all estimation
commands. In addition, all zero-inflated commands include the ilink(linkname) option
to specify the link function for the inflation model.
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The syntax for specifying an interval-censored regression model for heaped count
data is given by

heapcr depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, noconstant

exposure(varname e) offset(varname o) constraints(constraints)

collinear uniform gplrtest heap(numlist) width(numlist)

{poisson|gpoisson|nbreg} vce(vcetype) level(#) irr nocnsreport

display options maximize options coeflegend
]

with options poisson, gpoisson, and nbreg for each of the supported discrete distri-
butions, respectively.

The syntax for heaped zero-inflated count data (using the interval-censored regres-
sion method) is given by

ziheapcr depvar
[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons)

[
ilink(linkname)

exposure(varname e) offset(varname o) constraints(constraints)

collinear uniform gplrtest vuong heap(numlist) width(numlist)

{poisson|gpoisson|nbreg} vce(vcetype) level(#) nolrtest irr

nocnsreport display options maximize options coeflegend
]

with options poisson, gpoisson, and nbreg for each of the supported discrete distri-
butions, respectively. Specific half-widths may be specified via the width() option, or
default values are equal to the heaping factors. For example, for a model that specifies
heap(6,11), the widths are also (6,11) and the half-widths are (3,5).

The syntax for specifying a mixture of rescaled distributions regression model for
heaped count data is given by

heapr depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, noconstant

exposure(varname e) offset(varname o) constraints(constraints)

collinear gplrtest hvars(string) heap(numlist) {poisson|gpoisson|nbreg}
vce(vcetype) level(#) nolrtest irr vuong nocnsreport display options

maximize options coeflegend
]

with options poisson, gpoisson, and nbreg for each of the supported discrete distri-
butions, respectively.
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The syntax for heaped zero-inflated count data (using the mixture of rescaled dis-
tributions regression method) is given by

ziheapr depvar
[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons)

[
ilink(linkname)

exposure(varname e) offset(varname o) constraints(constraints)

collinear gplrtest vuong heap(numlist) hvars(varlist)

{poisson|gpoisson|nbreg} vce(vcetype) level(#) nolrtest irr

nocnsreport display options maximize options coeflegend
]

with options poisson, gpoisson, and nbreg for each of the supported discrete distri-
butions, respectively.

A Vuong test (see Vuong [1989]) evaluates whether the regression model with zero-
inflation or the regression model without zero-inflation is closer to the true model. A
random variable ω is defined as the vector logLZ − logLS, where LZ is the likelihood
of the zero-inflated model evaluated at its maximum likelihood estimate and LS is the
likelihood of the standard (nonzero-inflated) model evaluated at its maximum likelihood
estimate. The vector of differences over the N observations is then used to define the
statistic

V =

√
Nω√∑

i(ωi − ω)2/(N − 1)

which, asymptotically, has a standard normal distribution. A significant positive statis-
tic indicates preference for the zero-inflated model, and a significant negative statistic
indicates preference for the model without zero-inflation. Nonsignificant Vuong statistics
indicate no preference for either model. A Vuong test evaluates and tests the hypothesis
that nested models and nonnested models are the same distance from the true model.
Therefore, we can apply this test to our proposed heaped models (nonnested) versus
nonheaped models (nested). Results of this test are included in a footnote to the esti-
mation of the model when the user includes the vuong option in any of the zero-inflated
commands.

Replacing an exactly measured outcome with an interval-censored outcome increases
the probability (and log likelihood) by definition. To enable comparisons of heaped and
nonheaped models using, for example, the Akaike information criterion (see Desmarais
and Harden [2013]), the probability of the interval-censored outcome is scaled so that
the total contribution of the interval is that of the weighted average over the individual
outcomes in the interval. By default, triangular weights are applied, but the user can
request uniform weights by using the uniform option.
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4 NHANES example

Using the National Health and Examination Survey (NHANES) 2009–2010 data,1 we
model for 1,504 participants the average number of cigarettes smoked per day dur-
ing the past 30 days (smd650) as a function of the covariate’s age (ridageyr), gender
(gendernew), and race (racenew). We recoded the original ridreth1 variable, now
called racenew, that includes non-Hispanic white versus others (Mexican American,
other Hispanic, non-Hispanic black, other race/multiracial). We also recoded the orig-
inal riagendr variable, now called gendernew. Selected characteristics of the given
variables above from the dataset are given in table 1.

Table 1. Selected characteristics from the NHANES example (n = 1504)

Characteristic Frequency

Cigarettes smoked/day in the past 30 days,
mean (standard deviation [SD]) 11.55 (9.98)

Age, mean (SD) 40.73 (16.64)
Gender, No. (%)

Females 669 (44.48)
Males 835 (55.52)

Race, No. (%)
Non-Hispanic white 749 (49.80)
Other races 755 (50.20)

Cigarettes smoked/day in the past 30 days, mean (SD)
Females 11.17 (9.13)
Males 11.85 (10.61)
Non-Hispanic white 14.81 (10.62)
Other races 8.31 (8.11)

To visually investigate where heaping may exist in the average number of cigarettes
smoked per day during the past 30 days, we graph the reported data in a spikeplot in
figure 1.

1. The participants in this study provided informed consent for the collection of data, and the
data are freely available in de-identified format at http://www.cdc.gov/nchs/nhanes/nhanes2009-
2010/nhanes09 10.htm (accessed in March 2013).
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Figure 1. Average number of cigarettes smoked per day during the past 30 days

We see that heaping is present at multiples of 5 (that is, 5, 10, 15, etc.). Therefore,
we specify heaping at multiples of 5 at which the outcomes are treated as being interval-
censored with an interval half-width of ⌊5/2⌋. We also notice that there are no 0s in
our outcome variable, so the zero-inflated versions of our new commands will not be
illustrated for these data.

4.1 Poisson

By fitting a regular Poisson model to the outcome, the results are given by

. poisson smd650 gendernew racenew ridageyr, nolog

Poisson regression Number of obs = 1,504
LR chi2(3) = 2107.84
Prob > chi2 = 0.0000

Log likelihood = -7782.0546 Pseudo R2 = 0.1193

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.1100815 .0154432 -7.13 0.000 -.1403497 -.0798134
racenew .6051288 .0158992 38.06 0.000 .573967 .6362906

ridageyr .0114867 .0004495 25.56 0.000 .0106057 .0123677
_cons 1.66475 .0246423 67.56 0.000 1.616452 1.713049
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Using our interval-censored method to model the outcome with heaping at multiples
of 5, with a half-width of ⌊5/2⌋, the results are

. heapcr smd650 gendernew racenew ridageyr, heap(5) poisson nolog

Cens. heaped Poisson regression Number of obs = 1504
Heaping interval(s) = 5 LR chi2(3) = 2051.49
Heaping halfwidth(s) = 2 Prob > chi2 = 0.0000
Log likelihood = -7599.224 Pseudo R2 = 0.1189

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.1157292 .0161764 -7.15 0.000 -.1474344 -.084024
racenew .6255269 .0166857 37.49 0.000 .5928236 .6582302

ridageyr .0117264 .0004674 25.09 0.000 .0108104 .0126424
_cons 1.621005 .0257251 63.01 0.000 1.570585 1.671425

We see a slight difference in the heapcrmodel coefficients and an increase in the standard
errors of the estimated coefficients.

Using our mixture of rescaled distributions method to model the outcome with
heaping at multiples of 5, the results are

. heapr smd650 gendernew racenew ridageyr, heap(5) poisson vuong nolog

Heaped Poisson regression Number of obs = 1,504
LR chi2(3) = 851.63
Prob > chi2 = 0.0000

Log likelihood = -5321.7125 Pseudo R2 = 0.0741

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

smd650
gendernew -.1205029 .0269503 -4.47 0.000 -.1733245 -.0676812

racenew .6766456 .0269041 25.15 0.000 .6239144 .7293768
ridageyr .0119632 .0007341 16.30 0.000 .0105244 .0134021

_cons 1.213202 .0389623 31.14 0.000 1.136837 1.289566

modulo_5
_cons .0557379 .0579067 0.96 0.336 -.0577571 .1692329

Vuong test of heap versus non-heap: z = 16.53 Pr>|z|=0.0000
Bias-corrected (AIC) vuong test: z = 16.53 Pr>|z|=0.0000
Bias-corrected (BIC) vuong test: z = 16.51 Pr>|z|=0.0000

Again, we see a slight difference in the model’s coefficients and an increase in the
standard errors of the estimated coefficients. We also see a statistically significant Vuong
test of the heapr model versus the nonheaped Poisson model.
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4.2 GP

The results of fitting a regular GP model2 to the outcomes are given by

. gpoisson smd650 gendernew racenew ridageyr, nolog

Generalized Poisson regression Number of obs = 1504
LR chi2(3) = 289.54

Dispersion = .6439007 Prob > chi2 = 0.0000
Log likelihood = -5052.9281 Pseudo R2 = 0.0279

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.0611733 .0363914 -1.68 0.093 -.1324991 .0101526
racenew .5461656 .0369862 14.77 0.000 .4736739 .6186573

ridageyr .0101732 .0009927 10.25 0.000 .0082276 .0121188
_cons 1.738053 .0559818 31.05 0.000 1.628331 1.847775

/atanhdelta .7648088 .0156008 .7342318 .7953858

delta .6439007 .0091326 .6256475 .6614493

Likelihood-ratio test of delta=0: chi2(1) = 5458.25 Prob>=chi2 = 0.0000

In the regular GP model, we see a statistically significant LRT of δ = 0 (dispersion
factor), which indicates that the GP model is more appropriate to use than the regular
Poisson model. Using our interval-censored method to model the outcomes with heaping
at multiples of 5, with a half-width of ⌊5/2⌋, the results are

. heapcr smd650 gendernew racenew ridageyr, heap(5) gpoisson gplrtest nolog

Cens. heaped Gen. Poisson regression Number of obs = 1504
Heaping interval(s) = 5 LR chi2(3) = 287.84
Heaping halfwidth(s) = 2 Prob > chi2 = 0.0000
Log likelihood = -5041.18 Pseudo R2 = 0.0278

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.062372 .0367806 -1.70 0.090 -.1344607 .0097167
racenew .55046 .0373951 14.72 0.000 .4771669 .6237532

ridageyr .0102485 .0010034 10.21 0.000 .008282 .0122151
_cons 1.719522 .0565989 30.38 0.000 1.60859 1.830454

/atanhdelta .7637911 .0157335 .7329541 .7946282

delta .6433046 .0092223 .6248693 .6610229

Likelihood ratio test of delta=0 x = 5116.09 Pr>x = 0.0000

2. The gpoisson command was created by Harris, Yang, and Hardin (2012).
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We see a slight difference in the coefficients, an increase in the standard errors of the
estimated coefficients, and a statistically significant LRT. Using our mixture of rescaled
distributions method with heaping at multiples of 5, the results are

. heapr smd650 gendernew racenew ridageyr, heap(5) gpoisson gplrtest vuong nolog

Heaped Gen. Poisson regression Number of obs = 1,504
LR chi2(3) = 349.00
Prob > chi2 = 0.0000

Log likelihood = -4800.7669 Pseudo R2 = 0.0351

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

smd650
gendernew -.0710181 .0382555 -1.86 0.063 -.1459974 .0039612

racenew .6293441 .0383598 16.41 0.000 .5541602 .7045279
ridageyr .0113049 .0010148 11.14 0.000 .0093159 .0132939

_cons 1.329487 .056593 23.49 0.000 1.218566 1.440407

modulo_5
_cons -.2441573 .0716583 -3.41 0.001 -.384605 -.1037096

/atanhdelta .4486798 .0189708 23.65 0.000 .4114977 .4858619

delta .4208132 .0156114 .3897437 .4509259

Likelihood ratio test of delta=0 x = 1041.89 Pr>x = 0.0000
Vuong test of heap versus non-heap: z = 10.16 Pr>|z|=0.0000

Bias-corrected (AIC) vuong test: z = 10.12 Pr>|z|=0.0000
Bias-corrected (BIC) vuong test: z = 10.01 Pr>|z|=0.0000

Again, we see a slight difference in the model’s coefficients, an increase in the stan-
dard errors of the estimated coefficients, and a statistically significant LRT of δ = 0
(dispersion factor). We also see a statistically significant Vuong test of the heapr model
versus the nonheaped GP model.
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4.3 NB

The results of fitting a regular NB model to the outcomes are given by

. nbreg smd650 gendernew racenew ridageyr, nolog

Negative binomial regression Number of obs = 1,504
LR chi2(3) = 290.60

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -5048.0101 Pseudo R2 = 0.0280

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.0995121 .0413518 -2.41 0.016 -.1805602 -.0184641
racenew .614582 .0411743 14.93 0.000 .5338819 .6952822

ridageyr .0138921 .0013283 10.46 0.000 .0112887 .0164956
_cons 1.552952 .0658433 23.59 0.000 1.423901 1.682002

/lnalpha -.6339091 .0425475 -.7173006 -.5505176

alpha .5305139 .022572 .488068 .5766512

LR test of alpha=0: chibar2(01) = 5468.09 Prob >= chibar2 = 0.000

In the regular NB model, we see a statistically significant LRT of α = 0 (dispersion
factor), which indicates that the NB model is more appropriate to use than the regular
Poisson model. Using our interval-censored method (with the heap() option) to model
the outcomes with heaping at multiples of 5, with a half-width of ⌊5/2⌋, the results are

. heapcr smd650 gendernew racenew ridageyr, heap(5) nbreg nolog

Cens. heaped Neg. Binomial regression Number of obs = 1504
Heaping interval(s) = 5 LR chi2(3) = 291.34
Heaping halfwidth(s) = 2 Prob > chi2 = 0.0000
Log likelihood = -5036.998 Pseudo R2 = 0.0281

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

gendernew -.102105 .0418005 -2.44 0.015 -.1840324 -.0201776
racenew .622198 .041628 14.95 0.000 .5406086 .7037873

ridageyr .0140387 .0013413 10.47 0.000 .0114098 .0166676
_cons 1.529909 .0665855 22.98 0.000 1.399404 1.660414

/lnalpha -.6275339 .0428549 -.7115281 -.5435398

alpha .5339068 .0228805 .4908935 .5806891
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A slight difference in the model’s coefficients, increase in standard errors, and disper-
sion factor (α) is shown in the heapcrmodel. Using our mixture of rescaled distributions
method with heaping at multiples of 5, the results are

. heapr smd650 gendernew racenew ridageyr, heap(5) nbreg vuong nolog

Heaped Neg. Binomial regression Number of obs = 1,504
LR chi2(3) = 307.62
Prob > chi2 = 0.0000

Log likelihood = -4577.0611 Pseudo R2 = 0.0325

smd650 Coef. Std. Err. z P>|z| [95% Conf. Interval]

smd650
gendernew -.1186497 .0461925 -2.57 0.010 -.2091854 -.028114

racenew .7160425 .046097 15.53 0.000 .6256941 .8063909
ridageyr .0152091 .0014285 10.65 0.000 .0124092 .018009

_cons 1.338431 .0716839 18.67 0.000 1.197933 1.478929

modulo_5
_cons -.1512008 .0653464 -2.31 0.021 -.2792774 -.0231243

/lnalpha -.7635081 .0516495 -14.78 0.000 -.8647392 -.662277

alpha .4660287 .0240701 .4211614 .5156758

Vuong test of heap versus non-heap: z = 16.57 Pr>|z|=0.0000
Bias-corrected (AIC) vuong test: z = 16.54 Pr>|z|=0.0000
Bias-corrected (BIC) vuong test: z = 16.44 Pr>|z|=0.0000

Again, we see a slight difference in the model’s coefficients and an increase in the
standard errors of the estimated coefficients. We also see a statistically significant Vuong
test of the heapr model versus the nonheaped NB model.

5 Fishing example

To highlight the application of regression-modeling data that exhibit both heaping and
zero-inflation, we examine a model of data on counts of fish. In these data, the drivers of
each car exiting a park were questioned about the number of fish caught. It is believed
that some persons did not fish and so reported 0 for a different reason than those who
were simply unsuccessful. Whether a person reported 0 was modeled by whether the car
had a camper and whether children were brought along. The number of fish reported
was thought to be associated with the number of persons in the car and whether persons
reported having purchased live bait.
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. webuse fish, clear

. ziheapcr count persons livebait, inflate(child camper) ilink(cloglog) vuong
> gpoisson gplrtest heap(6,11) nolog

Zero-inflated heaped gen. Poisson regression Number of obs = 250
Heaping interval(s) = 6 11 LR chi2(6) = 60.10
Heaping halfwidth(s) = 3 5 Prob > chi2 = 0.0000
Inflation link: cloglog Nonzero obs = 108

Zero obs = 142
Log likelihood = -402.6561 Pseudo R2 = 0.0695

count Coef. Std. Err. z P>|z| [95% Conf. Interval]

count
persons .6571264 .0847749 7.75 0.000 .4909707 .823282

livebait .8228948 .3333838 2.47 0.014 .1694746 1.476315
_cons -.9913993 .4362422 -2.27 0.023 -1.846418 -.1363803

inflate
child 2.45161 .6812248 3.60 0.000 1.116433 3.786786

camper -1.858881 .7953618 -2.34 0.019 -3.417762 -.3000007
_cons -2.524079 .7205229 -3.50 0.000 -3.936278 -1.11188

/atanhdelta .9737121 .0791377 .818605 1.128819

delta .750331 .0345834 .6743099 .8106147

Likelihood ratio test of delta=0: x = 886.57 Pr>x = 0.0000
Vuong test of zinbregf vs. gen neg binomial(F): z = 6.25 Pr>|z|=0.0000

Bias-corrected (AIC) Vuong test: z = 5.86 Pr>|z|=0.0000
Bias-corrected (BIC) Vuong test: z = 5.18 Pr>|z|=0.0000

As can be seen in the output, the zero-inflated interval-censored regression model
is preferred over the nonzero-inflated model as evidenced by the significant Vuong test.
Also, even after adjusting for overdispersion due to zero-inflation and heaping, there is
still evidence of overdispersion as seen by the significant likelihood ratio of the dispersion
statistic.
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Lastly, the output for the zero-inflated mixture of the rescaled distributions model
is shown below. Herein, we model the likelihood of heaping only on multiples of six as
a function of having a camper.

. webuse fish, clear

. ziheapr count persons livebait, inflate(child camper) ilink(cloglog) vuong
> gpoisson gplrtest heap(6) hvars(camper) nolog

Obtaining LL for zero inflated heaped Poisson for LR test

Zero-inflated heaped gen. Poisson regression Number of obs = 250
Inflation link: cloglog Nonzero obs = 108

Zero obs = 142
Log likelihood = -403.3094 Pseudo R2 = 0.0708

count Coef. Std. Err. z P>|z| [95% Conf. Interval]

count
persons .6630002 .0844656 7.85 0.000 .4974507 .8285496

livebait .834241 .3334796 2.50 0.012 .180633 1.487849
_cons -1.009603 .436174 -2.31 0.021 -1.864488 -.1547178

inflate
child 2.42767 .6613499 3.67 0.000 1.131448 3.723892

camper -1.832131 .7738512 -2.37 0.018 -3.348852 -.3154106
_cons -2.497034 .7021803 -3.56 0.000 -3.873282 -1.120786

modulo_6
camper 1.25883 209.0805 0.01 0.995 -408.5314 411.0491
_cons -13.0241 194.5259 -0.07 0.947 -394.2878 368.2396

/atanhdelta .972532 .0788769 12.33 0.000 .8179362 1.127128

delta .7498149 .0345305 .673945 .810034

Likelihood ratio test of delta=0: x = 860.99 Pr>x = 0.0000
Vuong test of heap versus non-heap: z = 6.31 Pr>|z|=0.0000

Bias-corrected (AIC) vuong test: z = 6.04 Pr>|z|=0.0000
Bias-corrected (BIC) vuong test: z = 5.56 Pr>|z|=0.0000

These results are very similar to the interval-censored regression model, with consis-
tent covariate coefficients and LRT. The Vuong test is statistically significant, meaning
that in this case, the heaped model is preferred over the nonheaped model.

6 Discussion

In this article, we presented two new approaches for modeling heaped (“rounded”) count
data: with interval-censored regression and with a mixture of rescaled distributions.
Both methods for heaped count data are more similar to the true model than is a
regular count-data model, based on the significance of the Vuong tests for most models
for the presented data. Heaped count data can lead to biased estimation and imprecision
in discrete quantitative data. We also introduced supporting commands and programs
that illustrate the effectiveness of our approach.
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