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Abstract. Multiple imputation is a practical, principled approach to handling
missing data. When used to impute missing values in covariates of regression
models, imputation models may be misspecified if they are not compatible with
the substantive model of interest for the outcome. In this article, we introduce
the smcfcs command, which imputes covariates by substantive-model compatible
fully conditional specification. This modifies the popular fully conditional speci-
fication or chained-equations approach to multiple imputation by imputing each
covariate compatibly with a user-specified substantive model. We compare the
smcfcs command with standard fully conditional specification imputation using
mi impute chained in a simulation study and illustrative analysis of data from a
study investigating time to tumor recurrence in breast cancer.

Keywords: st0387, smcfcs, multiple imputation, substantive model compatible,
congenial, interactions, nonlinearities

1 Introduction

Missing data are a common issue in empirical research, reducing statistical power and
potentially causing bias in parameter estimates. Multiple imputation (MI) has become
one of the most popular approaches for handling missing data (van Buuren 2007). For
each missing value, MI creates multiple plausible imputations based on a model for the
conditional distribution of the variable being imputed given other variables, thus creat-
ing a number of completed or imputed datasets. Each imputed dataset is then analyzed
separately and identically, giving estimates of parameters of interest and corresponding
standard errors. These are then combined using rules derived by Rubin (1987). Virtu-
ally all implementations of MI in software packages assume data are missing at random

© 2015 StataCorp LP st0387



438 Multiple imputation of covariates

(MAR), which means that the probability that data are missing is independent of the
unobserved values, conditional on the observed values (Rubin 1976).

1.1 Fully conditional specification

As originally conceived, parametric MI involves specification of a joint model for the par-
tially observed variables, conditional on any fully observed variables (joint model MI).
A popular alternative to joint model MI is the fully conditional specification (FCS) or
chained-equations approach (White, Royston, and Wood 2011; van Buuren 2007). FCS

MI involves specifying a series of univariate models for the conditional distribution of
each partially observed variable given the other variables. This approach permits great
flexibility because an appropriate regression model can be selected for each variable
(for example, linear regression for continuous variables or logistic regression for binary
variables). Consequently, FCS MI is particularly appealing in settings where multiple
variables have missing data, some of which are continuous and some of which are dis-
crete. In Stata, the FCS approach was originally implemented by Royston (2005) as
the user-written command ice, but since version 12, it has been available through the
official Stata mi impute chained command.

1.2 Multiple imputation of covariates

In this article, we focus on the setting in which some values are missing in the covariates
of a substantive model of interest. Correctly specifying imputation models for covariates
can be challenging, particularly when the substantive model relating the outcome to the
covariates includes nonlinear covariate effects or interactions between covariates. For
example, Seaman, Bartlett, and White (2012) show that for a linear regression substan-
tive model with quadratic effects of a (marginally) normal covariate, imputation models
implemented in existing MI software are misspecified and give biased estimates. Simi-
larly, when the substantive model includes an interaction, commonly chosen imputation
models may be misspecified. Even when the MAR assumption holds, misspecification
of the imputation model generally results in biased estimates of the substantive-model
parameters. In the aforementioned examples, the misspecification can be attributed to
the imputation and substantive models being incompatible (sometimes referred to as
uncongenial). Loosely speaking, the imputation and substantive models are compatible
if there exists a joint model for covariate and outcome with conditional distributions
equal to those given by the imputation and substantive models. While compatibility
between the imputation and substantive models does not guarantee that the former is
correctly specified, provided that the substantive model is correctly specified, incompat-
ibility between the two generally implies that the imputation model is misspecified. This
suggests that covariates should be imputed using imputation models that are compatible
with the substantive model.
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1.3 Substantive-model compatible FCS MI

Recently, Bartlett et al. (Forthcoming) have proposed substantive-model compatible
FCS (SMC–FCS). This modifies the FCS or chained-equations MI approach by imputing
each partially observed covariate using an imputation model that is compatible with
the user-specified substantive model. In section 2, we describe the SMC–FCS method in
more detail. In section 3, we describe the smcfcs command and its syntax. In section 4,
we illustrate its use and compare its performance with standard FCS. In section 5, we
describe the results of a small simulation study comparing smcfcs with a standard
approach using mi impute chained. In section 6, we conclude.

2 SMC–FCS

2.1 Setup

We consider the setting in which interest lies in fitting a model to a fully observed
outcome Y with p partially observed covariates, X = (X1, . . . , Xp), and q fully observed
covariates, Z = (Z1, . . . , Zq). Let Xobs and Xmis denote the observed and missing
components of X for a given subject, and let R be the vector of observation indicators
whose elements are zero or one depending on whether the corresponding element of X
is missing (zero) or observed (one), respectively. We assume throughout that the data
are MAR (Rubin 1976). Here MAR means that P (R |Y,X,Z) = P (R |Y,Xobs, Z). We
assume that (Yi, Xi, Zi, Ri), i = 1, . . . , n are independent and identically distributed.
We let f(Y |X,Z, ψ) denote the substantive model, which is indexed by parameter ψ
(ψ ∈ Ψ). We assume that this substantive model is correctly specified; that is, there
exists ψ ∈ Ψ such that f0(Y |X,Z) = f(Y |X,Z, ψ), where f0(Y |X,Z) denotes the true
conditional distribution of Y given X and Z.

2.2 Incompatibility and imputation model misspecification

Suppose that there exists only one partially observed covariate, denoted X. To impute
X, we must specify an imputation model f(X |Z, Y, ω), indexed by parameter ω ∈ Ω.
Following Liu et al. (2013), this imputation model is compatible with the substantive
model f(Y |X,Z, ψ), ψ ∈ Ψ, if there exists a joint model g(Y,X |Z, θ), θ ∈ Θ and
surjective maps t1 : Θ → Ω, t2 : Θ → Ψ such that

1. for ω ∈ Ω, and θ ∈ t−1
1 (ω) = {θ : t1(θ) = ω},

f(X |Z, Y, ω) = g(X |Z, Y, θ)

2. for ψ ∈ Ψ and θ ∈ t−1
2 (ψ),

f(Y |X,Z, ψ) = g(Y |X,Z, θ)
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Again following Liu et al. (2013), the two models are said to be semicompatible if
they can be made compatible by setting certain parameters in either one or both models
to zero. If the two are semicompatible and correctly specified, they are said to be valid
semicompatible. The imputation model is then correctly specified if and only if it is
valid semicompatible with the substantive model (Bartlett et al. Forthcoming).

Except when the imputation and substantive models can be made compatible by
restricting the parameter space (Ω) of the imputation model, incompatibility between
the two implies that the imputation model is misspecified, assuming that the substantive
model is correctly specified. This is because incompatibility means that there is no joint
model with the imputation and substantive models as its conditionals.

To illustrate this, we will suppose that the substantive model is Y |X ∼ N(ψ0 +
ψ1X +ψ2X

2, σ2
ψ) and the imputation model is X |Y ∼ N(ω0+ω1Y, σ

2
ω). These models

are incompatible because there exists no joint model with conditionals corresponding
to the substantive and imputation models. They are semicompatible by setting ψ2 = 0,
but unless ψ2 = 0 in truth, the imputation model will not be valid semicompatible with
the substantive model and will therefore necessarily be misspecified. Figure 1 shows
a plot of (Y,X) pairs simulated under this substantive model with X ∼ N(1, 1) and
Y |X ∼ N(X+3X2, 1.52), in which the missing X value has been imputed assuming the
aforementioned linear imputation model. By virtue of the imputation model (wrongly)
assuming linearity between Y and X, we know that the estimates of the quadratic
substantive model will be biased. This example was investigated in detail through
simulation by von Hippel (2009) and Seaman, Bartlett, and White (2012).
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Y

X

E(Y|X), observed data

E(Y|X), imputed data

Observed values

Imputed values

Figure 1. Plot of simulated (Y,X) data, in which X ∼ N(1, 1) and Y |X ∼ N(X +
3X2, 1.52). Y is fully observed, whereas X is partially observed. Circles are used to
represent 100 (Y,X) pairs in which X was observed. Crosses represent 100 (Y,X) pairs
in which X was imputed assuming X |Y ∼ N(ω0 + ω1Y, σ

2
ω). Conditional expectations

were estimated nonparametrically using the lowess command.

Let’s assume that the substantive model is Y |X ∼ (ψ0 +ψ1X,σ
2
ψ) and the imputa-

tion model is X |Y ∼ N(ω0 + ω1Y + ω2Y
2, σ2

ω), with each of the regression coefficients
lying in (−∞,+∞). These two models are again incompatible. However, they can be
made compatible (and are, hence, semicompatible) by restricting the parameter space
of the imputation model by setting ω2 = 0. Here incompatibility does not imply mis-
specification.

For a final example, suppose that the substantive model is Y |X ∼ (ψ0 + ψ1X,σ
2
ψ)

and the imputation model is X |Y ∼ N(ω0 + ω1Y, σ
2
ω). These models are compatible,

with the joint model being the bivariate normal. We emphasize that compatibility does
not guarantee that the imputation model is correctly specified.

Even when the substantive model contains only linear covariate effects without in-
teractions, incompatibility may arise with default imputation models if the substan-
tive model is nonlinear. For example, for an exponential-survival substantive model,
Bartlett et al. (Forthcoming) describe how the recommended imputation model for con-
tinuous partially observed covariates is incompatible with the exponential model.

In conclusion, except in cases where the imputation and substantive models can
be made compatible by restricting the parameter space (Ω) of the imputation model
(that is, a simpler model nested within the imputation model is compatible with the
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substantive model), incompatibility between the two implies that the imputation model
is misspecified (assuming correct specification of the substantive model). Consequently,
when choosing the covariate imputation model, f(X |Z, Y, ω), we should (at least) en-
sure either that it is compatible with the substantive model or that a restriction of it is
compatible with the substantive model.

2.3 SMC–FCS

We now return to the setting of a vector of multiple partially observed covariates,
X = (X1, . . . , Xp). To apply standard FCS MI (see van Buuren [2007] for further back-
ground on standard FCS MI) in the missing covariates setting, for each partially observed
covariate Xj , j = 1, . . . , p, we specify a model for f(Xj |X−j , Z, Y ), where X−j =
(X1, . . . , Xj−1, Xj+1, . . . , Xp). For previously mentioned reasons, common choices for
this imputation model may be incompatible with the substantive model f(Y |X,Z, ψ),
implying misspecification.

To motivate the SMC–FCS algorithm, we can express the conditional distribution
f(Xj |X−j , Z, Y ) as

f(Xj |X−j , Z, Y ) =
f(Y,Xj |X−j , Z)

f(Y |X−j , Z)
=

f(Y |Xj , X−j , Z)f(Xj |X−j , Z)

f(Y |X−j , Z)

∝ f(Y |X,Z)f(Xj |X−j , Z)

In SMC–FCS, we specify a model f(Xj |X−j , Z, φj) for Xj , where φj is a vector of model
parameters, and we impute Xj using the density proportional to

f(Y |X,Z, ψ)f(Xj |X−j , Z, φj) (1)

For any given j, this imputation model will automatically be compatible with the sub-
stantive model f(Y |X,Z, ψ). The model f(Xj |X−j , Z, φj) can be chosen in the same
way as models are selected for the standard FCS algorithm. For example, if Xj is bi-
nary, we would use a logistic regression model by default. For discrete Xj , which has
a finite-sample space (for example, binary and categorical variables), samples can be
drawn directly from the distribution proportional to (1). More generally, Bartlett et al.
(Forthcoming) show that, provided one can easily draw samples from f(Xj |X−j , Z, φj),
the Monte Carlo method of rejection sampling can be used to draw samples from the
imputation distribution when the substantive model is a normal linear regression, a re-
gression model for a discrete outcome Y (thereby including logistic and Poisson regres-
sion), or a proportional hazards model for a possibly censored time-to-event outcome.
Rejection sampling involves repeatedly drawing from a candidate distribution—here
f(Xj |X−j , Z, φj)—until a certain criterion is satisfied, which is therefore computation-
ally intensive. To ensure reasonable run times, the smcfcs command uses Mata to
perform rejection sampling.

The SMC–FCS algorithm initializes by imputing missing values in each variable using
randomly observed values from the same variable. It then cycles through the imputation
models for each partially observed variable, here the variablesX1, . . . , Xp, imputing each
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missing value. Following a suitable number of iterations, the current imputations form
the first imputed dataset. The process is then repeated to create as many imputed
datasets as desired.

In SMC–FCS, the imputation model forXj depends both on φj and on the substantive-
model parameter ψ. Bartlett et al. (Forthcoming) derive a Gibbs sampler for the
joint model (assuming it exists) defined by the substantive model and the models
f(Xj |X−j , Z, φj), j = 1, . . . , p. At the tth iteration, the SMC–FCS algorithm imputes
missing values in Xj by performing the following draws,

ψ(t,j) ∼ f(ψ)f(y |xmis(t−1)
j , xobsj , x∗−j , z, ψ)

φ
(t)
j ∼ f(φj)f(x

mis(t−1)
j , xobsj |x∗−j , z, φj)

where f(ψ) and f(φj) denote uninformative priors, y and z denote the (fully) observed
values of Y and Z across the n subjects, x∗−j denotes the observed and most recent

imputed values of X−j across all n subjects, xobsj denotes the observed values of Xj , and

x
mis(t−1)
j denotes the imputed values of Xj from the preceding iteration. The missing

values in Xj are then imputed using rejection sampling from the density defined by (1)

using ψ(t,j) and φ
(t)
j .

Bartlett et al. (Forthcoming) have provided conditions—including that the models
f(Xj |X−j , Z, φj), j = 1, . . . , p are mutually compatible—under which the SMC–FCS

imputes from a well-defined Bayesian joint model. When this joint model is correctly
specified, application of Rubin’s rules will result in valid inferences. There are, how-
ever, common model specifications (for example, a combination of linear and logistic
covariate models) for which SMC–FCS is not equivalent to MI from a Bayesian joint model.
Bartlett et al. (Forthcoming) conjecture that when the models f(Xj |X−j , Z, φj),
j = 1, . . . , p are semicompatible valid (meaning that there exist restrictions of these
models that make them mutually compatible, and these models are valid), application
of Rubin’s rules to imputations generated by SMC–FCS will give consistent point esti-
mates. Simulations by Bartlett et al. (Forthcoming) support this and further suggest
that confidence intervals based on Rubin’s variance estimator may still perform well
even when SMC–FCS is not equivalent to MI from a Bayesian joint model. Lastly, if
the models f(Xj |X−j , Z, φj), j = 1, . . . , p are not compatible (and cannot be made so
by restrictions of their parameter spaces), we cannot expect to obtain consistent point
estimates.

Bartlett et al. (Forthcoming) reported simulation results for a linear regression sub-
stantive model with quadratic covariate effects, a linear regression model with an inter-
action effect, and a Cox proportional hazards substantive model. Overall, their results
suggest that SMC–FCS is an attractive approach for imputing missing values of covari-
ates for substantive models that include nonlinear covariate effects or interactions or
are themselves nonlinear (for example, a Cox proportional hazards model).
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3 The smcfcs command

3.1 Syntax

smcfcs smcmd smdepvar smindepvars
[
, regress(varlist) logit(varlist)

poisson(varlist) nbreg(varlist) mlogit(varlist) ologit(varlist)

iterations(#) m(#) rjlimit(#) passive(string) eq(string) rseed(string)

chainonly savetrace(filename) noisily by(varlist) clear
]

3.2 Options

regress(varlist) specifies the names of the partially observed continuous variables (if
any) to be imputed by normal linear regression.

logit(varlist) specifies the names of the partially observed binary variables (if any) to
be imputed by logistic regression.

poisson(varlist) specifies the names of the partially observed Poisson variables (if any)
to be imputed.

nbreg(varlist) specifies the names of the partially observed negative binomial variables
(if any) to be imputed.

mlogit(varlist) specifies the names of the partially observed unordered categorical vari-
ables (if any) to be imputed.

ologit(varlist) specifies the names of the partially observed ordered categorical vari-
ables (if any) to be imputed.

iterations(#) specifies the number of iterations to perform for each imputation. The
default is iterations(10).

m(#) specifies the number of imputations to generate. The default is m(5).

rjlimit(#) specifies that smcfcs uses rejection sampling to impute missing covariate
values for variables that do not have a finite-sample space. Rejection sampling
repeatedly draws from a distribution until a valid imputation is found. This option
specifies the maximum number of attempts that smcfcs will make to find a valid
draw for imputed values. If valid values have not been found for one or more subjects
by the limit, the command continues and uses the last proposed draw for such
subjects. The default is rjlimit(1000).

passive(string) specifies a string of equations to update derived covariates (if any).
Each expression within the string must be separated by a |. Derived covariates may
appear in the substantive model, in the covariate models, or in both.

eq(string) specifies a string of linear predictor sets for partially observed variables.
Each expression within the string must be separated by a |. Each expression should
be of the form varname: varlist, which specifies that the linear predictor of the
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covariate model for varname be given by varlist. If an expression is not specified for
a given partially observed variable, the default is to impute using a covariate model
that includes any fully observed variables in the substantive model and all partially
observed variables except the one being imputed.

rseed(string) sets the random-number seed to the given value.

chainonly performs iterations of SMC–FCS (as specified by the iterations() option)
without creating imputations. This can be used in conjunction with savetrace()

to assess convergence.

savetrace(filename) saves means and standard deviations of imputed values from each
iteration in filename.dta. This can be used to check convergence of SMC–FCS.

noisily runs SMC–FCS noisily. This is useful for diagnosing errors.

by(varlist) imputes separately in groups defined by varlist .

clear specifies that any previous imputations in the data be cleared. If imputations
already exist, smcfcs will exit with an error unless the clear option is specified.

3.3 Description

smcfcs imputes missing values in covariates by using the SMC–FCS algorithm. The
substantive model is specified immediately following smcfcs by smcmd smdepvar smin-

depvars, giving the substantive-model command, dependent variable, and independent
variables, respectively. Currently, smcfcs supports regress, logistic, and stcox

substantive models. The independent variables of the substantive model can be fully
observed, directly imputed variables or passively imputed variables (that is, functions
of imputed variables and possibly fully observed variables).

Partially observed variables can be imputed using linear, logistic, Poisson, nega-
tive binomial, multinomial logistic, or ordered logistic regression models by passing the
variables to the regress(), logit(), poisson(), nbreg(), mlogit(), or ologit()

options, respectively. By default, each partially observed variable is imputed from a
model conditioning on all the other partially observed variables and any fully observed
independent variables in the substantive model. When they serve as predictors, par-
tially observed variables are included by default as linear terms, except for partially
observed categorical variables, which are included as factor variables. The eq() option
can be used to customize the models f(Xj |X−j , Z, φj). Fully observed variables can
be included as factor variables by using factor-variable notation (see [U] 11.4.3 Factor
variables).

If any of the covariates given as smindepvars are derived functions of the partially
observed variables, the equations defining the covariates must be specified using the
passive() option. For example, if the substantive model includes xsq as a covariate,
which is equal to the square of a partially observed variable x, we would pass xsq=x^2
to the passive() option. For more examples, see the smcfcs help file, and also see the
illustrative example in section 4.
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For continuous and binary outcomes, smcfcs will additionally impute any missing
values in the outcome, using the specified substantive model as the imputation model.

Once the desired number of imputations has been generated, smcfcs imports the
imputations to mi format (flong) and then fits the substantive model to the imputations
by using the mi estimate command. mi estimate can then be used to fit alternative
models for the outcome, although one should ensure that these are nested within the
substantive model specified to generate the imputations.

The command will give a warning if valid draws are not obtained for one or more
observations within the limit specified by the rjlimit() option. If you receive this
warning, it is advisable to increase the limit until the warning no longer appears.

As with standard FCS MI, one should assess whether a sufficient number of iterations
has been used for the algorithm to converge. Convergence can be assessed by using the
chainonly and savetrace() options, as per the mi impute chained command, and
by plotting the means and standard deviations of imputed values by iteration. Because,
unlike standard FCS, SMC–FCS conditions on the last imputations of Xj when fitting
the models f(Xj |X−j , Z, φj) and f(Y |X,Z, ψ), SMC–FCS may require more iterations
for convergence. However, Bartlett et al. (Forthcoming) obtained good performance in
simulations with 10 iterations, which is now the default used by smcfcs.

The by(varlist) option can be used to impute separately in groups defined by the
supplied varlist . In this case, smcfcs fits the substantive model and covariate models
and imputes entirely separately in each group. Following this, the imputations from each
group are appended. In this case, smcfcs does not fit one substantive model across all
the groups—the user must select and fit an appropriate model using mi estimate.

When using standard FCS imputation, one should include the outcome of the sub-
stantive model as a predictor in the imputation models for the substantive model covari-
ates to ensure that the covariates are (hopefully correctly) associated with the outcome.
To avoid doubt, when using smcfcs, one should include the outcome only as the smde-

pvar variable and should not include it elsewhere in the command call.

4 Illustrative example

We illustrate the use of smcfcs using a dataset of 686 patients in Germany with positive-
node breast cancer, previously analyzed by Royston (2004). The original data can be
loaded with webuse brcancer. Royston (2004) previously developed a substantive Cox
proportional hazards model for time to cancer recurrence, including five covariates: age
(age) with a fractional polynomial (FP) transformation with powers −2 and −0.5; tumor
grade 2/3 (gradd1); number of positive lymph nodes (nodes) with the exponential
transformation enodes = exp(−0.12× nodes); progesterone receptors (pgr) with an FP

transformation with power 0.5; and hormonal therapy with tamoxifen (tam). The Cox
model thus contains the following nonlinear transformations of three covariates:
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age 1 = (age/10)
−2

age 2 = (age/10)
−0.5

enodes = exp(−0.12× nodes)

pgr 1 = {(pgr+ 1)/1000}0.5

In the original dataset, the covariates were fully observed in all 686 patients. However,
Royston (2004) deleted 20% of values completely at random for each independent vari-
able in the analysis model. Here, as a sterner test, we make 50% missing (completely
at random) in each independent variable, leaving just 25 complete cases (provided as
partialdata.dta). For comparison with estimates based on MI, we first present results
based on the full data before data were made missing.

. use breastcancerfull
(German breast cancer data)

. fracgen age -2 -0.5
-> gen double age_1 = X^-2
-> gen double age_2 = X^-0.5

(where: X = age/10)

. fracgen pgr 0.5
-> gen double pgr_1 = X^0.5

(where: X = (pgr+1)/1000)

. stcox age_1 age_2 gradd1 enodes pgr_1 tam, nohr nolog

failure _d: censrec
analysis time _t: rectime

Cox regression -- Breslow method for ties

No. of subjects = 686 Number of obs = 686
No. of failures = 299
Time at risk = 2111.978093

LR chi2(6) = 153.11
Log likelihood = -1711.6186 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age_1 43.55382 8.253433 5.28 0.000 27.37738 59.73025
age_2 -17.48136 3.911882 -4.47 0.000 -25.14851 -9.814212

gradd1 .5174351 .2493739 2.07 0.038 .0286713 1.006199
enodes -1.981213 .2268903 -8.73 0.000 -2.425909 -1.536516
pgr_1 -1.84008 .3508432 -5.24 0.000 -2.52772 -1.15244

tam -.3944998 .128097 -3.08 0.002 -.6455654 -.1434342

We first applied standard FCS MI to the partially observed dataset, using mi impute

chained to create 100 imputations. Imputing variables and ignoring nonlinearities
and then passively imputing the nonlinear covariates of the substantive model may
produce biased estimates (Seaman, Bartlett, and White 2012). Instead, we used the
just-another-variable (JAV) approach for imputing nonlinear and interaction terms as
proposed by von Hippel (2009). To do this, we directly imputed the nonlinear terms
involved in the substantive model, here given by age 1, age 2, enodes, and pgr 1 using
normal linear regressions. Note that this ignores the deterministic relationship between
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age 1 and age 2. We used logistic regression to impute the two binary variables, gradd1
and tam. Following White and Royston (2009), we included the event indicator and
the marginal Nelson–Aalen cumulative-hazard estimate (generated using sts gen) as
covariates in each imputation model.

. use partialdata, clear

. sts generate na = na

. mi set flong

. mi register imputed age_1 age_2 pgr_1 enodes gradd1 tam
(661 m=0 obs. now marked as incomplete)

. mi impute chained (reg) age_1 age_2 pgr_1 enodes (logit) gradd1 tam = na _d,
> add(100) rseed(6934)

Conditional models:
age_1: regress age_1 age_2 enodes i.gradd1 i.tam pgr_1 na _d
age_2: regress age_2 age_1 enodes i.gradd1 i.tam pgr_1 na _d
enodes: regress enodes age_1 age_2 i.gradd1 i.tam pgr_1 na _d
gradd1: logit gradd1 age_1 age_2 enodes i.tam pgr_1 na _d

tam: logit tam age_1 age_2 enodes i.gradd1 pgr_1 na _d
pgr_1: regress pgr_1 age_1 age_2 enodes i.gradd1 i.tam na _d

Performing chained iterations ...

Multivariate imputation Imputations = 100
Chained equations added = 100
Imputed: m=1 through m=100 updated = 0

Initialization: monotone Iterations = 1000
burn-in = 10

age_1: linear regression
age_2: linear regression
pgr_1: linear regression
enodes: linear regression
gradd1: logistic regression

tam: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

age_1 360 326 326 686
age_2 360 326 326 686
pgr_1 323 363 363 686
enodes 358 328 328 686
gradd1 350 336 336 686

tam 333 353 353 686

(complete + incomplete = total; imputed is the minimum across m

of the number of filled-in observations.)
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. mi estimate: stcox age_1 age_2 gradd1 enodes pgr_1 tam, nohr

Multiple-imputation estimates Imputations = 100
Cox regression: Breslow method for ties Number of obs = 686

Average RVI = 1.2171
Largest FMI = 0.6489

DF adjustment: Large sample DF: min = 237.25
avg = 340.43
max = 437.48

Model F test: Equal FMI F( 6, 1955.8) = 11.40
Within VCE type: OIM Prob > F = 0.0000

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

age_1 33.24523 11.62389 2.86 0.004 10.39961 56.09085
age_2 -12.41139 5.569491 -2.23 0.026 -23.3611 -1.461675

gradd1 .299675 .343087 0.87 0.383 -.375485 .974835
enodes -1.835314 .336044 -5.46 0.000 -2.496132 -1.174495
pgr_1 -2.287823 .5170807 -4.42 0.000 -3.306479 -1.269168

tam -.4000215 .1941113 -2.06 0.040 -.7819716 -.0180715

Note that the standard errors are all larger than those based on the full data, as
is to be expected with such large proportions of missingness. The coefficients of the
two powers of age are in the same direction as the full-data estimates, but there is
possible attenuation (that is, bias) with the estimates both being about 25% smaller in
magnitude than the full-data estimates. The coefficient of gradd1 is also much smaller
than the full-data estimate. The coefficients corresponding to the number of nodes and
tam are both quite close to their full-data estimates, while the coefficient of pgr 1 is
somewhat larger. Researchers may be uncomfortable using the JAV approach because
the normal imputation models used are not well specified. For example, in these data,
for those patients with a negative value imputed for the enodes variable, one cannot
take logarithms to obtain an imputed value for the original nodes variable, and for
some patients for whom the back-transformation can be performed, their nodes value
is negative. Further, for each subject with age missing, there is no single imputation
of this variable because the values imputed into age 1 and age 2 will not be consistent
with a particular value of age.

One may argue that when interest lies in fitting a substantive model, we should be
concerned with the validity of inferences for the parameters of this model only. Here
some of the coefficients may be biased, although it is difficult to distinguish between
random variation and systematic bias. More importantly, although JAV can be shown to
be unbiased for linear regression models under missing completely at random (MCAR),
JAV has been shown to be biased under MAR mechanisms and also biased for logistic
regression substantive models, even under MCAR (Seaman, Bartlett, and White 2012).
To our knowledge, there is no justification for JAV’s (even approximate) validity for Cox
proportional hazards models.

For these reasons, SMC–FCS is an appealing alternative approach here because we can
impute each variable from an imputation model that is compatible with the assumed
Cox proportional hazards model. Because the nodes and pgr variables are both integer
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valued and positively skewed, we impute them using negative binomial regression. Be-
cause all patients have at least one node, we subtracted one from nodes and assumed
this followed a negative binomial regression. The distribution of age had little skew, so
we chose a normal linear regression model. Because the nodes and pgr variables are
so highly skewed, we deemed it implausible that they had linear effects in the covari-
ate models f(Xj |X−j , Z, φj). We therefore used the eq() option to specify that when
included as covariates, nodes and pgr variables should be included as log(nodes) and
log(pgr+1), respectively. To do this, we generated corresponding variables and added
expressions to the passive() option (in addition to those required for the substantive
model covariates) so that these were updated appropriately.

. use partialdata, clear

. generate nodesminusone = nodes-1
(328 missing values generated)

. generate logpgr = log(pgr+1)
(363 missing values generated)

. generate lognodes = log(nodesminusone+1)
(328 missing values generated)

. smcfcs stcox age_1 age_2 gradd1 enodes pgr_1 tam, regress(age) logit(gradd1 tam)
> nbreg(nodesminusone pgr) passive( age_1 = (age/10)^-2 | age_2 = (age/10)^-.5
> | enodes = exp(-0.12*(nodesminusone+1)) | pgr_1 = ( (pgr+1)/1000)^.5 | logpgr
> = log(pgr+1) | lognodes = log(nodesminusone+1)) eq(age: gradd1 tam logpgr
> lognodes | gradd1: age tam logpgr lognodes | tam: gradd1 age logpgr lognodes |
> nodesminusone: tam gradd1 age logpgr | pgr: lognodes tam gradd1 age)
> rseed(5913) m(100)

Covariate models:
reg age gradd1 tam logpgr lognodes
logistic gradd1 age tam logpgr lognodes, coef
logistic tam gradd1 age logpgr lognodes, coef
nbreg nodesminusone tam gradd1 age logpgr
nbreg pgr lognodes tam gradd1 age

Your passive statement(s) say:
age_1 = (age/10)^-2
age_2 = (age/10)^-.5
enodes = exp(-0.12*(nodesminusone+1))
pgr_1 = ( (pgr+1)/1000)^.5
logpgr = log(pgr+1)
lognodes = log(nodesminusone+1)
...............................................................................
> .....................
100 imputations generated
Fitting substantive model to multiple imputations
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Multiple-imputation estimates Imputations = 100
Cox regression: Breslow method for ties Number of obs = 686

Average RVI = 1.2787
Largest FMI = 0.6045

DF adjustment: Large sample DF: min = 273.50
avg = 329.79
max = 453.10

Model F test: Equal FMI F( 6, 1872.1) = 12.33
Within VCE type: OIM Prob > F = 0.0000

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

age_1 37.86482 11.04905 3.43 0.001 16.15108 59.57857
age_2 -13.96674 5.765115 -2.42 0.016 -25.30891 -2.624579

gradd1 .4355209 .3483549 1.25 0.212 -.2502723 1.121314
enodes -1.924758 .3263519 -5.90 0.000 -2.566525 -1.282991
pgr_1 -2.996675 .577313 -5.19 0.000 -4.132892 -1.860458

tam -.3652585 .204516 -1.79 0.075 -.7678841 .0373672

The command first gives a summary of the covariate models it will use. This shows
that log(nodes) and log(pgr+1) will be used as covariates, rather than their un-
transformed versions, in the covariate models f(Xj |X−j , Z, φj). The command then
summarizes the passive() expressions that will be used. Next, the SMC–FCS algo-
rithm runs, creating the desired imputations, and the substantive model is fit to each
imputation. The results are combined and displayed using mi estimate.

We see that all the estimated coefficients from SMC–FCS are closer to those from the
full data as compared with those from using JAV, except those of pgr 1 (for which the
SMC–FCS is quite a bit larger in magnitude) and tam (which is still fairly close to the
full-data estimate). Unlike the imputations generated from JAV, the distributions of the
variables after imputation are similar to their full-data distributions, and the values in
the variables age 1 and age 2 are consistent with the imputed values of age.

5 Simulation study

Here we present results of a small simulation study comparing the performance of
smcfcs with standard FCS imputation using mi impute chained for a Cox proportion-
al-hazards substantive model. We include results on computational time to highlight
that smcfcs is more computationally demanding. Datasets were simulated for n sub-
jects with two covariates: X1 drawn from a Bernoulli distribution with probability 0.5
and X2 |X1 ∼ N(X1, 1). We simulated a survival time for each subject by using hazard
function h(t |X) = 0.002 exp(β1X1 + β2X2) with β1 = β2 = 1. We generated censoring
times from an exponential distribution with hazard 0.002. Values in X1 and X2 were
made (independently) MCAR with probability π in each simulation. We investigated
the impact of sample size by performing simulations (100 per scenario) for n = 100,
500, 1000, 2500, 5000, with π = 0.25 (such that approximately 50% of subjects had at
least one covariate missing). Next, for n = 1000, we performed simulations (100 per
scenario) with varying proportions of missingness from π = 0.05 to π = 0.35 in steps of
0.05.
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For each simulated dataset, we imputed the missing values in X1 and X2 using mi

impute chained. We imputed X1 and X2 using logistic and linear regression models,
respectively, with the event indicator and Nelson–Aalen estimate of the (marginal) cu-
mulative hazard as covariates. Next, we imputed using smcfcs, again using logistic
and linear models but imputing compatibly with a Cox proportional hazards model for
the survival time. Ten imputations were used for both methods. In smcfcs, the de-
fault setting for the rejection sampling limit of 1,000 was used. In this setting, smcfcs
can directly sample from the imputation distribution for the binary covariate X1, but
rejection sampling is used for the continuous covariate X2.

Figure 2 shows the distributions of the relative computation times taken by smcfcs

compared with mi impute chained for the different sample sizes considered. This plot
shows that for n = 100, smcfcs typically takes the same time to complete as mi impute

chained. However, as the sample size increases, the relative computational cost of
smcfcs increases, with an approximately sixfold increase in time taken for n = 5000.
This additional computational cost is from smcfcs using rejection sampling to impute
the continuous covariate X2. As the sample size increases, each dataset has a larger
probability of having at least one record with a very low acceptance probability such that
a large number of proposal draws are required before acceptance. Figure 3 shows the
estimates of β2 = 1 from the 2 imputation approaches, again for varying sample sizes.
This plot shows that while smcfcs gives unbiased estimates, using the approximate
approach proposed by White and Royston (2009), estimates are systematically biased
toward the null, and the bias does not reduce with increasing sample size.
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Figure 2. Plot showing ratio of time taken by smcfcs to mi impute chained for varying
sample sizes, π = 0.25
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Figure 3. Plot showing estimates of β2 = 1 from smcfcs and mi impute chained for
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Figure 4 shows that for a fixed sample size, increasing levels of missingness lead
to a modest increase in computation times for smcfcs relative to mi impute chained.
Figure 5 illustrates that the bias in estimates of β2 = 1 from mi impute chained

steadily increases with increasing levels of missingness, whereas smcfcs continues to be
unbiased.
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The simulations demonstrate that smcfcs incurs an additional computational cost
compared with using mi impute chained. Thus, when a substantive-model compatible
imputation model can be specified directly using mi impute chained (for example,
a linear regression outcome model with main effects only), the use of smcfcs is not
recommended. Outside of these settings, however, the use of smcfcs is expected to give
estimates with less bias by imputing compatibly with the assumed substantive model,
and the increased computational cost would usually be deemed a small price to pay.

6 Final remarks

The smcfcs command allows one to impute covariates from imputation models that are
compatible with a user-specified substantive model. When the substantive model con-
tains nonlinear effects or interactions and the variables involved in these contain missing
values, we believe smcfcs offers material advantages relative to what can be achieved
using standard FCS or imputation by chained-equations MI. We believe a strength of the
algorithm is that it forces the user to specify the substantive model at the imputation
stage, making it possible to generate a set of MIs that gives reasonable results for certain
analyses or substantive models (but may give biased estimates for others).

In practice, one will typically not know the final substantive model at the imputation
stage. Various possible strategies can be used to determine this. If the complete cases
represent a reasonably large proportion of the sample, the substantive model could be
chosen (with standard model-selection strategies) using the complete cases. Alterna-
tively, one could impute assuming a flexible substantive model, which could be followed
by fitting simpler nested models for the outcome to the imputations. Conversely, one
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should not fit substantive models that are not nested within the substantive model used
to generate the imputations. For example, one should not impute assuming a substan-
tive model that assumes no interactions and then fit alternative substantive models that
allow for interactions.

An example of the above advice is for FP models. In section 4, we used FP transfor-
mations that had previously been selected by Royston (2004). Had this not been the
case, we would have had to select our best FP model. To ensure each imputation model
is semicompatible with any FP model that might be selected, one could use the follow-
ing method. For a partially observed X, the transformations Xp under consideration
will typically include p = −2, −1, −0.5, 0, 0.5, 1, 2, and 3, where X0 is ln(X). All
of these Xp should be included in the SMC–FCS specification of the substantive model.
This ensures the imputation model for each partially observed variable (in particular,
X) is semicompatible with any (to be subsequently selected) FP model. An FP model
for the outcome can then be selected using the imputed data. Note that for degree-2 FP

models, repeated powers for X are possible. If this is a concern, the variables Xp ln(X)
should also be included in the substantive model at the imputation stage.

The following fragment of code demonstrates how this strategy can be implemented
in practice. Note that fracgen involves scaling and centering of x 1–x 7, so it is im-
portant to be aware of this in defining the passive() statement.

. smcfcs reg y x_1 x_2 x_3 x_4 x_5 x x_7 x_8, regress(x)
> passive(x_1 = x^-2 | x_2 = x^-1 | x_3 = x^-0.5 | x_4 = ln(x) | x_5 = x^0.5 |
> x_6 = x^2 | x_7 = x^3)

We believe that imputing covariates from a model that is compatible with the
substantive model is desirable because (assuming the latter is correctly specified) un-
less the imputation model (or a restriction of it) is compatible with the substantive
model, the imputation model is misspecified. We emphasize that this compatibil-
ity does not ensure that the imputation model is correctly specified—if the covariate
model f(Xj |X−j , Z, φj) is misspecified for a given value of j, the imputation model
is misspecified. Care should therefore be taken to ensure that the covariate models
f(Xj |X−j , Z, φj) are reasonable for the data at hand. Diagnostics that can be applied
to MIs should be applied, such as examining the distributions of imputed variables and
comparing them with the distribution of the observed values.
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