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Abstract. We present a new command, tebounds, that implements a variety of
techniques to bound the average treatment effect of a binary treatment on a binary
outcome in light of endogenous and misreported treatment assignment. To tighten
the worst case bounds, the monotone treatment selection, monotone treatment
response, and monotone instrumental-variable assumptions of Manski and Pepper
(2000, Econometrica 68: 997–1010), Kreider and Pepper (2007, Journal of the

American Statistical Association 102: 432–441), Kreider et al. (2012, Journal of
the American Statistical Association 107: 958–975), and Gundersen, Kreider, and
Pepper (2012, Journal of Econometrics 166: 79–91) may be imposed. Imbens–
Manski confidence intervals are provided.

Keywords: st0386, tebounds, treatment effects, selection, misreporting, mono-
tone instrumental variable, monotone treatment selection, monotone treatment
response, partial identification, set identification

1 Introduction

The causal effects of binary treatment on an outcome of interest are a central component
of empirical research in economics and many other disciplines. When individual units
self select into treatment and when prospective randomization of the treatment and
control groups is not feasible, researchers must rely on observational data and adopt
alternative empirical methods intended to control for the inherent self selection.

If individual units self select on the basis of observed variables (selection on observed
variables), a variety of appropriate methodologies exist to estimate the causal effects of
the treatment. If, instead, individuals self select on the basis of unobserved variables
(selection on unobserved variables), estimation of causal effects is more difficult. In

© 2015 StataCorp LP st0386



412 Bounding treatment effects

such cases, strong assumptions are often needed to achieve point identification. The
credibility of such approaches is further diminished if treatment assignment is misre-
ported. Moreover, as shown in Millimet (2011), estimators appropriate for situations
characterized by selection on observed variables may perform poorly when treatment
assignment is misreported.

An alternative approach is to abandon the goal of point identification and instead
seek to partially identify (or set identify) causal effects.1 Partial identification ap-
proaches are more often credible than those yielding point identification because they
highlight what may be learned without invoking perhaps untenable assumptions. As
Manski (2013, 2–3) states: “Exact predictions are common, and expressions of uncer-
tainty are rare. Yet policy predictions often are fragile. Conclusions may rest on critical
unsupported assumptions or on leaps of logic. Then the certitude of policy analysis
is not credible.” Similarly, Bontemps, Magnac, and Maurin (2012, 1129) write: “Point
identification is often achieved by using strong and difficult to motivate restrictions on
the parameters of interest.” Tamer (2010, 168) states: “Stronger assumptions will lead
to more information about a parameter, but less credible inferences can be conducted.”
Instead, Manski (2013, 3) advocates the “honest portrayal of partial knowledge”.

While it is certainly true that partial identification approaches may be less satisfying
than estimators that yield point identification, there is much that can be learned without
imposing stringent assumptions. Tamer (2010, 168) argues that “models that do not
point identify parameters of interest can, and typically do, contain valuable information
about these parameters”. In particular, bounds on the parameter of interest often
exclude 0, thereby identifying the sign of the parameter. Moreover, bounds can exclude
extreme values that may, for example, be useful in determining whether a program fails
a cost–benefit analysis.

Here we provide a means to partially identify the average treatment effect (ATE)
of a binary treatment on a binary outcome under a variety of assumptions concerning
the nature of the self-selection process and the nature and frequency of misreporting of
treatment assignment.

2 Framework and methodology

Focusing on binary outcomes, the ATE is given by

ATE(1, 0) = P {Y (1) = 1|X ∈ Ω} − P {Y (0) = 1|X ∈ Ω} (1)

where Y (1) denotes the outcome if an individual unit receives the treatment, denoted
by D∗ = 1, and Y (0) denotes the outcome if an individual unit does not receive the
treatment, denoted by D∗ = 0. Y (1) and Y (0) are potential outcomes because only one
is realized for any given individual. The observed outcome for a particular individual
is given by Y = D∗Y (1) + (1 − D∗)Y (0). X denotes a vector of observed covariates

1. Bontemps, Magnac, and Maurin (2012, 1129) state: “A parameter is set identified when the iden-
tifying restrictions impose that it lies in a set that is smaller than its potential domain.”
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whose values lie in the set Ω. To simplify notation, the conditioning on X is left implicit
throughout the remainder of the article.

The terms in (1) can be written as

P {Y (1) = 1} = P {Y (1) = 1|D∗ = 1}P (D∗ = 1)

+ P {Y (1) = 1|D∗ = 0}P (D∗ = 0) (2)

P {Y (0) = 1} = P {Y (0) = 1|D∗ = 1}P (D∗ = 1)

+ P {Y (0) = 1|D∗ = 0}P (D∗ = 0) (3)

Two problems arise in the identification of the ATE. The first is referred to as
the selection problem. If receipt of treatment is observed, then the sampling pro-
cess itself identifies the selection probability P (D∗ = 1), the censoring probability
P (D∗ = 0), and the expectation of outcomes conditional on the outcome being observed,
P {Y (1) = 1|D∗ = 1} and P {Y (0) = 1|D∗ = 0} . But the sampling process cannot iden-
tify the counterfactual probabilities, P {Y (1) = 1|D∗ = 0} and P {Y (0) = 1|D∗ = 1},
and so P {Y (1) = 1} and P {Y (0) = 1} are not point identified by the sampling process
alone. The second is referred to as the problem of measurement or classification error.
True treatment status may not be observed for all observations. Instead of observing
D∗, the indicator D is observed. If D 6= D∗ for all units, the sampling process alone does
not provide any useful information on true treatment status D∗, and all the probabilities
on the right-hand side of (2) and (3) are unknown.

To proceed, we present some notation and preliminaries. First, note the following
identities:

P{Y (1) = 1|D∗ = 1} = P (Y = 1|D∗ = 1)

P{Y (1) = 0|D∗ = 1} = P (Y = 0|D∗ = 1)

P{Y (0) = 1|D∗ = 0} = P (Y = 1|D∗ = 0)

P{Y (0) = 0|D∗ = 0} = P (Y = 0|D∗ = 0)

Second, let the latent variable Z∗ denote whether reported treatment assignment is
accurate, where Z∗ = 1 if D∗ = D and Z∗ = 0 otherwise. Third, define the following
notation:

θ+1 ≡ P (Y = 1, D = 1, Z∗ = 0)

⇒ fraction of observations that are false positives with Y = 1

θ+0 ≡ P (Y = 0, D = 1, Z∗ = 0)

⇒ fraction of observations that are false positives with Y = 0

θ−1 ≡ P (Y = 1, D = 0, Z∗ = 0)

⇒ fraction of observations that are false negatives with Y = 1

θ−0 ≡ P (Y = 0, D = 0, Z∗ = 0)

⇒ fraction of observations that are false negatives with Y = 0
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We can now further decompose P {Y (1) = 1} and P {Y (0) = 1} as follows:

P {Y (1) = 1} =
P (Y = 1, D∗ = 1)

P (D∗ = 1)
P (D∗ = 1) + P {Y (1) = 1|D∗ = 0}P (D∗ = 0)

= {P (Y = 1, D = 1)− θ+1 + θ−1 }
+ P {Y (1) = 1|D∗ = 0} {P (D = 0) + (θ+1 + θ+0 )− (θ−1 + θ−0 )} (4)

P {Y (0) = 1} = P {Y (0) = 1|D∗ = 1}P (D∗ = 1) +
P (Y = 1, D∗ = 0)

P (D∗ = 0)
P (D∗ = 0)

= P {Y (0) = 1|D∗ = 1} {P (D = 1)− (θ+1 + θ+0 ) + (θ−1 + θ−0 )}
+ {P (Y = 1, D = 0) + θ+1 − θ−1 } (5)

Unless assumptions are imposed on the nature of the selection problem, the missing
counterfactual terms (P {Y (1) = 1|D∗ = 0} and P {Y (0) = 1|D∗ = 1}) are not identi-
fied. Similarly, absent further assumptions, the terms representing the extent of mea-
surement error (θ+1 , θ

+
0 , θ

−
1 , θ

−
0 ) are not identified.

2.1 Assumptions

We now turn to the assumptions imposed to bound the ATE in the presence of selection
and measurement error. For additional discussion regarding these assumptions and
their practical implications, see Manski and Pepper (2000), Kreider and Pepper (2007),
Kreider et al. (2012), and Gundersen, Kreider, and Pepper (2012). We stress that the
appropriateness of these assumptions will tend to vary by application. For example, in
a study of food stamp programs, respondents may be unlikely to report receiving food
stamps when in fact they do not, in which case an assumption of no false positives may
be appropriate. Users of the tebounds command should critically consider these various
assumptions when interpreting their results.

Assumptions regarding measurement error include the following:

A1. Arbitrary errors with the upper bound (UB), P (Z∗ = 0) ≤ Q. Under this as-
sumption, we have the following general conditions on the measurement error
parameters:

0 ≤ θ−1 ≤ min{Q,P (Y = 1, D = 0)} ≡ θUB−
1

0 ≤ θ−0 ≤ min{Q,P (Y = 0, D = 0)} ≡ θUB−
0

0 ≤ θ+1 ≤ min{Q,P (Y = 1, D = 1)} ≡ θUB+
1

0 ≤ θ+0 ≤ min{Q,P (Y = 0, D = 1)} ≡ θUB+
0

θ+1 + θ−1 + θ+0 + θ−0 ≤ Q

A2. No false positives, P (Z∗ = 1|D = 1) = 1. This assumption simplifies (4) and (5)
above because θ+1 = θ+0 = 0.
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Assumptions regarding the selection process include the following:

a1. exogenous selection

a2. worst-case selection (no assumption about selection)

a3. monotone treatment selection (MTS)

a4. MTS and monotone treatment response (MTR)

a5. monotone instrumental variable (MIV) and MTS

a6. MIV+MTS+MTR

We discuss each of these assumptions about the selection process in more detail through-
out the remainder of this section.

2.2 Exogenous selection bounds

The assumption of exogenous selection implies that

P{Y (1) = 1} = P{Y (1) = 1|D∗ = 1} = P{Y (1) = 1|D∗ = 0}
P{Y (0) = 1} = P{Y (0) = 1|D∗ = 1} = P{Y (0) = 1|D∗ = 0}

In this case, (2) and (3) become, respectively,

P {Y (1) = 1} = P {Y = 1|D∗ = 1}P (D∗ = 1) + P {Y (1) = 1|D∗ = 0}P (D∗ = 0)

= P {Y = 1|D∗ = 1}P (D∗ = 1) + P {Y = 1|D∗ = 1} {1− P (D∗ = 1)}
= P {Y = 1|D∗ = 1} {P (D∗ = 1)− P (D∗ = 1) + 1}
= P (Y = 1|D∗ = 1)

and

P {Y (0) = 1} = P {Y (0) = 1|D∗ = 1}P (D∗ = 1) + P (Y = 1|D∗ = 0)P (D∗ = 0)

= P (Y = 1|D∗ = 0) {1− P (D∗ = 0)}+ P (Y = 1|D∗ = 0)P (D∗ = 0)

= P (Y = 1|D∗ = 0) {P (D∗ = 0)− P (D∗ = 0) + 1}
= P (Y = 1|D∗ = 0)
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The ATE is then given by P (Y = 1|D∗ = 1) − P (Y = 1|D∗ = 0), which is point
identified in the absence of measurement error. However, allowing for measurement
error, D∗ is unobserved and these quantities can be written as

P (Y = 1|D∗ = 1) =
P (Y = 1, D∗ = 1)

P (D∗ = 1)

=
P (Y = 1, D = 1)− θ+1 + θ−1

P (D = 1)− (θ+1 + θ+0 ) + (θ−1 + θ−0 )
(6)

P (Y = 1|D∗ = 0) =
P (Y = 1, D∗ = 0)

P (D∗ = 0)

=
P (Y = 1, D = 0) + θ+1 − θ−1

P (D = 0) + (θ+1 + θ+0 )− (θ−1 + θ−0 )
(7)

Thus, point identification is not possible except under strict assumptions about the
values of the unknown quantities in (6) and (7).

Instead, we may use assumptions A1 and A2 to get the lower bound (LB) and UB on
the ATE. For example, following proposition 1 in Kreider and Pepper (2007), we know
that

P (Y = 1|D∗ = 1) ∈
{
P (Y = 1, D = 1)− δ

P (D = 1)− 2δ +Q
,
P (Y = 1, D = 1) + γ

P (D = 1) + 2γ −Q

}

≡ (LB1,UB1)

where

δ =





θUB+
1 if P (Y = 1, D = 1)− P (Y = 0, D = 1)

−Q ≤ 0
max{0, Q− P (Y = 0, D = 0)} otherwise

γ =





θUB−
1 if P (Y = 1, D = 1)− P (Y = 0, D = 1)

+Q ≤ 0
max{0, Q− P (Y = 0, D = 1)} otherwise

and

P (Y = 1|D∗ = 0) ∈
{
P (Y = 1, D = 0)− δ

P (D = 0)− 2δ +Q
,
P (Y = 1, D = 0) + γ

P (D = 0) + 2γ −Q

}

≡ (LB0,UB0)

where

δ =





θUB−
1 if P (Y = 1, D = 0)− P (Y = 0, D = 0)

−Q ≤ 0
max{0, Q− P (Y = 0, D = 1)} otherwise

γ =





θUB+
1 if P (Y = 1, D = 0)− P (Y = 0, D = 0)

+Q ≤ 0
max{0, Q− P (Y = 0, D = 0)} otherwise
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Bounds on the ATE are then given by

ATE ∈ (LB1 − UB0,UB1 − LB0)

However, these bounds are not sharp because it is possible that a different set of
measurement error parameters will maximize (minimize) the difference to get the UB

(LB) on the ATE. Also, θ+1 + θ−1 + θ+0 + θ−0 ≤ Q has yet to be imposed. Accounting for
both of these issues, Proposition A.1 in Kreider and Pepper (2007) shows that

inf
b∈

(
0,θUB+

1

)
,̃b∈

{
0,min(Q−b,θUB−

0
)
}

{
P (Y = 1, D = 1)− b

P (D = 1)− b+ b̃
− P (Y = 1, D = 0) + b

P (D = 0) + b− b̃

}

(8)

≤ ATE

≤ sup
a∈(0,θUB−

1
),ã∈

{
0,min(Q−a,θUB+

0
)
}

{
P (Y = 1, D = 1) + a

P (D = 1) + a− ã
− P (Y = 1, D = 0)− a

P (D = 0)− a+ ã

}

Estimation follows by performing separate two-way grid searches for (b, b̃) and (a, ã)
over the feasible region, where2

b ∈ [0,min{Q,P (Y = 1, D = 1)}]
b̃ ∈ [0,min{Q− b, P (Y = 0, D = 0)}]
a ∈ [0,min{Q,P (Y = 1, D = 0)}]
ã ∈ [0,min{Q− a, P (Y = 0, D = 1)}]

In our tebounds command, the granularity of the grid search is dictated by the np()

option. Note that the results of the grid search for (b, b̃) may not separately minimize
LB1 and maximize UB0; however, by focusing on the difference (LB1 − UB0), we ensure

that the same (b, b̃) are used in LB1 and UB0, which ultimately provides tighter bounds

than if we allowed (b, b̃) to vary across LB1 and UB0, and similarly for (a, ã).

If we further impose the assumption of no false positives, (6) and (7) simplify to

P (Y = 1|D∗ = 1) =
P (Y = 1, D = 1) + θ−1
P (D = 1) + (θ−1 + θ−0 )

P (Y = 1|D∗ = 0) =
P (Y = 1, D = 0)− θ−1
P (D = 0)− (θ−1 + θ−0 )

2. The two-way grid search allows the bounds for b̃ and ã to vary based on the proposed val-
ues of b and a, respectively, as well as Q. Without the inclusion of b̃ and ã, the bounds as
presented in Kreider and Pepper (2007) do not necessarily satisfy θ+1 + θ−1 + θ+0 + θ−0 ≤ Q

(Kreider, Pepper, and Roy 2013). We are grateful to Brent Kreider for his comments and as-
sistance.
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Bounds on P (Y = 1|D∗ = 1) are then given by

P (Y = 1|D∗ = 1) ∈
{
P (Y = 1, D = 1)

P (D = 1) + θUB−
0

,
P (Y = 1, D = 1) + θUB−

1

P (D = 1) + θUB−
1

}

≡ (LB1,UB1)

Similarly, bounds on P (Y = 1|D∗ = 0) are given by

P (Y = 1|D∗ = 0) ∈
{
P (Y = 1, D = 0)− θUB−

1

P (D = 0)− θUB−
1

,
P (Y = 1, D = 0)

P (D = 0)− θUB−
0

}

≡ (LB0,UB0)

Bounds on the ATE are again given by ATE ∈ (LB1 − UB0,UB1 − LB0), which yields

inf
h∈

(
0,θUB–

0

)

{
P (Y = 1, D = 1)

P (D = 1) + h
− P (Y = 1, D = 0)

P (D = 0)− h

}
(9)

≤ ATE

≤ sup
a∈

(
0,θUB–

1

)

{
P (Y = 1, D = 1) + a

P (D = 1) + a
− P (Y = 1, D = 0)− a

P (D = 0)− a

}

Estimation follows by performing separate grid searches for h and a over the feasible
region, ensuring that LB0, LB1, UB0, and UB1 do not exceed 1.

2.3 Worst-case selection bounds

The worst-case bounds are obtained without invoking any assumptions; only the sam-
pling process is used. The ATE is given by (1), and the components of the ATE are in
(2) and (3). Using the fact that the missing counterfactuals in (2) and (3) are bounded
by 0 and 1, we know that

P {Y (1) = 1} ∈ {P (Y = 1, D∗ = 1) , P (Y = 1, D∗ = 1) + P (D∗ = 0)}
P {Y (0) = 1} ∈ {P (Y = 1, D∗ = 0) , P (D∗ = 1) + P (Y = 1, D∗ = 0)}

in the absence of measurement error, and bounds on the ATE follow as above.

Allowing for measurement error, the bounds become

P{Y (1) = 1} ∈
{
P (Y = 1, D = 1)− θ+1 + θ−1 ,

P (Y = 1, D = 1) + P (D = 0) + θ+0 − θ−0
}

P
{
Y (0) = 1

}
∈
{
P (Y = 1, D = 0) + θ+1 − θ−1 ,

P (Y = 1, D = 0) + P (D = 1)− θ+0 + θ−0
}
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In this case, under the assumption of arbitrary errors,

P{Y (1) = 1} ∈ {P (Y = 1, D = 1)− θUB+
1 , P (Y = 1, D = 1) + P (D = 0) + θUB+

0 }
≡ (LB1,UB1)

P{Y (0) = 1} ∈ {P (Y = 1, D = 0)− θUB−
1 , P (Y = 1, D = 0) + P (D = 1) + θUB−

0 }
≡ (LB0,UB0)

which yields the following bounds for the ATE:

ATE ∈ {P (Y = 1, D = 1)−min(Q, θUB+
1 + θUB−

0 ) (10)

− P (Y = 1, D = 0)− P (D = 1),

P (Y = 1, D = 1) + P (D = 0) + min(Q, θUB+
0 + θUB−

1 )

− P (Y = 1, D = 0)}

Under the assumption of no false positives,

P{Y (1) = 1} ∈ {P (Y = 1, D = 1), P (Y = 1, D = 1) + P (D = 0)}
≡ (LB1,UB1)

P{Y (0) = 1} ∈ {P (Y = 1, D = 0)− θUB−
1 , P (Y = 1, D = 0) + P (D = 1) + θUB−

0 }
≡ (LB0,UB0)

and the previous bounds simplify to

ATE ∈ {P (Y = 1, D = 1)− P (Y = 1, D = 0)− P (D = 1)− θUB−
0 , (11)

P (Y = 1, D = 1) + P (D = 0)− P (Y = 1, D = 0) + θUB−
1 }

2.4 MTS

The worst-case bounds may be tightened if we are willing to impose some assumptions
on the nature of the selection process. The MTS assumption assumes that expected
potential outcomes move in a particular direction when comparing individuals in the
treatment and control groups. We consider two cases: negative and positive selection.
However, we must be cautious in interpreting each case depending on whether the
outcome, Y , is desirable. Here we assume that Y = 1 corresponds to the desirable
outcome.

Negative monotone treatment selection (MTSn)

MTSn refers to the case of negative selection. In this case, individuals in the treatment
group are more likely to experience a bad outcome conditional on treatment assignment.
Being that Y = 1 denotes a good outcome, MTSn implies that

P{Y (1) = 1|D∗ = 0} ≥ P{Y (1) = 1|D∗ = 1}
P{Y (0) = 1|D∗ = 0} ≥ P{Y (0) = 1|D∗ = 1}
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We can then rewrite P {Y (1) = 1} as

P {Y (1) = 1} = P {Y (1) = 1|D∗ = 1}P (D∗ = 1) + P {Y (1) = 1|D∗ = 0}P (D∗ = 0)

= P (Y = 1|D∗ = 1) {1− P (D∗ = 0)}+ P {Y (1) = 1|D∗ = 0}
P (D∗ = 0)

= P (Y = 1|D∗ = 1) + P (D∗ = 0)[P {Y (1) = 1|D∗ = 0}
− P (Y = 1|D∗ = 1)]

where the final term is nonnegative under MTSn. This implies that P {Y (1) = 1}
≥ P (Y = 1|D∗ = 1). The LB for P {Y (1) = 1} is therefore obtained assuming
P {Y (1) = 1|D∗ = 0} = P (Y = 1|D∗ = 1), and the UB is obtained assuming
P {Y (1) = 1|D∗ = 0} = 1. This yields

P {Y (1) = 1} ∈
{
P (Y = 1, D∗ = 1)

P (D∗ = 1)
, P (D∗ = 0) + P (Y = 1, D∗ = 1)

}

A similar inspection of P {Y (0) = 1} yields

P {Y (0) = 1} = P {Y (0) = 1|D∗ = 1}P (D∗ = 1) + P {Y (0) = 1|D∗ = 0}P (D∗ = 0)

= P {Y (0) = 1|D∗ = 1}P (D∗ = 1) + P (Y = 1|D∗ = 0)

{1− P (D∗ = 1)}
= P {Y = 1|D∗ = 0}+ P (D∗ = 1)[P {Y (0) = 1|D∗ = 1}
− P {Y (0) = 1|D∗ = 0}]

where the final term is nonpositive under MTSn. This implies that P {Y (0) = 1}
≤ P (Y = 1|D∗ = 0). The UB for P {Y (0) = 1} is therefore obtained assuming
P {Y (1) = 1|D∗ = 0} = P (Y = 1|D∗ = 1), and the LB is obtained assuming
P {Y (0) = 1|D∗ = 1} = 0. This yields

P {Y (0) = 1} ∈
{
P (Y = 1, D∗ = 0) ,

P (Y = 1, D∗ = 0)

P (D∗ = 0)

}

Allowing for measurement error, these bounds become

P {Y (1) = 1} ∈
{

P (Y = 1, D = 1)− θ+1 + θ−1
P (D = 1)− (θ+1 + θ+0 ) + (θ−1 + θ−0 )

,

P (D = 0) + P (Y = 1, D = 1) + θ+0 − θ−0

}

≡ (LB1,UB1)

P {Y (0) = 1} ∈
{
P (Y = 1, D = 0) + θ+1 − θ−1 ,

P (Y = 1, D = 0) + θ+1 − θ−1
P (D = 0) + (θ+1 + θ+0 )− (θ−1 + θ−0 )

}

≡ (LB0,UB0)

Under assumption A1 above [arbitrary errors with UB, P (Z∗ = 0) ≤ Q], the LB is
given in (8) and the UB in (10). Similarly, under assumption A2 [no false positives,
P (Z∗|D = 1) = 1], the LB is given in (9) and the UB in (11).
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Positive monotone treatment selection (MTSp)

MTSp refers to the case of positive selection. In this case, individuals in the treatment
group are more likely to experience a good outcome conditional on treatment assign-
ment. Being that Y = 1 denotes a good outcome, MTSp implies that

P{Y (1) = 1|D∗ = 1} ≥ P{Y (1) = 1|D∗ = 0}
P{Y (0) = 1|D∗ = 1} ≥ P{Y (0) = 1|D∗ = 0}

Similar to the discussion on MTSn, we can rewrite P{Y (1) = 1} as

P{Y (1) = 1} = P (Y = 1|D∗ = 1) + P (D∗ = 0)[P{Y (1) = 1|D∗ = 0}
− P (Y = 1|D∗ = 1)]

where the final term is nonpositive under MTSp. This implies that P {Y (1) = 1}
≤ P (Y = 1|D∗ = 1). The LB for P {Y (1) = 1} is obtained assuming
P {Y (1) = 1|D∗ = 0} = 0, and the UB is obtained assuming P {Y (1) = 1|D∗ = 0} =
P (Y = 1|D∗ = 1). This yields

P {Y (1) = 1} ∈
{
P (Y = 1, D∗ = 1) ,

P (Y = 1, D∗ = 1)

P (D∗ = 1)

}

A similar inspection of P {Y (0) = 1} yields

P{Y (0) = 1} = P (Y = 1|D∗ = 0) + P (D∗ = 1)

[P{Y (0) = 1|D∗ = 1} − P{Y (0) = 1|D∗ = 0}]
where the final term is nonnegative under MTSp. This implies that P {Y (0) = 1} ≥
P (Y = 1|D∗ = 0). The LB for P {Y (0) = 1} is obtained assuming P {Y (1) = 1|D∗ = 0}
= P (Y = 1|D∗ = 1), and the UB is obtained assuming P {Y (0) = 1|D∗ = 1} = 1.
This yields

P {Y (0) = 1} ∈
{
P (Y = 1, D∗ = 0)

P (D∗ = 0)
, P (Y = 1, D∗ = 0) + P (D∗ = 1)

}

Allowing for measurement error, these bounds become

P {Y (1) = 1} ∈
{
P (Y = 1, D = 1) + θ−1 − θ+1 ,

P (Y = 1, D = 1) + θ−1 − θ+1
P (D = 1)− (θ+1 + θ+0 ) + (θ−1 + θ−0 )

}

≡ (LB1,UB1)

P {Y (0) = 1} ∈
{

P (Y = 1, D = 0) + θ+1 − θ−1
P (D = 0) + (θ+1 + θ+0 )− (θ−1 + θ−0 )

P (Y = 1, D = 0) + P (D = 1) + θ−0 − θ+0

}

≡ (LB0,UB0)

Under assumption A1 above [arbitrary errors with UB, P (Z∗ = 0) ≤ Q], the LB is
given in (10) and the UB in (8). Similarly, under assumption A2 [no false positives,
P (Z∗|D = 1) = 1], the LB is given in (11) and the UB in (9).
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2.5 MTR

The MTR assumption may be invoked in addition to MTS or in isolation. MTR assumes
that individuals do not select into a treatment that would make them worse off in ex-
pectation. Again, one must be cautious in interpreting each case depending on whether
the outcome, Y , is desirable. Here we assume that Y = 1 corresponds to the desirable
outcome. Thus the MTR assumption implies that P{Y (1) = 1} ≥ P{Y (0) = 1}.

Invoking MTR in isolation implies that the UBs are given by the worst-case UBs in (10)
and (11) under the assumptions of arbitrary errors and no false positives, respectively.
The worst-case LBs, however, are now replaced by 0. Combining MTR and MTSn (or
MTSp) implies that the UBs are given by the UBs under MTSn (MTSp), while the LBs
again are replaced by 0.

2.6 MIV

The MIV assumption implies that the latent probability of a good outcome conditional
on treatment assignment—P{Y (1) = 1} and P{Y (0) = 1}—varies (weakly) monotoni-
cally with an observed covariate. The MIV assumption alone has no identifying power;
therefore, following Kreider and Pepper (2007) and Kreider et al. (2012), we combine
the MIV assumption with the MTS assumption and then, in the next section, with the
MTS and MTR assumptions.

MIV and MTS

Let ν denote the monotone instrument and assume without loss of generality that
P{Y (1) = 1} and P{Y (0) = 1} are nondecreasing in ν. Defining u1 < u < u2, the
MIV assumption implies that

P{Y (1) = 1|ν = u1} ≤ P{Y (1) = 1|ν = u} ≤ P{Y (1) = 1|ν = u2}
P{Y (0) = 1|ν = u1} ≤ P{Y (0) = 1|ν = u} ≤ P{Y (0) = 1|ν = u2}

Recall, the MTSn assumption implies that

P{Y (1) = 1|D∗ = 1} ≤ P{Y (1) = 1|D∗ = 0}
P{Y (0) = 1|D∗ = 1} ≤ P{Y (0) = 1|D∗ = 0}

such that without measurement error the bounds are given by

P {Y (1) = 1} ∈
{
P (Y = 1, D∗ = 1)

P (D∗ = 1)
, P (D∗ = 0) + P (Y = 1, D∗ = 1)

}

P {Y (0) = 1} ∈
{
P (Y = 1, D∗ = 0) ,

P (Y = 1, D∗ = 0)

P (D∗ = 0)

}
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Combining MIV and MTSn involves the following steps:3

1. Split the sample into J cells, j = 1, 2, . . . , J , based on values of ν, and let Pj
denote the sample fraction in cell j.

2. Calculate the MTSn bounds for P{Y (1) = 1} and P{Y (0) = 1} for each cell
under assumption A1 or A1 and A2. This yields UB

j
d and LB

j
d, j = 1, 2, . . . , J and

d = 0, 1.

3. Calculate the overall LB for P {Y (1) = 1}, denoted by LB1, as
4

LB1 = Tn =
∑

j

Pj

(
sup
j′≤j

LB
j′

1

)

Tn is therefore a weighted average of the appropriate LB estimates across all J
cells, constructed by taking LB1 in each jth cell and averaging over the supremum
of the individual LBs across all cells below and including the jth cell.

4. Adjust LB1 for finite-sample bias by bootstrapping the sampling distribution of
LB

j
1.

a. Randomly draw with replacement K independent pseudosamples from the
original data of size N with replacement.

b. Compute LB
j
1k, j = 1, 2, . . . , J and k = 1, 2, . . . ,K.

c. Compute T kn =
∑
j Pjk(supj′≤j LB

j′

1k), k = 1, 2, . . . ,K. This process is identi-
cal to that in step 3 above, performed separately for each kth pseudo-sample.

d. Compute the sample mean from the bootstrap as

E∗(Tn) =
1

K

∑

k

T kn

e. The estimated bias is given by

b̂ = E∗(Tn)− Tn

f. The bias-corrected LB is given by

LB1 = T cn = Tn − b̂ = 2Tn − E∗(Tn)

5. Calculate the overall UB for P {Y (1) = 1}, denoted by UB1, as

UB1 = Un =
∑

j

Pj

(
inf
j′≥j

UB
j′

1

)

3. Combining MIV with MTSp follows similarly and is therefore excluded for brevity.
4. As before, one must be cautious because this assumes Y = 1 is a desirable outcome.
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This assumes Y (1) = 1 and Y (0) = 1 are good outcomes. If Y (1) = 1 and

Y (0) = 1 are bad outcomes, then UB1 = Un =
∑
j Pj(infj′≤j UB

j′

1 ). As with
the LB in step 3, Tn is again a weighted average of the appropriate UB estimates
across all J cells, constructed by taking UB1 in each jth cell and averaging over
the infimum of the individual UBs across all cells above and including the jth cell.

6. Adjust UB1 for finite-sample bias by bootstrapping the sampling distribution of
UB

j
1.

a. Randomly draw with replacement K independent pseudosamples from the
original data of size N with replacement.

b. Compute UB
j
1k, j = 1, 2, . . . , J and k = 1, 2, . . . ,K.

c. Compute Ukn =
∑
j Pjk(infj′≥j UB

j′

1k), k = 1, 2, . . . ,K. This process is identi-
cal to that in step 5 above, performed separately for each kth pseudosample.

d. Compute the sample mean from the bootstrap as

E∗(Un) =
1

K

∑

k

Ukn

e. The estimated bias is given by

b̂ = E∗(Un)− Un

f. The bias-corrected UB is given by

UB1 = U cn = Un − b̂ = 2Un − E∗(Un)

7. Repeat steps 3–6 to obtain the overall LB and UB for P {Y (0) = 1}, denoted LB0

and UB0, respectively.

8. Obtain bounds for the ATE given by

ATE ∈ (LB1 − UB0,UB1 − LB0)

Prior to continuing, two comments are necessary. Firstly, the MIV estimator suffers
from finite-sample bias (Manski and Pepper 2000). Steps 4 and 6 in the preceding-
algorithm follow Kreider et al. (2012) and use the nonparametric finite-sample bias-
corrected MIV estimator put forth in Kreider and Pepper (2007). However, Hirano
and Porter (2012) caution against the use of bias-corrected techniques because such
procedures cannot fully eliminate the bias in the case of nonsmooth estimators and may
cause substantial increases in variance. Thus, users of tebounds may wish to assess the
sensitivity of the bounds to the use of the bias correction.
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An alternative to the bias correction procedure used in Kreider et al. (2012) is
the precision-corrected approach recently proposed in Chernozhukov, Lee, and Rosen
(2013).5 This procedure adjusts the terms LBj

′

and UBj
′

in steps 3 and 6, respectively,
before taking the sup or inf. Thus, the correction is applied during the estimation of
the bounds of the conditional probabilities, P{Y (d) = 1|ν = u}, d = 0, 1. In contrast,
the approach in Kreider et al. (2012) computes the bounds for each MIV cell, indexed
by j, then constructs the weighted averages of the LBs and UBs across the different MIV

cells, and finally applies the finite-sample correction to the estimated bounds of the
unconditional probabilities, P{Y (d) = 1}, d = 0, 1.

Here we follow the Kreider et al. (2012) approach for two reasons. First, it is com-
putationally simpler. Second, and more importantly, Chernozhukov, Lee, and Rosen
(2013) discuss only the estimated bounds of the conditional probabilities, P{Y (d) =
1|ν = u}, d = 0, 1, and the associated inference. It is not obvious how this approach
should be extended when the focus is on estimation and inferences of the bounds on the
ATE.

Secondly, the asymptotic properties of estimators involving nonsmooth functions
like sup and inf, such as those based on an MIV, are the subject of recent debate.
Manski and Pepper (2000, 1007) note that “the consistency of the resulting bounds
estimates is easy to establish”. However, Hirano and Porter (2012, 1769) show that in
such cases “no locally asymptotically unbiased estimators exist”. The distinction may
lie in that the objects of interest in Manski and Pepper (2000), and here, are the bounds
on the ATE. As a result, the weighted averages utilized in steps 3 and 5 yield a smooth
estimator. In any event, obviously the asymptotic properties of such estimators have
important implications for conducting proper inference. Because this is the subject
of ongoing research (see, for example, Chernozhukov, Lee, and Rosen [2013] and the
references therein), users of the tebounds should keep abreast of developments in the
literature.

2.7 MIV, MTR, and MTS

Combining the MIV, MTR, and MTS assumptions can further tighten the ATE bounds.
The addition of the MTR assumption within each cell of the MIV is, however, a bit
different than the imposition of the MTR (or MTS + MTR) assumption discussed previ-
ously. The difference arises because implementation of the MIV assumption does not
entail bounding the ATE within each MIV cell. Rather, we are bounding the compo-
nents of the ATE within each cell (that is, P{Y (1) = 1} and P{Y (0) = 1} separately,
rather than P{Y (1) = 1} − P{Y (0) = 1}). Because the MTR assumption requires
P{Y (1) = 1} − P{Y (0) = 1} ≥ 0, this implies that, within each MIV cell, the LB of
P{Y (1) = 1} cannot be strictly less than the UB of P{Y (0) = 1}.

5. See the author-provided command clrbounds.
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3 The tebounds command

3.1 Syntax

The tebounds command estimates bounds on the ATE under the assumptions discussed
above. The syntax for the tebounds command is

tebounds depvar
[
if
] [

in
] [

weight
]
, treat(varname)

[
control(#)

treatment(#) miv(varname) ncells(#) erates(string) k(#) np(#) bs

reps(#) level(#) im survey weights(#) npsu(#) nodisplay graph

saving(filename) replace
]

The tebounds command requires that bsweights (Kolenikov 2010) and bs4rw (Pitblado
2013) also be installed.

3.2 Options

treat(varname) specifies the variable name of the treatment indicator. treat() is
required.

control(#) specifies the numeric value of treat() used to indicate the control group.
The default is control(0).

treatment(#) specifies the numeric value of treat() used to indicate the treatment
group. The default is treatment(1).

miv(varname) specifies the MIV name. The use of miv(varname) also calls a sec-
ondary MIV command from within the tebounds command, the results of which
are passed into the larger tebounds command. See Manski and Pepper (2000),
Kreider and Pepper (2007), Kreider et al. (2012), Manski and Pepper (2009), and
Lafférs (2013) for a more detailed definition and discussion of proper MIVs.

ncells(#) denotes the number of cells used in the MIV estimator. The default is
ncells(5). The MIV variable is divided by percentiles according to the number of
cells specified in ncells(). For example, ncells(5) will split the MIV variable into
five groups according to the 20th, 40th, 60th, 80th, and 100th percentile values.

erates(string) denotes the assumed rates of measurement error used to identify the
ATE bounds. The default is erates(0 0.05 0.10 0.25) indicating assumed rates
of 0%, 5%, 10%, and 25% measurement error.

k(#) denotes the number of bootstrap replications used for the MIV bias correction.
The default is k(100).

np(#) denotes the number of intervals over which the grid search is performed to tighten
the bounds in the arbitrary classification-error model (Kreider, Pepper, and Roy
2013).
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bs, reps(#), and level(#) specify that confidence intervals (CIs) be calculated, as a
percentage specified in level() (default is level(95)), by bootstrap (bs) based on
the number of replications in reps(#). The default is reps(100).

im specifies that CIs be calculated following Imbens and Manski (2004). If left unspec-
ified, CIs are calculated using the percentile method.

survey indicates that data are survey data and that survey weights have been assigned
with svyset. The survey weights will be used as part of the ATE calculation as well
as the bootstrap replications, if relevant. If bootstrap CIs are also requested, the
tebounds command first estimates bootstrap weights via the bsweights command.
Bootstrap weights will also be calculated as part of the MIV bias correction. Attempts
to call the survey option will result in an error if the user has not first declared the
survey design with svyset.

weights(#) indicates whether bootstrap weights have already been calculated. The de-
fault is weights(0), which indicates that bootstrap weights have not been calculated
and will instead be calculated from within the tebounds command. The weights()
option is intended as a programming control to avoid replacing the estimates in
ereturn at each iteration of the bootstrap. Should the user have prespecified boot-
strap weights available, the weights must be of the form bsw1 bsw2 . . . bswN, where
N denotes the number of bootstrap replications.6

npsu(#) specifies the value of n(#) in the bsweights command. npsu() specifies
how the number of primary sampling units per stratum are handled. The default
is npsu(-1), which indicates a bootstrap sample of size nh − 1 for all strata h
(Kolenikov 2010).

nodisplay suppresses the summary results table. Results are still stored in ereturn.

graph specifies that ATE bounds be graphed as a function of the maximum rates of
measurement error from erates.

saving(filename) indicates the location in which to save the output.

replace indicates that the output in saving() should replace any preexisting file in
the same location.

4 Examples

4.1 U.S. School Breakfast Program

Following Millimet and Tchernis (2013), we provide an application of the tebounds

command to the study of the U.S. School Breakfast Program (SBP). Specifically, we seek
bounds for the ATEs of SBP on child weight. The data are from the Early Childhood

6. The weights() option considers only the non-MIV estimators. The bootstrap weights in the MIV
estimators must be calculated from within the command itself because these weights are dependent
on the MIV variable as well as the number of cells in ncells().
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Longitudinal Study, Kindergarten Class of 1998–99 and are available for download from
the Journal of Applied Econometrics data archive.7 We partially identify the ATE of
self-reported SBP participation in first grade (break1) on the probability of being not
obese in spring of third grade (NOTobese).

In our application, we allow the maximum misclassification rate of program partici-
pation, Q, to be 0%, 1%, 2%, 5%, and 10%. We use an index of socioeconomic status
(ses) as the MIV and divide the sample into 20 cells. Bootstrap CIs at 95% based on
100 replications are provided. The resulting output is as follows:

. use mmrexampledata

. tebounds NOTobese, treat(break1) erates(0 1 2 5 10) ncells(20) miv(ses) bs
> reps(100) graph saving(SJgraphsSBP) replace

Outcome: NOTobese
Treatment: break1
Number of pseudo-samples used in MIV bias correction: 100
Number of bootstrap reps for 95% CIs: 100

Error Rate | Arbitrary Errors | No False Positives

Exogenous Selection Model
0 [ -0.059, -0.059] p.e. [ -0.059, -0.059] p.e.

[ -0.076, -0.040] CI [ -0.076, -0.040] CI
.01 [ -0.095, -0.022] p.e. [ -0.094, -0.049] p.e.

[ -0.112, -0.002] CI [ -0.111, -0.030] CI
.02 [ -0.130, 0.017] p.e. [ -0.129, -0.039] p.e.

[ -0.146, 0.037] CI [ -0.146, -0.021] CI
.05 [ -0.229, 0.144] p.e. [ -0.229, -0.012] p.e.

[ -0.246, 0.165] CI [ -0.245, 0.005] CI
.1 [ -0.384, 0.267] p.e. [ -0.384, 0.030] p.e.

[ -0.399, 0.276] CI [ -0.399, 0.045] CI

No Monotonicity Assumptions (Worst Case Selection)
0 [ -0.641, 0.359] p.e. [ -0.641, 0.359] p.e.

[ -0.650, 0.369] CI [ -0.650, 0.369] CI
.01 [ -0.651, 0.369] p.e. [ -0.651, 0.369] p.e.

[ -0.660, 0.379] CI [ -0.660, 0.379] CI
.02 [ -0.661, 0.379] p.e. [ -0.661, 0.379] p.e.

[ -0.670, 0.389] CI [ -0.670, 0.389] CI
.05 [ -0.691, 0.409] p.e. [ -0.691, 0.409] p.e.

[ -0.700, 0.419] CI [ -0.700, 0.419] CI
.1 [ -0.741, 0.459] p.e. [ -0.741, 0.459] p.e.

[ -0.750, 0.469] CI [ -0.750, 0.469] CI

7. See http://qed.econ.queensu.ca/jae/datasets/millimet001/.
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Error Rate | Arbitrary Errors | No False Positives

MTS Assumption: Negative Selection
0 [ -0.059, 0.359] p.e. [ -0.059, 0.359] p.e.

[ -0.076, 0.369] CI [ -0.076, 0.369] CI
.01 [ -0.095, 0.369] p.e. [ -0.094, 0.369] p.e.

[ -0.112, 0.379] CI [ -0.111, 0.379] CI
.02 [ -0.130, 0.379] p.e. [ -0.129, 0.379] p.e.

[ -0.146, 0.389] CI [ -0.146, 0.389] CI
.05 [ -0.229, 0.409] p.e. [ -0.229, 0.409] p.e.

[ -0.246, 0.419] CI [ -0.245, 0.419] CI
.1 [ -0.384, 0.459] p.e. [ -0.384, 0.459] p.e.

[ -0.399, 0.469] CI [ -0.399, 0.469] CI

MTS and MTR Assumptions: Negative Selection
0 [ 0.000, 0.359] p.e. [ 0.000, 0.359] p.e.

[ 0.000, 0.369] CI [ 0.000, 0.369] CI
.01 [ 0.000, 0.369] p.e. [ 0.000, 0.369] p.e.

[ 0.000, 0.379] CI [ 0.000, 0.379] CI
.02 [ 0.000, 0.379] p.e. [ 0.000, 0.379] p.e.

[ 0.000, 0.389] CI [ 0.000, 0.389] CI
.05 [ 0.000, 0.409] p.e. [ 0.000, 0.409] p.e.

[ 0.000, 0.419] CI [ 0.000, 0.419] CI
.1 [ 0.000, 0.459] p.e. [ 0.000, 0.459] p.e.

[ 0.000, 0.469] CI [ 0.000, 0.469] CI

MIV and MTS Assumptions: Negative Selection
0 [ 0.044, 0.352] p.e. [ 0.044, 0.352] p.e.

[ 0.008, 0.358] CI [ 0.008, 0.358] CI
.01 [ 0.003, 0.369] p.e. [ 0.003, 0.362] p.e.

[ -0.032, 0.378] CI [ -0.032, 0.368] CI
.02 [ -0.036, 0.379] p.e. [ -0.036, 0.372] p.e.

[ -0.072, 0.389] CI [ -0.072, 0.378] CI
.05 [ -0.123, 0.409] p.e. [ -0.123, 0.402] p.e.

[ -0.160, 0.419] CI [ -0.160, 0.408] CI
.1 [ -0.224, 0.459] p.e. [ -0.212, 0.452] p.e.

[ -0.248, 0.469] CI [ -0.249, 0.458] CI

MIV, MTS, MTR Assumptions: Negative Selection
0 [ 0.044, 0.352] p.e. [ 0.044, 0.352] p.e.

[ 0.008, 0.358] CI [ 0.008, 0.358] CI
.01 [ 0.003, 0.369] p.e. [ 0.003, 0.362] p.e.

[ 0.000, 0.378] CI [ 0.000, 0.368] CI
.02 [ 0.000, 0.379] p.e. [ 0.000, 0.372] p.e.

[ 0.000, 0.389] CI [ 0.000, 0.378] CI
.05 [ 0.000, 0.409] p.e. [ 0.000, 0.402] p.e.

[ 0.000, 0.419] CI [ 0.000, 0.408] CI
.1 [ 0.000, 0.459] p.e. [ 0.000, 0.452] p.e.

[ 0.000, 0.469] CI [ 0.000, 0.458] CI
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As indicated by the section headings, the output presents the point estimates (p.e.)
for the bounds for the ATE, as well as 95% CIs (CI) under each set of assumptions
concerning the nature of the selection process and the type of misclassification (arbitrary
errors or no false positives). Moreover, within each panel, separate bounds are presented
for each value of Q specified in the tebounds command (in this case, 0%, 1%, 2%, 5%,
and 10%). A selection of the graphs produced are illustrated in figures 1–3.

In terms of the bounds, we see that the mean difference in outcomes across the
treatment and control groups, assuming SBP participation is not misreported, is −0.059.
This implies that participants in the SBP are 5.9% more likely to be obese relative to
nonparticipants. However, because the SBP is subsidized for low-income households,
and low-income individuals are more likely to be obese, the assumption of exogenous
selection is not reasonable. That said, we also see that the assumption of exogenous
selection is insufficient to identify the sign of the ATE if at least 2% (10%) of the sam-
ple misreport program participation under the assumption of arbitrary errors (no false
positives). This result illustrates two important facts. First, the association between
SBP participation and child weight is not robust to even small amounts of misreport-
ing. Second, the assumption of no false positives provides some identifying information
relative to the assumption of arbitrary errors.
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Figure 1. Bounds under exogenous selection and worst case

The worst-case bounds, assuming no misclassification, have a width of unity and nec-
essarily include 0. Admitting the possibility of misreporting simply widens the bounds.
However, these bounds still include some large values for the ATE that may be useful to
policymakers. For example, if the SBP program would pass (fail) a cost–benefit analysis
despite assuming the ATE on child weight is −0.641 (0.359), then precise knowledge of
the ATE is unnecessary.
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For the bounds invoking the monotonicity assumptions, we only display the bounds
assuming negative selection into the SBP in the interest of brevity. Under MTSn alone,
we see the LB comes from the bounds obtained under exogenous selection, while the UB

comes from the worst-case bounds. Thus the width of the bounds shrink relative to the
worst-case bounds but still fail to identify the sign of the ATE. Under MTSn and MTR,
the LB is replaced by 0.8 Thus the bounds still fail to identify the sign of the ATE.
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Figure 2. Bounds under MTSn and MIV+MTSn with arbitrary errors

The final two panels (figures 2 and 3) use the MIV assumption in addition to MTSn
or MTSn and MTR. In both cases, we see that the bounds are strictly positive assuming
that no more than 1% of the sample misreports treatment assignment. In these cases,
we can conclude under fairly innocuous assumptions that participation in the SBP has
a positive, causal effect on the probability of an average child being nonobese. This
is an important policy finding and is consistent with alternative estimators discussed
in Millimet and Tchernis (2013) that point identify the ATE under stringent assump-
tions. That said, the sensitivity of the bounds to classification errors is noteworthy and
highlights the econometric importance of even relatively infrequent misreporting.

8. Arguably, the MTR assumption may be difficult to justify in the current application. We display
this case purely for illustrative purposes.
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Figure 3. Bounds under MTSn +MTR and MIV+MTSn +MTR with arbitrary errors

4.2 Monte Carlo

To further illustrate the tebounds command, we undertake a simple Monte Carlo ex-
ercise. We simulate 10,000 datasets with 2,000 observations from the following data-
generating process:

y0 = I{ν0 + 2(z − ǫ)}
y1 = I{ν1 + 2(z − ǫ)}
D∗ = I(2 ∗ ǫ+ ν2)

D =

{
1−D∗ if U < 0.1
D∗ otherwise

ν0 ∼ N(−1, 0.1)

ν1 ∼ N(−2, 0.1)

ν2 ∼ N(0, 1)

ǫ ∼ N(0, 1)

z ∼ N(0, 1)

U ∼ U(0, 1)

The population ATE is approximately 0.4. z is a valid MIV because both potential
outcomes are increasing in z. The presence of ǫ leads to negative selection into the
treatment. The misclassification rate is 10% and is arbitrary.
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The results are summarized in tables 1 and 2, where the MIV bounds are obtained
using 20 cells. Table 1 reports the coverage rates (that is, the fraction of simulations
where the bounds encompass the true value of the ATE). Not surprisingly, the exogenous
selection bounds fail to cover the true value even when a maximum misclassification
rate of 10% (the true value in the population) is allowed. In all other cases, the bounds
always include the true value of the ATE, even when the incorrect assumption of no
misclassification is imposed.

Table 1. Coverage rates

Assumption Q Coverage rate

exogenous selection 0 0.000
10 0.000

worst case 0 1.000
10 1.000

MTSn 0 1.000
10 1.000

MTSn + MTR 0 1.000
10 1.000

MIV + MTSn 0 1.000
10 1.000

MIV + MTSn + MTR 0 1.000
10 1.000

Table 2 focuses on one aspect of the information that is potentially learned from
the partial identification approach: the sign of the ATE. Specifically, table 2 reports the
fraction of simulations where the bounds are strictly positive (that is, able to exclude
0 and produce the correct sign of the ATE). Focusing on the bounds that utilize the
various monotonicity assumptions, we see that the bounds obtained with (without) the
MIV assumption are able to correctly sign the ATE in 95% (89%) of the simulations
under the assumption of no misclassification. However, when we allow for the true rate
of misclassification in the population, the bounds always include 0. It is important to
note that while the bounds obtained under monotonicity and the assumption of no mis-
classification exclude 0 in the majority of simulations and always contain the true value
of the ATE (see table 1), there is nothing that guarantees this will always be the case.
Thus, one should avoid drawing the conclusion from this simple illustration that it is
acceptable to focus on the bounds obtained under the assumption of no misclassification
when, in fact, misreporting is a feature of the data.
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Table 2. Frequency of bounds excluding 0

Assumption Q Percentage

exogenous selection 0 0.890
10 0.000

worst case 0 0.000
10 0.000

MTSn 0 0.890
10 0.000

MTSn + MTR 0 0.890
10 0.000

MIV + MTSn 0 0.950
10 0.000

MIV + MTSn + MTR 0 0.950
10 0.000

5 Remarks

The tebounds command provides a means to partially identify the ATE of a binary
treatment on a binary outcome under a variety of assumptions concerning the nature
of the self-selection process and the nature and frequency of misreporting of treatment
assignment. The binary outcome should be defined such that Y = 1 corresponds to the
desirable outcome. CIs are available following Imbens and Manski (2004).
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