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Abstract. In this article, we present gsreg, a new automatic model-selection
technique for cross-section, time-series, and panel-data regressions. Like other
exhaustive search algorithms (for example, vselect), gsreg avoids characteristic
path-dependence traps of standard approaches as well as backward- and forward-
looking approaches (like PcGets or relevant transformation of the inputs network
approach). However, gsreg is the first code that 1) guarantees optimality with
out-of-sample selection criteria; 2) allows residual testing for each alternative; and
3) provides (depending on user specifications) a full-information dataset with out-
come statistics for every alternative model.

Keywords: st0383, gsreg, automatic model selection, vselect, PcGets, RETINA

1 Introduction

Econometric practitioners are commonly faced with global optimization issues. Identi-
fying the real data-generating process (DGP) from a myriad of econometric models is
analogous to looking for a global minimum in a highly nonlinear optimization problem.
In both cases, some broadly accepted procedures lead to wrong or improvable results.1

While global optimization methods in mathematics have evolved, for example, from
Newton–Raphson to genetic algorithms (and related search strategies), econometric

1. In econometrics, Leamer (1978) and Lovell (1983) document the low success rates of many widely
used model-selection techniques, while Forrest and Mitchell (1991) stress the limitations of new
standards (for example, genetic algorithms) in the numerical optimization.

© 2015 StataCorp LP st0383



326 Global search regression (gsreg)

model-selection techniques have changed from rudimentary (backward- or forward-
stepwise) sequential regressions to more sophisticated approaches (PcGets, relevant
transformation of the inputs network approach [RETINA], least angle regression, and
least absolute shrinkage and selection operator; see Castle [2006]).

However, suboptimal path-dependent results still frequently emerge. Like genetic
algorithms in global optimization problems, most automatic model-selection techniques
(AMSTs) cannot guarantee a global optimum (the best DGP from available alternatives)
in model selection. Outcomes can be affected by both search parameters (particularly
test parameters) and search starting points (see Derksen and Keselman [1992]).

Newer AMSTs, like PcGets or RETINA, aim to avoid this problem by using alter-
native multipath–multisample backward- and forward-looking approaches, respectively.
While these strategies significantly improve AMST outcomes (Marinucci 2008), they still
fail to guarantee global optima because of unexplored reduction paths; the size–power
trade-off; and cumulative type I errors of sequential testing, especially in small-sample
problems.

The combination of nonexhaustive search (like single- or multiple-path search strate-
gies) and sequential testing (either forward- or backward-looking) frequently affords
some cost in terms of statistical inference (depending on test size and selected paths, it
will take the form of model under- or overfitting), and the terminal model will coincide
with the best DGP.

These weaknesses together with increasing computational capabilities explain the
widening use of alternative exhaustive search methods. Unlike global optimum search
in mathematics,2 a model-selection problem in econometrics is always self-constrained.
The number of points (models) to be evaluated will never be infinite—it will be a
certain integer defined by 2n, where n is the number of initially admissible covariates.
This quantity, while exponentially increasing in n, is far more manageable than any
unconstrained nonlinear global optimization problem (see figure 1).

2. The meaning of exhaustive search in mathematics (for example, in nonlinear optimization problems)
is not completely satisfactory. Algorithms like Pattern Search in Matlab provide a useful example of
exhaustive search in a global optimization context. Indeed, the iterative Pattern Search algorithm
looks for a global minimum in variable-size mesh until a threshold level is attained. However,
without constraints, the problem must be evaluated at an infinite number of points. Using polling
method options, the Pattern Search algorithm reduces the number of iterations to a convenient
dimension. Nevertheless, the stronger the constraint, the higher the loss of the global minimum
accuracy.
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Figure 1. Exhaustive search: Alternative models to be evaluated at different numbers
of initially admissible covariates

All in all, the choice between exhaustive and nonexhaustive search is determined
by the trade-off between time and accuracy. Current-generation AMSTs try to account
for both dimensions, standing somewhere between pure time-saving techniques (for ex-
ample, first-generation AMSTs like stepwise regressions) and pure accuracy-improving
methods (exhaustive search). AMSTs evolve from speed to goodness-of-fit, as long as
processing-power innovation increases computational capabilities.

With the release of Stata 13, StataCorp stated that running a linear regression on
10 covariates and 10,000 observations takes 0.034 seconds on an Intel 2.4 GHz Core 2
Quad with Stata/SE for Windows 7 (http://www.stata.com/why-use-stata/fast). Ex-
haustive search of the best DGP in the same example (10 covariates and 10,000 observa-
tions) will involve 1,024 linear regressions in about 34 seconds. Moreover, when using
one of the latest Intel Xeon processors (Xeon X5698, 2011, 4.4 GHz), the same procedure
takes 19.3 seconds.

Forty years ago, running 1,000,000 regressions (for example, the number of equa-
tions to be estimated for an exhaustive search on a general model of 19–20 initially
accepted covariates and 10,000 observations) would have taken about 25 years (using
the Intel 4004 processor of 108 KHz). Today, it takes only about 5 hours (using the
Intel Xeon X5698 processor of 4.4 GHz) or less (for example, only about 4 hours by
overclocking the last AMD FX-9590 processor to obtain up to 5.3 GHz).

This exponential increase in hardware computational capabilities (figure 2) has been
complemented by newer software codes to implement exhaustive search in econometric
model-selection problems (like vselect in Stata). However, none of the codes provides
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exhaustive outcomes for sensitivity analysis (for example, coefficient- or test-probability
distributions for any alternative model structure) or high accuracy when out-of-sample
selection criteria are used (or when hypothesis testing is necessary, for example, when
testing white-noise residuals).
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Figure 2. Exhaustive search: Alternative models to be evaluated at different numbers
of initially admissible covariates

To fill this gap, we developed gsreg—the first code for exhaustive search in AMST

that 1) guarantees optimality with out-of-sample selection criteria; 2) allows residual
behavior testing for each alternative; and 3) provides (depending on user specifications)
a full-information dataset with outcome statistics for every alternative model.3

We structure this article in six sections. In the following section, we discuss strengths
and weaknesses of main automatic model-selection approaches. In section 3, we intro-
duce the gsreg command, including its algorithm, stages, and uses. In section 4, we
give the syntax and options. We then present some examples of the application of gsreg
in section 5, and we describe the features of stored results in section 6.

3. gsreg will initially be used for small-size problems in standard personal computers (for example,
to find the best DGP over different combinations of 20 or fewer potential covariates, which can
be solved in a couple of hours). However, larger calculations will soon be manageable, because
a “parallelization revolution” is coming soon. A few years from now, it will be easy to solve
a one-billion regression problem with gsreg in two hours, using general-purpose computing on
graphics processing units and CUDA or OpenCL-like reengineering to improve gsreg parallelization
capabilities (for example, to fully exploit the part() option potential).
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2 Distinctive features of main AMSTs

By combining and extending Hendry (1980), Miller (1984), Gatu and Kontoghiorghes
(2006), and Duarte Silva (2009) categorizations, we can generate the conceptual tree of
model-selection techniques shown in figure 3.

Figure 3. Conceptual tree of model-selection techniques

The first-level choice is related to data mining—one of the most important path-
breaking controversies in applied economics—which starts in the 1930s and continues
throughout the twentieth century with seminal contributions of Frisch (1934), Haavelmo
(1944), Leamer (1978), Lovell (1983), Gilbert (1986), Hendry (1995), and many others.

Recent econometric developments tend to advocate for data-based model-selection
techniques, especially the automated ones.4 Within this family, however, an internal
consensus has yet to be achieved. At the end of the 1960s, both exhaustive (also
known as exact) and heuristic approaches were very popular. Heuristic subset selection
was pioneered by the stepwise regression algorithm of Efroymson (1960), while exhaus-
tive search was initially associated with the optimal or complete regression strategy of
Coen, Gomme, and Kendall (1969).

4. It is useful to examine the econometric “zeitgeist” evolution by comparing Miller’s (1984) discus-
sions against recent debates in Econometric Theory (vol. 21, 2005, devoted to “Automated inference
and the future of econometrics”).
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Box and Newbold’s (1971) criticisms on exhaustive search techniques (for example,
they are unfeasible for large-size problems) and Berk’s (1978) objections to stepwise
algorithms (for example, they do not guarantee optimality) have highlighted the need
for better alternatives.

The number of exhaustive and heuristic model-selection techniques has grown expo-
nentially in the past 40 years. Alternative algorithms arose, such as nonnegative Garrote
(Breiman 1995); least absolute shrinkage and selection operator (Tibshirani 1996); least
angle regression (Efron et al. 2004); vselect—leaps and bounds (Furnival and Wilson
1974; Lindsey and Sheather 2010); PcGets and Autometrics (Krolzig and Hendry 2001;
Doornik 2009); and RETINA (Pérez-Amaral, Gallo, and White 2003).5 However, most
of them have important limitations for robustness analysis or out-of-sample (and in-
sample) optimality.

Regarding the general-to-specific approach (PcGets), we must note that path depen-
dence (Pagan 1987) has not been completely eliminated, small-sample problems persist
(Marinucci 2008), and out-of-sample results are relatively poor (Herwartz 2007). Even
the designers (Krolzig and Hendry, 2001; 839) concluded that “the empirical success of
PcGets must depend crucially on the creativity of the researcher”.

As for the specific-to-general (RETINA) strategy, the software is still unable to guar-
antee model-selection optimality because neither path dependence nor cumulative type I
errors were fully removed with its multiple-sample or multiple-path methodology. More-
over, RETINA’s usual under-parameterization (which may be useful for forecasting pur-
poses) could have some negative effects on in-sample fitting and explanation properties.
According to Castle (2006, 46), “The specific-to-general methodology tends to have an
ad hoc termination point for the search, and alternative path searches are unbounded,
implying that the approach could miss the local DGP. Moreover, the null rejection fre-
quency will not be controlled as the number of tests conducted will depend on the
termination point, and failure of misspecification tests is likely at the initial stages,
invalidating conventional tests. This does mean that there is no guarantee that the
final model selected by RETINA is congruent, which may or may not be relevant for
forecasting models.”

5. For further details about other selection techniques (PcGets/Autometrics and RETINA), see
Davidson and Hendry (1981); Pagan (1987); Derksen and Keselman (1992); Krolzig and Hendry
(2001); Pérez-Amaral, Gallo, and White (2003); Castle (2006); Herwartz (2007); Doornik (2009);
and Marinucci (2008). For a better explanation of vselect, see Lindsey and Sheather (2010),
Draper and Smith (1998), and Furnival and Wilson (1974).
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Finally, although the efficient exhaustive search package vselect overcomes in-
sample optimality issues of the alternatives mentioned above, it still faces the following
limitations:6 1) the algorithm’s main property does not apply for out-of-sample model-
selection problems, and 2) while more efficient than complete exhaustive methods, the
“vselect, best” approach becomes unfeasible and time consuming for large-size prob-
lems (because the success reduction rate will not compensate the exponential increase
of the problem size with the number of potential covariates).

3 The global search regression (gsreg) procedure

Despite the documented increase in computational capabilities, our complete exhaustive
algorithm is particularly recommended for small-size (fewer than 30 variables) model-
selection problems, where 1) out-of-sample selection criteria will be used to select the
optimal choice or 2) the main objective is parameter stability across different model
specifications.7 However, its options are encompassing enough to transform gsreg into
a flexible device for many other uses. In what follows, we present its features.

The gsreg command has two major stages. In the first stage, it creates a set of
lists, wherein each list contains one of the possible sets of dependent variables, and
therefore, the full set of lists contains all possible combinations of candidate covariates.
In the second stage, the command performs a regression for each of the lists previously
created.

In the first stage, the set of lists is determined according to the following steps:

1. The algorithm determines an inventory containing the total set of candidate vari-
ables, Lvc, according to the list of user-specified original variables and the addi-
tional covariates to be included as candidates if the option dlags(), ilags(), or
lags() is specified.

2. If the ncomb() option is not specified, a first set of lists, SL, is created by taking
all possible combinations without repetition of candidate variables (which include
all combinations taken from 1 to the total number of variables in Lvc). Otherwise,
SL is created by taking all combinations without repetition of candidate variables
taken from #1 to #2 defined in ncomb(). So, SL = (Lint1, . . . , Lint2), where each
Li is a particular subset of the set of candidate variables Lvc.

6. As noted by Lindsey and Sheather (2010), model-selection methodologies usually face multiple
inference issues (for example, different significance levels). Following Sheather (2009), vselect

authors propose to implement cross-validation techniques by splitting “the data into two parts,
performing variable selection on one part (train) and using the other (test) for evaluating the
resulting model” (Lindsey and Sheather 2010, 651).

7. Cross-validation techniques are recommended for gsreg as well as for vselect. Indeed, both com-
mands could be complementary for this purpose: vselect could be used to efficiently find the best
in-sample model, and gsreg could be used to check out-of-sample consistency.
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3. If the squares option is specified, an additional list is created from each Li of
point 2 (SqLi), and it includes all covariates in Li plus all their squares. Then, the
whole set of SqLi lists (SqL) is added to the SL. If the cubic option is additionally
specified, another group of lists (CubL) is created from the SqL set by generating
a CubLi list for each SqLi list, in which SqLi covariates are complemented by Li
cubes. After that, the CubL set is added to SL.8

4. If the interactions option is specified, an additional IntLi list is created from
each Li, which includes all Li variables plus all possible combinations without
repetition of the interactions of these variables. Then, IntLi lists are added to SL.

5. If the fixinteractions option is specified, users can create a FintLi list from
each Li, which not only includes all Li variables but also all possible combinations
without repetition of the interactions between Li variables and fixvar() variables
(see below).

6. If the schange() option is specified, a new set of lists (SC) is created from SL
(already modified, if specified, by ilags(), dlags(), ncomb(), squares, cubic,
interactions, and fixinteractions) to test for structural change in every bi-
variate relationship, including all possible combinations without repetition of the
interactions between variables within SL and the user-defined variable of struc-
tural change (for example, a step- or point-dummy variable). Then, SC is added
to SL.

In the second stage, gsreg exhaustively performs one regression per SL, saving
coefficients and different statistics (default and user-defined) in a Stata .dta file. For
each SL, gsreg outcomes include

a. coefficients and t statistics of each covariate;

b. regression number (regression ID), number of covariates, and number of observa-
tions; and

c. default additional statistics (adjusted-R2, root mean squared error), optional addi-
tional statistics (such as residual test p-values or out-of-sample root mean squared
error), and other user-defined statistics that the user specifies in the cmdstat()

option.

8. Notice that this procedure dismisses all lists (regressions) that include squares of a certain variable
but do not include the original variable (for example, in levels), thereby reducing the number of
estimations to be performed. If users would like to estimate the cases where a given variable
appears only in quadratic terms, they should include the square of that variable (or all variables
desired) as an independent variable in the original Lvc set. Also notice that for the cubic option,
the algorithm generates lists with only the cubes of the variables for which the square was included.
Similar criteria were applied to the interactions, fixinteractions, and schange() options.
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Figure 4 summarizes the gsreg procedure:

Figure 4. Schematic diagram summarizing the gsreg procedure
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4 The gsreg command

4.1 Syntax

The syntax for the gsreg command is

gsreg depvar varlist ocand
[
if
] [

in
] [

weight
] [

, ncomb(#1, #2) samesample

nocount backup(#) part(#1, #2) dlags(numlist) ilags(numlist)

lags(numlist) fixvar(varlist fix) schange(varname sc) interactions

squares cubic fixinteractions outsample(#) cmdest(commandname)

cmdoptions(commandoptions) cmdstat(commandstats)

cmdiveq(varlist end = varlist inst) aicbic hettest hettest o(hettestoptions)

archlm archlm o(archlmoptions) bgodfrey bgodfrey o(bgodfreyoptions)

durbinalt durbinalt o(durbinaltoptions) dwatson sktest

sktest o(sktestoptions) swilk swilk o(swilkoptions) sfrancia testpass(#)

resultsdta(newbasename) replace double compact nindex(lcimplist)

mindex(lcimplist) best(#)
]

4.2 Options

General options

ncomb(#1, #2) specifies the minimum9 and maximum number of variable (instead of
user-specified fixed) covariates to be included in the procedure. gsreg will perform
all possible combinations (regressions) between candidate variables taken from #1

to #2. #1 must be less than or equal to #2 and, additionally, the number of
candidates must be greater than or equal to #2. The default is to run all possible
combinations without repetition of size 1 to n (the total number of candidates).

samesample specifies that all regressions be performed over the same sample of obser-
vations, defined as the largest common sample. By default, gsreg performs each
regression with the maximum number of common observations available for the co-
variate subset used in each case.

nocount hides the number of the regression being estimated from the screen. The
default is to show the regression number (used for identification purposes) and the
total number of regressions to be estimated for each model.

backup(#) creates # backup files during the execution of gsreg. Each backup will
contain approximately 1/# regressions. Each file will be saved in the ongoing work-
ing directory and will be named with the name of the results database (gsreg by
default) followed by the number of partition and the total number of backups spec-

9. ncomb() allows 0 to be included as the minimum value only if the option fixvar() is specified.
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ified in # (for example, gsreg part 1 of #.dta). All partitions will be deleted at
the end of the execution of gsreg, and the results database will be stored. If the
number of regressions is lower than #, the number of partitions will be reset to the
number of regressions.

part(#1, #2) runs a specific partition of all regressions. The partition will contain
approximately 1/#2 regressions. gsreg will save the partition (instead of the results
database) in the ongoing working directory. If the total number of regressions is lower
than #2, the number of partitions (#2) will be reset to the number of regressions.

Lag-structure options

dlags(numlist) allows dependent variable lags (depvar) to be included among candidate
covariates. tsset must be specified when using this option.

dlags(#) includes the # dependent variable lag among candidates.

dlags(#1/#2) includes all dependent variable lags from #1 to #2 considering
one-unit intervals among candidates.

dlags(#1 #2 #3) includes the #1, the #2, and the #3 dependent variable lags
among candidates.

dlags(#1 (#d) #2) includes all dependent variable lags from #1 to #2 consid-
ering #d-unit intervals among candidates.

dlags(#1 #2 #3 . . .#4 (#d) #5) includes the dependent variable lags #1, #2,
and #3, plus all dependent variable lags from #4 to #5 considering #d-unit
intervals among candidates.

ilags(numlist)10 allows independent variable lags to be included among original can-
didates. The syntax is flexible and identical to that used in dlags(). tsset must
be specified when using this option.

lags(numlist) allows dependent and independent variable lags to be jointly included
among original candidates. It replaces dlags() and ilags() when the argument
is identical. tsset must be specified when using this option. lags() cannot be
specified together with dlags() or ilags().

Fixed-variable options

fixvar(varlist fix) allows users to specify a subset of covariates to be included in all
regressions. Variables defined in varlist fix must not be included among the standard
candidates (varlist ocand).

10. Using ilags() and dlags() generates independent and dependent variable lags (respectively) before
using gsreg and includes them among original candidates. Users looking for different candidate
lag structures for each covariate should not specify the option ilags(); users should instead create
desired candidate lag structures before using gsreg and include them in the whole set of original
candidates.
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Options for transformations and interactions

schange(varname sc) tests structural change of slopes (using dummy varname sc as
interaction with all candidates) or dependent variable levels (alternatively allowing
varname sc to interact with the intercept). Interactions of varname sc with any
candidate will be included only if this candidate is in the equation. varname sc

must not be included among original candidates (varlist ocand) because it will be
used only for structural change.

interactions includes additional covariate candidates to evaluate all possible inter-
actions without repetition among original candidates (varlist ocand) and lags, if
specified in dlags(), ilags(), or lags(). Interactions between any two candidates
will be allowed only if both of them are in the equation. When this option is used
together with schange(), the structural change of interactions will be used only if
these interactions are included in the estimated specification.

squares adds the squares of each variable in varlist ocand (and lags, if specified in
dlags(), ilags(), or lags()) as new candidates. Each square will be accepted as
a regression covariate only if its level (original variable) is present in the equation.
Similarly, when this option is used together with schange(), the structural change
of the squares will be allowed only if these squares are in the equation.

cubic is similar to squares. It includes cubes of each variable in varlist ocand (and lags,
if specified in dlags(), ilags(), or lags()) as new candidates. These cubes will
be accepted as covariates only if level and square of the same variable are included
in the equation. When this option is used together with schange(), the structural
change of the cubes will be allowed only if these cubes are in the equation.

fixinteractions is similar to interactions, but it includes all possible interactions
without repetition among varlist ocand (and lags, if specified in dlags(), ilags(),
or lags()) as well as each fixed variable in varlist fix.

Options for time-series and panel-data forecasts

outsample(#) is used in time-series and panel-data models. It splits the sample into
two. The first subsample is used for regression purposes, and the second one is
applied to evaluate forecast accuracy. outsample(#) leaves the last # periods to
make forecasts (so that regressions are performed over the first T−# periods, where
T is the total number of available time-series observations). When this option is
specified, gsreg calculates and stores the rmse in (in-sample root mean squared
error) between period 1 and N−# and the rmse out (out-of-sample root mean
squared error) between period N−# and N . tsset must be specified when using
this option.
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Regression command options

cmdest(commandname)11 allows the user to implement alternative regression com-
mands. The default is cmdest(regress). commandname may be regress, xtreg,
probit, logit, areg, qreg, or plreg, but the option additionally accepts any re-
gression command that respects the syntax of regress and stores results (matri-
ces e(b) and e(V)) in the same way. ivregress is also accepted using option
cmdiveq(varlist end = varlist inst).

cmdoptions(commandoptions) allows additional options supported by commandname

to be added for each regression.

cmdstat(commandstats) enables gsreg to save additional regression statistics12 as
scalars e() by the regression command (commandname).

cmdiveq(varlist end = varlist inst) includes a list of endogenous variables (varlist end)
and a list of instruments (varlist inst) when the estimator command is ivregress.
When using this option, cmdest(ivregress 2sls), cmdest(ivregress liml), or
cmdest(ivregress gmm) must be specified. The endogenous variables must be in-
cluded in varlist fix (see option fixvar()) or in varlist ocand.

Postestimation options

aicbic calculates estat ic after each regression to obtain Akaike information criteria
(AIC) and Bayesian information criteria (BIC).

hettest calculates default estat hettest after each regression and saves p-values.

hettest o(hettestoptions) allows options to be added to hettest.

archlm runs default estat archlm after each regression and saves p-values. tsset must
be specified when using this option.

archlm o(archlmoptions) allows options to be added to archlm.

bgodfrey computes default estat bgodfrey after each regression and saves p-values.
tsset must be specified when using this option.

bgodfrey o(bgodfreyoptions) allows options to be added to bgodfrey.

durbinalt calculates estat durbinalt after each regression and saves p-values. tsset
must be specified when using this option.

durbinalt o(durbinaltoptions) allows options to be added to durbinalt.

dwatson runs estat dwatson after each regression and saves the Durbin–Watson statis-
tic. tsset must be specified when using this option.

11. Not all gsreg options can be used in any regression command. For regression commands with
required options, options must be specified in cmdoptions().

12. gsreg automatically saves the number of observations, obs; the number of covariates, nvar; the
adjusted-R2, r sqr a; and the root mean squared error, rmse in.
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sktest computes sktest after each regression and saves the p-value of the joint prob-
ability of skewness and kurtosis for normality. tsset must be specified when using
this option.

sktest o(sktestoptions) allows options to be added to sktest.

swilk calculates swilk after each regression and saves the p-value of the Shapiro–Wilk
normality test. tsset must be specified when using this option.

swilk o(swilkoptions) allows options to be added to swilk.

sfrancia runs sfrancia after each regression and saves the p-value of the Shapiro–
Francia normality test. tsset must be specified when using this option.

testpass(#) reduces the size of the outcome database by saving only those regression
results that fulfilled all user-specified residual tests (at a # significance level).

Output options

resultsdta(newbasename) allows the results-database name to be user-defined in new-

basename. By default, the name will be gsreg.dta.

replace replaces the results database (with the same name) if it already exists in the
ongoing working directory.

double forces results to be created and saved in double format, that is, with double
precision.

compact reduces the size of the results database by deleting all coefficients and t statis-
tics. In their place, gsreg creates a string variable called regressors that describes
which candidate variables are included in each regression. This variable takes value
1 in position # if the candidate variable with position # is included in the equa-
tion, and it takes value . if it is not. Variable positions are kept in a small database
called newbasename labels.dta (where newbasename is the results database’s user-
defined name).

nindex(lcimplist) allows an index of normalized accuracy to be specified. Regressions
will be ordered from highest to lowest in the results database, the best regression
according to nindex() will be shown on the screen, and e() results of this regression
will be saved in memory at the end of the gsreg execution. The default is based on
the adjusted-R2 (r sqr a). User choices about goodness-of-fit or forecast accuracy
criteria on nindex() can flexibly be specified in lcimplist. Using user-selected weights
and ranking variables, lcimplist allows complex arguments to create multinomial
ordering criteria. Any results-database variable can be used as a ranking variable in
the lcimplist argument (for example, r sqr a, rmse in, rmse out, aic, or bic), but
it must be preceded by a user-defined real number weight (for example, nindex(0.3
r sqr a -0.3 aic -0.4 bic)). Each variable included in lcimplist is normalized
using the whole sample average (across all regressions) of the same variable.
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mindex(lcimplist) and best(#) must be specified together. mindex() generates a
normalized ranking index like nindex() and has the same syntax as nindex(),
but the normalization of its arguments is developed using averages obtained from
the best #+1 regressions. Therefore, mindex() is updated with each additional
regression and only the best (in terms of lcimplist) # regression results are stored.
The joint use of mindex() and best() can strongly reduce database size (and RAM

requirements), making larger model-selection problems feasible. However, because
mindex() must be recalculated with every regression, gsreg could run slower when
using mindex() (particularly for small model-selection problems).

5 Examples

gsreg can be used for many purposes. In this section, we introduce three illustrations
of different gsreg applications. For brevity, option specifications are not fully discussed
here (see the gsreg help file for further details).

In the first example, we use artificial data to show how gsreg can be used to obtain
the best model in terms of in-sample goodness-of-fit, provided that regression residu-
als fulfill some desirable property. In the second example, we show that gsreg could
be indispensable when a user’s main concern for model selection is out-of-sample accu-
racy. In our third example, we illustrate another valuable gsreg application: parameter
stability analysis across different control variable models.

5.1 Model selection and residual tests

The leaps-and-bounds efficient model-selection methodology (introduced by the vselect
command) has the following two salient characteristics: 1) by using an exhaustive search
method (see sections 2 and 2.3), it ensures optimality for any in-sample model selection
criterion; and 2) the embedded Furnival and Wilson (1974) efficient algorithm allows
exhaustive search to be performed over a larger number of covariates than is feasible
for complete search algorithms.

However, the best models in terms of some in-sample information criteria do not
necessarily fulfill required residual properties (something left aside by vselect and
other model-selection Stata commands like stepwise). The following example shows
why gsreg-like algorithms can be essential to solve this problem. Suppose we wish to
obtain the best model to explain y, using some combination of two covariates, x and z,
and assuming the following DGP:

yt = β0 + β1txt + β2tzt + ut

with t = 1, . . . , 1000, β0 = 1, β1t = 0.9 if t < 600, β1t = 0 if t ≥ 600, β2t = 0 if t ≤
800, β2t = 0.1 if t > 800, z ∼ U [0, 1], x ∼ U [0, 2] if t < 600, x ∼ U [0, 2.4] if t ≥
600, and u ∼ N(0, 1).

By construction, covariate x has a higher explanatory power than z, but it tends to
generate heteroskedasticity problems.
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We will use gsreg to estimate all possible combinations. With two candidate co-
variates, there will be only three possible models. For each regression, we will generate
and save information (in the res1.dta file) about 1) the AIC and the BIC (using the
aicbic option) and 2) the p-value of the standard heteroskedasticity test (using the
hettest option). Finally, we will ask gsreg to display the best regression for a multi-
nomial normalized nindex() based on the adjusted-R2, the AIC, and the BIC by using
the following command statement:

. gsreg y x z, resultsdta(res1) replace hettest aicbic
> nindex(0.3 r_sqr_a -0.3 aic -0.4 bic)
----------------------------------------------------
Total Number of Estimations: 3
----------------------------------------------------
Computing combinations...
Preparing regression list...
Doing regressions...
Estimation number 1 of 3
Estimation number 2 of 3
Estimation number 3 of 3
Saving results...
file res1.dta saved
----------------------------------------------------
Best estimation in terms of 0.3 r_sqr_a -0.3 aic -0.4 bic
Estimation number 3
----------------------------------------------------

Source SS df MS Number of obs = 1,000
F(2, 997) = 35.02

Model 86.5026807 2 43.2513403 Prob > F = 0.0000
Residual 1231.34003 997 1.23504517 R-squared = 0.0656

Adj R-squared = 0.0638
Total 1317.84271 999 1.31916187 Root MSE = 1.1113

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x .4360614 .0545238 8.00 0.000 .3290669 .5430559
z .2705071 .1242505 2.18 0.030 .0266845 .5143296

_cons .9651791 .0912015 10.58 0.000 .7862103 1.144148

The best model in terms of nindex() includes both x and z covariates. However,
our res1.dta (partially reproduced in table 1 below) shows some interesting results.13

In table 1, we can see that the first model, with only x as covariate, is the best one
in terms of the BIC, while the best model in terms of both the AIC and the adjusted-R2

is that using x and z as covariates. However, both models fail to fulfill the residual
homoskedasticity requirement (with hettest p-values lower than 0.01). The z model
(model 2), although suboptimal under any selection criterion, is the only one for which
the null hypothesis of homoskedasticity cannot be rejected.

13. Many res1.dta columns have been omitted to reduce the size of table 1 (such as number of obser-
vations, number of variables, the root mean squared error, regression coefficients, and t statistics).
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Table 1. Example 1: Main stored results

Order Model r sqr a aic bic hettest nindex()

1 x 0.0602569 3054.723 3064.538 0.0005750 0.5621497
2 z 0.0046997 3112.161 3121.976 0.2120479 1.1536771
3 x z 0.0637653 3051.980 3066.703 0.0005339 0.5915275

A similar exercise can be simulated for related problems of serial correlation or
nonnormal residuals, where best models in terms of some information criteria do not
fulfill residuals requirements while suboptimal models surprisingly do.

When user concern is focused on estimation robustness, residuals requirements be-
come crucial and gsreg provides a better alternative than other model-selection com-
mands (like vselect or stepwise) to ensure optimality among admissible models (for
example, to find the optimal model among those with white-noise residuals).

5.2 Out-of-sample prediction

Friedman’s (1953) contribution still generates a vigorous debate among epistemologists
confronting “instrumentalism” and “realism” (see Mäki [1986] or Caldwell [1992]). Some
still blame Friedman for generalizing the misleading idea that forecast accuracy (even
using models with “false” assumptions) is the only valid mechanism to choose among
competing theories.

In econometrics, there is some parallelism with the “measurement without theory”
debate associated with Koopmans’s (1947) work from almost 70 years ago (reviewed
by Hendry and Morgan [1995]) and more recent methodological discussions about in-
sample versus out-of-sample model-selection mechanisms. Renowned econometricians
like Ashley, Granger, and Schmalensee (1980, 1149) assert that “a sound and natural
approach [to testing predictive ability] must rely primarily on the out-of-sample fore-
casting performance”.

It is not surprising that many colleagues increasingly try to overcome this last con-
troversy by examining both in-sample and out-of-sample model outcomes.

In this context, gsreg can ensure in-sample as well as out-of-sample model-selection
optimality, reducing user concerns about structural breaks in multivariate relationships.

To illustrate this point, suppose that we wish to get the best model of y (in terms of
some out-of-sample criteria) using x or z, with 100 time-series observations (using the
last 20 for out-of-sample model evaluation) and assuming the following DGP:

yt = β0 + β1xt + β2tzt + ut

with β0 = 1, β1 = 1, β2t = 1 if t ≤ 70, β2t = 0 if t > 70, and x, z, u ∼ N(0, 1).
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By construction, both covariates have a high in-sample explanatory power, but z
becomes nonsignificant for out-of-sample evaluation purposes.

If the structural change is unknown (and therefore disregarded) and we do not use
gsreg to evaluate forecast accuracy, the best representation of y will include x and z as
covariates.

Alternatively, users concerned about the dangerous effects of potential structural
breaks will exploit some database subsample to check parameter stability (for example,
the last 20 observations) and use gsreg to examine both explanatory power and forecast
accuracy of each model. For this example, the simplest command could be

. gsreg y x z, outsample(20) replace
----------------------------------------------------
Total Number of Estimations: 3
----------------------------------------------------
Computing combinations...
Preparing regression list...
Doing regressions...
Estimation number 1 of 3
Estimation number 2 of 3
Estimation number 3 of 3
Saving results...
file gsreg.dta saved
----------------------------------------------------
Best estimation in terms of r_sqr_a
Estimation number 3
----------------------------------------------------

Source SS df MS Number of obs = 80
F( 2, 77) = 67.80

Model 189.57001 2 94.7850049 Prob > F = 0.0000
Residual 107.654365 77 1.39810864 R-squared = 0.6378

Adj R-squared = 0.6284
Total 297.224375 79 3.76233386 Root MSE = 1.1824

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 1.158722 .1163415 9.96 0.000 .9270567 1.390388
z .9722231 .1362012 7.14 0.000 .7010119 1.243434

_cons -.1121836 .1341773 -0.84 0.406 -.3793648 .1549976

By default, gsreg outcomes were saved as gsreg.dta, and the “best” model was
selected based on the adjusted-R2. The outsample(20) option keeps the last 20 ob-
servations to forecast evaluations. It also calculates, by default, the in-sample and the
out-of-sample root mean squared errors.

Following table 2 below, the best model for in-sample criteria (adjusted-R2 or root
mean squared error) is the worst in terms of the out-of-sample root mean squared error
criterion (model 3, with x and z as covariates). On the contrary, model 1 (which only
includes x as a covariate) has a relatively poor in-sample performance but ensures the
highest forecast accuracy. By alternatively selecting, for example, rmse out or rmse in

as ranking variables, gsreg users can exhaustively cross-check model optimality.



P. Gluzmann and D. Panigo 343

Table 2. Example 2: Main stored results

Order Model r sqr a rmse in rmse out

1 x 0.3904075 1.5144274 0.5720016
2 z 0.1605745 1.7771323 0.7596292
3 x z 0.6283932 1.1824164 0.7670928

5.3 Parameter stability analysis

By generating a database with exhaustive information about all regression alternatives,
gsreg is a unique tool for parameter stability analysis. In this example, we will use
crisis fr.dta of Gluzmann and Guzman (2011) (containing information on financial
crisis, financial reforms, and a set of controls for 89 countries from 1973–2005) to evaluate
interest-parameter stability under alternative control variable structures. As a first step,
we run a pooled-data linear regression (for Latin American countries and emerging Asian
economies in transition) of the probability of future financial crisis over the next five
years (fc5) on a financial reform index (ifr) and its recent change (d ifr).

. use crisis_fr.dta, clear

. regress fc5 ifr d_ifr if EA_LA_TR==1

Source SS df MS Number of obs = 928
F(2, 925) = 13.97

Model 5.08852674 2 2.54426337 Prob > F = 0.0000
Residual 168.410396 925 .182065293 R-squared = 0.0293

Adj R-squared = 0.0272
Total 173.498922 927 .187161729 Root MSE = .42669

fc5 Coef. Std. Err. t P>|t| [95% Conf. Interval]

ifr -.00711 .0025616 -2.78 0.006 -.0121372 -.0020829
d_ifr .0549173 .0110602 4.97 0.000 .0332113 .0766233
_cons .2793652 .0255525 10.93 0.000 .2292176 .3295128

From the above regression, we obtain a negative and significant relationship between
fc5 and ifr and a positive (and even more significant) regression coefficient for d ifr.

In their article, Gluzmann and Guzman (2011) also identify 23 theoretically rele-
vant control variables to consider (v1 to v23). Unlike previous examples, we will not
use gsreg here to obtain the best model (for example, best control variable structure)
in terms of some in-sample or out-of-sample information criteria (or some linear com-
bination of many information criteria); we will instead examine the whole set of results
to evaluate ifr and d ifr regression coefficient and t statistic distributions.
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With this purpose, we follow the Levine and Renelt (1992) and Sala-I-Martin (1997)
approach and run all possible regressions using available information in crisis fr.dta,
taking ifr and d ifr as fixed variables and forcing gsreg to use three control variables
for each alternative.

. use crisis_fr.dta, clear

. gsreg fc5 v1-v23 if EA_LA_TR ==1, ncomb(3) fixvar(ifr d_ifr) replace nocount
----------------------------------------------------
Total Number of Estimations: 1771
----------------------------------------------------
Computing combinations...
Preparing regression list...
Doing regressions...
Saving results...
file gsreg.dta saved

(output omitted )

gsreg execution takes less than a minute using Stata/MP 12.1 for Windows (64 bit)
in a laptop with an Intel i7-3520m processor and 4 GB of DDR3 RAM memory. The
fixvar(ifr d ifr) option ensures that ifr and d ifr will be used as covariates in all
regressions. The ncomb(3) option reduces the search space to all possible combinations
(without repetition) of 23 control variables, taken 3 at time. Main command outcomes
can easily be described using the following kernel density plot:
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Figure 5. Example 3: ifr and d ifr coefficient distribution
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From figure 5, we can see that a large share of the ifr coefficient distribution is
concentrated around 0, while d ifr coefficients are almost exclusively distributed over
positive (nonzero) values. To provide users with an enlarged example, we can replicate
the analysis using alternative estimation methods, such as

. gsreg fc5 v1-v23 if EA_LA_TR ==1, ncomb(3) fixvar(ifr d_ifr) replace nocount
> cmdest(probit) cmdstat(r2_p ll)

(output omitted )

or

. gsreg fc5 v1-v23 if EA_LA_TR ==1, ncomb(3) fixvar(ifr d_ifr) replace nocount
> cmdest(xtreg) cmdoptions(fe robust)

(output omitted )

For the probit (pooled) case, gsreg additionally computes and saves the pseudo-R2

and the log likelihood of each regression. Here the execution time (on the same software
and hardware) rose to 13 minutes.

Finally, the xtreg version was used to estimate the same relationship using fixed
effects and robust standard errors. The execution time of the same exercise was about
11 minutes.

6 Stored results

The gsreg command creates a .dta file with outcome information for all estimated
alternatives. By default, it includes the following columns for each regression:

1. regression ID (variable order),

2. covariate regression coefficients (named v 1 b, v 2 b, . . . and labeled with the full
covariate name plus the word coeff.),

3. coefficient t statistics (named v 1 t, v 2 t, . . . and labeled with the full covariate
name plus the word tstat.),

4. number of observations (variable obs),

5. number of covariates (variable nvar),

6. adjusted-R2 (variable r sqr a),

7. in-sample root mean squared error (variable rmse in),

8. normalized linear combination of user-selected and weighted model-selection cri-
teria (as nindex() or mindex() if this option is specified)

9. additional user-specified statistics (if option cmdstat() is specified),

10. out-of-sample root mean squared error (if option outsample() is specified), and

11. residual test statistics (if specified).
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When the compact option is specified, regression coefficients and t statistics are
omitted and replaced by a unique summary string variable as described in section 4.2.

Also gsreg displays the best regression in terms of the user-specified nindex()

or mindex() (or, if these options are not specified, the adjusted-R2). Therefore, all
the “best model” results are also stored in memory (as scalars, macros, matrices, and
functions).
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Universidade Católica Portuguesa.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani. 2004. Least angle regression.
Annals of Statistics 32: 407–499.

Efroymson, M. A. 1960. Multiple regression analysis. In Mathematical Methods for
Digital Computers, ed. A. Ralston and H. S. Wilf, 191–203. New York: Wiley.

Forrest, S., and M. Mitchell. 1991. The performance of genetic algorithms on Walsh
polynomials: Some anomalous results and their explanation. In Proceedings of the
Fourth International Conference on Genetic Algorithms, ed. R. K. Belew and L. B.
Booker, 182–189. San Francisco: Morgan Kaufmann.

Friedman, M. 1953. Essays in Positive Economics. Chicago: Chicago University Press.

Frisch, R. 1934. Statistical Confluence Analysis by Means of Complete Regression
Systems. Oslo: University Institute of Economics.

Furnival, G. M., and R. W. Wilson. 1974. Regressions by leaps and bounds. Techno-
metrics 16: 499–511.

Gatu, C., and E. J. Kontoghiorghes. 2006. Branch-and-bound algorithms for computing
the best-subset regression models. Journal of Computational and Graphical Statistics
15: 139–156.

Gilbert, C. L. 1986. Practitioners’ corner: Professor Hendry’s econometric methodology.
Oxford Bulletin of Economics and Statistics 48: 283–307.

Gluzmann, P., and M. Guzman. 2011. Reformas financieras e inestabilidad financiera.
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