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Abstract: 

The objective of this article is to discuss the relationship between biofuels and food crop markets in Brazil, 
from August 2004 to August 2017. Prices of ethanol and food commodities (sugar, soybean and corn) were 
used to estimate a Vector Error Correction Model (VECM). The system also included Real/Dollar exchange 
rate, policy and seasonal dummies, and an exogenous variable representing international oil price. The 
results suggest the occurrence of linkages between biofuel and food commodity markets in Brazil. Thus, it 
is crucial that the development of public policies to pursue the objective of increasing the supply of 
renewable and less pollutant fuel do not conflict with the goals of food security.  
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INTRODUCTION 

 

With the oil shocks of 1973 and 1979, energy costs in Brazil increased sharply. At the 

time, the country imported about 80% of its oil consumption (IPEA, 2010). After the 

first shock, import expenditures increased from US$ 600 million in 1973 to US$ 2.5 

billion in 1974, causing a deficit of US$ 4.7 billion in the Brazilian trade balance. This 

deficit increased the external debt and caused a rise in inflation from 19% to 34% 

between 1973 and 1974 (ALCARDE, 2008). In its quest to become less dependent on 

imported oil, Brazilian government created a national ethanol program (Proálcool) in 

1975, with the objective of stimulating renewable fuel production.  

In its initial phase, the program was intended to produce mainly anhydrous 

ethanol. From 1975 to 1979, biofuel supply in Brazil increased from 600 million 

liters/year to 3.4 billion liters/year (Alcarde, 2008). The next phase of Proálcool began 

in 1980, shortly after the second oil shock when fossil fuel prices had tripled. Brazilian 

government allocated public resources to stimulated ethanol production, and the number 

of cars powered by ethanol alone increased, reaching 95.8% of the total fleet in 1985 

(Barros, 2007). During that period, ethanol production reached 12.3 billion liters/year. 

In 1986, oil prices gradually returned to levels before the first oil shock, dropping from 

US$ 40/barrel to US$ 12/barrel (Alcarde, 2008). In the third phase, the program 

experienced stagnant ethanol production. Also, sugar prices were recovering in the 

international market, and ethanol production became less price attractive for producers 

(Kohlhepp, 2010). Then, Brazil substantially reduced incentives for Proálcool resulting 

in a domestic supply decrease. With the objective of meeting domestic demand, the 

government imported fuel alcohol and promoted substitution of anhydrous ethanol to 

methane in the gasoline mixture (IPEA, 2010). As a result, consumers and vehicle 

manufacturers once again prioritized gasoline-powered cars, and mill owners produced 

more sugar for the international market. After 2002, international oil prices rose again, 

causing a further increase in gasoline prices. Consumers, in turn, became again 

interested in the use of ethanol. However, the lack of confidence in the biofuel supply 

caused ethanol-powered cars sales to be stagnant. In 2003, flex-fuel engines, which used 

any quantities of gasoline and ethanol in the mixture, started to be commercialized in 

Brazil. In 2006, the country became self-sufficient in oil production, but large-scale 

ethanol making continued increasing (Kohlhepp, 2010). 

Considering that Brazil is the world's largest producer of sugarcane, and the 

second largest producer of ethanol, the debate about the influence of biofuel production 

on food security became recurrent in recent years (Capitani, 2014; Monteiro, Altman 

and Lahiri, 2012; FGV, 2008). Hence, the objective of this paper is to provide empirical 

evidence on the relationship between prices of sugarcane ethanol and prices of selected 

food crops in Brazil. The study also considers the influence of the real/dollar exchange 

rate, and the international oil prices, on food and biofuel markets. The period considered 

for the analysis was from August 2004 to August 2017. 

 

LITERATURE REVIEWED 

The latest phase of the Brazilian fuel alcohol program, especially since the introduction 

of flex-fuel engines in 2003, was followed in the United States by the Renewable Fuel 
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Standard-RFS program, established as an amendment to the Clean Air Act in 2005. The 

law forced the use of a minimum volume of ethanol in the mixture with gasoline, which 

was aimed to increase annually. Between 2003 and 2014, ethanol production in Brazil 

almost doubled, while it increased more the fivefold in the United States over the same 

period. With this expansion, the debate on the relationship between food security and 

biofuel production has grown and gained interest from the academic community. 

Several researchers examined the relationship between biofuel and food markets 

via prices causality. Bastianin, Galeotti, and Manera (2013) using Granger´s 

methodology found a causal relationship of corn prices to ethanol prices, but not the 

reverse in Nebraska, the second largest producer of biofuels in the U.S. In conclusion, 

the study found no evidence in favor of the food-biofuels linkage. Myers et al. (2014) 

analyzed comovements between energy commodity prices (oil, gasoline, and ethanol) 

and the prices of agricultural commodities used in biofuel production (maize and 

soybean) in the U.S. with an error correction model. The paper, however, found no 

statistical evidence of cointegration between fuel and food prices.  

Du and McPhail (2012), using a Vector Autoregression model (VAR), divided 

the studying period in two: 2005 to 2008 (years following the 2005 Clean Air Act) and 

2008 to 2011 (more recent period). Only in the second period was the relationship 

between food prices and biofuels statistically significant. Chen, Kuo, and Chen (2010) 

investigated the relationship between oil and food commodities prices in the United 

States using a Distributed Lags Model. The results indicated that changes in 

international oil prices would have exerted higher influence on prices of agricultural 

commodities if it was not for the development of the biofuels program in that country 

Using a Vector Error Correction Model (VECM), Capitani (2014) examined the 

price impact of ethanol and sugarcane on selected food crops in Brazil. Results 

indicated that price of ethanol exerts statistically significant influence on sugar and 

sugarcane prices. The study, however, concluded that despite the recent expansion of 

sugar and ethanol production in Brazil, food commodities market in the country do not 

seem to have been affected by the growth of the biofuels production. 

Monteiro, Altman, and Lahiri (2012) examined the influence of the United 

States and Brazil, the world's largest ethanol producers, on food commodity prices 

Using linear regression models. The study found that an increase in the share of 

Brazilian biofuel production, in respect to the U.S., is related to rising food prices. 

However, there was no statistically significant causal relationship between the 

expansion of areas for planting biofuels crops in both countries and food prices. On the 

contrary, an increase in sugarcane areas in Brazil showed to exert a negative influence 

on the price of food. According to the authors, a possible explanation is that the areas 

planted with sugarcane, destined for ethanol, expanded along with the areas of 

sugarcane intended to produce sugar. As a consequence, the price of sugar tended to 

fall, pushing down food price index. 

The reviewed literature is not conclusive regarding the impacts of biofuel 

production on food security. Most studies, however, are also unable to ensure that there 

is no causal link between the bio-based energy markets and food commodities. It is 

therefore crucial that further studies examine the relationship between these markets to 

find elements that help to formulate public policies capable of encouraging the 

production of biofuels without endangering food security. 
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METHODOLOGY 

Data 

The data used in the empirical model were related to ethanol prices, prices of a selected 

group of Brazilian agribusiness food commodities (sugar, soy, and maize), the 

real/dollar exchange rate and the international oil price. The oil price entered the system 

as an exogenous variable since, by assumption, it could affect prices formation in 

Brazilian agribusiness, but it is not likely to be affected by it. Dummy variables were 

also used to mark regime changes (structural breaks) and seasonal periods. The data 

used were monthly, covering the period from August 2004 to August 2017. The use 

logarithmic transformation in the data improved model's fit. Table 01 details the nature 

of the data and its sources. 

Table 01 – Variables Description 

Variable Description Source 

ETH Monthly ethanol price (US$/liter) CEPEA/USP 

SUG Monthly sugar price (US$/50 kg bags) CEPEA/USP 

SOY Monthly soybean price (US$/60 kg bags) CEPEA/USP 

COR Monthly corn price (US$/60 kg bags) CEPEA/USP 

EXC Nominal monthly exchange rate (R$/US$) IPEA 

OIL Brent crude oil – FOB, Europe (US$/Barrel) U.S. EIA 

 

Empirical Strategy 

The VECM models estimated in the present study used the following endogenous 

variables described in the previous section: 

 

𝒚𝒕 = (𝐸𝑇𝐻𝑡 , 𝑆𝑈𝐺𝑡 , 𝑆𝑂𝑌𝑡 , 𝐶𝑂𝑅𝑡 , 𝐸𝑋𝐶𝑡) 

 

Also, the model included dummy variables, seasonal dummy variables, and the 

international oil price (OIL) as an exogenous variable. Variables stationarity was 

checked using ADF (Augmented Dickey-Fuller) and KPSS (Kwiatkowski, Phillips, 

Schmidt and Shin) tests (Dickey and Fuller, 1981; Kwiatkowski, 1992); the occurrence 

of structural breaks was examined using Bai-Perron method (Bai and Perron, 1998). 

As a first step for model estimation, statistical tests using Akaike (AIC), Hannan-Quinn 

(HQ), Schwarz (SC), and Akaike´s Final Prediction Error (FPE) criterions examined 

system´s lag order (Enders, 2004; Pfaff, 2015). Then, two causality tests were 

performed to check if variables in yt were endogenous. The first was a Granger 

Causality F-test and the second a Wald-type test for nonzero correlation between the 

error processes of the cause and effect variables (Pfaff, 2008). A Johansen test 

examined the number of cointegration relations (r) amongst nonstationary variables of 

the same order (Juselius, 2006).  
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The Vector Error Correction Model (VECM) was defined according to Johansen 

and Juselius (1992), Juselius (2006), and Kilian and Lütkepol (2017) as follows: 

 

∆𝒚𝑡 = Π𝒚𝑡−1 + Γ1Δ𝒚𝑡−1 + ⋯ + Γ𝑝−1Δ𝒚𝑡−𝑝+1 + 𝑏Δ𝒙𝑡 + 𝜇 + 𝑐𝐷𝑡 + 𝜀𝑡         (1) 

 

Where 𝒚𝒕 represents the vector of endogenous variables; 𝒚𝒕−𝟏 is the cointegration 

vector; 𝒙𝑡  is a vector of possible exogenous variables; Γ𝑖  represents Δ𝒚𝑡−𝑖  coefficients; 

𝐷𝑡  is a vector dummy variable; 𝜇 is a constant; 𝑏 and 𝑐 are, respectively, Δ𝑥𝑡  and 𝐷𝑡  

coefficients; and 𝜀𝑡  is the model´s error term. Π is the cointegration vector coefficient, 

which also signifies the variables’ speed of adjustment to the long run equilibrium. 

Empirically, a low speed of adjustment may indicate the existence of short-term factors 

that keep the variable out of long-run equilibrium, such as over-regulation and other 

adjustment costs (Johansen and Juselius, 1992). A statistically non-significant speed of 

adjustment may suggest that the dependent variable in the VECM equation is weakly 

exogenous; that is, it does not respond to discrepancies regarding the long-term 

equilibrium (Enders, 2004). 

 The VECM model examined the residuals concerning serial autocorrelation, 

normality, and heteroscedasticity. The residuals serial autocorrelation was examined by 

a Portmanteau (Ljung-Box) test defined as: 

𝑄ℎ = 𝑇 𝑡𝑟(𝐶 𝑗
′𝐶 0

−1𝐶 𝑗

ℎ

𝑗=1

𝐶 0
−1), 

With 𝐶 𝑖 =
1

𝑇
 𝜀 𝑡𝜀 𝑡−1

′𝑇
𝑡=𝑖+1 . For K endogenous variables, 𝑄ℎ  has approximate 

𝜒2 𝐾2ℎ − 𝑛∗  distribution, where h is the lag memory of the error term regression used 

in the test, and n∗ is the number of coefficients excluding deterministic terms of the 

model. The tests of residual normality were Jarque-Bera univariate (for the residues of 

each equation), Jarque-Bera multivariate (for the residuals of the system as a whole), 

asymmetry (multivariate) and kurtosis (multivariate). The Jarque-Bera test is 

approximate distributed as χ
2
 (2K) and the asymmetry and kurtosis are approximate 

distributed as χ
2
 (K). The test for residuals heteroscedasticity was univariate and 

multivariate ARCH (Lagrange Multiplier), with 𝜒2 𝑞𝐾2 𝐾 + 1 2/4  approximate 

probability distribution (Pfaff, 2008). 

 

Results 

ADF and KPSS tests showed that all variables in the VECM system were nonstationary 

integrated of order 1, and the causality tests confirmed endogeneity of variables in 

vector 𝒚𝒕.
1
 Table 02 shows the results of Johansen cointegration test for the trace 

statistic. The null hypothesis of r = 0 was rejected, while the null hypothesis of r <= 1 

could not be rejected at the significance levels considered. Hence, the system was found 

to have one cointegration vector. 

 

                                                           
1
 See tables 01, 02, 03 and 04 in the appendix. 
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Table 02 – Johansen Cointegration Test 

  

Critical Values 

          𝐻0 Test Statistic 10% 5% 1% 

r <= 4 0.02 6.5 8.18 11.65 

r <= 3 6.39 15.66 17.95 23.52 

r <= 2 22.11 28.71 31.52 37.22 

r <= 1 42.71 45.23 48.28 55.43 

r = 0 117.31 66.49 70.6 78.87 

 

 The VECM model estimation, therefore, included one cointegration vector in the 

system. Table 03 shows the cointegration vector with Student t statistics in parenthesis. 

Results confirmed statistical significance of all elements in 𝛽  vectors at 5% level. 

Cointegration vector coefficients were used to calculate variables´ speeds of adjustment 

in respect to the long run equilibrium (Johansen and Juselius, 1992) 

 

Table 03 – Cointegration Vector 

Vector ETHt-1 SUGt-1 SOYt-1 CORt-1 EXCt-1 

 𝜷 ′  1,000 -0.518 0,162 -0.127 -0.508 

  (-19.613) (3.321) (-2.362) (-10.774) 

              Note: t statistics in parenthesis 

 Table 04 shows the speeds of adjustment of the VECM variables to the long run 

equilibrium, and the respective standard errors, student t statistics, and p-values. Speeds 

of adjustment were negative and between 0 and 1 for the price of ethanol, sugar, 

soybean, and corn, as expected, and positive for the exchange rate. 

 

Table 04 – Speeds of Adjustment 

Variable 

Speeds of 

Adjustment 

Standard    

Error 

t value Pr (>|t|) 

 

ETH -0.575 

 

0.101 

 

-5.679 

 

9.76e-08 *** 

 SUG -0.349 

 

0.091 

 

-3.851 

 

0.0002 *** 

 SOY -0.257 

 

0.068 

 

-3.807 

 

0.0002 *** 

 COR -0.382 

 

0.085 

 

-4.500 

 

1.59e-05 *** 

 EXC 0.247 

 

0.036 

 

6.792 

 

4.62e-10 *** 

  *** p-value lower than 0.001. 

 

 

 The price of ethanol (ETH) exhibited the highest speed of adjustment in 

absolute value amongst VECM variables. A possible reason was that on the demand 

side ethanol consumers have the option of using gasoline in flex-fuel cars when prices 

increase. On the supply side, when ethanol prices fall mills can shift to sugar 

production. That is, ethanol prices are very likely to return to long-run equilibrium 

quickly once disturbed by shocks. Soybean price exhibited the lowest speed of 

adjustment, which can be related to a higher price rigidity in the Brazilian soybean 
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market.
2
 Exchange rate was the only variable to show positive speed of adjustment, 

which may describe an overshooting behavior of the variable (Juselius, 2006). 

 International oil price (OIL) entered the model as an exogenous variable since 

it is not likely to be impacted by changes in Brazilian food price. Table 05 shows 

parameter estimates of the variable OIL in each of the food price equation, along with 

the respective p-values. The results showed a higher impact of international oil price on 

the domestic price of ethanol, which is a reasonable result given that gasoline and 

ethanol are close substitutes. The impact on food commodities may be due to 

transportation and input costs.    

 

Table 05 – Oil Price Impact on Commodities Price 

Variable Parameter P-value 

ETH 0.00369              9.76e-07 *** 

SUG 0.00176              0.006804 ** 

SOY 0.00162              0.000962 *** 

COR 0.00216              0.000469 *** 

*** p-value lower than 0.001, ** p-value lower than 0.01 

 

 Table 06 shows the forecast error variance decomposition of ethanol price for 

24 steps after a shock. Almost 24% of the ETH variance was explained by SUG 

variance 24 months after a shock. Ethanol price variance also was shown to be highly 

dependent on the exchange rate.  

 

Table 06 – Forecast error variance decomposition of ethanol price 
Period 𝜀𝑡

𝐸𝑇𝐻  𝜀𝑡
𝑆𝑈𝐺  𝜀𝑡

𝑆𝑂𝑌  𝜀𝑡
𝐶𝑂𝑅  𝜀𝑡

𝐸𝑋𝐶  

[1] 1 0 0 0 0 

[4] 0.745 0.037 0.004 0.001 0.213 

[8] 0.569 0.120 0.013 0.002 0.295 

[12] 0.491 0.179 0.011 0.006 0.313 

[16] 0.441 0.205 0.010 0.006 0.338 

[20] 0.410 0.221 0.009 0.007 0.352 

[24] 0.386 0.236 0.008 0.007 0.363 

                                                           
2
 Hassouneh at al.(2015) found price rigidity in specialized and concentrated food markets, which is the 

case of Brazilian soybean industry.   
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 Table 07 shows the forecast error variance decomposition of sugar price for 24 

steps ahead of the shock. Sugar price own variance accounted for 68% of the total 

variance after 24 months, while ethanol variance influence on sugar variance was only 

7.4%.  

 

 

 

 

 

 

 

 

 

Table 07 – Forecast error variance decomposition of sugar price 
Period 𝜀𝑡

𝐸𝑇𝐻  𝜀𝑡
𝑆𝑈𝐺  𝜀𝑡

𝑆𝑂𝑌  𝜀𝑡
𝐶𝑂𝑅  𝜀𝑡

𝐸𝑋𝐶  

[1] 0.179 0.821 0.000 0.000 0.000 

[4] 0.167 0.707 0.002 0.004 0.120 

[8] 0.136 0.628 0.001 0.015 0.219 

[12] 0.098 0.675 0.002 0.027 0.198 

[16] 0.088 0.673 0.002 0.034 0.204 

[20] 0.080 0.678 0.002 0.036 0.204 

[24] 0.074 0.681 0.002 0.038 0.205 

 

 Results in Tables 06 e 07 suggested an asymmetry on the relationship between 

sugar and ethanol prices. Sugar price influence on ethanol price was stronger than the 

other way around. A possible explanation is that changes in the ethanol price are 

partially absorbed on the demand side through substitution effect, and its ability to 

influence sugar price was limited by a fast adjustment to the long-run equilibrium. 

Sugar prices, on the other hand, were more rigid to the influence of domestic factors due 

to its stronger link to international market.
3
   

  

Table 08 – Forecast error variance decomposition of soybean price 
Period 𝜀𝑡

𝐸𝑇𝐻  𝜀𝑡
𝑆𝑈𝐺  𝜀𝑡

𝑆𝑂𝑌  𝜀𝑡
𝐶𝑂𝑅  𝜀𝑡

𝐸𝑋𝐶  

[1] 0.003 0.085 0.911 0.000 0.000 

[4] 0.237 0.043 0.715 0.002 0.003 

[8] 0.332 0.034 0.631 0.001 0.002 

[12] 0.338 0.031 0.628 0.001 0.001 

[16] 0.332 0.027 0.638 0.001 0.001 

[20] 0.331 0.025 0.642 0.001 0.001 

[24] 0.330 0.024 0.644 0.001 0.001 

 

 

 Table 08 shows the forecast error variance decomposition of soybean price for 

                                                           
3
 In the 2016/2017 harvest 70% of Brazilian sugar was exported, while only 30% were consumed. During 

the same period, ethanol had only 6% of all its production shipped to international market 

(https://www.economiaemdia.com.br/EconomiaEmDia/pdf/infset_acucar_etanol.pdf) 
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24 periods subsequently to a shock. After eight periods, about 33% of the soybean price 

variance is due to the ethanol price variance. This result can be regarded as evidence of 

linkage between the two markets. Brazil is one of the biggest soybean end ethanol 

producer in the world, and this link may be due competition for the resource to produce 

those commodities. 

 

 

 

 

 

 

 

 

Table 09 – Forecast error variance decomposition of corn price 

Period 𝜀𝑡
𝐸𝑇𝐻  𝜀𝑡

𝑆𝑈𝐺  𝜀𝑡
𝑆𝑂𝑌  𝜀𝑡

𝐶𝑂𝑅  𝜀𝑡
𝐸𝑋𝐶  

[1] 0.019 0.044 0.183 0.754 0.000 

[4] 0.069 0.018 0.097 0.795 0.022 

[8] 0.094 0.034 0.117 0.678 0.078 

[12] 0.106 0.037 0.152 0.611 0.093 

[16] 0.111 0.035 0.165 0.592 0.098 

[20] 0.110 0.034 0.174 0.583 0.099 

[24] 0.110 0.033 0.178 0.577 0.102 

 

Table 09 shows the forecast error variance decomposition of corn price for 24 

periods subsequently to a shock. After twelve periods, about 11% of the corn price 

variance are due to the ethanol price variance.  The influence of ethanol price variance 

on corn price variance is around one third when comparing to soybean price variance. 

 

 Figure 01 presents Impulse-response functions between ethanol and food 

commodity prices with 95% bootstrap confidence interval for 100 runs. The orthogonal 

response of a unit impulse in ethanol price on sugar price was positive, exhibited the 

highest value in the first six months after the shock and stabilized at a lower level. The 

impulse caused by a unit change in sugar price on ethanol price increased up to the ninth 

month after the shock and stabilized at a lower level. The impulse impact of sugar price 

on ethanol price, however, was higher than the other way around. This result was 

consistent with the variance decomposition, which showed sugar variance exerts a 

higher influence on ethanol price variance than the inverse.  

     The responses of one-unit impulse of ethanol on soybean and corn were 

similar. In both cases, a unit increase in ethanol price provoked a fall in soybean and 

corn prices, which is consistent with results found by Capitani (2014). On the other 

hand, impulses of soybean and corn price caused only a slight disturbance in ethanol 

price in the beginning, stabilizing close to zero for the rest of the period. One possible 

explanation is that biofuel production and food crop production may compete to the use 

of resources. When diverting resources from the sugar/ethanol production to food 

commodity production (corn and soybean), an increase in ethanol price and a decrease 

in food commodity price is likely to happen via supply effect. Diverting resources from 

the food commodity sector to ethanol/sugar industry would provoke an opposite effect, 

with the difference that ethanol price adjusts quickly to its historical level due to 
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substitute effect on the fuel demand market. That is, in this latter case, prices of food 

commodities raise, but prices of ethanol fall in the beginning and quickly adjusts.  

  

  

 

  

 

   

Figure 01 – Impulse-response functions between ethanol and food commodity prices 

with 95% bootstrap confidence interval for 100 runs. 

 

Table 10 shows the model´s diagnostic test for residuals serial autocorrelation, 

normality and heteroscedasticity. The Ljung-Box test (portmanteau) failed to reject the 

null hypothesis of no serial autocorrelation of the residuals, but a Jarque-Bera test 
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rejected the null hypothesis of residuals normality. Errors, however, did not showed 

kurtosis. ARCH test failed to reject the null hypothesis of conditional heteroscedasticity.  

 

 

 

 

 

 

 

Table 10 – Model diagnostics 
Diagnostics 
 

Test χ
2
 P-valor Conclusion 

Residuals autocorrelation Ljung-Box (16)  292.14 
(gl = 
255) 

0.054 No autocorrelation 

Residuals normality Jarque-Bera   21.69 
(gl = 
10) 

0.016 Non-normal 

Skewness    11.22 0.047 Skewness 

Kurtosis  10.47 0.063 No kurtosis 

Conditional Heteroscedasticiy ARCH 1170.2 
(gl= 

1125) 

0,170 No heteroscesticity 
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CONCLUSIONS 

 

This article examined the relationship between biofuel and food markets in Brazil, 

modeling the Vector Error Correction system using ethanol, sugar, soybean, corn and 

Real/Dollar exchange rates as endogenous variables, and international oil price as an 

exogenous variable. The statistical test detected one cointegration vector in the model, 

which represented a trend along which the endogenous variables will move in the long 

run. That is, the existence of a cointegration relation in the model could be evidence of 

linkage between biofuel and food markets. The sign, magnitude, and statistical 

significance of the variable coefficients in the cointegration vector strengthened such 

hypothesis. The forecast error variance decompositions and the impulse response 

functions show an asymmetric relationship between sugar and ethanol prices, but there 

appears to be a significant link between those markets. Also, results showed 

considerable impacts of ethanol prices on food commodity prices and vice-versa, even 

though the intensity of such impacts was not the symmetric. In summary, the results 

seem to support the hypothesis of economic linkages between biofuel and food 

commodity markets in Brazil. It is essential, however, to expand this study using 

biodiesel, and other food commodities in the country. As a policy implication, it is 

crucial that public sector in Brazil pursue the objective of increasing the supply of 

renewable and less pollutant fuel observing the goals of food security. 
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APPENDIX 

Table 01 - Augmented Dickey-Fuller Test 

Variables 
Deterministic 

terms 
Lags P-value 

           Critical 

Values 
Result 

1% 5% 10% 

SUG a0, t 12 -15,443 -3,99 -3,43 -3,13 I (1) 

Δ SUG a0 12 -67,493 -3,46 -2,88 -2,57 I (0) 

ETH a0, t 12 -2,561 -3,99 -3,43 -3,13 I (1) 

Δ ETH a0 12 -90,044 -3,46 -2,88 -2,57 I (0) 

COR a0, t 12 -29,049 -3,99 -3,43 -3,13 I (1) 

Δ COR a0 12 -59,587 -3,46 -2,88 -2,57 I (0) 

SOY a0, t 12 -27,335 -3,99 -3,43 -3,13 I (1) 

Δ SOY a0 12 -65,311 -3,46 -2,88 -2,57 I (0) 

EXC a0, t 12 -22,251 -3,99 -3,43 -3,13 I (1) 

Δ EXC a0 12 -67,908 -3,46 -2,88 -2,57 I (0) 

 

Table 02 – KPSS Test 

Variables Lags P-Value 
Critical Value 

Result 
1% 2.50% 5% 10% 

SUG 12 0.188 0,216 0,176 0,146 0,119 I(1) 

ETH 12 0.198 0,216 0,176 0,146 0,119 I(1) 

COR 12 0.2 0,216 0,176 0,146 0,119 I(1) 

SOY 12 0.247 0,216 0,176 0,146 0,119 I(1) 

EXC 12 0.27 0,216 0,176 0,146 0,119 I(1) 

 

 

Table 04 - Instantaneous Causality Test (Wald) 

Variables P-valor 

SUG 9.96E-07 

ETH 5.62E-07 

COR 8.26E-08 

SOY 5.38E-08 

EXC 1.88E-05 

 

Table 03 – Granger Causality Test 

Variables P-Value 

SUG 0.003616 

ETH 0.003877 

COR 0.5439 

SOY 0.1521 

EXC 0.0000296 




