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Abstract

Consumers purchase multiple types of goods, but may be able to ex-

amine only a limited number of markets for the best price. We propose

a simple model which captures these features, conveying new insights.

A firm’s price can deflect or draw attention to its market, and conse-

quently, limited attention introduces a new dimension of cross-market

competition. We characterize the equilibrium, and show that having

partially attentive consumers improves consumer welfare. With less at-

tention, consumers are more likely to miss the best offers; but enhanced

cross-market competition decreases average price paid, as leading firms

try to stay under the consumers’ radar.
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1 Introduction

Classic models of price competition assume that consumers have unlimited

ability to track down the best deals. The wide array of goods and services in

the marketplace casts doubt that this is a faithful description of the average

consumer. With only limited attention to devote to finding cheaper substi-

tutes, consumers may pay close attention to some purchases while neglecting

to find the best price in others. This paper investigates the price and welfare

implications of allocating limited attention across markets. Our simple model

conveys some new insights: (i) a firm’s price can deflect or draw attention to

its market; and consequently, (ii) limited attention introduces a new dimension

of competition across (even otherwise independent) markets.

We convey these insights in a simple framework, but they should remain

important considerations in more general settings. Consumers in our model

have unit demand for each of M different goods. To make point (ii) as starkly

as possible, each consumer’s utility is separable across goods, which ensures

these markets would be independent if attention were unlimited. Reservation

prices are assumed to be one for all consumers and all goods. Each good

is offered by two sellers whose constant marginal cost is normalized to zero,

and who set prices independently. For each market, consumers have a default

seller who is interpreted as the most visible provider of that good or service.

Consumers share the same default set of sellers, who are thought of as the

market leaders. Confronted with market leaders’ prices, consumers decide

which markets to examine further, to see whether the competing firm (the

market challenger, whose identity and price they do not know) offers a better

deal. Consumers may have only limited attention to devote to comparison-

shopping, with the ability to investigate at most k ∈ {0, . . . ,M} markets.

The distribution of attention in the population is captured by a probability

distribution (α0, . . . , αM).

Our model captures the view that limited attention introduces an audit-

ing component into consumption decisions. Given his budget of attention, a

consumer uses what he knows (in this case, the price offered by market lead-
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ers) to decide which dimensions of his consumption decision are worthiest of

further investigation. For instance, when buying groceries online, which items

does a consumer buy from his saved list, and which does he check for better

bargains? In a sense, a consumer’s problem under limited attention is akin to

that of maintenance scheduling in operations research: only a subset of items

can be served, and those that are neglected may suffer from poor performance.

For a consumer with limited attention, inspecting one market means overlook-

ing another. The cost associated with this tradeoff is endogenous, equal to the

expected equilibrium savings foregone by neglecting that other market.

Our setting is one of imperfect information, since consumers do not ob-

serve challengers’ prices when allocating their attention. The analysis focuses

on partially symmetric, perfect Bayesian Nash equilibria (henceforth equilib-

ria). These preserve the symmetry of the model, with firms in the same

position (as leaders or challengers) using the same pricing strategy. In that

case, consumers expect the most savings to be found in markets with the most

expensive leaders. Hence firms’ profits may vary discontinuously with the

leaders’ prices, as consumers shift their attention between markets. A more

standard form of discontinuity also arises when firms in a market quote the

same price. Despite these discontinuities, we constructively establish that a

partially symmetric equilibrium exists for any distribution of attention, and

moreover, that only one such equilibrium exists. In this equilibrium, all firms

employ atomless pricing strategies, but leaders systematically charge a wider

range of prices than challengers. The support of the leaders’ strategy has no

gap. However, depending on the distribution of attention, challengers may

avoid charging some intermediate prices. Constructing the unique equilibrium

then requires an ironing procedure.

What is the equilibrium effect of (in)attention on consumer welfare? As

might be expected, an increase in the proportion α0 of fully inattentive con-

sumers is detrimental. However, varying the distribution of partially attentive

consumers has perhaps surprising implications. Any change in the distribu-

tion of attention which decreases the average level of attention (holding α0

constant) is beneficial. This may seem unintuitive at first, since consumers
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inspecting fewer markets are more likely to miss the best deals. But this intu-

ition does not take into account the countervailing effect of partial inattention

on firms’ behavior.1 Consumers’ limited capacity to search for better deals in-

duces cross-market competition for their inattention: by lowering its price, a

leader can increase the chance his market remains under the consumers’ radar.

The overall effect could, at least in theory, be determined by computing the

consumer surplus directly using our expressions for the equilibrium strategies.

Our argument follows a different route, taking advantage of the fact that to-

tal surplus remains constant and that firms’ equilibrium profits turn out to be

much simpler to calculate. We delve further into the mechanics of competition

for inattention, exploring how the leaders’ pricing strategy adjusts.

This paper proceeds as follows. In the next subsection we discuss how

our paper fits within the literature. Section 2 presents the model. Section 3

presents the main results and their intuition, including how consumers allo-

cate attention, the equilibrium characterization, and comparative statics with

respect to partial attention. We also illustrate these results for the special case

of two markets. The constructive proof of the unique equilibrium is presented

in Section 4. Concluding remarks, and possible directions for future research,

are given in Section 5. Some proofs are relegated to the appendix.

Related literature

Our setting builds on the seminal literature on price dispersion (Salop and

Stiglitz, 1977; Rosenthal, 1980; Varian, 1980), which explains observed varia-

tion in prices by introducing “captive” consumers who purchase from a ran-

domly selected firm, without engaging in price comparisons. Among other

differences with that literature, we consider multiple markets and introduce

partially attentive consumers, which are driving forces behind our results.

These and other features of our framework, such as the endogenous cost of

neglecting a market and the asymmetric positions of firms, also depart from

1As an analogy, think of auctions under asymmetric information. Fixing the bids, first
price gives a strictly higher profit than second price. However, this does not mean that
equilibrium profits are necessarily higher with a first-price auction, as individuals’ bidding
behavior responds to the auction format.
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the standard approach taken in the search and rational inattention literatures.

In the search literature, consumers incur a fixed, exogenous cost of sampling

prices of a product sold by multiple firms; classic references include Burdett

and Judd (1983), where consumers decide in advance how many prices to si-

multaneously sample, or Stahl (1989), where consumers search sequentially.

Recent papers aim to capture sluggish price adjustments by introducing a cost

for firms to review its price policy or gather information about current market

conditions. Some authors assume a fixed cost of review (e.g., Mankiw and Reis

(2002) and more recently, Alvarez, Lippi and Paciello (2011)). Others, in the

“rational inattention” literature, model an exogenous cost of information pro-

cessing using entropy measures (e.g., Sims (2003) and Woodford (2009)). The

decision makers’ dilemma in that literature is whether to obtain any informa-

tion, and if so, how much. In our approach, prices serve as cues to determine

which markets are worthiest of attention, which introduces an element of com-

petition across sellers of different goods.

Market interaction between profit-maximizing firms and consumers with

limited attention is, of course, more intricate than the stylized environment

we analyze. Our model isolates an aspect of the feedback between consumer

attention and firm behavior that has not been studied in the literature. One

strand of this literature has focused on a different aspect of attention: when

firms offer a multi-dimensional product, consumers may take only a subset of

these dimensions into consideration. This approach is exemplified by Spiegler

(2006), where a consumer samples one price dimension from each firm selling

a product with a complicated pricing scheme (e.g., health insurance plans);

Gabaix and Laibson (2006), where some consumers do not observe the price of

an add-on before choosing a firm; Armstrong and Chen (2009), who extend the

notion of “captive” consumers to those who always consider one dimension of

a product but not another (say, price but not quality); and Bordalo, Gennaioli

and Shleifer (2013), who study a duopoly model where firms decide on price

and quality, taking into account that the relative weights consumers give to

these attributes is determined endogenously by the choices of both firms. The

above works study symmetric pricing equilibria for firms in a single market,
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with some differing implications for welfare. In Gabaix and Laibson (2006), for

instance, prices increase as more consumers notice add-ons; while in Armstrong

and Chen (2009), reducing the proportion of captive consumers reduces the

incentive to offer low quality, but has an ambiguous effect on consumer welfare.

Taking a different approach to attention, Eliaz and Spiegler (2011a,b) for-

malize a model of competition over consumers who only consider a subset of

available products. They abstract from prices and analyze firms who compete

over market share only by offering a menu of products together with a pay-

off irrelevant marketing device (e.g., packaging). Consumers in their model

are characterized by a preference relation and a consideration function, which

determines, given firms’ choices, whether a consumer pays attention only to

its (exogenously determined) default firm or whether he also considers the

competitor. They show that consumer welfare need not be monotonic in the

amount of attention implied by the consideration function.

2 The model

We propose a simple model capturing the feature that consumers purchase

multiple types of goods and services, but may have the capacity to examine

only a limited number of markets in search of the best price. The market

for each good or service consists of two firms, a leader and a challenger, who

compete in prices. All consumers know the market leaders’ prices, but need

to pay attention to a market to identify the challenger and learn his offer.

Consumers differ in the number of markets to which they can pay attention.

The leader in a market is interpreted as the most visible provider of the good or

service, and is the default provider for a consumer who chooses not to allocate

the time or capacity to search that market further.

There is a unit mass of consumers, each of whom desires at most one

unit of any given good. For simplicity, we assume that the consumers’ reser-

vation price for each type of good is one. Letting M denote the number

of markets (one per good), a consumer’s utility from purchasing the bundle

(x1, x2, . . . , xM) ∈ {0, 1}M at prices (p1, p2, . . . , pM) is
∑M

m=1(1− pm)xm.
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The distribution of attention in the consumer population is captured by a

probability distribution α = (α0, α1, . . . , αM), where αk is the proportion of

consumers who can inspect up to k markets to find the best price. Consumers

optimally decide which markets to inspect. If a consumer inspects a market,

then he can choose whether to purchase from the market leader, the challenger,

or not at all. If he does not inspect a market, then his only decision for

that market is whether to purchase from its leading firm. The distribution

of attention is common knowledge among firms. We assume throughout a

positive measure of fully attentive consumers (αM > 0), inattentive consumers

(α0 > 0), and partially attentive consumers (α0 +αM < 1). We further assume

that a positive fraction of fully attentive consumers insist on inspecting a

market when indifferent.2

The game unfolds over two periods. First, all firms independently set

prices to maximize (expected) profit. We normalize marginal costs to zero, so

realized profit is simply the product of the firm’s price and its market share.

Upon observing all the leaders’ offers, consumers decide how to allocate their

attention, and make their purchasing decisions, to maximize (expected) utility.

Equilibrium. Because consumers have only imperfect information when al-

locating their attention, the equilibrium notion applied is that of Perfect

Bayesian equilibrium. We restrict attention throughout to partially symmetric

equilibria where market leaders follow a common pricing strategy, as do mar-

ket challengers. The leaders’ strategy may differ from that of the challengers,

and we do not impose restrictions on the consumers’ strategies. We note that

equilibrium existence is nontrivial, since firms’ profits are discontinuous.3

2One could instead assume any positive measure of consumers who are standard, that is,
aware of all firms and prices. Without either assumption, the model admits Diamond-type
equilibria (Diamond, 1971), as in many search models, in addition to the partially symmetric
equilibrium we characterize. Indeed, for any p ∈ [α0, 1], there would be an equilibrium where
all firms charge p, and consumers inspect none of the markets on the equilibrium path.

3Firms’ payoffs exhibit two forms of discontinuity. The first, related to how a leader and
a follower in a market share consumers when quoting the same price, appears in many models
of competition. Existence in such cases follows from results by Dasgupta and Maskin (1986)
or Reny (1999). The second form of discontinuity is related to how consumer attention is
allocated across markets, and its impact on challengers’ profits, when some leaders quote
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Notation and definitions. The leaders’ and challengers’ pricing strategies

are described by (right-continuous) cumulative distribution functions F` : R→
[0, 1] and Fc : R→ [0, 1], respectively. A price p is said to be in the support of

the pricing strategy F if F (p+ε) > F (p−ε), for all ε > 0. A price p is said to

be an atom of the strategy F if F is discontinuous at p, that is, F (p) > F (p−),

where F (p−) = limp′ ↑ p F (p′). We do not put a priori restrictions on the

presence of atoms or gaps in the support of the pricing strategies.

3 Main results and intuitions

In this section, we first present our characterization of partially symmetric

equilibria and some of the intuitions behind it, leaving the complete equi-

librium analysis to Section 4. We then examine how the equilibrium and

consumer welfare change with the distribution of attention among consumers.

3.1 Consumer attention and its implications

Suppose the leading firm in market i quotes a price pi. The expected gain

from inspecting market i is the expected savings from finding a cheaper price

by the challenger, i.e.,∫ min{pi,1}

0

(min{pi, 1} − x)dFc(x). (1)

Note that the above expression relies on the symmetry in the challengers’

pricing strategies. Optimality requires the following. If a consumer inspects

market i, and inspecting market j gives strictly higher expected savings, then

he also inspects market j. If a consumer inspects fewer markets than his

capacity allows, then any market left uninspected has zero expected savings.

the same price. For each price he may quote, a challenger’s profit is discontinuous over a
continuum of leaders’ prices, which prevents a direct application of Dasgupta and Maskin
(1986). It also implies that challengers cannot secure themselves a positive payoff in the
sense of Reny (1999). While alternative methods may be used to show existence, we provide
a constructive proof that also establishes uniqueness.
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The next proposition formalizes these statements using (1).

Proposition 1. Suppose market leaders post the prices p1, . . . , pM , and let

qi = min{pi, 1}, for each i. If a consumer inspects market i, qi < qj and

Fc(q
−
j ) > 0, then he also inspects market j. If a consumer inspects fewer mar-

kets than his capacity allows, then Fc(q
−
i ) = 0 for any uninspected market i.

Proposition 1 takes a simple form when leaders’ prices are all distinct,

are no higher than the consumers’ reservation price, and there is positive

probability that each market’s challenger posts a cheaper price than the leader:

the consumer inspects the k markets with the highest leader prices. Through a

series of results in Section 4, we show that these properties hold in equilibrium

for almost all prices quoted by leaders. In the remainder of this section, we use

this simple characterization of attention allocation to express firms’ incentives.

Market leaders. We begin by computing the probability that a leader’s

market is paid attention to by a consumer with k units of attention, assuming

that leader charges the price p and that all other market leaders follow the

pricing strategy F`. Letting x = F`(p), we denote this probability by π`k(x).

Observe that his market receives attention from such a consumer if there are

no more than k − 1 other markets whose price turns out to be higher than

p. Since the probability that another leader charges above p is 1 − x (which

follows from the symmetry of leaders’ strategies), we find that4

π`k(x) :=
k−1∑
i=0

(
M − 1

i

)
xM−1−i(1− x)i. (2)

As expected, π`0(x) = 0 and π`M(x) = 1. In addition, the probability of being

inspected by a given consumer is increasing in his capacity for attention k,

and increasing with one’s price (as captured by x).

4This amounts to having at most k− 1 “successes” in M − 1 trials that are i.i.d., where
the probability of “success” (which means finding a price higher than p) is 1− F`(p).
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Market challengers. Consider a challenger’s probability of selling to a con-

sumer with k units of attention, assuming that he himself charges the price p

and that all market leaders follow the pricing strategy F`. Letting x = F`(p),

we denote this probability by πck(x). If a consumer is only partially attentive

(that is, k < M), then πck(x) is not simply 1 − x, the ex-ante probability

that the leader’s price is higher than p. For the challenger, selling requires

the consumer to pay attention to the market, an event whose probability is

itself impacted by the leader’s price. We may compute πck(x) as follows. The

challenger has zero probability of making a sale if the leader in his market

quotes a price strictly less than p. If the leader quotes a price q > p, then the

consumer will purchase from the challenger so long as he inspects the market,

which occurs with probability π`k(F`(q)). Integrating over the possible prices

of the market leader, the desired probability is given by
∫∞
p
π`k(F`(q))dF`(q).

This probability depends only on x = F`(p) and not the entire distribution F`,

as can be seen using the change of variables t = F`(q):

πck(x) :=

∫ 1

x

π`k(t)dt. (3)

As expected, πc0(x) = 0 and πcM(x) = 1 − x. In addition, the probability of

selling to a given consumer is increasing in his capacity for attention k, and

decreasing with the probability x that the leader’s price is better.

3.2 Equilibrium characterization

It will be helpful to define the total probability that a leader’s market draws

attention if he charges a price p, and the total probability that a market

challenger sells if he charges a price p. Recalling that α is the distribution of

attention among consumers, and letting x = F`(p), those probabilities are

Π`(x) :=
M∑
k=1

αkπ
`
k(x) and Πc(x) :=

M∑
k=1

αkπ
c
k(x),
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respectively. Since there is a positive measure of partially attentive consumers,

Π` is strictly increasing and Πc is strictly decreasing; hence their inverses Π−1
`

and Π−1
c are well-defined.

Deriving indifference conditions. Propositions 2 through 7 in Section 4

show that any equilibrium, if one exists, must satisfy the following properties.

First, α0 is the lowest price in the support of both the leaders’ and challengers’

strategies. Second, both leaders’ and challengers’ pricing strategies must be

atomless. Third, the leaders’ strategy has full support over the interval [α0, 1],

while the challenger’s highest price pc must be strictly smaller than 1. Given

these properties, we can derive firms’ equilibrium profits.

A leader is sure to sell to captive consumers as long as his price is less than

one. When charging arbitrarily close to one, however, he is nearly certain to

lose all non-captive consumers to the challenger (because F` is atomless, and

p̄c < 1). Hence a leader’s equilibrium profit must be α0. Since the leader sells

at the price p either when a consumer does not pay attention, or when he pays

attention but the challenger’s price is higher, we must have

p
(

1− Π`

(
F`(p)

)
+ Π`

(
F`(p)

)(
1− Fc(p)

))
= α0, (4)

for prices p in the support of the leaders’ strategy.

Next, a challenger’s profit from each price in its support must equal its

profit from quoting α0. This profit is given by α0Πc(0), which in turn equals

α0EA(α)/M , where

EA(α) :=
M∑
k=1

αkk

is the expected level of attention in the consumer population. Indeed, because

the leaders’ strategy is atomless and prescribes only prices above α0, the chal-

lenger is sure to sell to consumers who pay attention; and given that market

leaders all use the pricing strategy F`, there is a k out of M chance that his

market leader’s price will be among the k-highest.5 Therefore, for any price p

5This can also be seen by applying the Euler integral
∫ 1

0
ta−1(1− t)b−1dt = (a−1)!(b−1)!

(a+b−1)!
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in the support of Fc, it must be that

pΠc

(
F`(p)

)
=
α0EA(α)

M
. (5)

For any price in the support of a challenger’s strategy, the leader’s strategy

is derived from the indifference condition (5); for all other prices, it is derived

from the indifference condition (4), as a function of the (constant) level of Fc.

In other words,

F`(p) =


Π−1
c

(
α0EA(α)
Mp

)
for all p in the support of Fc,

Π−1
`

(
p−α0

pFc(p)

)
for all other p ∈ [α0, 1].

(6)

The challenger’s strategy is also derived from the indifference condition (4)

for any price in its support. Solving for Fc in (4) and applying the expression

for F` above, we see that for each price in the support of the challengers’

pricing strategy, Fc must coincide with the function F̃c defined by

F̃c(p) :=
p− α0

pΠ`

(
Π−1
c

(α0EA(α)
Mp

)) , for all p ∈ [α0, 1]. (7)

Which prices does a challenger charge? The difficulty lies in know-

ing the support of the challengers’ strategy, since F̃c may be nonmonotonic

without further restrictions on the attention distribution. Such an example is

illustrated in Figure 1. If an equilibrium exists, then any nonmonotonicity in

F̃c must be “ironed” by introducing one or more gaps in the support of the

challengers’ strategy.

Due to the absence of atoms, Fc must be continuous. Hence any single

gap in Fc must be an interval between two prices whose F̃c values coincide. In

Figure 1, for instance, a gap cannot start at a price lower than p1. On the other

hand, there is a range of prices larger than p1 which can serve as the leftmost

endpoint of a gap. Remember that the leaders’ pricing strategy F` is defined

in the definition of πck(0) to show that it simplifies to k/M .
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piecewise in (6) according to the challengers’ support. Can F̃c be ironed in a

way that ensures F` is increasing and atomless, as we know it must be? These

requirements turn out to be unrestrictive: F` satisfies them whenever F̃c is

ironed in the continuous manner described above. Thus there are infinitely

many ways to construct valid distribution functions F` and Fc which leave the

leaders and challengers indifferent over all prices in their respective supports.

However, there is a unique way to iron F̃c that yields equilibrium pricing

strategies F` and Fc. Using any other approach, the challenger would have

a profitable deviation to some price outside his support, as explained further

below.

Theorem 1. For any distribution of attention α, there exists a unique partially

symmetric equilibrium. The challengers’ pricing strategy Fc is atomless and

given by

Fc(p) = min
p̃∈[p,1]

F̃c(p̃), for all p ∈ [α0, pc], (8)

where pc ∈ (α0, 1) is the smallest price for which the above expression equals

one, and F̃c is given by Equation (7). The leaders’ pricing strategy F` has full

support on [α0, 1], is atomless, and given by Equation (6).

Theorem 1 is proved in Section 4. There we provide a complete equilibrium

analysis, covering some important steps (e.g., ruling out the presence of atoms,

characterizing the support of the leader) that have been glossed over in this

section when deriving necessary equilibrium conditions. Moreover, we resolve

the question of existence by verifying that the construction indeed yields an

equilibrium.

To state the characterization of Fc a bit differently, note that among all

pricing strategies which lie below the graph of F̃c, the challengers’ strategy is

the one which is pointwise highest. Hence it prescribes the “cheapest” price

distribution among those, in the sense of first-order stochastic dominance.

Graphically, this means F̃c must be ironed as illustrated in Figure 1, by starting

any gap at the smallest possible price while still preserving continuity. To

understand why this must be the case, consider a price p which is in a gap of

the challenger’s pricing strategy. In this case, F`(p) is found using the leaders’
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Figure 1: The construction of Fc in an example where F̃c is not increasing.

indifference condition (4). If the challenger charges p, his expected profit is

pΠc

(
Π−1
l

(
p− α0

pFc(p)

))
. (9)

Contrary to Theorem 1, suppose that Fc(p) > F̃c(p) for the gap price p. Since

Πc is decreasing and Π−1
` is increasing, the expression in Equation (9) increases

when replacing Fc(p) with the lower value F̃c(p), with the resulting expression

simplifying to α0EA(α)
M

, the challengers’ equilibrium profit.6 Hence the chal-

lenger would obtain strictly higher profit by charging the gap price p than any

price in the support of his strategy.

The presence of a gap in the challengers’ strategy depends on the way at-

tention is distributed among consumers. For any attention distribution α, the

distribution of partial attention is ( α1

1−α0
, . . . , αM

1−α0
). This is simply α condi-

6For some intuition, note from indifference condition (4) that the more likely are chal-
lengers to be cheaper than p, the more likely are leaders to be more expensive than p. Indeed,
leaders’ prices increase so that a leader charging p is better shrouded from consumer at-
tention, and can maintain its equilibrium profit against the more competitive challenger.
Hence Fc(p) > F̃c(p) implies a challenger’s market share when charging p is larger than that
yielding his equilibrium profit.
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tioned on consumers being at least partially attentive, that is, k ≥ 1. The

lack of monotonicity in Figure 1 can be attributed to having multiple peaks in

the partial attention distribution. Gaps can be ruled out when, given the pro-

portion of consumers with attention span k and the proportion with attention

span k + 2, there are sufficiently many consumers falling in between. More

formally, the partial attention distribution is log-concave if α2
k ≥ αk−1αk+1 for

each k ∈ {2, . . . ,M − 1}, or equivalently, the likelihood ratio αk+1/αk is de-

creasing in k. Note that this is trivially satisfied when there are only two mar-

kets, and is implied whenever the entire attention distribution is log-concave.

When partial attention has this feature, the form of the equilibrium pricing

strategies simplifies.

Theorem 2. When F̃c is strictly increasing, the challengers’ pricing strategy

Fc has full support on [α0, p̄c] and the leaders’ pricing strategy F` simplifies to

F`(p) = max
{

Π−1
c

(α0EA(α)

Mp

)
, Π−1

`

(
1− α0

p

)}
for all p ∈ [α0, 1]. A sufficient condition for F̃c to be strictly increasing is

log-concavity of the partial attention distribution.

Theorem 2 is proved in the appendix. Many distributions (and their trunca-

tions) satisfy log-concavity. For example, the property is satisfied by a positive

binomial distribution, where consumers start with M units of attention but

can lose up to M−1 of them due to independent, exogenously occurring emer-

gencies (e.g., the consumer’s washing machine breaks down, his child gets the

flu, his boss asks for overtime, etc.). We note that gaps can also be ruled out

under other assumptions on partial attention, such as when the distribution

is increasing (that is, αk ≤ αk+1 for each k ≥ 1).7

7We show in the appendix that gaps can be ruled out when Πc(0) − Πc(x) is strictly
log-concave. While Πc(0) − Πc(x) can be written as the sum of log-concave functions,
log-concavity is not necessarily preserved by aggregation. We show that log-concavity is
preserved if the sequence β1 = αM , βk = βk−1 +

∑k
i=1 αM−i+1 is log-concave. This is

implied, for instance, by log-concavity of partial attention, or by increasingness.
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3.3 The comparative statics of attention

A natural question that arises from our analysis is how partial attention affects

consumer surplus. One can think of at least two reasons why less attention

could be detrimental for consumers as a whole. First, leaders might have an in-

centive to take advantage of less comparison shopping, thereby quoting higher

prices. Second, fixing leaders’ prices, the challengers realize that partially at-

tentive consumers who approach them do so because their market’s leader is

expensive. However, these intuitions ignore a countervailing effect: partial

attention introduces a new form of cross-market competition, as each market

leader has an incentive to lower its price in order to better deflect consumer

attention. Thus, the comparative statics of attention involve subtle interac-

tions between cross-market and within-market competition. In this section,

we start by investigating the effects on consumer welfare, before examining

the effects on equilibrium pricing.

Theorem 3. Consider two distributions of attention α and α̂ which share the

same proportion of fully inattentive consumers (α0 = α̂0). Then consumer

welfare is higher under α than α̂ if, and only if, the expected level of attention

under α is lower than under α̂.

Proof. As argued in Section 3.2, a leader’s equilibrium expected profit is equal

to the proportion of fully inattentive consumers, and is thus the same under

both α and α̂. As also argued there, a challenger’s equilibrium expected profit

is equal to the proportion of fully inattentive consumers, multiplied by the

expected level of attention, divided by M . Hence producer surplus is lower

under α than α̂ if, and only if, the expected level of attention under α is lower

than under α̂. The result then follows from the fact that total surplus remains

constant (equal to M).

Neither fully attentive nor fully inattentive consumers generate competition

for inattention. While fully attentive consumers do generate within-market

competition, fully inattentive consumers are simply captive to market leaders.

As might be expected, increasing the proportion α0 of captive consumers has
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a negative effect on consumer surplus.8 At the opposite end of the attention

spectrum, Theorem 3 means that making fully attentive consumers less at-

tentive benefits consumers as a whole. In particular, the closer the attention

distribution is to the limit distribution (α0, 1−α0, 0, . . . , 0), the better off con-

sumers are; similarly, the closer is the distribution to the limit distribution

(α0, 0, . . . , 0, 1− α0), the worse off consumers are.

To gain some intuition for Theorem 3, remember that in equilibrium, lead-

ers are willing to quote prices that are more expensive than what a challenger

would ever charge. When charging such a price p, a leader’s profit, given by

p(1−Π`(F`(p))), relies on not drawing too much consumer attention. Suppose

partial attention decreases. If the other leaders’ pricing strategy were to re-

main unchanged, then the leader’s profit from quoting p would rise above α0.

Yet competition implies that no leader can make a profit that large. Hence

the likelihood of having other leaders quote prices smaller than p must go up,

so that the leader quoting p “sticks out” with sufficient probability.

The pricing effects of a change in partial attention may be more ambigu-

ous for lower prices, as leaders become competitive against the challengers.

Building on the insight from Theorem 2, we focus on cases where F̃c is strictly

increasing and show that the leaders’ pricing strategies are comparable un-

der first-order stochastic dominance when the change in partial attention can

be ranked in the monotone likelihood ratio order. Given two attention dis-

tributions α and α̂, we say that the partial attention distribution under α

dominates the partial attention distribution under α̂ in the monotone likeli-

hood ratio order (MLR) if α̂k/αk is increasing in k ∈ {1, . . . ,M}, with at least

one strict inequality. The MLR ordering has a long tradition in economics,

starting with Milgrom (1981), and is known to be stronger than first-order

stochastic dominance.

Theorem 4. Let α and α̂ be two attention distributions with α0 = α̂0 and

log-concave partial attention distributions. If the partial attention distribu-

tion under α̂ dominates that under α in the MLR order, then market leaders’

8Increasing α0 at the expense of reducing (α1, . . . , αM ) by the infinitesimal amounts

(ε1, . . . , εM ) has a total effect on producer surplus of
∑M
i=1 εi(M + EA(α)− α0i) > 0.
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equilibrium prices are first-order stochastically higher under α̂ than under α.

More generally, Theorem 4 remains true when replacing the log-concavity

requirement with any conditions on α and α̂ guaranteeing that the challengers’

strategy has no gap (e.g., as in footnote 7). For intuition on why the result

holds, remember that Π` and Πc (the probabilities that a leader’s market re-

ceives attention and that a challenger makes a sale) depend on the attention

distribution. In what follows, Π` and Πc correspond to the attention distri-

bution α, while Π̂` and Π̂c correspond to the attention distribution α̂. Recall

from Theorem 2 that the probability F`(p) that a leader charges a price lower

than p under attention distribution α is simply

max
{

Π−1
c

(α0EA(α)

Mp

)
, Π−1

`

(
1− α0

p

)}
, (10)

when the partial attention distribution is log-concave. An analogous expression

describes the probability F̂`(p) that a leader charges a price lower than p under

attention distribution α̂. This is illustrated in Figure 2. The theorem is proved

by showing that each of the two expressions on the right-hand side of (10) shifts

downwards when consumer attention increases from α to α̂. Consequently,

market leaders charge first-order stochastically higher prices when attention

increases. The downward shift for the second expression in (10), which relates

to the intuition given earlier for prices above the challengers’ support, actually

holds for any first-order stochastic increase in partial attention. The downward

shift in the first expression in (10) is less obvious, and holds for MLR shifts.9

Changes in partial attention have a more ambiguous effect on the chal-

lengers’ pricing strategy. Since consumer welfare increases when there is less

attention, it is clear that challengers cannot increase their prices by too much.

As we next illustrate, when there are just two markets, log-concavity of the

partial attention distribution is trivially satisfied, and MLR-dominance re-

duces to first-order stochastic dominance. In that case, one can show that

both leaders’ and challengers’ prices decrease when partial attention decreases.

9This sufficient condition is not necessary, as the attention distributions used for Figure
2 do not have the MLR property but do have the critical feature that Π̂c/Πc decreases.
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Figure 2: Comparative Statics on F`. The bold curves depict the market leaders’
pricing strategies, which are the upper envelope of the corresponding two functions
from (10). F` corresponds to attention distribution α, while F̂` corresponds to α̂.

More generally, however, it is unclear whether the challengers’ strategy shifts

according to first-order stochastic dominance.

3.4 Illustration: the case of two markets

We illustrate the equilibrium pricing strategies in the case M = 2. A leader’s

probability of drawing the attention of a consumer with k units of attention

(defined in Equation (2)), and a market challenger’s probability of selling to

such a consumer (defined in Equation (3)), take a simple form:

π`1(x) = x, π`2(x) = 1, πc1(x) =
1− x2

2
and πc2(x) = 1− x.

The challengers’ indifference condition (5) reduces to

α1
1− F`(p)2

2
+ α2(1− F`(p)) =

α0EA(α)

Mp
,
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or F`(p) =
−α2 +

√
α2

2 + α1EA(α)(1− α0

p
)

α1

for any price p in the support of Fc. Similarly, plugging F`(p) into the leaders’

indifference condition (4) and solving for Fc(p) gives:

Fc(p) =
1− α0

p√
α2

2 + α1EA(α)(1− α0

p
)
,

for any price p in the support of Fc. It is easy to check that the right-hand side,

which is F̃c, is increasing for any p greater than α0. This is consistent with

Theorem 2, since the log-concavity condition is satisfied for any distribution

of attention when M = 2. The challengers’ strategy therefore has no gap, and

the maximal price in the support of Fc is the price p̄c ∈ (α0, 1) at which Fc

reaches 1.10 Straightforward algebra gives

p̄c =
2α0

2− α1EA(α)−
√
α2

1EA(α)2 + 4α2
2

.

All that remains is to find the leaders’ strategy F` for prices between p̄c and

1. This follows from the leaders’ indifference condition (4), which gives:

F`(p) =
1− α0

p
− α2

α1

for each p ∈ [p̄c, 1].

To perform comparative statics, note that when M = 2, increasing atten-

tion while keeping the proportion of captive consumers fixed simply amounts

to shifting weight from α1 to α2. All such shifts are comparable in the MLR

order. By Theorem 4, F`(p) must decrease when shifting weight from α1 to

α2. This can also be checked directly given the expression of F` in the pre-

vious paragraph. While the effect on Fc is ambiguous for general M , in the

case M = 2 the challengers’ prices also first-order stochastically increase when

10Notice that Fc is increasing, Fc(α0) = 0, and Fc(1) = 1−α0√
α2

2+α1EA(α)(1−α0)
=

1−α0√
(1−α0)2−α0α1EA(α)

> 1, where the second equality follows from α2
2+α1EA(α) = (1−α0)2.
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shifting weight from α1 to α2. Indeed, one can check that

dFc(p)

dα2

− dFc(p)

dα1

= −α0α2

p

1− α0

p(
α2

2 + α1EA(α)(1− α0

p
)
)3/2

,

which is negative for p ∈ [α0, 1].

4 Complete equilibrium analysis

Building on the characterization of consumer attention in Proposition 1, we

first develop a series of necessary conditions on firms’ equilibrium pricing

strategies that uniquely pin down the equilibrium, if one exists. We then

resolve the matter of existence by checking that the construction works.

4.1 Necessary conditions

We begin with a useful observation about the supports of the challengers’ and

leaders’ strategies.

Proposition 2. The lowest price in the support of F` and Fc coincide, and is

greater than or equal to α0. The highest prices in the support of F` and Fc are

both smaller than or equal to one.

Proof. A market leader is sure to sell to inattentive consumers, even when

charging the reservation price of 1. He can thus guarantee himself a profit

of at least α0. Any price below α0 or above 1 generates a profit strictly less

than α0. Hence a leader would not choose a strategy for which F`(1) < 1 or

F`(p) > 0, for some p < α0.

Let p` be the lowest price in the support of F` and let pc be the lowest price

in the support of Fc. Suppose p` < pc. Consider a deviation by some leader to a

pricing strategy F ′` that puts an atom equal to F`(p
′) on some price p′ ∈ (p`, pc)

and coincides with F` for all p > p′. To see that this deviation increases the

leader’s profit note that for each price p ∈ [p`, p
′) in the support of the original

strategy F` the deviant leader will now sell at a higher price. This is true
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whether or not its market is inspected, since at a price of p′ it still undercuts

the challenger. Suppose next that pc < p` and that a challenger deviates to a

strategy F ′c that puts an atom equal to Fc(p
′) on some price p′ ∈ (pc, p`) and

coincides with Fc for all p > p′. Then conditional on being inspected, for each

price p ∈ [pc, p
′) in the support of the original strategy Fc the challenger would

sell at a strictly higher price. Since there are fully attentive consumers who

will inspect the market, this deviation raises the challenger’s expected profits.

It remains to show that the largest price in the support of Fc is smaller

or equal to 1. Any price above 1 does not yield a sale, as it is higher than

the consumers’ reservation price. In this case, as he can sell to at least some

fully attentive consumers, any positive price below α0 constitutes a profitable

deviation for the challenger.

We next argue that F` is atomless. If leaders have an atom at a price

strictly above the lowest price p in their support, then some leader could

profitably deviate by moving mass from this price to one which is “slightly”

below it. This small price decrease is more than compensated by the decreased

attention to the leader’s market. However, if the leaders’ atom is on p, we must

distinguish between two cases. If the challenger’s strategy does not have an

atom at p, or if some consumers favor the leader in case of a tie at p, then the

challenger could profitably deviate by shifting weight to prices slightly below

p. Otherwise, a leader can profitably deviate for the same reasons as given

above.

Proposition 3. The leaders’ pricing strategy F` is atomless.

Proof. Let p be the smallest price in the support of F`, and suppose F` has

an atom at p ∈ (p, 1]. For any small ε > 0, consider the alternate pricing

strategy for the leader which equals F`(p) for all q ∈ [p − ε, p], and coincides

with F` elsewhere. This deviation has two opposite effects on the leader’s

profit. There is a negative effect from selling at a price p − ε compared to

those prices q ∈ (p − ε, p]. This loss is of order ε and can be made as small

as desired by decreasing ε. In view of Proposition 1, there is also a positive

effect from the decrease in attention when charging p−ε rather than a price in
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(p−ε, p]. This gain admits a strictly positive lower bound that is independent

of ε for the leader of at least one market. To see this, consider a leader whose

market is inspected with positive probability when all leaders quote p. The

probability that all other leaders charge p and that one’s challenger has a price

strictly less than p occurs with probability Fc(p
−)(F`(p)− F`(p−))M−1, which

is positive since p is an atom and Fc(p
−) > 0 by Proposition 2. For the fraction

1−α0−αM of partially attentive consumers, if the deviator charges p−ε they

surely do not pay attention to his market, while if he charges p the probability

of drawing attention is strictly positive (and independent of ε). Hence this

deviation is strictly profitable for ε > 0 small enough.

Suppose now that F` has an atom at p, which is also the lowest price in the

support of Fc by Proposition 2. For any small ε > 0, consider the alternate

pricing strategy for the challenger which equals Fc(p+ε) for all q ∈ [p−ε, p+ε],

and coincides with Fc elsewhere. This deviation has two opposite effects on

the challenger’s profit. There is a negative effect from selling at a lower price

p− ε compared to those q ∈ (p, p+ ε]; this results in a decrease in profit of no

more than 2εFc(p + ε). There is also a positive effect occurring in the event

that the market draws attention when the leader’s price is p, which occurs with

strictly positive probability (independent of ε). In this event, the deviation

yields a sale at the price p − ε with probability Fc(p + ε), while the original

strategy yields a sale at the price p with probability Fc(p)β, where β ∈ [0, 1]

is the proportion of consumers who purchase from the challenger when there

is a tie at p. The challenger’s alternate strategy is a profitable deviation for

ε > 0 small enough if either Fc(p) = 0 (that is, the challenger does not have

an atom at p), or there is an atom at p and β < 1. To conclude the proof,

suppose that both Fc and F` have an atom at p and β = 1. In that case,

consider the alternate pricing strategy for the leader which equals F`(p) for all

q ∈ [p− ε, p], and coincides with F` for higher prices. The loss from selling at

a lower price can be made arbitrarily small, while the gain in winning against

the challenger is bounded from zero. Indeed, there is positive probability that

the market is inspected, and β = 1 implies the challenger wins in the event of

a tie at p, an event occurring with probability F`(p)Fc(p) > 0 under F`. This
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is thus a profitable deviation from F`, a contradiction.

As a consequence of the previous two propositions, Proposition 1 now takes

the simpler form, “the consumer inspects the k markets with the highest leader

prices.” Our next result is concerned with the highest prices firms could charge.

Challengers, who make their profit by underbidding their market leader, cer-

tainly would not charge more than a leader’s highest price. We show, further-

more, that challengers charge strictly less. Since we have not yet ruled out the

possibility that Fc has an atom at its highest price (or elsewhere), the strict

ranking of highest prices is helpful to derive the leaders’ highest price. When-

ever a leader charges his highest price, any consumer who is at least partially

attentive will inspect his market, and find a cheaper alternative, with proba-

bility one. As such, the leader may as well take full advantage of the remaining

consumers’ inattention, by charging all the way up to their reservation price.

Proposition 4. The highest price in the support of Fc is strictly smaller than

the highest price in the support of F`, which is one.

Proof. Let p` (pc) be the highest price in the support of F` (respectively, Fc).

Since F` is atomless, there exists ε > 0 small enough that the probability a

leader charges more than p` − ε is strictly smaller than α0. Thus the chal-

lenger’s profit from charging any price above p`− ε is strictly smaller than the

profit obtained by charging α0, given that he cannot affect the attention to his

market. Since the challenger would have a profitable deviation if Fc(p`−ε) < 1,

we conclude that pc < p`.

We now show that the leaders’ highest price is one. If p` < 1, then for each

ε > 0, consider the alternate pricing strategy for a market leader which equals

F`(p`−ε) for all q ∈ [p`−ε, 1−ε) and coincides with F` elsewhere. For ε small

enough, p`−ε is larger than the highest price in the support of Fc. By charging

1− ε instead of p ∈ [p`− ε, p`), the leader has a gain of at least α0(1− ε− p`),
since fully inattentive consumers buy from the leader at any price below their

reservation level. The leader’s loss from this deviation is proportional to the

increase in probability of having partially attentive consumers check his market

(thereby finding a cheaper price). As F` atomless, when ε is small then it is
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almost certain that when charging p ∈ [p`−ε, p`) his market was already being

checked by these consumers. Thus, there is ε sufficiently small that for any

p ∈ [p` − ε, p`), the loss is strictly less than the gain α0(1 − ε − p`). The

expected change in profit from deviating, obtained by integrating gains minus

losses over p ∈ [p` − ε, p`), is thus strictly positive.

The above results allow us to derive the leaders’ equilibrium profit, as

shown in Section 3.2.

Corollary 1. The leaders’ equilibrium profit is α0.

With Corollary 1 in mind, it becomes possible to identify the common

lowest price of challengers and leaders.

Proposition 5. The lowest price in the support of both F` and Fc is α0.

Proof. We know that F` and Fc share a common lowest price p ≥ α0. Suppose

by contradiction that p > α0. Consider a deviation where the leader charges

(p+α0)/2 with probability one. In this case, the leader sells to all consumers,

whether or not they pay attention to his market. This delivers a profit of

(p + α0)/2. Since equilibrium profit is α0 by Corollary 1, the deviation is

strictly profitable.

As explained in Section 3.2, the above results can be used to derive the

equilibrium profit of challengers.

Corollary 2. The challengers’ equilibrium profit is α0EA(α)/M .

The following result rules out atoms for the challenger. Of course, Propo-

sitions 3 and 6 imply that no firm can use a pure strategy in equilibrium.

Proposition 6. The challengers’ pricing strategy Fc is atomless.

Proof. Suppose that Fc has an atom at some price p > α0. We begin by

pointing out that there cannot exist ε > 0 for which F`(p + ε) − F`(p) = 0.

Otherwise, F` has a gap in its support to the right of p, and the challenger

could profitably deviate by shifting his atom from p to p+ ε.
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Consider an alternate strategy for the leader which equals F`(p + ε) for

q ∈ [p−ε, p+ε] and is given by F` elsewhere. For each q ∈ [p−ε, p+ε], the only

loss associated with this deviation is the decrease in price, which is at most 2ε.

Among the various gains in profit from switching is the increased probability

of selling by underbidding the challenger when the market is examined. Notice

that the leader’s market is examined with a probability bounded from below

by αM . Thus there is positive probability, bounded from zero, both that the

market is inspected and that the challenger quotes p. In this joint event, the

gain by charging p − ε instead of any q ∈ (p, p + ε) is strictly positive, since

the leader sells to an inspecting consumer when charging p− ε, but not when

charging q. Hence, for ε small enough, this deviation is strictly profitable for

the leader, a contradiction. We conclude Fc is atomless for prices above α0.

Finally, suppose by contradiction that Fc has an atom at α0. Since α0 also

belongs to the support of F`, the leader must get a profit α0 by charging any

price p ∈ (α0, α0 + ε). However, for any such price there is probability larger

than αMFc(α0) > 0 that the leader does not sell. Hence the profit from any

such p is bounded away from α0 for small ε, a contradiction.

We now examine whether firms necessarily use strictly increasing strategies.

While for market leaders the answer is a clear yes, for market challengers the

answer depends on the distribution of consumer types. This contrasts with the

previous literature on competition with mixed strategies over prices, in which

all firms use strictly increasing cumulative distribution functions.

Proposition 7. The leaders’ strategy F` cannot have any gaps in its support.

Proof. Suppose that F` has a gap in its support, that is, F` is constant over an

interval inside [α0, 1]. Consider then p′ and p′′ with F`(p
′) = F`(p

′′) such that

for all ε > 0, F`(p
′) > F`(p

′− ε) and F`(p
′′ + ε) > F`(p

′′). In other words, p′ is

the left-most point of the gap, and p′′ is the right-most point of the gap. We

know that α0 < p′ < p′′ < 1 since α0 and 1 belong to the support of F`, which

is atomless. Notice that Fc must also be constant on [p′, p′′). Otherwise, any

mass placed on that interval by Fc can be moved to an atom at p′′. Indeed, this
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deviation does not change the set of events where the challenger sells (which

has positive measure), and only increases the price of sale.

Because F` and Fc have been shown to be atomless, the profit a leader

obtains when charging the price p is p[1 − Π`(F`(p)) + Π`(F`(p))(1 − Fc(p))].
Notice that this expression is strictly larger at p = p′′ than it is at p = p′, since

p′′ > p′, F`(p
′) = F`(p

′′) and Fc(p
′) = Fc(p

′′). This contradicts the fact that

both p′ and p′′ are in the support of F`.

There were two key steps in proving Proposition 7. First, if leaders have

a gap extending from p′ to p′′, then the support of Fc does not contain that

interval either. Next, if Fc(p
′) = Fc(p

′′), then a leader would strictly prefer

to charge p′′ than prices equal to or nearby p′, contradicting that p′ is in the

support. One might think that we could analogously prove that Fc has no

gap, simply by starting the argument at the second step. However, the con-

tradiction relied on there being a gap in the leaders’ strategy (F`(p
′) = F`(p

′′))

to show that charging p′′ does not significantly increase attention relative to

charging p′, and that more profits can therefore be made. Indeed, if other

leaders do charge prices in (p′, p′′) with positive probability, then charging p′′

instead of p′ can yield a significant increase in attention. The resulting loss

might overwhelm the gains from a higher price.

The above results allow us to now complete our characterization of the

leaders’ and challengers’ equilibrium pricing strategies. Given that there is

zero probability of ties, and given our knowledge of equilibrium profits and

firms’ highest and lowest prices, the indifference conditions for equilibrium

indeed correspond to (4) and (5). Consequently, F` must be given by

F`(p) =


Π−1
c

(
α0EA(α)
Mp

)
for all p in the support of Fc,

Π−1
`

(
p−α0

pFc(p)

)
for all other p ∈ [α0, 1],

as claimed in Theorem 1. Moreover, for any price in the challengers’ support,
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Fc must coincide with the function F̃c, which is defined in (7) by

F̃c(p) =
p− α0

pΠ`

(
Π−1
c

(α0EA(α)
Mp

)) .
Proving that Fc(p) = minp̃∈[p,1] F̃c(p̃) for all prices in [α0, p̄c], as claimed in

Theorem 1, requires one more result.

Proposition 8. If the price p is in the support of the challengers’ strategy,

then F̃c(p) ≤ F̃c(p̃) for all p̃ ∈ [p, 1].

Proof. This is immediate if p̃ is also in the support of Fc, since in that case

F̃c(p) = Fc(p) ≤ Fc(p̃) = F̃c(p̃), with the inequality following from p < p̃.

Suppose then that p̃ is not in the support of Fc and, by contradiction, that

F̃c(p̃) < F̃c(p). The challenger’s profit when charging p̃ is given by

p̃Πc(F`(p̃)) = p̃Πc

(
Π−1
`

( p̃− α0

p̃Fc(p̃)

))
.

Since p < p̃ and p is in the support of the challengers’ strategy, F̃c(p) = Fc(p) ≤
Fc(p̃). Hence F̃c(p̃) < Fc(p̃). Since Π` is strictly increasing and Πc is strictly

decreasing,

p̃Πc(F`(p̃)) > p̃Πc

(
Π−1
`

( p̃− α0

p̃F̃c(p̃)

))
.

Applying the definition of F̃c, we conclude that

p̃Πc

(
Π−1
`

( p̃− α0

p̃F̃c(p̃)

))
=
α0EA(α)

M
,

which is the challenger’s equilibrium profit. Hence Fc could not be part of an

equilibrium, since charging p̃ would be a strictly profitable deviation.

The characterization of Fc in Theorem 1 now follows. Indeed, for any price

p in the support of Fc, we know that Fc(p) = F̃c(p). By Proposition 8, it

must be that F̃c(p) ≤ F̃c(p̃) for all p̃ > p, proving the desired characterization

for those prices that the challenger employs. But the characterization also
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holds for any price p < p̄c which is part of a gap in the support of Fc. To

see this, observe that the leftmost endpoint of the gap (denoted p1) and the

rightmost endpoint of the gap (denoted p2) do belong to the support of Fc,

and so the desired characterization holds for them. Because Fc is atomless,

Fc(p1) = Fc(p) = Fc(p2), which squeezes Fc(p) to the desired value.

4.2 Establishing existence

The above results establish that F` and Fc are the unique candidates for an

equilibrium. To prove existence, we begin with a technical result whose proof

appears in the appendix.

Proposition 9. The pricing strategies F` and Fc are well-defined, atomless cu-

mulative distribution functions. Moreover, F` is strictly increasing over [α0, 1],

and α0 is the lowest price in the support of F` and Fc.

It remains to show that neither leaders nor challengers have a profitable

deviation given consumers’ optimal allocation of attention (which is described

in Proposition 1). The construction of Fc ensures that quoting prices in the

support of F` gives the leader a profit of α0. Quoting a price above 1 or a price

below α0 thus yields the leader a strictly smaller profit. The construction of

F` ensures that quoting any price in the support of the challenger’s strategy

yields a profit of α0EA(α)/M . Since EA(α)/M is the expected proportion of

consumers checking his market, the challengers’ profit is clearly larger than

that attained by quoting a price smaller than α0. We now prove that quoting

any price p ≥ α0 which is not in the support of Fc also yields a smaller profit.

Consider any p outside the support of Fc. Since Fc(p) ≤ F̃c(p),

F`(p) = Π−1
`

(p− α0

pFc(p)

)
≥ Π−1

`

(p− α0

pF̃c(p)

)
.

Applying the decreasing function Πc on both sides, multiplying by p, and

plugging in the definition of F̃c, we find that pΠc(F`(p)) ≤ α0EA(α)/M . In

other words, the challenger cannot obtain a higher profit by deviating to p.
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5 Conclusion

This paper proposes a stylized model of price competition, with consumers op-

timally deciding which components of their expenses to audit given bounds on

their attention. In the classic framework, where consumers are fully attentive,

the cross-market implications of prices are limited to income and substitu-

tion effects. Limited attention brings a new dimension to competition, with

the prices of the most visible firms exerting an externality on other markets

by deflecting or drawing consumers’ attention. Taking into account the firms’

equilibrium response, decreasing the average attention level benefits consumers

through competition for their inattention.

Our model suggests interesting new avenues for exploration. A first direc-

tion would be to embed the model into a dynamic framework to determine

endogenously which firms serve as default providers. Competition for inatten-

tion may be exacerbated, with default providers further lowering their prices,

as the benefit of remaining in their position increases the incentive to be under

the consumers’ radar. A second direction would be to further investigate con-

sumers’ optimal allocation of attention in heterogeneous markets. Inspecting

markets with the highest expected savings may translate into more intricate at-

tention strategies.11 A third direction would be to include multiple challengers

in each market. Our assumption of a single challenger is a reduced-form rep-

resentation of friction in identifying challengers and learning their offers. In

a more general model, sampling each additional challenger’s price would de-

plete some of the consumer’s budget for attention. One can then study the

tradeoff between allocating attention across markets versus within markets. A

consumer would allocate each additional unit of attention to the market with

the highest expected savings given the prices he has observed so far. A fourth

direction would be to consider general preferences, allowing for complementar-

11Note that the notion of partially symmetric strategies may extend in some circum-
stances to markets with heterogeneity. Indeed, suppose that firms know characteristics
(such as cost or reservation price) which are relevant for their own market, but all face the
same uncertainty regarding those characteristics in other markets. A strategy for a firm is
a function that maps the characteristics of its market into a price cdf. Partial symmetry of
such strategies means that firms in the same market position use the same function.
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ity and non-satiation, to investigate the effect that competition for inattention

has on the total surplus.

We hope that the present paper motivates researchers to investigate these

questions, and will be useful for further analysis of consumers’ optimal alloca-

tion of attention and the implications for price theory.
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Appendix

Proof of Proposition 9

We begin with Fc. Observe that α0EA(α)/Mp belongs to the range of Πc for

any p ∈ [α0, 1], and that the domain of Π` is [0, 1]. Hence both F̃c and Fc are

well-defined at any such p. We argue that Fc is a valid distribution function. It

is increasing and continuous by construction. Moreover, it is easy to see that

F̃c(α0) = 0, as the numerator is zero and the denominator is nonzero: observe

that Π−1
c (EA(α)/M) = 0 and Π`(0) = αM > 0. It remains to show that

Fc(p̄c) = 1 for some p̄c ∈ (α0, 1), which itself follows if there exists a largest

price strictly smaller than one such that F̃c equals one. Such a price exists by

the Intermediate Value Theorem, because F̃c is continuous, with F̃c(α0) < 1

and F̃c(1) > 1. To see the last fact, suppose to the contrary that F̃c(1) were

less than or equal to one. In that case, we would have Π−1
c (α0EA(α)/M) ≥

Π−1
` (1 − α0) = 1, which is impossible because Πc is strictly decreasing and

satisfies Πc(1) = 0. It can be checked by elementary calculus that F̃ ′c(α0) > 0,

so α0 is in the support of Fc.

We next show that F` is well-defined. Again, because α0EA(α)/Mp belongs

to the range of Πc for any p ∈ [α0, 1], we know that F` is well-defined whenever

p belongs to the support of Fc. Consider then a price p ∈ [α0, 1] that does not

belong to the support of Fc. Since Fc(p) ≤ F̃c(p), we have

p− α0

pFc(p)
≥ p− α0

pF̃c(p)
= Π`

(
Π−1
c

(α0EA(α)

Mp

))
,

which is greater than or equal to αM , as desired. Moreover, we claim that

(p − α0)/pFc(p) ≤ 1 − α0. This is obvious if Fc(p) = 1. If Fc(p) < 1, then

there exists some p′ > p in the support of Fc such that Fc(p
′) = Fc(p). Hence

p− α0

pFc(p)
≤ p′ − α0

p′Fc(p′)
= Π`

(
Π−1
c

(α0EA(α)

Mp′
))
,

which is less than or equal to 1 − α0, as desired. Therefore, (p − α0)/pFc(p)
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also belongs to the range of Π`, ensuring that F` is also well-defined for prices

p ∈ [α0, 1] outside of the support of Fc.

Finally, we show that F` is an atomless and gapless cumulative distribution

function. Since α0 is in the support of Fc, we have F`(α0) = 0. Since 1 is not in

the support of Fc, we conclude that F`(1) = Π−1
` (1−α0) = 1. We complete the

proof by showing that F` as defined in (6) is continuous and strictly increasing

over [α0, 1], which also proves that α0 is in its support. Since Π−1
c is strictly

decreasing and Π−1
` is strictly increasing, each of the two functions defining

F` in (6) is strictly increasing within any interval of prices for which they

are applied. Moreover, each of these functions is continuous. The argument

is complete if we show that F` is itself continuous. Let p be a boundary

point of the support of Fc, and let (pn)n be a sequence which is not in the

support of Fc but which converges to p. Since the support of a distribution is

closed, p is in the support of Fc and so F`(p) = Π−1
c (α0EA(α)/Mp). Moreover,

because p is in the support of Fc, the minimum in (8) is achieved by p̂ = p,

or Fc(p) = (p − α0)/pΠ`(F`(p)). Since Fc is continuous, Fc(pn) converges to

Fc(p), and so F`(pn) converges to Π−1
` ((p − α0)/pFc(p)). But simple algebra

shows Π−1
` ((p − α0)/pFc(p)) = Π−1

c (α0EA(α)/Mp) if and only if Fc(p) =

(p− α0)/pΠ`(F`(p)), completing the proof.

Proof of Theorem 2

The result is established in four steps.

Step 1. If F̃c is strictly increasing, then the support of Fc is [α0, p̄c] and

F`(p) = max
{

Π−1
c

(α0EA(α)

Mp

)
, Π−1

`

(
1− α0

p

)}
.

Proof. We know F̃c(α0) < 1 < F̃c(1) from Proposition 9. Since F̃c is strictly

increasing and continuous, there is a unique p̄c ∈ (α0, 1) solving F̃c(pc) = 1.

Using Theorem 1 and increasingness of F̃c, we know that Fc(p) = F̃c(p) for

all p ∈ [α0, p̄c], and hence the support of Fc is [α0, p̄c]. By construction,

Fc(p) < 1 if and only if p < p̄c. Using the definition of Fc, this means that
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Π−1
`

(
1 − α0

p

)
< Π−1

c

(
α0EA(α)
Mp

)
for p ∈ [α0, p̄c), with the reverse inequality

holding for p ∈ [p̄c, 1]. The construction of F` in Theorem 1 then implies that

F` is given by the maximum of these two functions.

Step 2. If Πc(0) − Πc(x) is strictly log-concave with respect to x ∈ [0, 1],

except perhaps at a finite number of points, then F̃c is strictly increasing for

p ∈ [α0, p̄c].

Proof. We know that Πc(0) = EA(α)
M

. Subtracting Πc

(
Π−1
c (α0EA(α)

Mp
)
)

= α0EA(α)
Mp

from the previous equation and dividing by Π`

(
Π−1
c (α0EA(α)

Mp
)
)

yields12

EA(α)
M

p−α0

p

Π`

(
Π−1
c (α0EA(α)

Mp
)
) =

Πc(0)− Πc

(
Π−1
c (α0EA(α)

Mp
)
)

Π`

(
Π−1
c (α0EA(α)

Mp
)
) .

The LHS is a positive constant times F̃c(p). Hence F̃c(p) is strictly increasing

for p ∈ [α0, 1] if and only if the RHS is. By assumption, the derivative of
Πc(0)−Πc(x)

Π`(x)
= 1/(log(Πc(0)−Πc(x))′ is strictly positive on [0, 1], except perhaps

at finitely many points. Continuity of Πc(0)−Πc(x)
Π`(x)

implies that it is strictly

increasing on [0, 1]. This concludes the proof, using the change of variable

x = Π−1
c (α0EA(α)

Mp
), which is a strictly increasing function of p.

Step 3. The following equivalence holds:

Πc(0)− Πc(x) =
1

M

M∑
j=0

(
M

j

)
xj(1− x)M−j

M∑
k=0

αk max
{
j −M + k, 0

}
.

Proof. We first recall some standard definitions and identities. The beta func-

tion is B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt. The Euler integral of the first kind

implies B(a, b) = (a−1)!(b−1)!
(a+b−1)!

for integers a, b. The incomplete beta function is

B(x; a, b) =
∫ x

0
ta−1(1− t)b−1dt, and the regularized incomplete beta function

is Ix(a, b) = B(x;a,b)
B(a,b)

, which satisfies Ix(a, b) =
∑a+b−1

j=a

(
a+b−1
j

)
xj(1− x)a+b−1−j.

12We thank Xiaosheng Mu for pointing out this identity.
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Next, observe that for each k,

πck(0)− πck(x) =

∫ x

0

k−1∑
i=0

(
M − 1

i

)
(1− t)itM−1−idt

=
k−1∑
i=0

(
M − 1

i

)
B(x;M − i, i+ 1)

=
k−1∑
i=0

(
M − 1

i

)
B(M − i, i+ 1)Ix(M − i, i+ 1)

=
1

M

k−1∑
i=0

Ix(M − i, i+ 1)

=
1

M

k−1∑
i=0

M∑
j=M−i

(
M

j

)
xj(1− x)M−j

=
1

M

M∑
j=M−k+1

(
j − (M − k)

)(M
j

)
xj(1− x)M−j,

since in the penultimate summation, j = M appears k times, j = M − 1

appears k − 1 times, . . . , and j = M − k + 1 appears one time.

Using the above result and interchanging the order of summation,

Πc(0)− Πc(x) =
1

M

M∑
k=1

αk

M∑
j=M−k+1

(
j − (M − k)

)(M
j

)
xj(1− x)M−j

=
1

M

M∑
k=1

αk

M∑
j=0

max
{
j − (M − k), 0

}(M
j

)
xj(1− x)M−j

=
1

M

M∑
j=0

(
M

j

)
xj(1− x)M−j

M∑
k=0

αk max
{
j − (M − k), 0

}
Step 4. If (α1, . . . , αM) is a log-concave sequence, or if αi ≤ 2αj for all i < j,

then Πc(0) − Πc(x) is strictly log-concave in x ∈ [0, 1], excepts perhaps at

finitely many points.

Proof. Theorem 2 of Mu (2013) shows that if (β0, . . . , βM) is a non-constant

log-concave sequence, then
∑M

j=0

(
M
j

)
xM−j(1−x)jβj is log-concave in x ∈ [0, 1].
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Morever, it can be seen from Mu’s Equation (10) that the log-concavity holds

strictly, except at perhaps finitely many points. Using a change of variable and

symmetry of binomial coefficients, observe that
∑M

j=0

(
M
j

)
xM−j(1 − x)jβj =∑M

j=0

(
M
j

)
xj(1 − x)M−jβM−j. If a sequence is log-concave, then it is also

log-concave when read backwards. Thus, Mu’s theorem holds also when re-

placing
∑M

j=0

(
M
j

)
xM−j(1 − x)jβj by

∑M
j=0

(
M
j

)
xj(1 − x)M−jβj. Using Step

3, to ensure the desired property of Πc(0) − Πc(x), it thus suffices to show

that each of the above properties of (α1, . . . , αM) implies that (β0, . . . , βM)

is log-concave, where we define βj :=
∑M

k=0 αk max{j − (M − k), 0}. (No-

tice that β is non-constant since α 6= 0.) Defining α̂M−k := αk, observe that

βj =
∑M

i=0 α̂i max{j − i, 0}.
Consider first the case that α is a log-concave sequence (hence so is α̂).

Since max{i, 0} is a log-concave sequence, then so is max{j − i, 0}. Because

each βj is the convolution of two log-concave sequences, β is log concave itself.

Next, consider the case that αi ≤ 2αj when i < j. Applying the identity

βk = βk−1 +
∑k

i=1 αM−i+1, and rearranging terms, β is log-concave iff

βk(βk−1 +
k∑
i=1

αM−i+1) ≥ βk−1βk+1

⇔ βk

k∑
i=1

αM−i+1 ≥ βk−1

k+1∑
i=1

αM−i+1

⇔
( k∑
i=1

αM−i+1

)2

≥ βk−1αM−k

⇔
k∑
i=1

α2
M−i+1 + 2

k−1∑
i=1

k∑
j=i+1

αM−i+1αM−j+1 ≥ βk−1αM−k.

Note that 2αM−j+1 ≥ αM−k when j ≤ k. Hence the left-hand side of the last

expression is at least αM−k
∑k−1

i=1 (k − i)αM−i+1 which is precisely αM−kβk−1,

as desired. This concludes the proof of this step and of Theorem 2
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Proof of Theorem 4

From the discussion that follows the statement of the theorem, it suffices to

show that each of the two functions in Equation (10) strictly decreases when

replacing α with α̂. It will be convenient to prove this in a more general

setting, where α and α̂ come from a family of distributions parametrized by

λ, a real-valued scalar taking values in either a continuous or discrete set; the

case where λ can take one of two values corresponds to the presentation in

Section 3.3. Let α(λ) denote the distribution from this family given λ. The

family satisfies (i) α0(λ) = α0(λ̂) = α0 for all λ̂ 6= λ; (ii) log-concavity of the

sequence α1(λ), . . . , αM(λ) for each λ; and (iii) the monotone likelihood ratio

property αk(λ̂)
αk(λ)

≤ αk+1(λ̂)

αk+1(λ)
for λ̂ > λ and k ∈ {1, . . . ,M − 1}, with at least one

strict inequality.

For any λ, let Π`(λ, x) =
∑M

k=1 αk(λ)π`k(x) and Πc(λ, x) =
∑M

k=1 αk(λ)πck(x).

The notations Π−1
` (λ, x) and Π−1

c (λ, x) refer to the inverse with respect to x,

holding λ fixed. Let EA(λ) be the expected level of attention under α(λ).

Note that the MLR ranking implies log-supermodularity of αk(λ) in k, λ. Sim-

ilarly, note that for λ̂ > λ, decreasingness of Πc(λ̂, x)/Πc(λ, x) in x amounts to

log-submodularity of Πc(λ, x) in λ, x. The proof proceeds as follows. Step

1 shows that Π−1
` (λ, 1 − α0

p
) strictly decreases in λ. Steps 2-4 show that

Π−1
c (λ,EA(λ)/Mp) strictly decreases in λ.

Step 1. Π−1
` (λ, 1− α0

p
) is strictly decreasing in λ.

Proof. Remember that Π`(λ, x) is a weighted average, under α(λ), of the prob-

ability π`k(x) that a leader’s market is inspected by a consumer with k units of

attention, when there is probability x that other market leaders are cheaper.

The higher a consumer’s attention level k, the higher is this probability π`k(x).

So a first-order increase in the attention distribution means that given any x,

a leader now faces a higher total probability of drawing consumers’ attention.

The conclusion immediately follows.

Step 2. Π−1
c (λ,EA(λ)/Mp) is strictly decreasing in λ if and only if Πc(λ̂, x)/Πc(λ, x)

is strictly below its value at x = 0 whenever x > 0 and λ̂ > λ.
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Proof. Let x and x̂ satisfy Πc(λ, x) = α0EA(λ)
Mp

and Πc(λ̂, x̂) = α0EA(λ̂)
Mp

, where

λ̂ > λ. Showing x > x̂ amounts to proving Πc(λ̂, x) < Πc(λ̂, x̂), as the

probability a challenger makes a sale, Πc(λ̂, ·), is decreasing in the probability

x that his leader is cheaper. Consider the ratio of these expressions, which we

can multiply and divide by Πc(λ, x), and simplify using the definitions of x

and x̂:
Πc(λ̂, x)

Πc(λ̂, x̂)
=

Πc(λ̂, x)

Πc(λ, x)

Πc(λ, x)

Πc(λ̂, x̂)
=

Πc(λ̂, x)

Πc(λ, x)

EA(λ)

EA(λ̂)
.

This ratio is smaller than 1 if and only if Πc(λ̂, x)/Πc(λ, x) < EA(λ̂)/EA(λ).

Notice that EA(λ̂)/EA(λ) is the value of Πc(λ̂, ·)/Πc(λ, ·) at x = 0.

Step 3. Πc(λ, x) is log-submodular in λ, x (and hence Πc(λ̂, x)/Πc(λ, x) is

decreasing in x).

Proof. It is well-known that if the function t(i, y) is log-supermodular in i, y

and the function s(i, z) is log-supermodular in i, z, then
∫
i
t(i, y)s(i, z)di is log-

supermodular in y, z (see, for example, Corollary 1 in Quah and Strulovici,

2011). This preservation of log-supermodularity result extends to discrete

summations (e.g., i comes from the set {1, 2, . . . , n}).13 To see this, apply the

preservation result to the functions t̃(j, y) and s̃(j, z), which are defined with

j ∈ [0, 1) as follows: if i−1
n
≤ j < i

n
, then t̃(j, y) = t(i, y) and s̃(j, y) = s(i, y).

Below, we iteratively apply the preservation result to prove that Πc(λ, x) is

log-submodular in λ, x. Consider the function

∫ 1

0

1(t≤x)

(
M∑
k=1

αk(λ)
M∑
i=1

1(i≤k−1)

(
M − 1

i

)
ti(1− t)M−i−1

)
dt, (11)

which is simply Πc(λ, 1− x) using a change of variables from t to 1− t (note

that 1(·) is the indicator function which is equal to 1 if its argument is true).

We first show that 1i≤k−1 is log-supermodular in i and k. Indeed, consider

(̄i, k̄) ≥ (i, k). Then

1(̄i≤k̄−1)1(i≤k−1) ≥ 1(̄i≤k−1)1(i≤k̄−1),

13We thank Bruno Strulovici for pointing this out.
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since if the right-hand side is one, then so is the left-hand side. Next, we show

that
(
M−1
i

)
ti(1− t)M−i−1 is log-supermodular in i, t. Indeed, the ratio(

M−1
i

)
ti(1− t)M−i−1(

M−1
i−1

)
ti−1(1− t)M−i

=
(M − i)t
i(1− t)

is increasing in t for t ∈ [0, 1). Applying the preservation result, this implies

that the inner sum in (11) is log-supermodular in k, t. By assumption, αk(λ)

is log-supermodular in k, λ. Applying the preservation result again, the ex-

pression inside the large parentheses in (11) is log-supermodular in t, λ. Since

1(t≤x) is log-supermodular in t, x (the argument is the same as before), the

entire expression in (11) is log-supermodular in λ, x, by applying the standard

preservation result. But since that sum is Πc(λ, 1−x), we obtain that Πc(λ, x)

is log-submodular in λ, x as desired.

Step 4. The derivative of Πc(λ̂, x)/Πc(λ, x) with respect to x is strictly nega-

tive at x = 0 for λ̂ > λ.

Proof. The sign of this derivative is the same as the sign of

Πc(λ̂, 0)Π`(λ, 0)− Πc(λ, 0)Π`(λ̂, 0) =
EA(λ̂)

M
αM(λ)− EA(λ)

M
αM(λ̂).

This expression is proportional to

αM(λ)
M∑
k=1

kαk(λ̂)− αM(λ̂)
M∑
k=1

kαk(λ) =
M−1∑
k=1

k[αM(λ)αk(λ̂)− αM(λ̂)αk(λ)],

which is indeed strictly negative because αk(λ̂)
αk(λ)

≤ αM (λ̂)
αM (λ)

for all k ≥ 1, with at

least one strict inequality.
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