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Abstract

This paper studies the hiring and �ring decisions of �rms and their
e¤ects on �rm value. This is done in an environment where the pro-
ductivity of workers depends on how well they match with their co-
workers and the �rm acts as a coordinating device. Match quality
derives from a production technology whereby workers are randomly
located on the Salop circle, and depends negatively on the distance
between the workers. It is shown that a worker�s contribution in a
given �rm changes over time in a nontrivial way as co-workers are
replaced with new workers.
The paper derives optimal hiring and replacement policies, includ-

ing an optimal stopping rule, and characterizes the resulting equilib-
rium in terms of employment, �rm output and the distribution of �rm
values. The paper stresses the role of horizontal di¤erences in worker
productivity, as opposed to vertical, assortative matching issues. Sim-
ulations of the model reveal a rich pattern of worker turnover dynamics
and their connections to the resulting �rm value and age distributions.
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Worker Matching and Firm Value1

1 Introduction

How does the value of the �rm depend on the value of its workers? When one
considers �rms that have little physical capital �such as IT �rms, software
development �rms, investment banks and the like �the neoclassical model
does not seem to provide a reasonable answer. The �rm has some value that
is not manifest in physical capital. Rather, Prescott and Visscher�s (1980)
�organization capital�may be a more relevant concept in this context. One
aspect of the latter form of capital, discussed in that paper, is the formation of
teams and this is the issue taken up in the current paper. We ask how workers
a¤ect each other in production and how this interaction a¤ects �rm value.
The paper studies the value of �rms and their hiring and �ring decisions in
an environment where the productivity of the workers depends on how well
they match with their co-workers and the �rm acts as a coordinating device.
This role of the �rm is what generates value.
In the model, match quality derives from a production technology whereby

workers are randomly located on the Salop (1979) circle and depends nega-
tively on the distance between them. It is shown that a worker�s contribution
in a given �rm changes over time in a nontrivial way as co-workers are re-
placed with new workers. The paper derives optimal hiring and replacement
policies, including an optimal stopping rule, and characterizes the resulting
equilibrium in terms of employment and the distribution of �rm values.
Key results are the derivation of an optimal worker replacement strategy,

based on a productivity threshold that is de�ned relative to other employ-
ees. This strategy, interacted with exogenous worker separation and �rm
exit shocks, generates rich turnover dynamics. The resulting �rm value dis-
tributions are found to be �using simulations �non-normal, with negative
skewness and negative excess kurtosis. This shape re�ects the fact that, as
�rms mature, there is a process of forming good teams on the one hand and
the e¤ects of negative separation and exit shocks on the other hand.
The paper proceeds as follows: in Section 2 we discuss the model in the

context of the literature. In Section 3 we outline the model. We describe the
1We thank Russell Cooper, Jan Eeckhout, Rani Spiegler and seminar participants at

the 2009 annual SED meetings in Istanbul, at the CREI, Barcelona November 2009 search
conference, at the 2011 ESSIM meetings of the CEPR, at the 2011 SAM conference in
Bristol, at the 2011 NBER RSW group meetings in Aarhus, and at the LSE, the Norwegian
Business School, and Tel Aviv University for helpful comments on previous versions of the
paper, Ilan Cooper for data, the UCL Department of Economics for its hospitality, and
Tanya Baron for excellent research assistance. All errors are our own.
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set up and delineate the interaction between workers. In Section 4 we derive
the optimal hiring and �ring policy and study the implications for �rm value.
In Section 5 we allow for exogenous worker separation. Section 6 presents
simulations of the model, exploring the mechanisms inherent in it. Section 7
discusses the key assumptions in light of the results and Section 8 concludes.

2 The Model in the Context of the Literature

The paper has points of contact with papers in the search literature. We
exploit the idea of optimal stopping, as in McCall (1970) and a rich strand of
search literature which followed (see McCall and McCall (2008), in particu-
lar chapters 3 and 4, for a comprehensive treatment). The existing literature
does not cater, however, for the key issue examined here, namely that of
worker complementarities. We capture this by assuming that the �rm hires
three workers and that match quality between all worker-pairs matter. Con-
ceptually this is an important distinction, and it allows us to analyze team
formation in detail. Technically it also gives rise to new challenges. Total
match quality (or output) depends on two variables that are stochastic ex
ante, the distances from the best placed worker to each of her two co-workers.
At the same time the �rm only replaces one worker at a time. This creates a
new dimension to the optimal stopping problem, which, in contrast to most
earlier studies, now depends on a state variable (the distance between the two
closest workers who are not replaced in this round). Furthermore, optimal
stopping behaviour depends on this state variable in a non-trivial way, and
it is not even obvious from the outset that a simple optimal stopping rule
exists.
Our paper also shares some features with the search model of Jovanovic

(1979a,b): there is heterogeneity in match productivity and imperfect infor-
mation ex-ante (before match creation) about it; these features lead to worker
turnover, with good matches lasting longer.2 Burdett, Imai and Wright
(2004) analyze models where agents search for partners to form relationships
and may or may not continue searching for di¤erent partners while matched.
Both unmatched and matched agents have reservation match qualities.
The paper bears limited similarity to Kremer�s (1993) O-ring production

function model. The similarity pertains to the importance attributed to the
idea of workers working well together. In that model �rms employ workers

2Pissarides (2000, Chapter 6) incorporates this kind of model into the standard DMP
search and matching framework, keeping the matching function and Nash bargaining in-
gredients, and postulating a reservation wage and reservation productivity for the worker
and for the �rm, respectively.
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of the same skill and pay them the same wage. In this set-up quantity can-
not substitute for quality. But the models di¤er in their treatment of the
matching of workers: in Kremer (1983) there is a multiplicative production
function in workers/tasks and this underlies their complementarity. In the
current paper there is explicit modelling of the match between workers, for-
malized as random state variables, which realization elicits the �rm�s optimal
worker replacement policy.
The paper stresses the role of horizontal di¤erences in worker produc-

tivity, as opposed to vertical, assortative matching issues. The literature
on the latter � see, for example, the prominent contributions by Teulings
and Gautier (2004), Shimer (2005), Shimer and Smith (2000), Eeckhout and
Kircher (2010, 2011) and Gautier, Teulings and Van Vuuren (2010) �deals
with the matching of workers of di¤erent types. Key importance is given to
the vertical or hierarchical ranking of types. These models are de�ned by as-
sumptions on the information available to agents about types, the transfer of
utility among workers (or other mating agents), and the particular speci�ca-
tion of complementarity in production (such as supermodularity of the joint
production function). In the current paper, workers are ex-ante homogenous,
there is no prior knowledge about their complementarity with other workers
before joining the �rm, and there are no direct transfers between them.

3 The Model

In this section we �rst describe the set-up of the �rm and the production
process (3.1). We then de�ne worker interactions and the emerging state
variables (3.2). We subsequently provide stylized facts supporting this way
of modelling (3.3).

3.1 The Set-Up

A �rm enters the market by sinking an entry cost K. The �rm starts o¤
with three workers with given productivity. Workers are located on the Sa-
lop (1979) circle, with their placement randomly and independently drawn
from a uniform distribution. Any new worker placement will be drawn in-
dependently from the same distribution. The worker�s contribution to the
�rm�s output depends negatively on the distance between her and the other
two workers. Each period the �rm faces an exogenous exit probability.
In each period the �rm can replace at most one worker. It does so by

�rst �ring one of the existing workers without recall, and then sampling
� from outside the �rm �one worker. Thus, we do not allow the �rm to
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compare the existing and the sampled worker and hire the more productive
one. We rationalize this by assuming that it takes a period to learn a worker�s
productivity. Replacing a worker is costly. Furthermore, the model is static,
in the sense that wages and productivity distributions are time independent.

3.2 Workers�Productivity and Interactions

We now turn to a formal description. The three workers are located on the
unit circle. The one in the middle (out of the three) is the j worker who
satis�es

min
j

3X
i=1

dij (1)

where dij is the distance between worker i and j, and dii = 0. We shall de�ne
two state variables �1; �2 as follows:

�1 = min
i;j
dij (2)

�2 = min
j
dkj ; k 6= i�; j� i�; j� = argmin

i;j
dij (3)

The �rst state variable �1 expresses the distance between the two closest
workers. The second state variable �2 expresses the distance between the
third worker and the closest of the two others.
The following �gure illustrates:

1

2

3

1 2

Figure 1: The State Variables

The �rm�s task is to �nd what we refer to as a common ground for the
three workers; in what follows we assume that the �rm chooses the middle
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worker as the focal point and all distances are measured going via the middle
worker (see the discussion in Section 7 below for remarks on this assumption).
Every period, each worker works together with both co-workers to pro-

duce output. Production yij is negatively related to the distance dij :

yij =
ey
3
� dij (4)

The �rm�s total output is then given by the linear additive function:

Y = y12 + y13 + y23 (5)

= ey � 3X
i=1

dij

= ey � 2(�1 + �2)
We assume that wages are independent of match quality. This is consis-

tent with a competitive market where �rms bid for ex ante identical workers
prior to knowing the match quality. The pro�ts (�) of the �rm are then given
by:

� = Y �W (6)

= ey � 2(�1 + �2)�W
= y � 2(�1 + �2)

where W is the total wage bill and y is production net of wages (ey �W ).
Within a period, the �rm cannot �re the workers. Hence it will produce

as long as output is positive (ey � 2(�1 + �2) > 0). We will assume that
this is always the case. Furthermore, the �rm may want to exit the market
endogenously if �1 is su¢ ciently high. In what follows we rule this out by
assumption. Below we show that in equilibrium it will never be optimal to
exit the market or halt production after a bad draw if K > 4=(3r0), where
r0 = r=(1 + r). Allowing for �rm exit after a bad draw is trivial, though
cumbersome, and does not add interesting new results.
As already mentioned, the �rm can replace up to one worker each period,

at a cost c. It replaces the worker who is further away from the middle worker.
The new values �01 and �

0
2 are random draws from a distribution that depends

on �1. We write (�
0
1; �

0
2) = ��1. Figure 2 illustrates, how, without loss of

generality, workers 1 and 2, who are not replaced, are situated symmetrically
around the north pole:
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Figure 2: Incumbent Workers

From Figure 2 it follows that � can be characterized as follows:

1. With probability 1� 3�1, �01 = �1 and �02 � unif [�1; 1��12 ]

2. With probability 2�1, �
0
1 � unif [0; �1] and �02 = �1

3. With probability �1, �
0
1 � unif [0; �1=2] and �02 = �1 � �01

Note that the transition probabilities, and hence continuation values when
replacing, are a function of �1 and thus are independent of �2. Hence �2 only
in�uences continuation values in states where the �rm is not replacing. That
is, as follows from the de�nition of pro�ts (equation 6), the continuation
value of inaction is a function of (�1 + �2).

3.3 Microeconomic Stylized Facts

The afore-going set-up aims at capturing properties that have been found
in empirical micro-studies of team production. Hamilton, Nickerson and
Owan (2003) �nd that teamwork bene�ts from collaborative skills involving
communication, leadership, and �exibility to rotate through multiple jobs.
Team production may expand production possibilities by utilizing collabora-
tive skills. Turnover declined after the introduction of teams. Using evidence
from professional baseball teams in the U.S., Gould and Winter (2009) �nd
evidence in favor of the idea that workers adjust their e¤ort in a rational
way that is dependent on the technology of team production. For example,
they increase e¤ort in response to increased e¤orts by workers which they
complement. Mas and Moretti (2009) use high-frequency data on worker
productivity from a large supermarket chain in the U.S. They �nd strong
evidence of positive productivity spillovers from the introduction of highly
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productive personnel into a shift. A worker e¤ort is positively related to the
productivity of workers who see him, but not to workers who do not see him.
Additionally, workers respond more to the presence of co-workers with whom
they frequently interact.
A very recent study, undertaken by MIT�s Human Dynamics Laboratory,

collected data from electronic badges on individual communications behavior
in teams from diverse industries. The study, reported in Pentland (2012),
stresses the huge importance of communications between members for team
productivity. In describing the results of how team members contribute to a
team as a whole, the report actually uses a diagram of a circle (see Pentland
(2012, page 64)), with the workers placed near each other contributing the
most. The �ndings state that face to face interactions are the most valu-
able form of communications, much more than email and texting, thereby
emphasizing the role of physical distance.

4 Optimal Hiring and Firing

Our aim in this section is to derive an optimal stopping rule for replacement.
We show that an optimal stopping rule can be expressed in terms of the state
variable �1, independently of �2:

4.1 The Optimal Stopping Rule

In this section we will be looking for a rule of the form �stop searching if �2 �
�2(�1).�To gain intuition, take a pair �1 ,�2 for which, w.l.o.g, the rule says
�do not replace�, i.e., the continuation value of inaction is higher than the
continuation value of replacement including costs. Start moving the furthest
worker even further away. The value of replacement does not change, whereas
the value of inaction goes down (the sum of the distances goes up). When we
continue this exercise, at some point, the optimal decision turns to �replace,�
the value of inaction becomes lower than the value of replacement (provided
that the replacement cost is not too high). As the value of inaction decreases
monotonically in our exercise, there must be some point, that is, a particular
�2 , for which the values are equal and the �rm is indi¤erent between replacing
or not. Therefore, for each �1 we have a rule saying replace if �2>�2 , and
not replace otherwise. This is a cuto¤ rule for each �1 .
Note that the cuto¤, which applies to the longer distance in the team,

by de�nition must satisfy �2(�1) � �1: Below, we will show analytically that
this inequality de�nes ��1 above which replacement takes place in any case,
regardless of the second distance �2 . These are teams that are so bad, in the
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sense that the distance between workers in the best pair �1 is high, so that
replacement is optimal, no matter how well the second-best pair collaborates.
An important issue here is the slope of the cuto¤ function. We will look

for the cuto¤ function �2(�1) that is decreasing in �1 and prove that such
a function exists by characterizing it analytically. A negative slope of the
cuto¤ function implies that whenever �1 declines as a result of replacement,
the �rm will stop replacing. Under an increasing cuto¤ function, a smaller �1
will make the �rm even more demanding with respect to �2, and it might be
the case that the �rm will keep replacing and improving its team in�nitely,
and we want to rule this out: We will show that with this formulation, the
incentives to replace is weaker the lower is �1.3

Lemma 1 Suppose �2(�1) is strictly decreasing in �1 in the region below ��1.
Then, in the region below ��1; whenever the smaller distance declines after
replacement, i.e., �01 < �1; the �rm will stop.

The proof is instructive, so it is included as follows.
Proof. If the new �01 is below �1, then a decreasing cuto¤ requires �2(�

0
1) >

�2(�1): But the smallest distance can decline only in two cases: (i) the new
position of the worker fell between the two incumbents, in which case the
new �02 < �1 < �2(�1) < �2(�

0
1) and the �rm stops, or (ii) the new position of

the worker fell close to one of the incumbents, but outside the arc between
them, in which case �02 = �1 < �2(�1) < �2(�

0
1); and the �rm stops. This

completes the proof.
Consequently, if after replacement the �rm �nds it optimal to replace

again, it means that the smallest distance has not declined, it stayed the
same, and with it, the expected value from replacement.
In the next sub-section we characterize the cuto¤ analytically, for the

region where it is applicable, that is, where �1 < �
�
1:

4.2 Characterizing the Stopping Rule

Suppose the �rms behave according to a stopping rule �2(�1) which is de-
creasing in �1: Let � = 1

1+r
denote the discount factor and r the discount

rate of the �rm. In the simulations below we let r include a stationary prob-
ability of exiting the market, after which the value of the �rm is zero. Denote
the value function of the �rm by V (�1; �2), and let V (�1) � EV (�01; �02)j�1. In
what follows, let Ejz denote the conditional expectation given z. Now

3If we formulate the stopping rule in terms of total distance X = 2(�1 + �2) instead of
�2, one can show that the cut-o¤ X(�1) is strictly increasing in �1. This is why we have
formulated the stopping rule in terms of �2.
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V (�1; �2) = �(�1; �2) + �max[V (�1; �2); V (�1)� c] (7)

= y � 2(�1 + �2) + max[
y � 2(�1 + �2)

r
;
V (�1)� c
1 + r

]

It follows directly from proposition 4 in Stokey and Lucas (1989, p.522) that
the value function exists. By de�nition the optimal stopping rule must satisfy

V (�1; �2(�1)) = V (�1)� c

Or (from 7)

y � 2(�1 + �2(�1))
r

=
V (�1)� c
1 + r

(8)

Intuitively, the expected value of replacement, V (�1) , is given by:

V (�1) = y � 2 � Ej�1 (�01 + �02)| {z }
(1) : expected �ow output

after replacement

(9)

+ Pr(�02 � �2(�01))| {z }
(2) : probability of

stopping

� y � 2 � Ej�1;�02��2(�01)(�01 + �02)
r| {z }

(3) : expected discounted value
if stopped after replacement

+

+ Pr(�02 > �2(�1))| {z }
(4) : probability of
replacing again

� V (�1)� c
1 + r| {z }

(5) : expected discounted value
if replacing again

There are two important points about this equation:
(i) The probability of stopping (2) includes the possibility that the small-

est distance �1 has changed to �
0
1, and the expected value if stopped (3) takes

this into account.
(ii) The probability of replacing again (4) and the expected discounted

value if replacing again (5) build on the fact that repeated replacement can
occur i¤ the smallest distance between the workers remained the same (fol-
lows from Lemma 1 in the previous section).
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We will show that equation (9) can be expressed as

V (�1) = y � (1
2
+ �1 +

�21
2
) (10)

+
(�1 + 2�2)y � 2�2(2�1 + �2)� 2�21

r

+(1� �1 � 2�2)
V (�1)� c
1 + r

1. First we show that expected �ow output (1) from equation 9 is y� 2 �
Ej�1 (�01 + �

0
2) = y� (12 + �1 +

�21
2
).

� Consider Figure 2. With probability 2 �
�
1
2
� �1

2

�
the new worker falls

outside the arc between the two incumbents (to the left or to the right),
and the expected sum of distances between all workers in this case will
be 2 �

�
�1 +

1
2
�
�
1
2
� �1

2

��
� With probability �1 the new worker will fall between the two incum-
bents, and the total sum of distances between all workers will be 2�1

Summing up, the total expected sum of distances between all workers
after replacement is:

2 � Ej�1 (�01 + �02) = 2 �
�
1

2
� �1
2

�
� 2 �

�
�1 +

1

2
�
�
1

2
� �1
2

��
+ �1 � 2�1 =

=
1

2
+ �1 +

�21
2

2. Then we show that the probability of stopping (2) and the expected
discounted value if stopped (3) in equation 9 above is:

Pr(�02 � �2(�01))�
y � 2 � Ej�1;�02��2(�01)(�01 + �02)

r
=
(�1 + 2�2)y � 2�2(2�1 + �2)� 2�21

r

� With probability �1 the new worker will fall between the two incum-
bents, in which case the smallest distance will fall, and by Lemma 1,
the �rm will stop. The total sum of distances between the workers in
this case will be 2�1. The expected discounted value in this case will
be y�2�1

r
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� With probability 2�2 the new worker falls outside the two incumbents
and below the threshold, and the �rm will stop. The expected distance
between the new worker and the closest incumbent is �2

2
, so that the

expected total sum of distances between the workers in this case will
be 2 �

�
�1 +

�2
2

�
:The expected discounted value in this case will be

y�2�1��2
r

Summing up:

Pr(�02 � �2(�
0
1)) �

y � 2 � Ej�1;�02��2(�01)(�01 + �02)
r

= �1 �
y � 2�1
r

+ 2�2 �
y � 2�1 � �2

r

=
(�1 + 2�2)y � 2�2(2�1 + �2)� 2�21

r

3. Finally we show that

Pr(�02 > �2(�1))
V (�1)� c
1 + r

= (1� �1 � 2�2)
V (�1)� c
1 + r

This comes from the fact that with probability (1� �1�2�2) the new worker
is above the �2 threshold. The �rm will keep replacing and pay the cost c
again.
We have thus fully derived equation (10).

Let us write:

(�1 + 2�2)y � 2�2(2�1 + �2)� 2�21
= (�1 + 2�2)(y � 2(�1 + �2)) + 2�

2

2 + 2�1�2

Hence we can re-write (10) as follows:

V (�1) = y � (1
2
+ �1 +

�21
2
) (11)

+
(�1 + 2�2)(y � 2(�1 + �2)) + 2�

2

2 + 2�1�2
r

+(1� �1 � 2�2)
V (�1)� c
1 + r
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Substituting out V (�1) and using (8), gives the rule (see Appendix A for
details):

c+
1

2
+
�21
2
� �1 � 2�2 =

2�1�2 + 2�
2

2

r
(12)

This cut-o¤ rule has a very intuitive interpretation:
The LHS of (12) represents net costs of replacing, evaluated at the thresh-

old (�2). If not replacing the worker, the total distance is given by 2(�1+
�2):When replacing the worker, the �rm expects to have a distance of 1

2
+

�1 +
�21
2
;(see derivation of equation 10 above). The �rm pays c when replac-

ing the worker. So the net costs are c+ the expected total distance with
replacement less the total distance without replacement. The net costs are
thus

c+
1

2
+
�21
2
+ �1 � 2(�1 + �2) = c+

1

2
+

�21

2
� �1 � 2�2

which is the LHS of (12).
The RHS of (12) represents the gains from replacement associated with

lower costs in all future periods if the draw is good.
With probability �1 the new worker will be between the two existing

workers who have a distance of �1 between them. The total distance between
the three workers is 2�1: Existing total distance is 2(�1+ �2), and the savings
in distance is thus 2�2. Multiplying this with the probability of the event; �1,
gives the �rst term in the nominator of the RHS of (12).
With probability 2�2 the worker is not between the existing workers but

within a distance of �2 from one of them. The expected distance of the new
worker to the nearest existing worker is �2=2 and to the other existing worker
it is �1 + �2=2. The per period cost savings is thus

2(�1 + �2)� [�1 +
�2
2
+ (�1 +

�2
2
)] = �2

Multiplying this with the probability of the event 2�2 gives the second term
of the RHS of (12).
We see from equation (12) that an increase in �1 reduces the net cost of

replacing (reduces the left-hand side) and increases the gain of replacement
(the right-hand side) This means that the higher is �1 the worse is the team
and the more the �rm is willing to replace. Thus �2(�1) is declining. Note
also that

@V (�1)

@�1
= �1 + r

r

�
1 +

�1(1 + r)

�1 + 2�2 + r

�
< 0 (13)
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Proposition 2 For �1 � ��, the optimal stopping rule �2(�1) is uniquely
de�ned by (12), where �� solves (12) for �1 = �2(�1).

The proof is given in Appendix B.
The intuition for optimal behavior is simple. The gain from replacing is

higher the higher is �1 (for a given �2), as the higher is the probability that
an improvement will take place, and the higher is the expected gain given
that an improvement takes place.

4.3 Turnover Dynamics With Optimal Stopping

The following �gure illustrates this optimal behavior:

Figure 3: Optimal Policy

The space of the �gure is that of the two state variables, �1 and �2: The
feasible region is above the 45 degree as �2 � �1 by de�nition. The downward
sloping line shows the optimal replacement threshold �2 as a function of �1:
With the replacement of a worker, the �rm may move up and down a

vertical line for any given value of �1 (such as movement between A, B and C
or between D, E and F). If the replacement implies a lower value of �1, this
vertical line moves to the left. This is what happens till the �rm gets into
the absorbing state of no further replacement in the shaded triangle formed
by the ��1 = �2(�

�
1) point, the intersection of �2(�1) line with the vertical axis,

and the origin (�1 = �2 = 0).
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The following properties of turnover dynamics emerge from this �gure
and analysis:
(i) At the NE part of the �1 � �2 space, �1; �2 are relatively high, output

is low, and the �rm value is low. Hence the �rm keeps replacing and there is
high turnover. Note that some workers may stay for more than one period in
the �rm when in this region. The dynamics are leftwards, with �1 declining,
but �2 may move up and down.
(ii) Above the �2(�1) threshold, left of �

�
1, newcomers may still be replaced,

but veteran workers are kept.
(iii) In the stopping region there is concentration at a location which is

random, with a �avor of New Economic Geography agglomeration models.
Thus �rms specialize in the sense of having similar workers. There is no
turnover, and output and �rm values are high.
(iv) Policy may a¤ect the regions in �1 � �2 space via its e¤ect on c: The

discount rate a¤ects the regions as well.
(v) These replacement dynamics imply that the degree of complementar-

ity between existing workers may change. This feature is unlike the contri-
butions to the match of the agents in the assortative matching literature,
where they are of �xed types.

4.4 Closing the Model

Finally, the model is closed by imposing a zero pro�t condition on �rms.
There are costs K � 3c to open a �rm. A zero pro�t condition pins down
the wage (w = W

3
):

Ej�1�2V (�1; �2;w; ey; c) = K (14)

As we have seen, the hiring rule is independent of w (since it is independent of
y). If y is su¢ ciently large relative toK, we know thatEj�1�2V (�1; �2;w; ey; c) >
K, and there exists a wage w� that satis�es (14). A formal proof of existence,
as well as su¢ cient conditions on the parameters that ensure existence and
production in each period, is given in Appendix C.

5 Exogenous Replacement

We now allow, with probability �, for one worker to be thrown out of the
relationship at the end of every period. If the worker is thrown out, the �rm
is forced to search in the next period.4 Thus, if the replacement shock hits,

4With minor adjustments of the model, replacement can be interpreted as a change of
position on the circle of one worker, due to learning to work better with other workers or,
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one of the workers, chosen at random, has to be replaced. The �rm can only
hire one worker in any period, and hence will not voluntarily replace a second
worker if hit by a replacement shock. If the shock does not hit, the �rm may
choose to replace one of its workers or not.
Suppose one worker is replaced by the �rm as above. The transition

probability for (�1; �2) was denoted by �(�1), and depends only on �1. We
refer to this as the basic transition probability.
The forced transition probabilities are the transition probabilities which

occur when one worker is forced to leave, to be denoted by �F (�1; �2). Which
of the three incumbent workers leaves is random: with probability 1=3 the
least well located worker leaves, in which case the transition probability is
�(�1); with probability 1=3, the second best located worker leaves, in which
case the transition probability is �(�2); with probability 1=3, the best located
worker leaves, in which case the distance between the two remaining workers
is min[�1 + �2; 1� �1 � �2]. It follows that the forced transition probabilities
can be written as

�F (�1; �2) =
1

3
�(�1) +

1

3
�(�2) +

1

3
�(min[�1 + �2; 1� �1 � �2]) (15)

The Bellman equation now reads:

V (�1:�2) = �(�1; �2) + �[�E
�FV1(�

0
1; �

0
2)� c] (16)

+(1� �)Emax[V (�1; �2); EV �(�
0

1; �
0

2)� c]]

The �rst term in the bracket shows the expected NPV of the �rm if the
�rm is hit by a replacement shock. The second term in the bracket shows
the expected NPV if the �rm is not hit by a replacement shock. It follows
directly from Proposition 4 in Stokey and Lucas (1989, p. 522) that the value
function exists.
With exogenous replacements, it is impossible to obtain a closed form

solution for V . At this point we therefore turn to simulations.

6 Simulations: Exploring the Mechanisms

We undertake simulations in order to explore the mechanisms inherent in the
model. This gives a sense of the model�s implications for worker turnover,
�rm age, �rm value and the connections between them. In particular, we
examine the properties of the resulting �rm value distributions and relate
them to turnover policy.

the opposite, the �souring�of relations.
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6.1 The Set-Up

When simulating the model we look at the full model, with both endogenous
and exogenous replacement and allowing for exogenous �rm exit. Exogenous
worker replacement occurs with a probability of �: If the latter does not
occur there is a decision on voluntary replacement. Both occur with a cost
c: The �rm exit shock occurs at the end of each period, after production has
taken place, at a given rate s. Let � denote the pure time preference factor.
When a �rm is hit by this shock it stops to exist and its value in the next
period is zero. Free-entry guarantees that in the next period this �rm will
be replaced by a new �rm, and the latter will pay an entry cost K in order
to get its �rst random triple of workers and start production. As long as the
shock does not hit, the �rm goes through periods of inaction and voluntary
or forced replacement. Thus, in a given period, there coexist young and old
�rms.
The value function is:

V (�1:�2) = �(�1; �2) + �[� �
h
E�

F

V (�01; �
0
2)� c

i
+(1� �) �max[V (�1; �2); E�V (�

0

1; �
0

2)� c]]

where � = �(1 � s). This value function can be found by a �xed point
algorithm. Appendix D provides full details.
When simulating �rms over time, we use the value function formulated

above, and subtract from it K = 3c in case a �rm is new-born in a particular
period.
We simulate 1000 �rms over 30 periods, and repeat it 100 times to elimi-

nate run-speci�c e¤ects. In the benchmark case, we set: y = 1; c = 0:01; r =
0:04 (the pure discount rate), � = 0:1; s = 0:1; K = 0:03:

6.2 Firms Turnover Dynamics Over Time

In each period, depending upon the realization of the shocks and the optimal
hiring decision, a �rm might be in one of four states: inactive (there was
no exogenous separation or �rm exit shock, and no voluntary replacement);
replacing voluntarily (there was no exogenous separation or �rm exit shock
and the �rm chooses to replace); replacing while forced (there was no �rm
exit shock but there was an exogenous separation shock); doomed (there is
a �rm exit shock and in the next period a new triple is drawn with a cost K
paid). The share of �rms in each of above states by periods is shown in the
following �gure.
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Figure 4: Shares of �rms in di¤erent states

Figure 4 shows that it takes about 10 periods for the simulated sample
to arrive at a regime in which the distribution of �rms by states is relatively
stable. Before that, there is a reduction in the share of �rms engaged in
voluntary replacement and an increase in the share of inactive ones, which
re�ects (temporary) arrival into the absorbing state. After period 10, when
almost all �rms have already experienced a re-start, as a result of the exit
shock occurring at a 10% rate, turnover becomes more stable. The �gure
embodies two main forces that are in action: the process of convergence
into the stopping region (disrupted from time to time by worker exits), and
the perpetual entry of new �rms with new triples drawn randomly. These
turnover dynamics of the model are very much in line with the �ndings in
Haltiwanger, Jarmin and Miranda (2010), whereby, for U.S. �rms, both job
creation and job destruction are high for young �rms and decline as �rms
mature.

6.3 The Distribution of Firm Values

The following �gures describe the cross-sectional distributions of log �rm
values, in selected periods, and the evolution of the moments of these distri-
butions over time.

18



0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

pr
ob

ab
ili

ty
 d

en
si

ty

period 1
period 5
period 10
period 20
period 30

Figure 5a: Cross-sectional log �rms values, by periods
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Figure 5b: Moments of cross-sectional log �rm values, by periods

Figures 5a and 5b indicate that mean �rm value rises and volatility rises
in the early periods.5 Not much changes after period 10. This is consistent
with the movement of �rms towards the SW corner of the state space �1� �2
in Figure 3, and the constant in�ow of new-born �rms with all kinds of

5The con�dence bands in the �gures are the standard deviations of the moments,
calculated over 100 runs.
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teams. With time, the sample becomes more polarized: a group of �rms
is concentrated in the stopping region and low-value entrants �ow in. As
a result, extreme values become more frequent and excess kurtosis goes up
(though it remains negative). Along the same lines, skewness turns more
strongly negative, so that the left tail becomes thinner and more spread out.

6.4 Firm Value and Age

We repeat the computation of the distributions and their moments but now
de�ne them over �rm age rather than over time. To construct the distribu-
tions of �rm value by age we looked for all periods and all �rms, when each
particular age was observed. For example, due to the �rm exit shock and the
entry of new �rms, age 1 will be observed not only for all �rms in the �rst
period, but also in all cases when a �rm exogenously left and was replaced
by a new entrant. In this manner we gathered observations of values for all
ages, from 1 to 30, and built the corresponding distributions.
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Figure 6a: Cross-sectional log �rm values, by age
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Figure 6b: Moments of cross-sectional log �rms value, by age

The patterns are essentially the same as in Figures 5a and b which have
related to time, not age, but here they re�ect the pure process of convergence,
disrupted from time to time by workers�exogenous exits, without the entry
of new-born �rms. The value of the �rm grows with age as a result of team
quality improvements, while the standard deviation is rather stable. As �rms
mature, more of them enter the absorbing state, with relatively high values,
and at the same time there are always unlucky �rms that do not manage to
improve their teams su¢ ciently, or which have been hit by a forced separation
shock. Therefore the distribution becomes more and more skewed over time.
Excess kurtosis �uctuates.
Table 1 below presents further results on the connection between �rm

value and �rm age. Here we look only at a simulated subsample of �rms
which have survived until the 30th period. There have been 45 such �rms in
our simulation. The estimated equation is:

ln(V )t = c0 + c1 � ln(t) (17)

where ln(V )t is the average logged value of �rms at age t, t = 1; 2; :::; 30:
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Table 1
The Relation Between Firm Value and Age

Regression Results of Simulated Values, 1000 �rms

c1 0.05
(0.01)

c0 1.37
(0.02)

R2 0.62

The coe¢ cients are highly signi�cant and imply a positive relation, illus-
trated below:
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Figure 7: Predicted �rm value (logs) and �rm age

Figure 7 shows that overall, despite exogenous separation shocks, �rms
tend to increase in value as they mature, due to the improvement of their
teams�quality.

6.5 The Role of Model Parameters

The core parameters of the model at the benchmark are the worker replace-
ment cost, c = 0:01; the annual rate of interest, r = 0:04; the exogenous
worker replacement rate, � = 0:1; and the exogenous �rm destruction rate,
s = 0:1: In addition, we set the cost of entry at K = 3c and the �ow out-
put at y = 1. Changes in these parameters a¤ect the values of the �rms
both directly, through the value function and exogenous random events, and
indirectly, through adjustments in the optimal hiring decisions. In what fol-
lows we analyze changes in these core parameters. Table E1 in Appendix E
presents the moments of the log �rm value distributions for given changes in
the parameters relative to their benchmark values.
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The following patterns emerge:
Increases in the cost of replacement c or in the interest rate r are illus-

trated in Figure 8a (and reported in rows 2-6 of Table E1):
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Figure 8a: e¤ects of c and r

These two di¤erent increases a¤ect the values distribution similarly: the
mean value goes down, the coe¢ cient of variation goes up, skewness be-
comes more negative and excess kurtosis goes up from negative to positive.
Both higher costs of replacement and costs of time make the �rms retain
their teams rather than improve them; �rms enter the stopping region more
quickly, with worse teams than before and the mean value goes down. As
�rms tend to stay with their current, randomly-drawn, teams, �rm values be-
come more dispersed. Along the same lines, extreme values become relatively
more frequent and excess kurtosis goes up. As inaction becomes optimal for
so many �rms, �rms values become more concentrated above the mean. At
the same time, in any period there are always unlucky �rms, which have just
obtained a very bad team as a result of the � or s shock. Hence skewness
becomes more negative. The sensitivity to the interest rate is higher than
to changes in replacement costs. As described, under higher c or higher r
the distribution has a longer left tail, lower mean, and fatter and longer tails
relative to the benchmark.
Increases in the exogenous worker separation rate � are illustrated in

Figure 8b (and reported in rows 7-9 of Table E1).
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Figure 8b: e¤ects of � and s

Increased separation depresses the mean value, slightly increases the co-
e¢ cient of variation, make the skewness less negative and kurtosis more neg-
ative. The possibility of a worker�s exogenous exit is a burden on the �rms,
limiting their control over teams and the possibility to improve them. Hence
the decrease in mean value. With optimization repeatedly disrupted by the
shock, less �rms are able to achieve the high-value steady state in each given
period, there are less values concentrated above the mean, and skewness be-
comes less negative. Kurtosis becomes more negative as � grows, implying
that the bulk of the dispersion now comes from moderate deviations from the
mean. Such a separation shock may hit any �rm, occasionally throwing some
�rms out of the stopping region, or bringing other �rms into it; the sample
becomes more homogenous in terms of values, with extreme deviations from
the mean less frequent, hence the negative excess kurtosis.
The simulated increases in the exogenous �rm destruction rate s; also

shown in Figure 8b, as well as in rows 10-12 in Table E1, bring the mean
value down more than threefold, the coe¢ cient of variation jumps more than
tenfold, skewness becomes more negative and kurtosis becomes less negative.
As there is a positive probability for any �rm of being closed down in the
next period, and due to the constant in�ow of new-born �rms which have
not yet started to improve their teams, the mean value in the simulated
cross-section goes down as s goes up. The in�ow of random worker triples
increases dispersion drastically, so the coe¢ cient of variation goes up. As
there are less �rms in the stopping region and extreme values become more
frequent, excess kurtosis goes up. The in�ow of new �rms with all kinds of
values, including extremely low ones, makes the left tail of the distribution
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longer and the skewness more negative.
Going the other way and shutting down exogenous worker separation and

�rm destruction, � = s = 0; presented in row 13 of Table E1, has �rms just
smoothly converge to the stopping region. Removing exogenous uncertainty
improves the mean value drastically and it is higher than in any other speci�-
cation. The coe¢ cient of variation is low, as a result of massive convergence.
Likewise, excess kurtosis is substantially negative. Skewness is slightly neg-
ative as there is no drag on value as a result of some unlucky �rms being hit
by a shock or replaced, with all the �rms allowed to converge (and they do
so by period 30).
To sum up, each of the parameters above has an impact on the process

of convergence into the stopping region. The factors that facilitate stopping,
such as high c and r or low � produce higher concentration of �rms in the
stopping region and therefore make skewness more negative. The replace-
ment of old �rms by new ones does not impact the process of convergence
directly. It adds new triples everywhere, thereby lengthening the left tail of
the distribution and adding more extreme values �skewness becomes more
negative and excess kurtosis goes up. The factors that impede �rms, namely
high c; high r, high � or high s decrease the mean value. The factors that
make the �rms stop quickly wherever they are (high c or r), or add new
triples exogenously, such as high s; make the values more dispersed, distrib-
ution tails fatter and excess kurtosis higher.

6.6 Comparing the Simulated Model to the Data

In order to see how the simulated value distributions compare to the data,
we take the 2010 Compustat data sample of 4,293 U.S. �rms. We use SIC
codes to select �rms belonging to industries in which human capital is more
important in creating value than physical capital, namely �rms in �nancial
services, health care and IT. This leaves us with 1,440 �rms. We divide �rm
value by employment and take logs in order to be able to compare the data
to log �rm values in our model, where all �rms have the same number of
employees.
The properties of the value distributions in the data vary greatly with the

size of the �rms. The sample is highly heterogenous in terms of employment:
there are lots of small �rms, with employment less than 100 workers, and
there are huge �rms, with employment above 400,000, so that mean employ-
ment is around 6,000 workers. The (approximate) distribution of �rms in
the sample by employment and the corresponding moments of their value
distribution are given in Table 2a.
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Table 2a
Firms Values by Employment Quantiles

No. employees Quantile mean c.o.v. skewness ex. kurtosis

< 100 1 14:32 0:11 �0:01 0:18
100 �350 2 13:44 0:10 0:00 �0:33
350 �1100 3 13:25 0:10 �0:22 �0:33
1100 �4500 4 12:92 0:11 �0:24 �0:21
> 4500 5 12:36 0:13 �0:56 0:15

All �rms 13:25 0:12 �0:16 0:49

As seen in Table 2a, mean value per worker declines with the size of the
�rms, the coe¢ cient of variation goes up, and skewness becomes more nega-
tive. Excess kurtosis is positive in the smallest and in the biggest �rms, and
negative in �rms in the three middle quantiles. The full sample is moderately
left-skewed and has clear positive excess kurtosis.
The table suggests that the distribution of value per worker in the �rms in

the middle of the size range is rather close to what most speci�cations of the
model predict (see Figure 5b above). In addition, the simulated distribution
under high costs (see row 3 in Table E1) is close to the distribution of values
in the upper size quantile. When we merge the three middle quantiles, that
is, cut out the 20% smallest and 20% biggest �rms, we get moments close to
the simulated ones. Even more similarities emerge when we cut 33% from
both ends. Table 2b report these comparisons.

Table 2b
Truncated Data Sample and the Simulated Model

Subsample c.o.v. skewness excess kurtosis
without 20% biggest and 20% smallest 0:10 �0:18 �0:20
without 33% biggest and 33% smallest 0:10 �0:24 �0:34
benchmark model6 0:13 �0:47 �0:40
low interest rate 0:10 �0:39 �0:53
low exogenous worker replacement rate 0:12 �0:58 �0:27
In Figure 9 we present the value distributions for two cross-sections of the

data (33% truncation, second row in Table 2b, and biggest �rms, the upper
quantile in Table 2a) and two simulated distributions (rows 1 and 3 in Table
E1):

6�benchmark�refers to the speci�cation of row 1 in Table E1, �low interest rate�refers
to row 4 in Table E1, �low exogenous worker replacement rate� refers to row 8 in Table
E1.
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Figure 9: Distribution of ln V �simulation and data

Overall, the same general pattern prevails: the simulation is more neg-
atively skewed than the data and has a lower (i.e., more negative) excess
kurtosis, meaning that extreme values are less frequent than in the data.
The two main mechanisms in the model, namely the convergence of �rms
into the stopping region on the one hand and the perpetual in�ow of ran-
dom new-born �rms on the other, generate these di¤erences. When �rms
converge to the stopping region, and new-born �rms appear in the left tail of
the distribution, skewness becomes more negative. In this respect, in order
to get closer to the data and to moderate skewness, we would like �rms to
converge less (higher �) and the left tail to be less long and fat, compared
to the group in the stopping region (low s). On the other hand, in order to
achieve higher excess kurtosis we would like the simulated sample to become
less bounded, with extreme values being more frequent. This means more
�rms in the absorbing state in each period and a longer and fatter left tail,
which requires lower � and higher s:
That said, our goal is not to �t the data but rather to show that despite
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being highly stylized, the model has driving forces which produce distribu-
tions of �rm values that are not far o¤ the empirical ones. Indeed, the �gures
and the tables above suggest that when parameters are set at plausible levels,
the model works quite well for middle-sized �rms.

7 Discussion

Our model builds on several strong assumptions regarding technology, wage
determination, search behaviour, etc. We turn now to a brief discussion of
these assumptions in light of the analysis.
One important underlying assumption is that workers are horizontally

but not vertically di¤erentiated. From an ex ante perspective, workers are
identical, while ex post the workers may work more or less well together.
Our assumption re�ects a view that an interesting part of team formation is
related to horizontal di¤erences, i.e., �nding workers that work particularly
well together. Of course �nding the correct mix of workers with respect to
productivity (ability, �types�) may also be important. However, we would
expect that workers of di¤erent types segregate more easily in the labor
market, searching in di¤erent markets and requiring di¤erent wages.
Our second assumption is the use of the Salop circle. We choose the Salop

circle because it easily captures the notion that if A works well with B and B
with C, then A and C are also likely to work well together. There may exist
other stochastic structures that capture the same type of regularities, but the
Salop structure does so in a particularly nice and tractable way. Note that
we could alternatively let output depend positively on the di¤erence between
the workers, in order to capture a love of variation. To some extent this may
be a matter of interpretation of what a good match is.
A third assumption we make is that distances between the agents are

measured going via the middle worker. Above we motivated this by arguing
that the �rm chooses the middle worker as the focal point. For instance,
if location refers to physical location, the �rm is placed at the location of
the middle worker. In this context the results of the afore-cited MIT study
results, reported in Pentland (2012), justify this modelling choice. If the �rm
has to choose a modus operandi, which may be represented as a location on
the circle, it also chooses the location of the middle worker.7 Furthermore,

7In these cases one may argue that it is only the sum of the distances from the two
peripheral to the middle worker that matters, not the distance between the two peripheral
workers. However, this is not important, as it is only a matter of scaling. If only the
distance to the middle worker matters, total distance is �1 + �2, while in our case it is
2(�1 + �2).
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without this assumption, the shortest distance between the two peripheral
workers will sometimes not go through the middleman, and in these cases
total distance is independent of the agents�position on the circle. This is
against the spirit of our paper, and in addition it is analytically cumbersome.
Note also that if �2 < 1=4, the shortest distance between the peripheral work-
ers will always go via the middle worker in the region close to the stopping
region.
We assume that wages are independent of match quality. As mentioned

above, this is consistent with a competitive market where �rms bid for ex
ante identical workers prior to knowing the match quality. An alternative
formulation would be to allow for bargaining, in which case part of the surplus
from a good match would be allocated to the worker. This may give rise to
an interesting hold-up problem, if the �rm pays the entire cost of replacing
the worker and only gets a fraction less than one of the return in terms
of a better match. In addition, the workers may receive rents, which may
be dissipated through unemployment. This would alter the nature of the
equilibrium. Furthermore, in the present version of the model, workers have
no incentives to do on-the-job search, as wages are the same across �rms.
With wage bargaining, workers may have an incentive to search for a new
job, and bargaining may therefore lead to on-the-job search.
Throughout we have assumed that the e¢ ciency of a given team stays

constant over time. Although a natural assumption as a starting point, one
may think that the quality of a teammay develop over time. As the employees
get to know each other better, their ability to communicate and collaborate
may improve. On the other hand, good relationships may get sour over time.
Introducing dynamics of team quality may lead to interesting hiring patterns.
For instance, a �rm that has been passive for a while may start a replacement
frenzy if the relationship suddenly sours. This is on our agenda for future
research.

8 Conclusions

The paper has characterized the �rm in its role as a coordinating device.
Thus, output depends on the interactions between workers. The paper has
derived optimal policy, using a threshold on a state variable and allowing
for endogenous hiring and �ring. Firm value emerges from optimal coordi-
nation done in this manner and �uctuates as the quality of the interaction
between the workers changes. Simulations of the model generate non-normal
�rm value distributions, with negative skewness and negative excess kurtosis.
These moments re�ect worker turnover dynamics, whereby a large mass of
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�rms is inactive in replacement, having attained good team formation, while
exogenous replacement and �rm exit induce dispersion of �rms in the region
of lower value. Future work will examine alternative production functions,
learning and training processes, and wage-setting mechanisms within this
set-up.
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Appendix A. Derivation of Equation (12)

Substituting (8) into (11) gives

y � 2(�1 + �2(�1))
r

(1 + r) + c = y � (1
2
+ �1 +

�21
2
) (18)

+
(�1 + 2�2)(y � 2(�1 + �2)) + 2�

2

2 + 2�1�2
r

+(1� �1 � 2�2)
y � 2(�1 + �2(�1))

r

Collecting all terms containing y � 2(�1 + �2(�1)) on the left-hand side gives

y � 2(�1 + �2(�1))
r

[1 + r � (�1 + 2�2)� (1� (�1 + 2�2))] + c� y

= �(1
2
+ �1 +

�21
2
) +

2�
2

2 + 2�1�2
r

which simpli�es to

�2(�1 + �2(�1)) + c = �(
1

2
+ �1 +

�21
2
) +

2�
2

2 + 2�1�2
r

Collecting terms give

1

2
+
�21
2
� �1 � 2�2(�1) =

2�
2

2 + 2�1�2
r

which is (12).
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Appendix B. Proof of Proposition 2

We repeat the cut-o¤ equation for convenience

c+
1

2
+
�21
2
� �1 � 2�2 =

2�1�2 + 2�
2

2

r
(19)

If �2 = 0, the left-hand side of (19) is strictly positive while the right-
hand side is zero (since �1 � 1=3 by construction). As �2 !1, the left-hand
side goes to minus in�nity and the right-hand side to plus in�nity. Hence
we know that the equation has a solution. Since the left-hand side is strictly
decreasing and the right-hand side strictly increasing in �2, we know that the
solution is unique.
In the text we have already shown that �2(�1); if it exists, is decreasing

in �1. It follows that �
� can be obtained by inserting �2 = �1 = �

� in (19).
This gives

c+
1

2
+
��2

2
� �� � 2�� = 2���� + 2��2

r

Hence �� is the unique positive root to the second order equation

c+
1

2
� ��28� r

2r
� 3�� = 0
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Appendix C. Proof of Existence of Equilibrium

De�ne
V � Ej�1�2V (�1; �2; 0; ey; c)

Given our assumption that the �rm always produces until it is destroyed, it
follows that

Ej�1�2V (�1; �2;w; ey; c) = V � W
r0

where r0 = r=(1 + r) and where, as above, W = 3w. By assumption, V > 0
(see below). It follows that there exists a uniqueW that solves the zero-pro�t
condition given by

V � W
r0
= K

The solution is given by W = r0(V �K):
We will give conditions on parameters that ensure that V > 0;and that

�rms, if entering, will produce even after the worst possible draws. The
supremum of per-period output is ey (obtained with �1 = �2 = 0). It follows
that

V <
ey
r0

Suppose

K >
4

3

1

r0
(20)

From the zero pro�t condition it then follows that

W = r0(V �K) < ey � 4=3 (21)

The in�mum of per period pro�t is �inf = ey � 4=3 � W (obtained when
�1 = �2 = 1=3). From (21) it follows that

�inf = ey � 4=3�W > 0

Hence a su¢ cient condition for �rms to operate after the lowest possible
draws is that (20) is satis�ed.
We assume that the lower bound on wages is thatW � 0. To ensure that

V > K, note that

V >
ey � 4=3
r0

since ey � 4=3 is the lowest per period output and a �rm can always choose
not to replace. Entry occurs in equilibrium if and only if it is pro�table to
enter when W = 0. Hence a su¢ cient condition for entry to occur i is thatey�4=3
r0 > K or that ey � r0K + 4=3 (tighter bounds can also be found).
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Appendix D. The Simulation Methodology

The entire simulation is run in Matlab with 100 iterations. In order to
account for the variability of simulation output from iteration to iteration,
we report the average and the standard deviation of the moments and the
probability density functions, as obtained in 100 iterations.

Calculating the Value Function

We �nd the value function V numerically for the discretized space (�1; �2),
using a �xed-point procedure. First we guess the initial value for V in each
and every point of this two-dimensional space; we then mechanically go over
all possible events (exit, in which case the value turns zero, forced or volun-
tary separation, with the subsequent draw of the third worker) to calculate
the expected value in the next period, derive the optimal decision at each
point (�1; �2), given the initial guess V; and thus compute the RHS of the
value function equation below:

V (�1:�2) = �(�1; �2)+�

"
s � 0 + (1� s) �

 
� �
h
E�

F
V (�01; �

0
2)� c

i
+(1� �) � Emax[V (�1; �2); E�V (�

0

1; �
0

2)� c]

!#
(22)

Next, we de�ne the RHS found above as our new V and repeat the calcula-
tions above. We iterate on this procedure till the stage when the discrepancy
between the V on the LHS and the RHS is less than the pre-set tolerance
level.
The mechanical steps of the program are the following:
1. We assume that each of �1; �2 can take only a �nite number of values

between 0 and 1. We call this number of values BINS_NUMBER and it may
be changed in the program.
2. However, not all the pairs (�1; �2) are possible, as by de�nition �2 � �1

and �2 � 1
2
� �1

2
(the latter ensures that the distances are measured �correctly�

along the circle). We impose the above restriction on the pairs constructed
earlier, and so obtain a smaller number of pairs, all of which are feasible. Note
that all the distances in the pairs are proportionate to 1/BINS_NUMBER
3. In fact, the expected value of forced and voluntary replacement,

Eq
F
V (�01; �

0
2) and EV

q(�
0

1; �
0

2), di¤er in only one respect: when the replace-
ment is voluntary, two remaining workers are those with �1 between them,
whereas when the replacement is forced, it might be any of the three: �1; �2
or min(( �1 + �2); 1 � ( �1 + �2)), with equal probabilities. In the general
case, if there are two workers at a distance �, and the third worker is drawn
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randomly, possible pairs in the following period may be of the following three
types: (i) � turns out to be the smaller distance (the third worker falls rel-
atively far outside the arch), (ii) � turns out to be the bigger distance (the
third worker falls outside the arch, but relatively close) (iii) the third worker
falls inside the arch, in which case the sum of the distances in the next period
is �. In the simulation we go over all possible pairs to identify the pairs that
conform with (i)-(iii). Note that because all the distances are proportion-
ate to 1/BINS_NUMBER, it is easy to identify the pairs of the type (iii)
described above. This can be done for any �, whether it is �1; �2 or min((
�1 + �2); 1� ( �1 + �2))
4. Having the guess V , and given that all possible pairs are equally

probable, we are then able to calculate the expected values of the �rm when
currently there are two workers at a distance �. Call this value EV (�). Then,
if there is a �rm with three workers with distances (�1:�2), the expected value
of voluntary replacement is EV (�1), and expected value of forced replace-
ment is 1=3�EV (�1)+1=3�EV (�2)+1=3�EV (min((�1 + �2); 1� (�1 + �2))) :
Thus we are able to calculate the RHS of equation ( 22) above and compare
it to the initial guess V .
We iterate the process till the biggest quadratic di¤erence in the values

of LHS and RHS, over the pairs (�1; �2); of equation (22) is less than the
tolerance level, which was set at 0.0000001.

Dynamic Simulations

Once the value function is found for all possible points on the grid, the
simulation is run as follows.

1. The number of �rms (N) and the number of periods (T ) is de�ned. We
use N = 1000; T = 30:

2. For each �rm, three numbers are drawn randomly from a uniform dis-
tribution U [0; 1] using the Matlab function unifrnd.

3. The distances between the numbers are calculated, the middle worker
is de�ned, and as a result, for each �rm a vector (�1; �2) is found.

4. For each �rm, the actual vector (�1; �2) is replaced by the closest point

on the grid found above
�e�1;e�2� :

5. According to
�e�1;e�2�, using the calculations from previous section, we

assign to each �rm the value and the optimal decision in the current
period.
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6. It is determined whether an exit shock hits. If it does, instead of the
current distances of the �rm, a new triple is drawn in the next period.
If it does not, it is determined whether a forced separation shock �
hits. If � hits, a corresponding worker is replaced by a new draw and
distances are recalculated in the next period. If it does not, and it is
optimal not to replace, the distances are preserved for the �rm in the
next period, as well as the value. If it is optimal to replace, the worst
worker is replaced by a new one, distances are re-calculated in the next
period, together with the value.

Steps 4-6 are repeated for each �rm over all periods.
As a result, we have a T by N matrix of �rm values. The whole process is

iterated 100 times to eliminate run-speci�c e¤ects. We also record the events
history, in a T by N matrix which assigns a value of 0 if a particular �rm was
inactive in a particular period,1 if it replaced voluntarily, 2 if it was forced
to replace, and 3 if it was hit by an exit shock and ceased to exist from the
next period on. We use this matrix to di¤erentiate �rms by states and to
calculate �rms�ages.
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9 Appendix E. Changes in Parameters

Table E1
The E¤ects of Changes in Parameters

Parameters Moments of ln(V) in period 30
c r � s mean coef. of var. skewness excess kurtosis

1 0:01 0:04 0:1 0:1 1:46 0:13 �0:47 �0:40
2 0:05 �8 � � 1:45 0:14 �0:55 �0:28
3 0:10 � � � 1:44 0:16 �0:68 0:06

4 � 0:01 � � 1:60 0:10 �0:39 �0:53
5 � 0:04 � � 1:46 0:13 �0:47 �0:40
6 � 0:10 � � 1:15 0:20 �0:72 0:02

7 � � 0 � 1:73 0:11 �0:67 �0:04
8 � � 0:05 � 1:58 0:12 �0:58 �0:27
9 � � 0:15 � 1:46 0:13 �0:41 �0:48
10 � � � 0 2:82 0:02 �0:21 �0:52
11 � � � 0:05 1:86 0:07 �0:41 �0:40
12 � � � 0:15 1:09 0:22 �0:53 �0:32
13 � � 0 0 3:11 0:02 �0:12 �0:49

The implications of these changes are discussed in Sub-section 6.5.

8As in the benchmark, row 1.
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