
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


No-Betting Pareto Dominance∗

Itzhak Gilboa†, Larry Samuelson‡, and David Schmeidler§

December 9, 2012

Abstract

We argue that, in the presence of uncertainty, the notion of Pareto

dominance is not as compelling as under certainty. In particular, vol-

untary trade that is based on differences in tastes is commonly ac-

cepted as favorable, because no agent involved in it can be wrong

about her tastes. By contrast, voluntary trade that is based on in-

compatible beliefs may indicate that at least one agent is wrong about

her beliefs. We propose a weaker, No-Betting, notion of Pareto domi-

nation, which requires, on top of unanimity of preference, the existence

of shared beliefs that can rationalize such preference for each agent.
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No-Betting Pareto Dominance

1 Introduction

1.1 Motivation

Standard economic lore suggests that free trade is a good thing. Voluntary

trade improves everyone’s lot, at least if the latter is evaluated by the revealed

preference paradigm. Moreover, barriers to trade lead to Pareto-inefficient

outcomes in realistic and robust examples. Thus, the absence of certain

markets is often criticized as a hindrance to optimality; should these markets

come into being, Pareto-improving allocations would become feasible.

This paper addresses a difficulty in this line of reasoning, when applied to

trade under uncertainty. Specifically, in the absence of objective probabilities,

we find this argument in favor of free trade much weaker than it is when all

alternatives are certain, or at least have known distributions. Consider the

following examples.

Example 1. Mary and John have one banana and one mango each. Their

utility functions are linear in quantities of the two goods, but Mary prefers

bananas, and John prefers mangos. To be concrete, Mary is indifferent be-

tween 1 unit of banana and 2 units of mango, and John is indifferent between

2 units of banana and 1 unit of mango. In the absence of a market, they can

only consume their initial endowments. In the competitive equilibrium of

this simple economy, they obtain a Pareto optimal allocation in which Mary

consumes only bananas and John consumes only mangos. ¤

Example 2. Ann and Bob have one dollar each. There are two states of

the world: in state 1 the price of oil a year from now is above $100 a barrel,

and in state 2 it is below $100 a barrel. Ann and Bob are risk neutral. Ann

thinks that state 1 has probability 23 and Bob thinks state 1 has probability
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13. If there are no financial markets, Ann and Bob will have to consume

their initial endowments only, namely $1 whatever is the price of oil in a

year. In the competitive equilibrium of this simple economy, they obtain a

Pareto optimal allocation in which Ann has no money in state 2 and Bob

has no money in state 1. ¤

Example 3. Ruth is a young computer scientist with an idea for a start-

up company. If successful, the company would net well over $10 million.

Ruth assigns to this event a probability of 90% and she seeks investors. She

approaches Tom, who runs a venture capital fund, asking for seed money of

$100,000. Tom is somewhat amused by Ruth’s optimism. Still, her idea is

promising and he believes that she will succeed with probability of 10%. He

decides to take the risk and make the investment. ¤

Let us first analyze the first two examples. Clearly, they map to the same

Arrow-Debreu (1954) general equilibrium model: there are two goods {1 2},
and two agents { }; the utility functions are given by

(1 2) =
2

3
1 +

1

3
2

(1 2) =
1

3
1 +

2

3
2

and the initial endowments are

 =  = (1 1)

In equilibrium, goods one and two trade one-for-one, and person  con-

sumes both units of good 1 while person  consumes both units of good 2.

This equilibrium is Pareto optimal, and Pareto dominates the initial alloca-

tion.

However, it is not obvious that Pareto domination has the same meaning

in both examples. In Example 1, there is no uncertainty and the differences

between the two consumers are only in tastes. If Mary prefers bananas and
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John prefers mangos, they are better off when they switch one banana for

one mango. By contrast, in Example 2 Ann and Bob are both better off, but

only because they have different subjective beliefs about the price of oil in

the future.

Evidently, in Example 2 Ann and Bob cannot both be right: if the prob-

ability of state 1 is 23, it cannot be 13 as well. One may wonder what is

meant by this probability in the first place. Perhaps Ann and Bob should not

have probabilistic beliefs over the future price of oil. But if they do, and if

these beliefs have any concrete meaning, then these beliefs are incompatible:

at least one of them is wrong. The unanimous preference for trade in this

example follows from the fact that the difference in beliefs “cancels out” the

difference in tastes.

Next, contrast Example 2 with Example 3. In both cases uncertainty is

involved. Moreover, in both cases the agents who trade entertain different

subjective beliefs, and thus they cannot both be right. However, there are

important differences between the two examples: in Example 2 the agents

are not exposed to risk a priori. Each has an endowment that is risk-free,

that is, she is “fully-insured” against the source of uncertainty. By contrast,

in Example 3 one agent bears risk a priori: Ruth has an asset that will

be worth a lot in one state and little in another, and trade allows her to

share this risk with Tom. Therefore, Example 2 has the flavor of a pure bet,

whereas Example 3 does not. Another distinction between the two examples

is that in Example 2 the difference in beliefs is crucial for trade to take place:

one cannot come up with a joint prior belief that would make both Ann

and Bob better off by trading. This is not the case in Example 3: even

though the agents disagree on beliefs, one could assume, for the sake of the

argument, that Tom shares Ruth’s optimism: if he is willing to invest under

his moderate assessment of the probability of success, he would definitely be

willing to invest were his beliefs more optimistic. Thus, Example 3 can be

justified as voluntary trade between agents who are not necessarily wrong
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about their beliefs.

1.2 No-Betting Pareto

This paper proposes a refined notion of Pareto domination for uncertain allo-

cations. Specifically, we wish to distinguish between Pareto domination that

hinges on incompatible beliefs and Pareto domination that can be justified

by shared beliefs. We do not take issue with Pareto domination under cer-

tainty (as in Example 1). Also, we find Pareto domination compelling under

uncertainty, if agents’ preferences can be justified not only according to their

actual, potentially different beliefs, but also according to hypothetical shared

beliefs (as in Example 3). However, we argue that Pareto domination is less

compelling when, in the face of uncertainty, unanimous preference for one

alternative over another can only be justified by variability in beliefs. As we

show, these situations are closely related to pure bets (as in Example 2).

The difficulty with Pareto domination that results from different beliefs

has been discussed by various authors over the years (see a brief survey in

the next sub-section). Recently, with the growing sophistication of financial

assets, and especially following the financial crisis that started in 2008, there

is a growing literature on the topic.

Some of this literature focuses on agents’ inability to comprehend the risks

they are facing, or on psychological phenomena such as over-confidence. We

do not think that the problem with Pareto domination is restricted to agents

who are irrational in one way or another. There are many situations in which

rationality does not single out particular beliefs, and in those circumstances

there will be agents who may wish to trade based on differences in their

beliefs. In other words, agents need not be confused or over-optimistic in

order to engage in such trade; it suffices that there be some dispersion in

beliefs for the market to “find” the agents who are willing to trade.1

1For similar reasons, it is not obvious that rationality necessitates Bayesian beliefs.

See Gilboa, Postlewaite, and Schmeidler (2008, 2009, 2010) and Gilboa, Lieberman, and
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We conclude this section with a survey of the literature. We then present

our model and the refined notion of Pareto domination in Section 2. Section

3 provides two characterizations of No-Betting-Pareto domination: the first

identifies those trades that are allowed by our refined definition, whereas the

second shows that the trades that are excluded by our definition have a flavor

of pure betting. Section 4 comments on properties of the No-Betting-Pareto

domination, showing that it is, in general, not transitive, but that its tran-

sitive closure also cannot favor bets, and commenting on its computability.

Section 5 comments on the relationship between the concept presented here

and utilitarian aggregation. Finally, Section 6 concludes.

1.3 Related Literature

Many people have been bothered by the interpretation of Pareto domina-

tion when beliefs differ. The difference between trade as in Examples 1 and

2 above was already pointed out by Stiglitz (1989), minimizing the impor-

tance of Pareto inefficiency that might result from taxation of financial trade.

Mongin (1997) referred to Pareto domination as in Example 2 as spurious

unanimity.

Indications that it is more difficult to aggregate preferences under sub-

jective uncertainty than under either certainty or risk have also appeared

in the social choice literature. Harsanyi’s (1955) celebrated result showed

that, in the context of risk (that is, known, objective probabilities), if all

individuals as well as society are von-Neumann-Morgenstern expected utility

maximizers (von Neumann and Morgenstern, 1944), a mild Pareto condition

implies that society’s utility function is a linear combination of those of the

individuals. When probabilities are not given, the literature typically resorts

to Savage (1954), who provided an axiomatic justification of subjective ex-

pected utility maximization, namely, the maximization of a utility function

Schmeidler (2009). However, we use here “rationality” in the common sense, namely,

satisfying Savage’s axioms.
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according to a probability measure, where both the utility and the probabil-

ity are derived from preferences. However, Hylland and Zeckhauser (1979)

and Mongin (1995) found that an extension of Harsanyi’s theorem to the case

of uncertainty cannot be obtained. An impossibility theorem shows that one

cannot simultaneously aggregate utilities and probabilities in such a way that

society will satisfy the same decision theoretic axioms as the individuals.

Gilboa, Samet, and Schmeidler (2004) (hereafter GSS) argue that, due to

the spurious unanimity problem, Pareto domination is not compelling in the

context of subjective beliefs. They offer the example of a duel between two

gentlemen, each of which entertains subjective beliefs that he is going to win

(and kill the other) with probability 90% (and die with probability 10%).

Each would flee town if he thought that his probability of dying exceeded

20%. But, optimistic as they are, they both prefer a duel to a non-duel.

Should society adopt these preferences, as the Pareto condition suggests?

GSS argue that society should not agree with these preferences only because

of the Pareto argument. While the two individuals agree, their agreement

results from a “cancelling out” of differences in tastes and differences in

beliefs. There is no way to get them to agree on the preferred choice as well

as on the reasoning that leads to it. If they were to agree on the reasoning

(and the probabilities), the differences in tastes would imply that at least

one of them would prefer to cancel the duel.2

Recently, this difficulty with the notion of Pareto domination has been

noted by several authors, partly in the context of trade in financial markets.

Weyl (2007) points out that arbitrage might be harmful in case agents are

“confused”. Posner and Weyl (2012) call for a regulatory authority, akin to

the FDA, that would need to approve trade in new financial assets, guaran-

teeing that it does not cause harm. This problem is also discussed in Kreps

2GSS weaken the Pareto condition, so that it only applies to choices over which there

is no disagreement over probabilities. GSS show that this weak condition is sufficient, in

the presence of certain conditions, to derive social utility and social probability that are

averages of the individual ones.
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(2012). Brunnermeier, Simsek, and Xiong (2012) (hereafter BSX) develop a

“belief-free” welfare criterion for markets in the presence of individuals who

might entertain wrong beliefs. In particular, applying their criterion to fi-

nancial markets with over-optimistic traders can result in speculative trade

becoming normatively inferior.3

Our approach differs from that of BSX in that they propose a new con-

cept of domination, by which one can say, in cases of pure betting (as in

Example 2 above), that no-betting dominates betting. Thus, their definition

of belief-free domination may override Pareto domination: while all agents

may wish to bet, the BSX belief-free criterion may have opposite prefer-

ences. By contrast, we only weaken Pareto domination so that it will no

longer be true that betting dominates no-betting. BSX’s approach is closer

to the social choice literature, in attempting to come up with a reasonable

social preference relation that, while not necessarily complete, will be able to

rank alternatives that are not ranked by standard Pareto domination. Our

approach is closer to general equilibrium analysis, in that we do not attempt

to rank alternatives that are incomparable according to Pareto domination.

Another difference between the two approaches is that BSX consider only

beliefs in the convex hull of the agents’ beliefs. This reflects an implicit

supposition that the “true” probability measure is in this set, that is, that

it cannot be the case that all agents are wrong. By contrast, we make no

implicit or explicit reference to any probability being “true”. We allow any

conceivable probability to justify trade, as long as it can do so simultaneously

for all agents.

2 The Model

There is a set of agents  = {1  }, a measurable state space (Σ),
and a set of outcomes . An outcome specifies all the aspects relevant to

3See also Simsek (2012), who discusses financial innovation where trade is motivated

both by risk sharing and by speculation.
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all agents. It is often convenient to assume that  consists of real-valued

vectors, denoting each individual’s consumption bundle, but at this point we

do not impose any conditions on the structure of . Thus, as in the social

choice literature,  can be viewed of consisting of general outcomes that the

agents might experience.

The alternatives compared are simple acts: functions from states to out-

comes whose images are finite and measurable with respect to the discrete

topology on . We denote

 =

½
 :  → 

¯̄̄̄
 is simple and

Σ-measurable

¾


The restriction to simple acts guarantees that acts will be bounded in utility

for each agent, and for any utility function.

Each agent  has a preference order % over  . We assume throughout

this paper that the agents are expected utility maximizers a la Savage. Agent

 is characterized by a utility function  :  → R and a probability measure

 on (Σ), and % is represented by maximization of
R

(()). We

assume that the agents can be represented as expected utility maximizers to

emphasize that our arguments do not hinge on any type of so-called bounded

rationality of the agents.

The standard notion of Pareto domination, denoted by Â , is defined as

follows:

Definition 1  Â  iff for all  ∈   %  and for some  ∈   Â .

Throughout the paper we consider pairs of acts, ( ) ∈  2. A pair ( )

is interpreted as a suggested swap in which the agents give up act  in return

for  . Such a swap would involve some individuals but not others. Given a

pair ( ), agent  ∈  is said to be involved in ( ) if  ((·)) 6=  ((·)),
that is, if there exists at least one state  at which the agent is not indifferent

between  () and  (). Let ( ) ⊂  denote the agents who are involved

in the pair ( ). Observe that, for given   ∈  , the definition of ( )

depends on the agents’ utilities, (), but not on their beliefs, ().
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Definition 2 A pair ( ) is an improvement if ( ) 6= ∅ and, for all

 ∈ ( ),  Â .

We use the term improvement to emphasize the fact that the agents in the

economy would swap  for  voluntarily. We will also use the terminology 

improves upon , denoted by  Â∗ . Our main interest lies in improvements
for which | ( ) | ≥ 2, though the cases in which | ( ) | = 1 are not

ruled out.

Notice that we require strict preference for the agents involved in the

improvement. The relation  Â∗  is thus more restrictive than standard

Pareto domination, which allows some agents, for whom  ((·)) 6=  ((·)),
to be indifferent between  and . We find that, once one makes an explicit

distinction between the agents who are involved in the improvement and

those who aren’t, strict preference for the former appears to be a natural

condition: clearly, if there are agents who are not affected by the proposed

swap, they would be indifferent to it; but we require that those agents who

are involved, that is, whose cooperation is needed for the swap ( ) to take

place, strictly prefer  to . In particular, we are reluctant to assume that

indifferent agents are willing to actively participate in the trade.

Our weaker notion of domination is defined as follows:

Definition 3 For two alternatives   ∈  , we say that  No-Betting Pareto

dominates , denoted  Â , if:

(i)  improves upon ;

(ii) There exists a probability measure 0 such that, for all  ∈ ( ),Z


(())0 

Z


(())0

Observe that our definition does not assume that the agents agree on the

distributions of the alternatives  and . The actual beliefs of the agents,

determining their actual preferences, may be quite different. Condition (i)
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of the definition requires that the agents involved prefer  to  according to

their actual beliefs. Condition (ii), by contrast, requires that one be able

to find a single probability measure, according to which all involved agents

prefer swapping  for  . That is, one can find hypothetical beliefs, which,

when ascribed to all relevant agents, can rationalize the preference for  over

. As in Example 3 above, two partners may invest in a business opportunity

about which one is much more optimistic than the other. Their actual beliefs,

therefore, differ. However, as long as there are some beliefs (say, of the

more optimistic one) that justify the investment for both, the alternative of

investment would No-Betting-Pareto dominate that of no-investment.

Clearly, Condition (i) implies that  Pareto dominates  (recall that Con-

dition (i) also implies that( ) 6= ∅). Thus, if one uses our stronger notion
of Pareto dominance, Â , rather than the standard one, one gets a larger

set of Pareto optimal outcomes. In particular, the first welfare theorem still

holds, though the second does not.

3 Characterizations

3.1 Combining Agents

The following result characterizes pairs ( ) that satisfy condition (ii) of the

definition of No-Betting-Pareto domination.

Theorem 1 Consider acts  and  with ( ) 6= ∅. There exists a prob-
ability vector 0 such that, for all  ∈ ( ),Z



(())0 

Z


(())0

if and only if, for every distribution over the set of agents involved,  ∈
∆ (( )), there exists a state  ∈ , such thatX

∈()
 () ( ()) 

X
∈()

 () ( ()) 
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To interpret this result, assume that a set of agents ( ) wish to swap

 for  . Presumably, each one of them has a higher expected utility under

 than under  (according to the agent’s subjective beliefs). In particular,

it is necessary that each agent be able to point to a state  at which she is

better off with  than with . The proposition says that for  also to No-

Betting-Pareto dominate , this condition should be satisfied for all “convex

combinations” of the agents involved, where a combination is defined by a

distribution  over the agents’ utility functions.

A convex combination of agents, , can be interpreted in two famously

related ways. First, we may take a utilitarian interpretation, according to

which
P

∈ ()(·) is a social welfare function defined by some averaging of
the agents’ utilities. Second, we may think of an individual behind the “veil

of ignorance”, believing that she may be agent  with probability (), and

calculating her expected utility ex-ante. In both interpretations the condition

states that not only the actual agents, but also all convex combinations

thereof can justify the improvement by pointing to a state of the world that

would make them at least as well off with the proposed improvement.

3.2 Bets

We would like to argue that agents cannot make themselves better off, under

the No-Betting-Pareto criterion, by betting with one another. Intuitively, a

bet is a transfer of resources between agents that is not driven by production,

different tastes or risk sharing. To capture the fact that a bet does not involve

production, we need to endow the set of outcomes with additional structure.

Assume then that  =  where  is a partially ordered linear space, where

 = (1  ) ∈  specifies an allocation, , of each agent . In such a set-

up, one can express the fact than an improvement ( ) is a mere allocation
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of existing resources by requiring thatX
∈()

() ≤
X

∈()
() ∀ ∈  (1)

In this case, we say that the pair ( ) is feasible.

For simplicity, we focus on the case  = R, where  denotes agent ’s

wealth. Further, assume that each agent’s utility function depends only on

her own wealth. We abuse notation and denote this function by  as well, so

that, for each  ∈  and  ∈ ,  ((1  )) =  (). Finally, we assume

that each  is differentiable, strictly monotone and (weakly) concave in its

real-valued argument.

In this unidimensional set-up, trade cannot be driven by differences in

tastes, as all agents are assumed to want more of the only good, namely,

money. Hence we can define betting as follows.

Definition 4 A feasible improvement ( ) is a bet if () does not depend

on  for  ∈ ( ).

Section 3.4 explains how, if  were multidimensional, this definition would

need to be modified so as to exclude Pareto-improving barter that may take

place at each state of the world independently of the others. However, when

we consider financial markets, and  = R, feasible Pareto improvements

among risk averse agents can only be driven by differences in beliefs or by

risk-sharing. The requirement that  be independent of  (for all ) precludes

the risk-sharing motivation, thereby justifying the definition of ( ) as a bet.

We can now state:

Proposition 1 If ( ) is a bet, then it cannot be the case that  Â .

Proposition 1 partly justifies the term “No-Betting-Pareto”, as it shows

that Condition (ii) of the definition of Â rules out Pareto improvements

that are bets. However, this condition also rules out many Pareto improve-
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ments that are not bets. One may wonder what other Pareto improvements

do not qualify as improvements according to Â .

In the following subsection we characterize these excluded improvements

and show that, in a certain sense, they can be thought of as bets as well.

3.3 Characterization of Excluded Improvements

Consider an improvement ( ) and assume that  Â  does not hold.

That is,  Â∗ , but there does not exist a probability 0 such thatZ


(())0 

Z


(())0

for all  ∈ ( ). Thus, the swap of  for , which is a Pareto improvement,

is ruled out by our more restrictive definition. It turns out that the agents

who are interested in such a swap would also have been interested in betting:

Theorem 2 Fix utilities (). Assume that the beliefs () are such that

 Â∗ , but that  Â  does not hold. Let 0 ∈  be such that 0()
is independent of  for each  ∈  ( ). Then there exists an act  0 =

 0(  0) ∈  such that ( 0 0) is a bet for the utilities () and any beliefs

() such that  Â∗ .

If ( 0 0) is a bet, then by definition we have |( 0 0)| ≥ 1, and the

feasibility constraint and the assumption that all utilities are monotone then

ensures that |( 0 0)| ≥ 2. However, ( 0 0) may be a proper subset of
 ( ).

The theorem states that, if our definition of No-Betting-Pareto improve-

ment rules out a Pareto-improving swap, then the agents involved in it would

have been willing to engage also in pure betting, had their allocations been

independent of the state of the world. That is, had the agents already held

the full-insurance allocation 0, one could have found an act  0 such that

( 0 0) would be a bet. This bet need not involve all agents in  ( ), but

it involves at least two. Importantly, this bet depends only on the utilities
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() and the acts  , but not on the beliefs (). Indeed, it is easy to see

that, given the actual beliefs , one can find a bet that would have been

accepted by the agents with these beliefs. In fact, to this end it suffices to

take two agents whose beliefs differ. However, the statement of the theorem

is stronger: one can find such a bet that would be accepted by at least two

of the agents, independently of their actual beliefs, as long as these beliefs

satisfy  Â∗ . Thus, a hypothetical bookie who would have tried to offer
such a bet and make a sure profit based on the agents’ differences in beliefs

could do so without knowing the agents’ actual beliefs: it is sufficient to know

that these beliefs make them prefer  over .4

One can interpret the theorem using an imaginary scenario, according

to which agents who wish to trade have to seek the approval of a market

maker, whose job is to verify that Condition (ii) holds, that is, that trade is

not a result of spurious unanimity. Assume that the market maker rejects

a proposed trade, because there is no joint belief that can justify it. The

agents appeal and argue that they wish to trade not in order to bet, but in

order to share risks. Indeed, they point out to the market maker that they

hold risky positions:  is not assumed to be constant, and thus it doesn’t

offer them full insurance, while  presumably does better in this respect.

However, the market maker would then reply, “According to your interest

in trade, I know something about your beliefs, and, in particular, I know

that, even if you were to share risks and be fully insured, you would still be

interested in betting. In other words, even once you finish all the risk-sharing

trades one can imagine, a smart bookie will be able to make a sure profit

by offering you bets you’d accept. Hence, I suspect that the proposed trade

already contains a non-negligible aspect of betting and I do not approve it.”

Clearly, this imaginary dialog need not take place in reality, nor is it sug-

gested here that financial markets be regulated by market makers who verify

4Note, however, that the price that the bookie would require of each agent for the bet

will depend on the belief .
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that each trade No-Betting-Pareto dominates the status quo. The scenario

above is merely a rhetorical device, intended to support the reasonability of

the concept we propose: relying on Theorem 2, such a scenario indicates that

the trades that our definition does not allow have a flavor of betting.

3.4 A Comment on Exchange Economies

As suggested above, if the set  determining each agent’s utility is multi-

dimensional, the definition of a bet needs to be modified. For example, if

 = R, denoting bundles composed of goods, one may have a constant act

 and a constant act  such that, at each state , () Pareto dominates ()

due to an exchange of goods under certainty as in Example 1 (dealing with

mangos and bananas). One way to rule out this possibility is to define ( )

as a bet if it is an improvement, () is independent of , and  constitutes a

Pareto optimal allocation. In such a set-up a counterpart of Theorem 2 can

be proved, under the assumption that for at least one good , ()  0 for

all .

4 Properties

4.1 Transitivity

Condition (ii) of the definition of No-Betting-Pareto domination involves an

existential quantifier, and this raises the question, is the relation transitive?

The negative answer is given by:

Proposition 2 The relation Â is acyclic but it need not be transitive.

This result means that two consecutive Pareto improvements, each of

which is not a matter of spurious unanimity, may result in a Pareto improve-

ment that is spurious in the sense that no shared beliefs can justify it.

Denoting the transitive closure of Â by Â
 , we observed that

Â(Â
 . It is natural to ask, how large can the relation Â

 be?
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Is it the case that every improvement can be obtained by a sequence of No-

Betting-Pareto improving exchanges? It turns out that the answer is in the

affirmative under the following condition.

The range of 

() = { () |  ∈  } ⊂ R

is rectangular if the following condition holds: for every () ∈ , there

exists ∗ ∈  such that, for all  ∈  ,  (
∗ ()) =  ( ()) for all  ∈ .

Rectangularity means that, if certain utilities can be obtained for each agent

separately, then the profile of these utilities can also be obtained for all of

them simultaneously. We can now state:

Proposition 3 Assume that () is rectangular and convex. ThenÂ
=

Â∗.

The Proposition states that for every improvement ( ) there exists a

finite sequence 0 = , 1   =  such that  Â −1 for 1 ≤  ≤ .

This might suggest that, while our definition attempts to rule out certain

swaps, it does not do so very effectively: any swap that the agents eventually

wish to perform ( Â∗ ) can be carried out by a sequence of swaps, each of
which qualifies as a No-Betting-Pareto improvement.

However, rectangularity is a very strong condition. In particular, it would

be in conflict with any reasonable feasibility constraints. Assuming, as in

Subsection 3.2 that  = R, one may consider only feasible improvements

( ). Clearly, limiting attention to { () |( ) is a feasible improvement},
rectangularity does not hold and neither does the conclusion of Proposition

3.

More generally, when  = R, we may refine the definition of Â to

consider only feasible improvements. Say that  feasibly No-Betting-Pareto

dominates ,  Â , if ( ) is a feasible improvement, and  Â .

Let Â
 be the transitive closure of this relation. Then we mention:
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Proposition 4 If ( ) is a bet, then it cannot be the case that  Â
 .

Thus, restricting attention to feasible improvements allows us to strengthen

Proposition 1: with these improvements, even a sequence of No-Betting-

Pareto dominations cannot “simulate” a bet.

Finally, we mention that, even if rectangularity were satisfied, Proposition

3 does not suggest a realistic way of implementing bets by sequences of No-

Betting-Pareto improvements. To perform a sequence of such swaps, the

agents involved need to plan the sequence and follow it. This might not be

practical for various problems of coordination. Further, in the absence of a

commitment device (which would make a sequence of swaps equivalent to a

single one), agents may not trust other agents to continue trading along the

pre-specified sequence.

4.2 Computation

It is worthy of mention that Condition (ii) is not difficult to verify from a

computational viewpoint. To state this result one has to determine how acts

are represented by finite strings of bits. Since the acts discussed are simple,

it is natural to think of them as finite vectors. Specifically, given  and ,

there is a finite measurable partition of , ()≤ , such that both  and 

are constant over each . Thus, we use the notation  ()   () to denote

the elements of  that  and , respectively, assume over , for each  ≤  .

Next, assume that the utility values ( ( ()))  ( ( ())) are rational

numbers for every . Under these assumptions, the following result states

that verifying whether Condition (ii) is verified for  and  is an “easy” task.

Proposition 5 Given rational numbers, ( ( ()))  ( ( ())) it can

be checked in polynomial time complexity whether Condition (ii) holds.

Thus, the imaginary scenario in which a market maker needs to approve

swaps may be implausible for a variety of reasons, but complexity is not

one of them: if a set of agents propose an exchange ( ), their incentive
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compatibility constraint guarantees that  Â∗ . To check whether it is also
the case that  Â , one needs to verify Condition (ii). As Proposition

5 states, this is a simple computational task, given the utility profiles of the

agents under  and under .

5 Relation to Utilitarian Aggregation

As mentioned in the Introduction, the current paper shares much of its mo-

tivation with Gilboa, Samet, and Schmeidler (2004) (GSS). That paper em-

ployed a restricted unanimity condition, stating that society should neces-

sarily agree with all individuals’ preferences (where the latter agree) only

when these preferences concern alternatives over which there are no disagree-

ments in beliefs. The current paper also restricts a unanimity-style condition,

namely, Pareto dominance, to agreements in beliefs. It may therefore be use-

ful to clarify the relationship between the two papers.

In GSS it is implicitly assumed that the entire preference relation of each

individual , %, is observable, and the question is, what conditions should

the preference relation of society, %0, satisfy. Since for each  the entire

preference relation is observable, and it is assumed to satisfy Savage’s axioms,

the social planner can also figure out each individual’s probability measure,

, and tell, for each act  , whether it is an act on whose distribution all

individuals agree. The restricted Pareto condition suggested in GSS states

that society should find  as desirable as  when all individuals do so, if both

 and  are such acts (but not necessarily if one of  or  induces different

distributions over outcomes according to different individuals’ beliefs). The

result of that paper is that, when one restricts the Pareto condition in this

way, the simultaneous aggregation of utilities and of probabilities becomes

possible, and, moreover, linear aggregation of both is, under some conditions,

necessitated by the restricted Pareto condition.

By contrast, the present paper does not assume that individuals’ entire
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preference relations, or probabilities, are observable. Nor does it ascribe

to society a complete preference over alternatives. It merely discusses a

particular instance of unanimous preferences,  %  for all  (with strict

preference for at least one), and asks whether society should agree with that

particular ranking, that is, whether we should have  Â0  for that pair  .
Importantly, shared beliefs appear in this paper in a very different way than

in GSS: whereas in the latter shared beliefs over the outcomes of the acts  

is assumed (for the Pareto condition to apply), here we consider acts over

whose distributions individuals may well disagree. However, it is required

that one could come up with shared hypothetical beliefs for the individuals

that would still rationalize trade for each of them.

To compare the two approaches more sharply, one may ignore the ob-

servability of beliefs and the completeness of society’s preference and pose a

more concrete problem. Suppose that for each individual  we have a relation

% defined by the maximization of the expectation of a function  relative

to a probability . Assume that we strengthen GSS’s assumptions (adding

conditions of monotonicity and symmetry) such that, given utilities ()


=1

and probabilities ()


=1 of the agents, society maximizes expected utility

with respect to the utility function and the probability measure given by

0 =
1



X
=1



0 =
1



X
=1



Let %0 be the resulting ordering, which is obviously complete, and, moreover,
satisfies the rest of Savage’s axioms with the possible exception of P6 (which

requires that 0 be a non-atomic measure). Let Â0 denote the asymmetric
part of %0.
One may now ask whether there is any relationship between the utilitar-

ian strict preference (Â0) and No-Betting Pareto domination (Â ). The

negative answer is given by the following.
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Proposition 6 The relation Â0 need not imply Â nor vice versa.

The two relations are quite different also from a conceptual point of view:

GSS deals with an attempt to simultaneously aggregate tastes and beliefs,

and its main motivation are group decisions. When a country has to choose

an economic policy, decide whether to use nuclear power plants, or whether

to wage a war, the decision cannot be decentralized; it has to be made for

all individuals as a group. In this context, GSS show that the natural idea,

of simultaneous averaging of utilities and of probabilities, is necessitated

by a reasonable version of the unanimity (Pareto) axiom. However, these

“averaged” preferences are not necessarily very relevant for decentralized

decisions. When economic agents interact in markets, each can make her

own decisions according to her tastes and beliefs, and there is no need to

define an “averaged” individual or a representative agent. Hence, economists

would tend to eschew the task of defining a social welfare function or a

complete preference order for society as a whole. Rather, a weaker notion

such as Pareto dominance can be defined, restricting normative claims to

those that can be made in the language of this partial relation. The current

paper belongs in this tradition. It differs from the classical literature in its

definition of “dominance”. In an attempt to avoid trade that is basically a

bet, our new definition further restricts the notion of dominance, making the

social preference relation even further from completeness than is the standard

notion of Pareto dominance.

6 Discussion

6.1 Pareto Rankings

When one discusses pure consumption goods, as in Example 1, it seems

compelling that one does not wish to settle for given allocations if Pareto su-

perior ones are feasible. The first welfare theorem then provides an argument

in support of complete competitive markets: they offer at least one way in
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which Pareto-dominated allocations can be avoided. As is well known, Pareto

optimality is a weak normative concept, which remains silent on important

issues such as equality, poverty, and well-being. Further, the conditions of

the welfare theorems are hardly met in reality, with known classes of robust

examples that give rise to sub-optimal equilibria. Yet, these qualifications

notwithstanding, the welfare theorems do provide a powerful argument in

favor of complete competitive markets.

When uncertainty is considered, it is very tempting to model the state

of the world as one of the features of a good and reduce the problem to a

known one. It is an elegant exercise that suggests that the argument in favor

of complete competitive markets for consumption goods should also extend

to any markets involving uncertainty, including financial markets. But in

these markets, where a strong speculative component exists, beliefs tend to

vary across agents. We argue that the welfare analysis should be revisited

in this context. In particular, the standard argument against incomplete

markets again suggests that the absence of certain assets may lead to Pareto

dominated allocations, and hence only if we have a set of assets that spans

the space of functions over the state space (such as Arrow securities) can

we trust free trade to guarantee Pareto optimality. However, when highly

complex financial derivatives are discussed, higher-level beliefs will typically

be implicitly involved in the definition of a state. One suspects that an un-

derlying state space that is rich enough to describe such beliefs (“states of

the world” as opposed to “states of nature”) will allow for a non-negligible

amount of speculation, alongside risk sharing. Our definition of No-Betting-

Pareto domination attempts to draw the line between the two. It suggests

that, in the context of higher order beliefs, incomplete markets are not nec-

essarily inferior to complete markets.

It is evident that our argument relies on the assumption that beliefs do

differ. If all agents shared the same beliefs, Pareto domination under uncer-

tainty would be as convincing as it is (or isn’t) under certainty. However, the
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claim that all agents share the same prior beliefs, championed by Harsanyi

(1967-68), does not appear realistic. The agreeing-to-disagree and no-trade

results (Aumann, 1976, Milgrom and Stokey, 1982) show that the common

prior assumption implies that rational agents (in a model that is common

knowledge among them) cannot agree to disagree and should not trade in

financial markets, even as a result of the arrival of new information. The

prevalence of different beliefs and the large volumes of trade in financial

markets suggest either that the common prior assumption does not hold, or

that rationality is not common knowledge (or both). In any event, Pareto

dominance becomes a problematic concept.

Should financial markets be regulated, as suggested by Posner and Weyl

(2012)? We do not find that theoretical arguments provide a compelling an-

swer to this question. There are weighty arguments for regulation, especially

if agents might be prone to psychological biases, and there are also weighty

arguments against regulation. The present contribution does not attempt

to resolve this issue. Rather, we only wish to fine-tune a certain theoretical

argument that might be brought forth in the context of this debate. Thus,

without taking a stance on desired policy, we argue that one standard argu-

ment for free markets does not apply in this context without an appropriate

qualification.

6.2 Extensions

Our definition of a bet ( ) assumes that the given allocation, , is constant

across the state space. This is obviously restrictive. For example, assume

that two agents are considering a bet on the outcome of a soccer match. It so

happens that their current wealth does not depend on this match in any way.

Yet, their current allocations are far from constant, as the two are exposed

to various risks, ranging from their health to stock market crashes.

To capture this type of exchange in the definition of a bet, one has to

allow the existing allocations  to depend on , but to be independent of the
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exchange. That is, the variable  −  should be stochastically independent

of  according to all the probability measures considered. In other words,

one may assume that the state space is a product of two spaces,  = 1×2

such that  is measurable with respect to 1, and consider only probabilities

obtained as a product of a measure 1 on 1 and a measure 2 on 2. Relative

to such a model, ours can be viewed as a reduced formmodel, where our entire

discussion is conditioned on a state 1 ∈ 1.
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7 Appendix: Proofs and Related Analysis

7.1 Proof of Theorem 1

This is a standard application of a duality/separation argument. Let there

be given two acts  . As each of them is simple and measurable, there

is a finite measurable partition of , ()≤ , such that both  and  are

constant over each . Thus, we use the notation  ()   () to denote

the elements of  that  and , respectively, assume over , for each  ≤  .

The theorem characterizes condition (ii) of the definition of No-Betting-

Pareto domination, namely that there be a probability vector 0 such that,

for all , Z


(())0 

Z


(())0 (2)

We first note that (2) holds if and only if there exists a probability vector

(0 ())≤ , such that, for all ,X
≤

0 ()(()) 
X
≤

0 ()(()) (3)

In particular, if a measure 0 that satisfies (2) exists, it induces a probability

vector (0 ())≤ (over ()≤) that satisfies (3). Conversely, if a vector

(0 ())≤ satisfying (3) exists, it can be extended to a measure 0 on (Σ)

such that (2) holds. (Since  and  are constant over each , the choice of

the extension does not matter.)

When is there a probability vector (0 ())≤ satisfying (3)? Consider

a two-person zero-sum game in which player I chooses an event in ()≤
and player II chooses an agent in ( ). The payoff to player I, should she

choose and player II choose  ∈ ( ), is  (())− (()). Then (3)

is equivalent to the existence of a mixed strategy of player I, 0 ∈ ∆
³
()≤

´
such that, for every pure strategy of player II,  ∈  ,X

≤
0 () [(())− (())]  0
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or: there exists 0 ∈ ∆
³
()≤

´
such that for all mixed strategy of player

II,  ∈ ∆ (), X
≤

0 ()
X
∈

() [(())− (())]  0

In other words, ∃0 ∈ ∆
³
()≤

´
such that ∀ ∈ ∆ ()

0 [(())− (())]  0

where  denotes a generic member of ()≤ . The above is equivalent to

max
∈∆(()≤)

min
∈∆()

 [(())− (())]  0

which, by the minmax theorem for zero-sum games, is equivalent to

min
∈∆()

max
∈∆(()≤)

 [(())− (())]  0

that is, to the claim that ∀ ∈ ∆ () there exists  ∈ ∆
³
()≤

´
such that

 [(())− (())]  0

It follows that (3) holds if and only if for every  ∈ ∆ () there exists

 ∈ ∆
³
()≤

´
such thatX

∈
()

X
≤

() [(())− (())]  0

However, for each  ∈ ∆ (), such a  ∈ ∆
³
()≤

´
exists if and only

if there exists such a  that is a unit vector, namely, if and only if there exists

 ≤  such that X
∈

() [(())− (())]  0
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and this is the case if and only if there exists a state  ∈  such thatX
∈

() [(())− (())]  0

Observe that, should one use the weak inequality version of Condition

(ii), a similar characterization holds: there exists a probability vector 0

such that, for all , Z


(())0 ≥
Z


(())0

if and only if for every  ∈ ∆ () there exists a state  such thatX
∈

() [(())− (())] ≥ 0

7.2 Proof of Proposition 1

We first show that  Â  cannot hold if ( ) is a bet. Let there be

given a bet ( ). That is,  Â  for all  ∈  ( ) and

(i) () is independent of  for each ;

(ii)
P

 () ≤
P

 () for all .

We provide two short proofs. First, observe that, if it were the case that

 Â , there would be a belief 0 such thatZ


(())0 

Z


(())0

for all  ∈  ( ). For each  ∈  ( ), let ̄ = () and ̄ =  (())

for all . Then we have

0 ( ())  0 ( ()) = ̄

and, since  is concave,

 (0 ()) ≥ 0 ( ())
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thus

 (0 ())  ̄

and, because  is strictly monotone,

0 ()  ̄

Summation over  ∈  ( ) yields

X


0 () = 0

ÃX




!

X


̄

which is a contradiction because (
P

 ) () ≤
P

 ̄ for all .

The second proof makes use of Theorem 1. To this end, consider the

vector of weights  = () defined by

 =

½
1

|()|  ∈  ( )

0 otherwise


Because
P

 () ≤
P

 () for all , we also have
P

∈() () ≤P
∈() () and it follows that the -weighted utility under  cannot ex-

ceed that corresponding to . Thus, the -weighted “average” agent cannot

point to a state where she is strictly better off under  than under .

7.3 Proof of Theorem 2

Let utilities () be given. Consider an improvement ( ) and assume that

 Â  does not hold. That is, there does not exist a probability 0 such

that Z


(())0 

Z


(())0

for all  ∈ ( ).

Suppose that ()

=1 is a finite, measurable partition of , which is a

refinement of the two partitions of  defined by −1 and −1. In other words,

 and  are constant on each . Let  (),  () ∈  denote their values,
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correspondingly, on the elements of the partition, for  ≤  . Consider a

probability over (Σ), restricted to the elements of the partition (and their

unions). With a minor abuse of notation this probability is still denoted by

, and we write () instead of (). Let ∆
−1 denote the simplex of all

such probabilities.

Each  ∈ ( ) would strictly prefer  to  whenever her belief  is in

 =

(
 ∈ ∆−1

¯̄̄̄
¯X
≤

() ( ( ())−  ( ()))  0

)


Observe that, since  Â∗  (i.e.,  Â  ∀ ∈ ( )), it has to be the

case that  ∈  ∀ ∈ ( ). Clearly, for such  ,  Â  does not

hold if and only if ∩∈() = ∅.

For simplicity of notation, assume  = ( ). Without loss of gener-

ality, assume that the state space is {1  }, that is, that  = {}. Also
without loss of generality, assume that 0() = 0 for all  ∈   ≤  .

We mention:

Claim 0: For each  ∈  ,  has a non-empty interior relative to the

simplex ∆−1.

Proof: Since  Â , we know that  is non-empty, as agent ’s actual

beliefs  lie in . Then  has a non-empty interior relative to the simplex,

as it is the non-empty intersection of an open half-space and the simplex. ¤

We need to construct an act  0 such that ( 0 0) is a bet, that is, such

that  0 Â 
0 for all  ∈  ( 0 0) and all  ∈ , and

P
 

0() = 0 for all

. To this end, we start by constructing an act  00 such that
P

 
00() = 0,

and, for every  ∈  ( 00 0),
P

 ()
00()  0. (The last step of the proof

would consist of defining  0 as a multiple of  00 by a small positive constant.)

Step 1: First, we fix beliefs  ∈  and construct a bet (
00 0) for these

beliefs. This would also prove a weaker version of the theorem, in which a
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bookie can find a bet, if the bookie knows the actual beliefs () (and not

only that they lie in the respective ).

Define, for  ≥ 1 and  ∈  ,


 =

(
 ∈ ∆−1

¯̄̄̄
¯X
≤

() ( ( ())−  ( ())) ≥ 1


)

so that, for all , 
 ⊂ +1

 ⊂  and  = ∩
 . Since we have ∩∈ =

∅, it is certainly true that ∩∈
 = ∅ for all . However, 


 is a non-empty,

convex, and (as opposed to ) also compact subset of ∆
−1 . When such

compact and convex sets of priors have an empty intersection, it is known

that one can find a bet that they would all accept, as long as their beliefs are

in the specified sets of priors. Specifically, Theorem 2 in Billot et al. (2000,

p. 688) states that there are linear functionals , such that  is strictly

positive on 
 , and

P
 = 0.

5 Thus, for each  there exists a × matrix,¡

¢

of real numbers, such thatX



 = 0 ∀

and X


()  0 ∀ ∀ ∈ 
 

Since, for each ,  ∈ , for each  there exists  = () such that

 ∈ 
 for  ≥ . Let 0 = max (), and note that 

00() = 0



satisfies
P

 ()
00()  0 and

P
 

00() = 0 as required.

Step 2: We now wish to show that the construction of  00 above can

be done in a uniform way: there exists an  00 such that
P

 
00() = 0 andP

 ()
00()  0 for all  ∈  and all  ∈  ( 00 0). (Observe, however,

5Similar theorems have been proved by Bewley (1989) and Samet (1998). Billot et al.

provide a stronger result, also saying that the hyperplanes corresponding to the functionals

 can be chosen so that they intersect at a point in the convex hull of the sets of priors,

but this geometric fact is not used here.
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that while in Step 1 we obtained a bet that involved all agents, here we may

find that  ( 00 0) (  .)

Since we intend to consider a converging sub-sequence of matrices
¡

¢

,

it will be convenient to consider matrices that satisfy weak inequalities. How-

ever, to veer away from the origin, we will restrict attention to matrices of

norm 1. Let  denote the set of all such matrices  that satisfyX


 = 0 ∀ (4)

X


()
2
= 1 (5)

and, X


() ≥ 0 ∀ ∀ ∈  (6)

Claim 2.1:  6= ∅.
Proof: Defining 

 and
¡

¢

as above, one may assume without loss

of generality that
¡

¢

is on the unit disc, that is, thatX



¡

¢2
= 1

so that  =
¡

¢

∈ .

Because the unit disc is compact, there exists a subsequence of
¡

¢

that

converges to a matrix ∗ This point satisfies conditions (4, 5) because it is

the limit of points that satisfy these conditions. The matrix ∗ also satisfies

(6) because it is the limit of matrices that satisfy this inequality (strictly) on

a subset that converges to . Explicitly, for any  ∈  there exists  such

that for  ≥ ,  ∈ 
 and

P
 ()


  0, which implies

P
 ()

∗
 ≥ 0.

It follows that ∗ ∈  and  6= ∅. ¤

For  ∈  let the set of agents who would be involved in , were it offered

as a bet, be denoted by

 () = {  ∈  |∃  6= 0} 
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Clearly,  () 6= ∅ for  ∈ , as  is on the unit disc and therefore cannot

be 0. Also,  () cannot be a singleton because of (4).

Claim 2.2: For  ∈  there is no  ∈  () such that  ≤ 0 ∀.
Proof: Suppose, to the contrary, that  and  satisfy  ≤ 0. As

 ∈  (), · isn’t identically zero. Hence there is a  such that   0.

In view of Claim 0, there is a  ∈  that is strictly positive. For such a ,P
 ()  0, contradicting (6). ¤

Claim 2.3: Let  ∈  be such that  () is minimal (with respect to

set inclusion). Then there is no  ∈  () such that  ≥ 0 ∀.
Proof: Assume, to the contrary, that  and  satisfy  ≥ 0. As  ∈

 (), · isn’t identically zero. Hence there are ’s such that   0. We

wish to construct another matrix 0 ∈  such that  (0) =  () \{},
contradicting the minimality of  ().

By (4) we know that there exists  ∈  () \{}. Define

00 =

⎧⎨⎩ 0  = 

 +   = 

 otherwise



It is easy to verify that 00 satisfies (4). To see that (6) also holds, observe

that, for  (6) is satisfied as an equality, for  the left side of (6) could have

only increased, as compared to the left side of , while it is unchanged for

 ∈ { }.
Next we wish to show that 00 is not identically zero. If it were, we would

have  = − for all . But, since  ≥ 0 (for all ), this would imply
 ≤ 0 (for all ), in contradiction to Claim 2.2.

It follows that 00 can be re-normalized to guarantee (5) without violating

(4,6), obtaining 0 ∈  with  (0) (  (). ¤

Claim 2.4: Let  ∈  have a minimal  () (with respect to set inclu-

sion) over . Let  ∈  (). Then () contains both positive and negative

entries.

31



Proof: Combine Claims 2.2 and 2.3. ¤

Claim 2.5: Let  ∈  have a minimal  () (with respect to set inclu-

sion) over . Let  ∈  () and  ∈ . Then
P

 ()  0.

Proof: Because  ∈ , we know that
P

 () ≥ 0 holds for all  ∈ .

Assume that it were satisfied as an equality. Distinguish between two cases

(in fact, the argument for Case 2 applies also in Case 1, but the argument

for the latter is simple enough to be worth mentioning):

Case 1:  is in the relative interior of∆−1 (hence also in the interior of 

relative to ∆−1). In this case, by Claim 2.4, there exist  0 such that  

0  0. One can find a small enough   0 such that  = +−0 ∈ 

where  is the -unit vector. For such a ,
P

 ()  0, a contradiction

to (6).

Case 2:  is on the boundary of ∆−1. Consider the problem


X


()

X
≤

() ( ( ())−  ( ())) ≥ 0 (1)

 ∈ ∆−1

Since  ∈ , the optimal value of this problem is non-negative. SinceP
 () = 0,  is a solution to the problem. However, because  ∈ ,

constraint (1) is inactive at . Given that this is a linear programming

problem, removing an inactive constraint cannot render  sub-optimal. Hence

 is also an optimal solution to 
P

 () subject to  ∈ ∆−1. But

this implies that
P

 () ≥ 0 for all  ∈ ∆−1. This, in turn, implies that

 ≥ 0 for all , contradicting Claim 2.3. ¤

To complete the proof of Step 2, all we need to do is define  00 =  for

some  ∈  for which  () is minimal with respect to set inclusion, and

32



observe that  ( 00 0) =  (). ¤

Step 3: Finally, we turn to construct the act  0 such that ( 0 0) is a bet,

that is, such that
P

 
0() ≡ 0 and, for every  ∈  ( 0 0),

P
 () (

0()) 

0. Consider an act  0 =  00 for   0. Clearly,
P

 
0
() = 0 for all

 and all . As  are differentiable, for a small enough  the conclusionP
 () (

0
())  0 follows.

7.4 Proof of Proposition 2

It is obvious that Â does not admit cycles, because strict preference for

each agent , Â, is acyclic.

To see that transitivity may fail, consider the following example.

Let there be two agents  = {1 2} and two states  = { }. Let the
agents’ beliefs be 1 = (1 0), 2 = (0 1) and let ,  and  be acts with the

following utility profiles:

 :

State  State 

Agent 1 0 0

Agent 2 0 0

 :

State  State 

Agent 1 2 −1
Agent 2 −3 2

 :

State  State 

Agent 1 4 −4
Agent 2 −4 4

First observe that  Â  Â  according to the agents’ actual beliefs.

Moreover, agent 1 will find  better than  for any belief ( 1− ) such that

  1
3
and agent 1 will find  better than  for any belief with   3

5
. Agent

2, by contrast, will prefer  to  whenever   2
5
and  to  for   2

3
. Thus,

both agents prefer  to  for  ∈ ¡1
3
 2
5

¢
and  to  for  ∈ ¡3

5
 2
3

¢
. However,

 cannot No-Betting-Pareto dominate  as there is no belief for which both

agents prefer  to . (One can also use Proposition 1 to observe that, for
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 = 05, the -average of utilities is identical under  as under  at each

state.)

7.5 Proof of Proposition 3

Assume that () is rectangular and convex. We need to show that

Â
=Â∗. The inclusion Â

⊂Â∗ is immediate: for  ,  Â 

implies that  Â  for all , that is,  Â∗ . By transitivity of Â and Â∗,
Â

⊂Â∗.
To see the converse, assume that  Â∗ . We need to construct a finite

sequence 0 = , 1   =  such that  Â −1 for 1 ≤  ≤ . The

basic idea is quite simple: setting  = |( )|, we improve the outcome
vector of the agents in ( ) one at a time, so that only agent  gets a

different utility vector under  as compared to −1, for  = 1  . In

other words, agent  gets  ( (·)) under  for    and  ( (·)) under
 for  ≥ . This will be possible thanks to the fact that  () is

rectangular. To show that there exists one probability, 0, according to

which  is at least as desirable as −1 for all agents, one may take 0 to

be . Since  Â , we know that agent  is strictly better off under 

than under −1 according to 0 = . The other agents obtain the same

utility vector, and are thus indifferent between  and −1 according to all

probabilities, and, in particular, according to 0 = . However, according

to this construction only agent  strictly prefers  to −1. Therefore, we

modify the definition of 1  , making use of convexity of  (), to

guarantee strict preferences for all agents throughout the sequence.

Let there be given an improvement ( ). Let ()≤ be a measurable

partition of  so that both  and  are constant over each . Without loss

of generality assume that  = {} and that  =  ( ). For   ∈  , let

 (
0
) as explained above:

 (
0
 ()) =

½
 ( ())   

 ( ())  ≥ 
∀ ∈ 
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Again, such 0 exist because of the rectangularity condition.

Next we construct ( ()) from ( (
0
)) as follows. Given that

 Â  for all , we haveX
≤

() [(())− (())]  0

for all  ∈  . Let   0 be small enough such that, for every  ∈  ,X
≤

() [(())− (− 1)− (())]  0 (7)

i.e., 0    1
−1

P
≤ () [(())− (())].

Choose ()1≤ such that

 ( ()) =

½
 ( ()) +    

 ( ())− (− )   ≥ 

with  =  . Observe that such ()1≤ exist because their utility vectors

are in the convex hull of those of (0)1≤.

It follows that, for all  ≤ , all  ∈ \{}, and all  ≤  ,

 ( ())−  (−1 ()) =   0

so that, for agent ,  strictly dominates −1. In particular, whatever are

agent ’s beliefs, she strictly prefers  to −1. In particular, this is true both

for agent ’s actual beliefs  and for agent ’s beliefs, . As for  = , (7)

guarantees that agent  also prefers  to −1. Thus, all agents prefer  to

−1 both given their actual beliefs and given 0 = , and thus  Â −1.

7.6 Proof of Proposition 4

Let ( ) be a bet. If  Â
 , we would have

 =  Â −1 Â  Â 1 Â 

However, no 1 can feasibly-No-Betting-Pareto dominate  as in the proof of

Proposition 1.
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7.7 Proof of Proposition 5

Given the rational numbers ( (())   (())) we need to check if

there exists a probability vector 0 ∈ ∆
³
()≤

´
such that, for all  ∈

 ( ), X
≤

0() [(())− (())]  0

Observe first that one can easily identify the set  ( ). Consider the

maximization problem

0(1)0() 

X
≤

0() [(())− (())]−  ≥ 0 ∀ ∈ X
≤

0() = 1

0() ≥ 0 ∀ ≤ 

The optimal value of this problem is positive if and only if there exists a

probability vector 0 ∈ ∆
³
()≤

´
such that

P
≤ 0() [(())− (())] 

0 for every  ∈  ( ), which is easy to verify because linear programming

can be solved in polynomial time complexity.

7.8 Proof of Proposition 6

Let there be two agents, 1 2, and two states  . Agent 1 has beliefs 1 =

(1 0) and agent 2 has beliefs 2 = (0 1). The analysis does not hinge on

these extreme beliefs, as all preferences will be strict. Throughout the proof,

let us suppose that  induces the matrix of utilities

 :

State  State 

Agent 1 0 0

Agent 2 0 0



The first two examples show that we might have  Â0  but not  Â .

The third one shows the converse.
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7.8.1 Example

We first show that  Â0  might occur when there is no Pareto domination of
 over  even according to the standard definition. Let the utilities induced

by  be

 :

State  State 

Agent 1 −9 11

Agent 2 11 −9


Clearly, if we average utilities we get +1 for sure, and society’s (0 0)-

expected-utility maximization would favor the  over , that is  Â0 .

However, none of the agents prefers  to , and therefore  does not Pareto

dominate , let alone No-Betting-Pareto dominate it.

7.8.2 Example

In this example  Pareto dominates  according to the standard definition.

That is, we will have  Â0 ,  Â  for  = 1 2, but not  Â . For this

example, define

 :

State  State 

Agent 1 600 −64
Agent 2 −240 20



Clearly, agent 1, who believes that the state is , prefers  to , and this

is also true of agent 2, who is sure that the state is  ( Â  for  = 1 2).

Also, if we average the utilities we get

State  State 

Average Agent 180 −22
so that  is better than  according to the average utility and the average

belief 0 = (5 5).

Is it the case that  Â ? We claim that the answer is negative.

Indeed, by Theorem 1,  Â  would hold if and only if for every  ∈ [0 1],
the hypothetical agent with utility

 = 1 + (1− )2
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should be able to point to a state of the world where, for her,  is strictly

better than . But for  = 025 we get

State  State 

025 −30 −1

and this agent cannot point to a state where she’s better off with  than with

. Hence  Â  does not hold.

7.8.3 Example

Conversely, consider now an example where  Â  (and, in fact,  Â 

for  = 1 2), but where  Â0  does not hold. For this example, define

 :

State  State 

Agent 1 10 −100
Agent 2 0 10



Clearly, agent 1, who thinks that the state is , prefers  to . For

agent 2,  weakly dominates , and she prefers  to  whenever she assigns

a positive probability to state . Because she assigns probability 1 to this

state, she surely prefers  to . Hence  Â  for  = 1 2. Moreover, there

exists a probability vector, say (095 005), for which both agents prefer  to

. Hence  Â  is established. However, when we consider the average

utility we get
State  State 

Average Agent 5 −55
and for the average probability (05 05) act  results in a lower expected

utility than does . Hence  Â0  does not hold.
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