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Abstract

We consider the dynamics of reasoning by general rules (theories)
and by specific cases (analogies). When an agent faces an exogenous
process, we show that, under mild conditions, if reality happens to
be simple, the agent will converge to adopt a theory and discard ana-
logical thinking. If, however, reality is complex, the agent may rely
on analogies more than on theories. By contrast, when the agent is
a player in a large population coordination game, and the process is
generated by all players’ predictions, convergence to a theory is much
more likely. This may explain how a large population of players se-
lects an equilibrium in such a game, and how social norms emerge.
Mixed cases, involving noisy endogenous processes are likely to give
rise to complex dynamics of reasoning, switching between theories and
analogies.

1 Introduction

Consider a set of agents who attempt to predict the process that governs
the environment they live in. They might be facing a process that is ex-

ogenous, that it, independent of the agents’ predictions, or endogenous, that
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is, fully determined by these predictions. For example, natural processes
such as the weather, earthquakes, or hurricanes are exogenous. On the other
hand, social processes such as the adoption of a social norm, are largely en-
dogenous, as they are fundamentally determined by the agents’ predictions
thereof. Many other processes are combination of exogenous and endogenous
processes. These include, for example, prices in real estate, commodities, and
financial markets, which respond both to exogenous news and to speculative
trade.

How do agents reason about such processes?” Do they think about ex-
ogenous and endogenous processes in the same way? This paper attempts
to address these questions and others in a formal way. We consider a dy-
namic model in which, at each period ¢, an agent tries to predict the value
of a variable 1;, based on a set of observable variables, x;, as well as the
history of both x and y (that is, (z;,¥;),.,). One common mode of reason-
ing is regression analysis, whereby 1; might be regressed on x;, on its own
past values, (y;),_,, or some combination of these. This process belongs to
a general category known as rule-based learning that involves a selection
of theories based on observations. In philosophy, this mode of reasoning is
referred to as (case-to-rule) induction, and it is based on the belief that a
rule that has been valid in the past will remain valid in the future. Hume
(1748) famously pointed out that this belief requires justification, thereby
stating the problem of induction. Wittgenstein (1922) suggested that the
process of induction consists in finding the simplest theory that conforms to
the observations, while Goodman (1955) claimed that the notion of simplic-
ity is language-dependent.! The basic mechanism of using unrefuted theories
for prediction has remained a fundamental method of inference in science,
statistics, and everyday life.

Another, perhaps simpler mode of reasoning involves analogical thinking.

!Solomonoff (1964) showed that, in an appropriate model, the dependence of simplicity
judgments on language can be bounded.



In its simplest manifestation, when the variable x; is ignored, y; is predicted
to be the most frequently encountered value in the past.? If, however, dif-
ferent periods i < t are characterized by different values of x;, one may wish
to rely more heavily on more similar periods,® as captured by the statistical
techniques of kernel estimation (Akaike, 1954, Parzen, 1962, and see also
Silverman, 1986). In artificial intelligence, this mode of reasoning has been
referred to as case-based (see Schank, 1986, Riesbeck and Schank, 1989), and
it has been axiomatized in Gilboa and Schmeidler (2001, 2003). Slade (1991)
and Kolodner (1992) pointed out some advantages of case-based systems over
rule-based systems.*

It appears that both case-based reasoning and rule-based reasoning are
common in everyday life, as well as in formal statistical analysis. In the ar-
tificial intelligence literature there are attempts to combine the two modes
of reasoning in order to exploit their respective advantages (see for example
Rissland and Skalak, 1989, and Domingosu, 1996). However, we are unaware
of theoretical work that analyzes such combinations, especially as models of
human reasoning, dealing with questions such as, when do agents tend to
use analogies, and when — theories? Do they converge to one such mode of
reasoning in the long run, and if so, which? Or, under which conditions will
case-based reasoning be asymptotically dominant, and under which condi-
tions will long run behavior to be governed by rule-based reasoning? Specif-
ically, are there differences between exogenous and endogenous processes in

this respect?

We start with an adaptation of the model of Gilboa, Samuelson, and
Schmeidler (GSS, 2010), which provides a unified framework for case-based,

rule-based, and Bayesian reasoning by assigning a weight to each mode of

20r, in a continuous model, the average value of past observations.

3 As suggested by Hume (1748, Section IV), “From causes which appear similar we
expect similar effects.”

4Their definition of rule-based systems is, however, different from the definition we use
in this paper.



reasoning. The focus of GSS (2010) is the robustness of Bayesian reason-
ing, versus that of case-based and rule-based reasoning, the main distinction
being that the latter two modes of reasoning allow for unquantified uncer-
tainties that are prohibited in Bayesian reasoning. That paper also considers
examples of dynamics alternating between rule-based and case-based reason-
ing.

Rules (or theories) in GSS (2010) can have different domains of applica-
bility, allowing them, in particular, to vary in their starting periods. Thus, a
rule in that model might be “Starting at time ¢ = ¢y, y; will equal y”. In this
paper, by contrast, we limit attention to theories that share their domain of
applicability: they all make predictions at each and every period, predicting
y; given z; (and given history), but not of z; itself.” We consider a countable
set of such theories, presumably all theories that are computable, that is,
that can be described by a Turing machine or a PASCAL program. These
theories are contrasted with case-based reasoning by examining the long-run
behavior of the relative weights of these two modes of reasoning.

The analysis turns out to critically depend on the process that generates
the variable y;. When the process is exogenous, namely when y; is completely
independent of the agent’s reasoning process, we show that, under mild as-
sumptions, rule-based reasoning will prevail if reality happens to be simple,
that is, describable by a Turing machine. However, case-based reasoning will
be dominant if reality is complex. Since there are many more complex sce-
narios than there are simple ones, it is safe to say that, for the most part,
rule-based reasoning will wither away making case-based reasoning the only
viable mode of reasoning. For example, there are very good models for pre-

dicting weather conditions for the following day, but not for a year hence.

>Theories in our model are not supposed to predict z;. Hence they are not “Bayesian”
by the definition of GSS (2010). For example, a scientist who uses a function f to generate
predictions y; = f(x;) would be considered rule-based according to our definition. Such
a scientist will not be Bayesian, because, prior to observing x;, she entertains no beliefs
regarding ;.



This is consistent with the supposition that weather conditions constitute a
simple process in the short run (when ¢ is measured in days) but not in the
long run (when it is measured in years). Moreover, prediction of weather
conditions in the long run typically reduces to past averages, which are a
form of case-based reasoning.

If the process is perfectly endogenous, where the variable y; is the mode
of the prediction of the agents, it turns out that every scenario is possible.
However, mild computability assumptions suggest that case-based reasoning
cannot be selected asymptotically. By contrast, rule-based reasoning is likely
to be dominant in the long run, because the agents’ shared prediction agrees
with a certain theory that becomes the theory of choice for their predictions.
Thus, when we consider equilibrium selection in a game among many agents,
it is more likely to find the agents converging to simple rules than in the
case where these agents predict, say, the weather. This convergence to rules
may explain the emergence of social norms as the selection of equilibria in
coordination games.

As mentioned above, there are many economic phenomena involving in-
termediate cases, where the process y; is determined partly by agents’ pre-
dictions, and partly by exogenous factors. Speculative trade is one such
example. In these cases, due to the external “noise” factors, no single the-
ory can remain valid in the long run (unless the noise factors diminish over
time). Nevertheless, when the noise factors are relatively weak, it may take
a very long time for the process to converge, and in the meantime the agents’
reasoning will fluctuate between rule-based and case-based reasoning. In par-
ticular, the agents’ reasoning may select theories that become the equilibrium
prediction for a certain period, until they are refuted, and then replaced by
new theories, or by periods of case-based reasoning.

The rest of the paper is organized as follows. Section 2 describes the ba-
sic framework. It uses the framework of GSS (2010) and defines rule-based

and case-based reasoning. Section 3 deals with a purely endogenous process,



showing that rule-based reasoning is likely to emerge in simple states of the
world, but not in complex ones. Section 4 then deals with a purely endoge-
nous process, showing that rule-based reasoning is more likely to emerge
as the asymptotic mode of reasoning than case-based reasoning. Section 5

concludes with comments on some variations of these models.

2 Framework

2.1 The unified model

We adapt the unified model of induction of GSS (2010). An agent makes
predictions about the value of a variable y based on some observations z.
She has a history of observations of past x and y values to rely on. We
make no assumptions about independence or conditional independence of the
variables across periods, or any other assumption about the data generating
process.

Let the set of periods be T = {0,1,2,...,¢,...}. At each period t € T
there is a characteristic r; € X and an outcome y; € Y. The sets X and Y

are finite and non-empty.® The set of all states of the world is
Q={w:T—- X xY}.

For a state w and a period ¢, let w(t) = (wx(t),wy(t)) denote the element

of X x Y appearing in period ¢ given state w. Let
hi(w) = (w(0),...,w(t —1),wx(t))

denote the history of characteristics and outcomes in periods 0 through ¢ —
1, along with the period-t characteristic, given state w. Let H; denote all
possible histories at period ¢, i.e., H; = {h(w) |w € Q}. We let (hy,y)

denote the concatenation of the history h; with the outcome y.

6Clearly, z; may be a vector of characteristics, or explanatory variables, each of which
assumes only finitely many values.



In each period t € T, the agent observes a history h; and makes a pre-
diction about the period-t outcome, wy (t) € Y. A prediction is a ranking of
subsets in Y given hy.

Predictions are made with the help of conjectures. A conjecture is an
event A C 2. A conjecture can represent a theory, an association rule, an
analogy, or in general any reasoning aid one may employ in predicting ;.
Indeed, any such reasoning tool can be described extensively, by the set of
states that are compatible with it. However, not every subset of {2 may be
considered by the agent. Rather, we assume that the agent only conceives
of a countable subset A of 2%, referred to as the set of conjectures. We
explain below why countability is a natural restriction for our purposes. For
the time being, we mention that only countable sets are considered, so that
summation over such sets will be well-defined.

GSS (2010) show that the notion of conjectures is general enough to
capture Bayesian, rule-based, as well as case-based reasoning. Specifically,
they assume that the agent has a model, which is a function ¢ : A — R,
where ¢(A) is interpreted as the weight attached to conjecture A for the
purpose of prediction. For a subset of conjectures D C A, ¢ is defined
additively, that is,

$(D) = ¢(A).

AeD
It sacrifices no generality to assume that ¢(A) = 1.7
For a history h; € H;, define

[he] ={w e Q| (w(0),...,w(t—1),wx(t)) =h}.

Thus, [h] is the event consisting of all states that are compatible with the
history h;. Similarly, for h; € H; and a subset of outcomes Y’ C Y, we define
the event

[he, Y] = {w €[] [wy(t) Y},

"In GSS (2010), the set of conjectures is uncountable, and ¢ is defined as a measure over
subsets of conjectures, that is, subsets of subsets of states of the world. This complication
is obviated thanks to the countability assumption.
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consisting of all states that are compatible with the history h; and with the
next outcome being in the set Y.

The agent learns by ruling out conjectures that have been refuted by
evidence. Specifically, given a history h; € H;, a conjecture A that is disjoint
from [h;] should not be taken into consideration in future predictions. Fixing
a subset of conjectures D C A, a history h; € H; and a subset of outcomes
Y’ C Y, consider the set of conjectures in D that have not been refuted by
h; and that predict that the outcome will be in Y”:

D(h,Y)={A€D|o+£AN k] C [h, Y]}

Observe that the conjectures in D(h;,Y’) are various events, many pairs of
which may not be disjoint. This is important to bear in mind in the following
definitions, where we sum over the weights assigned to different conjectures.

Given a model ¢ : A — R, the weight assigned to Y’ by the unrefuted
conjectures in D is

¢(D(he, Y")).

The total weight assigned to a subset Y’ C Y by all unrefuted conjectures is
thus given by

O(A(he, Y)).

The agent’s prediction is a ranking of the subsets of Y, with Y’ considered
more likely than Y iff

S(A(h, Y')) > ¢(A(h, Y)).

It will be useful to have notation for the set of conjectures, in a class

D C A, that are relevant for prediction at history h;:
D(hjt) - Uylgyp(ht7 Y/)

Observe that D(h;) is the set of conjectures in D that have not been refuted
and that could lend their weight to some nontautological prediction after
history h; (and hence D(h;) C D(hy,Y).)

8



2.2 Rule-based reasoning: theories

The notion of a rule is rather general. There are association rules, which,
conditional on the value of x;, restrict the possible values of y;. For example,
the rule “if the Democratic candidate wins the election, taxes will rise” says
something about the rate of taxation, y; if the president is a Democrat (i.e.,
if z; assumes a certain value). Such a rule does not restrict prediction in
case its antecedent does not hold. By contrast, there are functional rules,
which predict that y; be equal to f(x;) for a certain function f. Other
rules may be time-dependent, and allow y; to be a function of z; as well
as of t itself. Further, rules may differ in their domain. In particular, GSS
(2010) provide an example of rule-based reasoning in which the rules predict
a certain constant y value beginning with a given period ¢, and making no
predictions prior to that t.

In this paper we restrict attention to rules that can be viewed as general
theories. Such theories are constrained to make a specific prediction (i.e., a
single ;) at each and every ¢, and for any possible value of x;. Moreover, we
will allow such functions to depend on the entire history h;, and thus on pre-
vious values (x;,y;) for i < t. However, we make one important assumption:
all the functions we consider are computable by Turing machines. That is, we
consider only those theories f : U;>9H; — Y for which there exists a Turing
machine (or, equivalently, a PASCAL program), which, for every ¢ and every
h:, halts in finite time. This appears to be a minimal requirement because
a theory that does not halt will fail to compute the value y; = f(h;) € YV
for every t. It is well known that there is only a countable number of such
theories. We denote the set of theories by R = { f1, f2, ...}

Observe that the definition assumes that a theory f; € R computes a
prediction for every history h;, including histories that are inconsistent with
f; itself. This is reminiscent of the definition of a strategy in extensive form

games. Alternatively, one may restrict the domain of a theory f only to the



histories that do not contradict it.®

One may wish to enrich the model by introducing Turing machines (or
computer programs) explicitly. In this case, each theory f will be represented
by infinitely many machines, which are observationally equivalent. The agent
will not be able, in general, to tell which machines are equivalent, but equiv-
alent machines will be refuted at the same histories, and thus their impact
on predictions will be the same as that of the function f they represent.

To avoid problems related with undecidability,” one may restrict attention
to a subset of theories that can be proven to always halt. As long as the
subset considered is sufficiently rich to be able to describe any finite history,

our results will hold.

If there are no x values to be observed (that is, | X| = 1), then for every
fi € R, there exists a unique state of the world compatible with it. In this
case, a model ¢ that puts positive weight only on theories in R can also be
viewed as a Bayesian model (as defined in GSS, 2010), namely as a model
assigning probabilities to single states.!® However, in the more general case,
a theory f; € R is compatible with a non-singleton conjecture, because such
a theory, as opposed to a Bayesian conjecture, need not predict the values of
the z,’s.

For a model ¢ and a theory f; € R, we will use ¢ (f;) to denote the
weight assigned by ¢ to the conjecture consisting of all the states that do not
contradict f;, that is, ¢ (f;) = ¢ ([f;]) where

[fi] ={w e Q] wy(t) = f; (h) Vi}.

8Such a restriction would not make a major difference, because the definition of a theory
at histories incompatible with it will be immaterial for our purposes. Clearly, a computable
theory that is defined on the restricted domain can be extended to a computable theory
on the entire domain, say, by predicting a constant y for all histories that are incompatible
with the theory.

9This is known as the "Halting Problem" by which there is no general method to
determine whether a program will halt in finite time.

10The resulting Bayesian prior, however, is restricted to have a countable support con-
sisting of computable states.
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A model ¢ is (a priori) purely rule-based if ¢n (R) = 1, equivalently,
¢r (A\R) = 0 or 3°;¢x(f;) = 1. Such a model can also be viewed as a
probability distribution over R.

2.3 Case-based reasoning: analogies

Case-based conjectures are defined as in GSS (2010): for every i < ¢, x,z €
X, let

Aitp,={we Q| wx(i) =z,wx(t) =2,wy(i) =wy(t)}.

We can interpret this conjecture as indicating that, if the input data in period
1 are given by x and in period ¢ — by z, then periods ¢ and ¢ will produce
the same outcome (value of y). Notice that a single case-based conjecture
consists of many states: A;;. . does not restrict the values of wx (k) or wy (k)
for k #i,t.

Let the set of all conjectures of this type be denoted by

CB={A..|i<tazzeX}CA (1)

A model ¢ is a priori purely case-based if all weight is put on the case-
based conjectures. Our main interest will be, however, in the evolution of the
relative weight of case-based and rule-based reasoning over time, considering
the ratio % as a function of ¢ at different states w.

For example, the agent might have a similarity function over the charac-
teristics,

s: X xX =Ry,
and a memory decay factor § < 1. Given history h; = h;(w) € Hy, a possible
outcome y € Y is assigned a weight proportional to

t—1

S(he,y) =Y B s(wx (i), wx () 1wy ()=},

1=0

11



where 1 is the indicator function of the subscripted event. Hence, the agent
may be described as if she considered past cases in the history h;, chose all
those that resulted in some period ¢ with the outcome y, and considered the
aggregate similarity of the respective characteristic wx (i) to the current char-
acteristic wx(t). The resulting sums S(h:,y) can then be used to rank the
possible outcomes y. If 5 =1 and in addition the similarity function is con-
stant, the resulting number S(h;,y) is proportional to the relative empirical
frequency of y’s in the history h;.

As noted by GSS (2010), for every similarity function s and decay factor
B one may define a model ¢, 5 by setting ¢, 5(Aie,.), for each ¢, to be
proportional to ﬁ(tfi)s(:n,z), and ¢, 5(A\CB) = 0. In this case, for every
history h; and every y € Y, ¢, 5(A(hs, {y})) is proportional to S(hs,y). Such
a model ¢, 5 will be equivalent to case-based prediction according to the

function S.

2.4 Open-Mindedness

We restrict our agent to a specific type of rule-based reasoning and a similarly
specific type of case-based reasoning. Formally, we assume that the set of
conjectures is A = R UCB. Within this constraint, we wish to guarantee
that the agent is open-minded. Thus, we will henceforth assume that the
agent assigns a positive weight ¢(A) > 0 to each conjecture in A = R UCB.
We denote this set of open-minded models by @, .

3 Exogenous Process

3.1 Simplicity Result

For each theory f; € R, recall that [f;] is the event in which f; is never
refuted. All statesw € [f;] are simple in a certain sense: the computation of y,
given h; can be done in a finite time, employing a program that is independent

of t. Observe that the pattern of z;’s in w may be rather complicated, and,

12



in particular, it can be a pattern that cannot be computed by any Turing
machine. However, since the agent’s task is to predict y; given h;, we ignore

this complexity. We therefore define the set of simple states to be

s=JIf]

r>1

(or S=J 1)
fER
We can now state

Proposition 1 For every ¢ € &, and every w € S,

6 (CB(h ()
& (R ()

ast — oo.

That is, in all simple states, the agent will converge to reason by theories
and will gradually discard case-based reasoning.

The logic of this proposition is straightforward: if we consider a simple
state w, where a certain simple theory f,. holds, the initial weight assigned to
this theory will serve as a lower bound on ¢ (R(h; (w))) for all ¢, because the
theory will never be refuted at w. By contrast, the total weight of the set of
all case-based conjectures that are relevant for prediction at time ¢ converges
to zero because it is an element in a convergent series. Intuitively, because
at w the theory f, is correct, it retains its original weight of credence. By
contrast, case-based conjectures concern only pairs of periods, ¢+ < ¢, and
thus, for each new value of ¢, a new set of case-based conjectures is being
considered. It is inevitable that the total weight of this set (which is disjoint

from sets considered in previous periods) converge to zero.

3.2 The Fragility of Rule-Based Reasoning

Because there are only countably many simple states of the world, it is in-

tuitive that “most” states are not simple. What happens in these states?

13



Clearly, in such a state no single theory can be unrefuted forever. But it is
still possible that different theories succeed each other in the agent’s mind,
so that at each period her reasoning is mostly rule-based.

While this is possible in some non-simple states, and even in many of
them, there is still a well-defined sense in which it can only happen in a small
minority of states. For example, assume that |X| = 1 and that ¥ = {0, 1},
so that the state space is {0, 1}. Let A be the measure defined by assigning
weight 27" to any event defined by (yo, ..., y:—1) (for any sequence of t values
for the ¢ variables). In this case, one can show that the set of states where
non-negligible weight is put on rule-based reasoning is small, as measured by
A. More generally, we will prove this result for any finite sets X and Y, and
for a large class of measures .

Endow the state space €2 with the o-algebra ¥ defined by the variables
(24, Yt),>9- A probability measure A on ¥ is a non-trivial conditionally iid
measure if, for every € X there exists A\, € A(Y') such that (i) for every
hi = ((zo,y0) -+, (Te—1,Y:-1) , 2¢), the conditional distribution of Y given h;
according to A is A\,; and (ii) A, is non-degenerate for every x € X. The
measure A\ is assumed neither to govern the actual process, nor to capture
the reasoner’s beliefs. It is merely a way to quantify states of the world, and

capture the intuition that certain events are small relative to others.

Proposition 2 Let there be given ¢ € ®, and let A be a non-trivial condi-

tionally 1id measure. For every € > 0 there exists Ty such that

A ({w ‘qﬁ(R(ht (w))) < 02 vt > T0}> >1—e

This result states that, apart from a A-negligible event, the weight of
the rule-based conjectures decreases at a semi-exponential rate. Clearly, this
cannot be the case in the simple state, where the weight of the rule-based
conjectures remains bounded away from zero. But there are only countably
many simple states, and they are therefore of \-measure zero. Thus, there can

be many non-simple states at which the weight of the rule-based conjectures

14



does not decay very fast, but the total (\-)weight of all these states, simple
or non-simple, is negligible.

Does the fast decay of the weight of the rule-based conjectures mean
that the reasoner will tend to use more case-based conjectures? The answer
depends on the rate at which the weight of the case-based conjectures tends
to zero. Thus, we are led to ask, how are the weights to be spread over the
case-based conjectures?

One may argue that it is intuitive for the total weight of the case-based
conjectures at a given time to be independent of t. However, the set of case-
based conjectures that are relevant at ¢ is disjoint from the corresponding set
for ' # t. It is therefore a mathematical necessity that the weight assigned
to all case-based conjectures relevant at period ¢ converge to zero (as in the
proof of Proposition 1). However, there is no reason for this total weight
to converge to zero too fast. We therefore assume that the weight of all
case-based conjectures, across all periods, is split among them so that the
case-based conjectures relevant for prediction at each history h; command
a positive weight that does not diminish too fast as a function of ¢. This
will be the case if, for instance, the total weight is split proportionately to a
strictly positive similarity matrix S : X? — R.

Formally, define % C @, to be the set of models ¢ for which there exist
v < —1 and ¢ > 0, such that, for every ¢, and every z,z € X,

Z ¢ (Ai,t,a;,z) Z Cﬁ/

i<t
Under these assumptions, the opposite of that of Proposition 1 holds

almost everywhere:

Proposition 3 Let there be given a model ¢ € @8 and a non-trivial condi-

tionally 1id measure . Then, A-almost everywhere,

¢ (R(he (w)))

5 (CB(n (@) "

ast — oo.
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4 Endogenous Process

In this section we consider a process that is governed by the reasoning of
a set of agents. For example, consider the behavior of agents involved in a
coordination game, where each agent tries to predict the social norm that
will govern the behavior of others, and to match that norm in her choice of
strategy.

In this section we analyze the case in which all agents share the same
weight function ¢ € ®. Beyond serving as an important benchmark, this
extreme case attempts to capture the intuition that, while people vary in their
a priori judgment of theories, these judgments are correlated. Specifically,
people tend to prefer simpler theories to more complex ones, and similarity
judgments are correlated across people. For example, people might disagree
whether the pattern 011111... is simpler than the pattern 010101..., but
practically everyone would agree that 000000... is simpler than 011001...
(where readers might wonder how the last sequence is meant to be continued).

For such a function ¢ define

Q¢:{WGQ

oy (1) € argmax o(Alhy, {})) Ve 2 o} .

Thus, it is assumed that the agents’ predictions determine the actual out-
come. As in the case of the exogenous process, the agents are not assumed
to predict the values of z;, nor to affect them.

We first note that every state of the world may unfold in an endogenous

process.

Proposition 4 For every w € Q, there exists ¢ € O such that w € Q.

The proof of Proposition 4 is constructive: given a state w € () the
proof describes an algorithm that generates ¢ € ®% such that w € Q.
However, if the state w itself is not computable, the resulting ¢ may also not

be computable. Hence the message of the proposition should be qualified:
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while every state may materialize as the prediction of the agents, if we make
the plausible assumption that the agents can only make predictions using a
computable ¢, not all states are necessarily possible.

We therefore restrict attention to models ¢ that are computable functions
assuming rational values. That is, consider only the set of functions @ C &%
such that, for each ¢ € @7, there is a machine that computes ¢(A4) € Q
for each conjecture A. This assumption allows us to imagine the agent as
actually trying to compute ¢(A(hy, {y})) for each y € Y, and choosing an
e-maximizer of ¢(A(hs, {-})) as her prediction.!' Clearly, this interpretation
is not the only one, and one may think of the computation of ¢(A(hs, Y"))
as a model that an outside observer uses in order to provide a description of

the agent’s predictions.

Our interest is in the dynamics of reasoning of the agents along states in
Q4 for ¢ € @7, To this end, we introduce the following definitions. Rule-

based reasoning is dominant at state w € €1y at period ¢t if

(@) ¢R(hu(w)) > ¢(CB(hi(w)))

and

(i) wy(t) € argr;lg;W(R(ht,{y}))'

Thus, rule-based reasoning is dominant if there is more weight put on rule-
based reasoning than on case-based reasoning, and if the prediction of the
rule based reasoning is indeed the prediction that the agents make (and that

defines the next observation y;). Similarly, we say that case-based reasoning

1 Observe that the computation of ¢(A(hs, {y})) involves infinite summations. Hence
the agent cannot simply compute ¢(A(he, {y})) for each y with perfect precision. How-
ever, the agent can be imagined to simultaneously approximate these values and halt the
computation if the difference between the values is larger than the residual weight, or if the
residual weight is below a certain threshold. This would result in a computable procedure
that approximates the maximization ¢ in the sense that it provides an e-maximization of

¢
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is dominant at state w € )y at period ¢t if

(0) &R W) < ¢(CB(h(w)))

and

(i) wr(®) € argmaxo(CB(h, {y}).

Observe that, at w € 4 at period ¢ we may have neither mode of rea-
soning dominating either if they happen to be equally weighty, that is, if,
¢ (R(hi (w))) = ¢ (CB(hy (w))), or if the weightier mode of reasoning does
not correctly predict the outcome. This may happen, for instance, if the
conjectures in the dominant mode of reasoning split the weight between the
different predictions, so as to make the other mode of reasoning pivotal.

For ¢ € ®F we are interested in the long-run existence of a dominant
mode of reasoning. Define {2rp,4 to be the set of states w € 2, such that, for
some 7', rule-based reasoning is dominant at state w € €, at all¢ > T". Define
¢y accordingly to be the states at which case-based reasoning dominates

from some period on.

Proposition 5 For every ¢ € ®F we have S CQgpy.

Thus, for every weight function that satisfies our assumptions, the set
of states in which rule-based reasoning is eventually dominant contains all
the simple states. One might wonder whether in complex states case-based
reasoning might be dominant in the long run. The negative answer is given

by

Proposition 6 For every ¢ € ®F we have Qcpy = 2.

The reasoning behind Proposition 6 is very simple: if w were a state that
is, in the long run, governed by case-based reasoning, then, because ¢ is com-
putable, there exists a theory that simulates the case-based reasoning defined

by ¢. For example, if all agents simply use the modal y for prediction, there
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exists a simple algorithm that describes their prediction, and therefore the
resulting state w. Since an open-minded ¢ must have assigned this algo-
rithm a positive weight a priori, the theory described by this algorithm will
eventually prevail as the correct theory used for prediction.

By the same logic, one might be tempted to suggest that, for any com-
putable ¢, Qrpy, = (4, that is, that the process ends up in a rule-based
state. This conclusion would not be warranted for two reasons: (i) the con-
dition wy (t) € arg max,ecy ¢(A(hy, {y})) does not require that wy (t) be a
single maximizer of ¢(A(h:, {y})); in case of ties, w may involve a pattern of
choices of y that is not computable; and, moreover, (ii) as mentioned above,
computability of ¢ does not imply that ¢(A(he, {y})) is computable, as the
latter involves an infinite summation. (This cannot happen when one re-
stricts attention to case-based conjectures, but it will necessarily be the case

when rule-based conjectures are concerned.)

5 Variants

5.1 Hybrid models

Consider the case of trade in financial markets. Financial assets are affected
by various economic variables that are exogenous to the market, ranging
from weather conditions to technological innovation, from demand shocks to
political revolutions. At the same time, financial assets are worth what the
market “thinks” they are worth. In other words, such markets have a strong
endogenous factor as well. It seems natural to assume that such processes
(y;) are governed partly by the predictions (3;) as in Section 4 and partly
by random shocks as in Section 3. For instance, assume that « (h:) is the
probability that agents’ reasoning determines 7;, and with the complement
probability y; is determined by a random shock. That is,

o Ut a(ht)
yt—{ g 1—a(h)
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where ¢, € argmaxyey ¢(A(h,{y})) and @ is uniformly distributed over
Y. Thus, if o (h:) = 1 we consider a model as in Section 4, which is likely
to converge to a single dominant theory, and when « (h;) = 0 we consider
a model as in Section 3, coupled with a non-degenerate iid measure that
guarantees asymptotic case-based reasoning. Obviously, the interesting case
is where « (h;) € (0,1) (for most if not all histories h;).

If v (hy) is independent of history, so that a (h;) = « € (0,1), no theory
can be dominant asymptotically. Indeed, every theory that correctly predicts
7; has a fixed positive probability (1 — «) of being refuted at each period,
and will thus be refuted at some point with probability 1. Moreover, when ¢
is large, we know that with very high probability the number of “noise” peri-
ods is approximately (1 — a) t. Over these periods we are likely to observe a
complex pattern of y,’s, and thus a result similar to Proposition 3 holds: the
total weight of rule-based conjectures decreases, on average, exponentially
fast in the number of noise periods. Because the number of noise periods
increases linearly in ¢ (as it is roughly (1 — «)t), this weight is also an ex-
ponentially decreasing function of ¢ and thus it decays faster than do the
case-based conjectures. Thus, case-based reasoning will be asymptotically
dominant in “most” states of the world even if a (h;) = « is very close to 1.

However, the probability of noise in an endogenous process is likely to
be endogenous as well. For example, consider the choice of driving on the
right or on the left in a large population. When agents are not quite sure
which equilibrium is being played, it is easier for a random shock to switch
equilibria. But when all the agents are rather certain that everyone is going
to drive, say, on the right, it is highly unlikely that at least half of them
would behave differently from what they would find optimal based on their
predictions. Thus, it stands to reason that « (h;) depends on h;, and, more-
over, that it converges to 1 as t grows, if a simple theory fits the data h;.
Such convergence would allow the process to be asymptotically dominated

by rule-based conjectures with positive probability.
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5.2 Heterogenous beliefs

The analysis in Section 4 assumes that all agents share the function ¢, which
is the natural counterpart of the common prior assumption in economics.
Clearly, this assumption is not entirely realistic; people vary in their similar-
ity judgments, in their prior beliefs in theories, as well as in their tendency
to reason by theories vs. by analogies. Hence one may consider an endoge-
nous process in which the population is distributed among different credence
functions ¢.

Importantly, the distinction between computable and incomputable states
is an objective one. Agents may vary in the language they use to describe
theories, and, correspondingly, in their judgment of simplicity. However, any
two languages that are equivalent to the computational model of a Turing
machine can be translated to each other. Thus, if the process follows a
simple (computable) path, all agents will notice this regularity. Different
agents may discard case-based reasoning in favor of the unrefuted theory
at different times, but (under the assumption of open-mindedness) all of
them will eventually realize that this unrefuted theory is indeed “correct”.
Interesting dynamics might emerge if the agents who are slow to switch
to prediction by the correct theory are sufficiently numerous to refute that
theory, thereby changing the reasoning of those agents who were the first to

adopt the theory.

21



6 Appendix: Proofs

6.1 Proof of Proposition 1

Assume that w € [f,] for some r. In this case the denominator is bounded

from below by the weight assigned to the correct theory f,.. In fact,

R(hs (@) N @ (fr) >0

as t — oo.
By contrast, CB(h: (w)) includes the ¢-weight only of those case-based

conjectures that are relevant at ¢, that is

¢ (CB(h; (w))) = > ¢ (Aitnz)

{(i,z,2)|i<t,wx (1) =x,wx (t)=2}

Clearly,
¢ (CB(h (@) < > & (Aisa)
{(i,z,2)|i<t}
Defining
oy = Z ¢ (Aite,z)
{(3,x,2) i<t}

and observing that

da=¢(CB) <1

we must have

Oét—>0

as t — oo. Hence ¢ (CB(h: (w))) also converges to zero as t — oo, and this

completes the proof.

6.2 Proof of Proposition 2

Let there be given an open-minded model ¢. For a period ¢ and a sequence

T = (o, ..., z-1) € X', consider the state space €2, , defined by the corre-

Z(t)

sponding Y1) = (Yo, -, ¥1-1) € Y' and containing [Y'|* states. Thus Q, , is a
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replica of Y* and when no confusion is likely to arise we will refer to elements
of Qi) 38 Yir)-

Let § < 1 be such that Ay ((z,y)) < ¢ for every (z,y) € X x Y. Observe
that A attaches a probability not exceeding 8" to each element in the space
Q

LION
Let W be a random variable defined on (2

weight of rule-based conjectures that are compatible with history. That is,

2@+ and measuring the total
for yu) = (Yo, ...,y—1) choose an arbitrary z; € X and define hy by h; =
((z0,Y0) , --s (Tt—1,yt—1) , 7). Choose w such that h; (w) = hy and define

Wyw) = ¢ (R(he (w)))

Clearly, such states w exist. Importantly, R(h; (w)) does not depend on the
choice of z; because theories are not required to predict z; and therefore no
observation of z; will rule out any theories. It is also obvious that the choice
of w such that h; (w) = hy does not affect R(h; (w)), because yet-unobserved
variables do not rule out theories.

Observe that {R(h; (w))},, defines a partition of R: each theory f € R

is compatible with precisely one state y) € §1;,,. Hence
Y (R () =r<1
y(t>EQz(t)
and therefore
E<W) = Z )‘\f(t) (y(t)) W(y(t))
y(t)GQz(t)
= ) A, (W) ¢ (R(h (w)))
Y(t) EQ )
< r <

Denoting by B; the event W > §"/2, and using Markov’s inequality, we

get
E( ) et 2
515/2 < _St/z = 5t/ .

Mey (Be) = Ay <W > 5t/2> <
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We will also use B; to denote the corresponding event in ). Since we have

shown that A, (B;) = A (Bt|x(t)) < 62 for all Ty, we also have A (B;) <
5",

Next observe that the bounds on the probabilities of the various B; events

t/2 g2 1
d <> i~

t>T t>0

converge. In fact,

This implies that for the given € > 0 there is a large enough 7Tj such that
Z 0% < e
t>To

and thus, for this Tp,
A (UtZToBT) <é€

and
AGW¢W@@W§W2WZRD>L%.
6.3 Proof of Proposition 3

Consider a given € > 0 and let Ty be the period provided by Proposition 2.

Then, on the corresponding event (whose probability is at least 1 — ¢)
¢ (R(he () <62 Wt =T

and this, together with the assumption that ¢ € ®f, thatis, > ., ¢ (Aj1a.) >
ct? for ¢ > 0 and v < —1, implies that

6 (R(hy (W) _ 0"
6(CB(h (w)) ~ et

where the right hand side converges to 0 as ¢ tends to oo.
Considering a sequence ¢, \, 0, one concludes that the convergence to 0

occurs everywhere apart from a set whose A\-measure is zero.
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6.4 Proof of Proposition 4

Let there be given w € ). For simplicity of notation, we define ¢ with-
out guaranteeing the normalization ¢ (A) = 1. It will be obvious from the
construction, however, that 0 < ¢ (LA) < oo so that ¢ can be normalized.

We first define ¢ on the case-based conjectures. For every ¢ > 1, let

1

¢ (Ai,t,af,Z) = (t n 5)3'

(We use a “lag” of 5 periods to make sure that the rate of decay between any
two consecutive periods is not too fast. Specifically, we wish to guarantee
that each element in the sequence is at least half of its predecessor.)

Clearly,

6B < IXPY [t | <o

@+ 5)°

We now turn to define ¢ on R. In the proof we wish to assign weights to
subsets of conjectures in R. Note that for every subset R' C R and every
a > 0 one may assign a positive weight ¢ (f) > 0 to each f € R such that
¢ (R') = a, say by considering an enumeration of R', fi, f2,... and setting
¢ (fj) = a/2’. In the rest of this proof, we will simply say “assign a weight
a > 0 to the subset R’”, referring to such an assignment.

If w € S, there exists a theory f € R such that w € [f]. In this
case, assign ¢ (f) = 1 and assign the weight a = 1/4 to the set of all the
other theories, R\{f}. It is easily observed that, at each ¢t > 0, wy (t) €
arg max,cy ¢(A(hs, {y})) and thus w € €, is established, while ¢ € @4
holds.

Next assume that w ¢ S. Denote, for t > 0,

Ry = R(hs (w)).

R: denotes the set of theories that are unrefuted by history h; (w). Observe
that they are all relevant for prediction at period t. Clearly, Ry = R, as

ho (w) contains only the value of zy and no theory makes any prediction
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about the z’s. Moreover, R;11 C R;, because any theory that agrees with w
for the first (t+4 1) observations also agrees with it for the first ¢ observations.
Finally,

MRy =2

because w ¢ S. We can thus define, for ¢ > 1, the set of theories that are

proven wrong at period ¢ to be

Wt = Rt—l\Rt~
Observe that
R = UtWt
and
Wt N Wt/ =g

whenever t £ t'.

Thus, at period ¢ R; consists of all theories that were unrefuted by h; (w),
and it is the disjoint union of R, 1, namely the theories that correctly predict
Yy = wy (t) and W1, namely the theories that predict different values for y;,
and that will be proven wrong.

If we ignore the case-based conjectures, the prediction made by the the-

ories in R; is guaranteed to be the “correct” prediction wy (t) if

¢ (Ri1) > ¢ Wita) -

(Observe that, as compared to h; (w), hyv1 (w) specifies two additional pieces
of information: the realization of y;, wy (t), and the realization of x;, 1, wy (t+
1). However, theories do not predict the x values, and thus the theories
in Ry are all those that were in R, and that predicted y; = wy (t); the
observation of x;;; does not refute any additional theories.)

A simple way to construct ¢ € ®% is to make sure that the prediction at

each period is dominated by the rule-based conjectures, despite the existence
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of the case-based conjectures. To guarantee that this is the case, we set

3
¢ (Ri) = TESE
at each t > 0.
Observe that, for ¢t > 0,

3

¢ (Riy1) = (t+ 6)2

¢ Wi1) = ¢ (Ri) — ¢ (Reya)
3 3

(t+5)* (t+6)"

This dictates the definition of ¢ on R: we start with ¢ (R) = ¢ (Ro) = 35,
and assign the weight 3 [(¢ + 57— (t+ 6)_2} to the subset of theories W 1.
Since UyW; = R, this defines ¢ on all of R. Clearly, ¢ (R) is finite.

Next, observe that at each t > 0, wy (t) € argmaxyey ¢(A(he, {y}))-

Specifically, at ¢ = 0 we only have to compare the rule-based hypotheses. We

have
3
¢(R1) = 62
3 3
oM) = 5-&
so that
3 3
For each t > 1, the total weight of the case-based conjectures is
1
.
(t+5)

We wish to show that the weight of the theories that predict the “correct”
continuation wy (t), R¢41, is larger than that of the theories that predict
other continuations, even when the latter is combined with all case-based

conjectures. Indeed,

3 3 1
¢ (Riy1) — 0 Wig) = 2(t n 6)2 — i 5>2 > t(t—i— 5)3.

27



This completes the proof that wy (t) € arg max,ey ¢(A(hy, {y})) for all ¢,
and it is easily verified that after normalization we obtain ¢ € ®” such that
w € Q¢ O

6.5 Proof of Proposition 5

Assume that w € S. Then there exists a theory f € R such that w € [f].
Since ¢ € ®,, ¢ (f) > 0 and this implies that ¢ (R(h; (w))) > ¢ (f) > 0 for all
t. By contrast, ¢ (CB(h; (w))) \, 0. Similarly, ¢ (R(h (w))\R(hi1 (w))) \,
0 because the sets {R(h; (w))\R(hit1(w))}, are pairwise disjoint (and the
sum of their weights is bounded). Hence, from some T onwards, theory f

dominates prediction and w € Qrpy. U

6.6 Proof of Proposition 6

Let there be given ¢ € ®7 and assume that w € Qcpg. This implies that,
from some 7" onwards, wy (t) can be computed from h; (w) by an algorithm
that mimics the summation of ¢. Because ¢ itself is computable, there exists
a theory f € R such that w € [f], and it follows that w € Qpps. Clearly,
Qrpge NQopgy = @ and it follows that Qepy = @. O
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