
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


Analogies and Theories: The Role of
Simplicity and the Emergence of Norms∗

Gabrielle Gayer†and Itzhak Gilboa‡

September 2012

Abstract

We consider the dynamics of reasoning by general rules (theories)
and by specific cases (analogies). When an agent faces an exogenous
process, we show that, under mild conditions, if reality happens to
be simple, the agent will converge to adopt a theory and discard ana-
logical thinking. If, however, reality is complex, the agent may rely
on analogies more than on theories. By contrast, when the agent is
a player in a large population coordination game, and the process is
generated by all players’predictions, convergence to a theory is much
more likely. This may explain how a large population of players se-
lects an equilibrium in such a game, and how social norms emerge.
Mixed cases, involving noisy endogenous processes are likely to give
rise to complex dynamics of reasoning, switching between theories and
analogies.

1 Introduction

Consider a set of agents who attempt to predict the process that governs

the environment they live in. They might be facing a process that is ex-

ogenous, that it, independent of the agents’predictions, or endogenous, that

∗Gilboa gratefully acknowledges ISF Grant 396/10 and ERC Grant 269754.
†Bar-Ilan University. gabi.gayer@gmail.com
‡HEC, Paris, and Tel-Aviv University, tzachigilboa@gmail.com.
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is, fully determined by these predictions. For example, natural processes

such as the weather, earthquakes, or hurricanes are exogenous. On the other

hand, social processes such as the adoption of a social norm, are largely en-

dogenous, as they are fundamentally determined by the agents’predictions

thereof. Many other processes are combination of exogenous and endogenous

processes. These include, for example, prices in real estate, commodities, and

financial markets, which respond both to exogenous news and to speculative

trade.

How do agents reason about such processes? Do they think about ex-

ogenous and endogenous processes in the same way? This paper attempts

to address these questions and others in a formal way. We consider a dy-

namic model in which, at each period t, an agent tries to predict the value

of a variable yt, based on a set of observable variables, xt, as well as the

history of both x and y (that is, (xi, yi)i<t). One common mode of reason-

ing is regression analysis, whereby yt might be regressed on xt, on its own

past values, (yi)i<t, or some combination of these. This process belongs to

a general category known as rule-based learning that involves a selection

of theories based on observations. In philosophy, this mode of reasoning is

referred to as (case-to-rule) induction, and it is based on the belief that a

rule that has been valid in the past will remain valid in the future. Hume

(1748) famously pointed out that this belief requires justification, thereby

stating the problem of induction. Wittgenstein (1922) suggested that the

process of induction consists in finding the simplest theory that conforms to

the observations, while Goodman (1955) claimed that the notion of simplic-

ity is language-dependent.1 The basic mechanism of using unrefuted theories

for prediction has remained a fundamental method of inference in science,

statistics, and everyday life.

Another, perhaps simpler mode of reasoning involves analogical thinking.

1Solomonoff (1964) showed that, in an appropriate model, the dependence of simplicity
judgments on language can be bounded.
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In its simplest manifestation, when the variable xt is ignored, yt is predicted

to be the most frequently encountered value in the past.2 If, however, dif-

ferent periods i < t are characterized by different values of xi, one may wish

to rely more heavily on more similar periods,3 as captured by the statistical

techniques of kernel estimation (Akaike, 1954, Parzen, 1962, and see also

Silverman, 1986). In artificial intelligence, this mode of reasoning has been

referred to as case-based (see Schank, 1986, Riesbeck and Schank, 1989), and

it has been axiomatized in Gilboa and Schmeidler (2001, 2003). Slade (1991)

and Kolodner (1992) pointed out some advantages of case-based systems over

rule-based systems.4

It appears that both case-based reasoning and rule-based reasoning are

common in everyday life, as well as in formal statistical analysis. In the ar-

tificial intelligence literature there are attempts to combine the two modes

of reasoning in order to exploit their respective advantages (see for example

Rissland and Skalak, 1989, and Domingosu, 1996). However, we are unaware

of theoretical work that analyzes such combinations, especially as models of

human reasoning, dealing with questions such as, when do agents tend to

use analogies, and when —theories? Do they converge to one such mode of

reasoning in the long run, and if so, which? Or, under which conditions will

case-based reasoning be asymptotically dominant, and under which condi-

tions will long run behavior to be governed by rule-based reasoning? Specif-

ically, are there differences between exogenous and endogenous processes in

this respect?

We start with an adaptation of the model of Gilboa, Samuelson, and

Schmeidler (GSS, 2010), which provides a unified framework for case-based,

rule-based, and Bayesian reasoning by assigning a weight to each mode of

2Or, in a continuous model, the average value of past observations.
3As suggested by Hume (1748, Section IV), “From causes which appear similar we

expect similar effects.”
4Their definition of rule-based systems is, however, different from the definition we use

in this paper.
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reasoning. The focus of GSS (2010) is the robustness of Bayesian reason-

ing, versus that of case-based and rule-based reasoning, the main distinction

being that the latter two modes of reasoning allow for unquantified uncer-

tainties that are prohibited in Bayesian reasoning. That paper also considers

examples of dynamics alternating between rule-based and case-based reason-

ing.

Rules (or theories) in GSS (2010) can have different domains of applica-

bility, allowing them, in particular, to vary in their starting periods. Thus, a

rule in that model might be “Starting at time t = t0, yt will equal y0”. In this

paper, by contrast, we limit attention to theories that share their domain of

applicability: they all make predictions at each and every period, predicting

yt given xt (and given history), but not of xt itself.5 We consider a countable

set of such theories, presumably all theories that are computable, that is,

that can be described by a Turing machine or a PASCAL program. These

theories are contrasted with case-based reasoning by examining the long-run

behavior of the relative weights of these two modes of reasoning.

The analysis turns out to critically depend on the process that generates

the variable yt. When the process is exogenous, namely when yt is completely

independent of the agent’s reasoning process, we show that, under mild as-

sumptions, rule-based reasoning will prevail if reality happens to be simple,

that is, describable by a Turing machine. However, case-based reasoning will

be dominant if reality is complex. Since there are many more complex sce-

narios than there are simple ones, it is safe to say that, for the most part,

rule-based reasoning will wither away making case-based reasoning the only

viable mode of reasoning. For example, there are very good models for pre-

dicting weather conditions for the following day, but not for a year hence.

5Theories in our model are not supposed to predict xt. Hence they are not “Bayesian”
by the definition of GSS (2010). For example, a scientist who uses a function f to generate
predictions yt = f(xt) would be considered rule-based according to our definition. Such
a scientist will not be Bayesian, because, prior to observing xt, she entertains no beliefs
regarding yt.
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This is consistent with the supposition that weather conditions constitute a

simple process in the short run (when t is measured in days) but not in the

long run (when it is measured in years). Moreover, prediction of weather

conditions in the long run typically reduces to past averages, which are a

form of case-based reasoning.

If the process is perfectly endogenous, where the variable yt is the mode

of the prediction of the agents, it turns out that every scenario is possible.

However, mild computability assumptions suggest that case-based reasoning

cannot be selected asymptotically. By contrast, rule-based reasoning is likely

to be dominant in the long run, because the agents’shared prediction agrees

with a certain theory that becomes the theory of choice for their predictions.

Thus, when we consider equilibrium selection in a game among many agents,

it is more likely to find the agents converging to simple rules than in the

case where these agents predict, say, the weather. This convergence to rules

may explain the emergence of social norms as the selection of equilibria in

coordination games.

As mentioned above, there are many economic phenomena involving in-

termediate cases, where the process yt is determined partly by agents’pre-

dictions, and partly by exogenous factors. Speculative trade is one such

example. In these cases, due to the external “noise” factors, no single the-

ory can remain valid in the long run (unless the noise factors diminish over

time). Nevertheless, when the noise factors are relatively weak, it may take

a very long time for the process to converge, and in the meantime the agents’

reasoning will fluctuate between rule-based and case-based reasoning. In par-

ticular, the agents’reasoning may select theories that become the equilibrium

prediction for a certain period, until they are refuted, and then replaced by

new theories, or by periods of case-based reasoning.

The rest of the paper is organized as follows. Section 2 describes the ba-

sic framework. It uses the framework of GSS (2010) and defines rule-based

and case-based reasoning. Section 3 deals with a purely endogenous process,
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showing that rule-based reasoning is likely to emerge in simple states of the

world, but not in complex ones. Section 4 then deals with a purely endoge-

nous process, showing that rule-based reasoning is more likely to emerge

as the asymptotic mode of reasoning than case-based reasoning. Section 5

concludes with comments on some variations of these models.

2 Framework

2.1 The unified model

We adapt the unified model of induction of GSS (2010). An agent makes

predictions about the value of a variable y based on some observations x.

She has a history of observations of past x and y values to rely on. We

make no assumptions about independence or conditional independence of the

variables across periods, or any other assumption about the data generating

process.

Let the set of periods be T ≡ {0, 1, 2, . . . , t, ...}. At each period t ∈ T
there is a characteristic xt ∈ X and an outcome yt ∈ Y . The sets X and Y

are finite and non-empty.6 The set of all states of the world is

Ω = {ω : T→ X × Y } .

For a state ω and a period t, let ω(t) = (ωX(t), ωY (t)) denote the element

of X × Y appearing in period t given state ω. Let

ht(ω) = (ω(0), . . . , ω(t− 1), ωX(t))

denote the history of characteristics and outcomes in periods 0 through t −
1, along with the period-t characteristic, given state ω. Let Ht denote all

possible histories at period t, i.e., Ht = {ht(ω) |ω ∈ Ω}. We let (ht, y)

denote the concatenation of the history ht with the outcome y.

6Clearly, xt may be a vector of characteristics, or explanatory variables, each of which
assumes only finitely many values.
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In each period t ∈ T, the agent observes a history ht and makes a pre-
diction about the period-t outcome, ωY (t) ∈ Y . A prediction is a ranking of
subsets in Y given ht.

Predictions are made with the help of conjectures. A conjecture is an

event A ⊂ Ω. A conjecture can represent a theory, an association rule, an

analogy, or in general any reasoning aid one may employ in predicting yt.

Indeed, any such reasoning tool can be described extensively, by the set of

states that are compatible with it. However, not every subset of Ω may be

considered by the agent. Rather, we assume that the agent only conceives

of a countable subset A of 2Ω, referred to as the set of conjectures. We

explain below why countability is a natural restriction for our purposes. For

the time being, we mention that only countable sets are considered, so that

summation over such sets will be well-defined.

GSS (2010) show that the notion of conjectures is general enough to

capture Bayesian, rule-based, as well as case-based reasoning. Specifically,

they assume that the agent has a model, which is a function φ : A → R+,

where φ(A) is interpreted as the weight attached to conjecture A for the

purpose of prediction. For a subset of conjectures D ⊂ A, φ is defined
additively, that is,

φ(D) =
∑
A∈D

φ(A).

It sacrifices no generality to assume that φ(A) = 1.7

For a history ht ∈ Ht, define

[ht] = {ω ∈ Ω | (ω(0), . . . , ω(t− 1), ωX(t)) = ht} .

Thus, [ht] is the event consisting of all states that are compatible with the

history ht. Similarly, for ht ∈ Ht and a subset of outcomes Y ′ ⊂ Y , we define

the event

[ht, Y
′] = {ω ∈ [ht] |ωY (t) ⊂ Y ′} ,

7In GSS (2010), the set of conjectures is uncountable, and φ is defined as a measure over
subsets of conjectures, that is, subsets of subsets of states of the world. This complication
is obviated thanks to the countability assumption.
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consisting of all states that are compatible with the history ht and with the

next outcome being in the set Y ′.

The agent learns by ruling out conjectures that have been refuted by

evidence. Specifically, given a history ht ∈ Ht, a conjecture A that is disjoint

from [ht] should not be taken into consideration in future predictions. Fixing

a subset of conjectures D ⊂ A, a history ht ∈ Ht and a subset of outcomes

Y ′ ⊂ Y , consider the set of conjectures in D that have not been refuted by
ht and that predict that the outcome will be in Y ′:

D(ht, Y
′) = {A ∈ D |∅ 6= A ∩ [ht] ⊂ [ht, Y

′]} .

Observe that the conjectures in D(ht, Y
′) are various events, many pairs of

which may not be disjoint. This is important to bear in mind in the following

definitions, where we sum over the weights assigned to different conjectures.

Given a model φ : A → R+, the weight assigned to Y ′ by the unrefuted

conjectures in D is
φ(D(ht, Y

′)).

The total weight assigned to a subset Y ′ ⊂ Y by all unrefuted conjectures is

thus given by

φ(A(ht, Y
′)).

The agent’s prediction is a ranking of the subsets of Y , with Y ′ considered

more likely than Y ′′ iff

φ(A(ht, Y
′)) > φ(A(ht, Y

′′
)).

It will be useful to have notation for the set of conjectures, in a class

D ⊂ A, that are relevant for prediction at history ht:

D(ht) = ∪Y ′(YD(ht, Y
′)

Observe that D(ht) is the set of conjectures in D that have not been refuted
and that could lend their weight to some nontautological prediction after

history ht (and hence D(ht) ⊂ D(ht, Y ).)
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2.2 Rule-based reasoning: theories

The notion of a rule is rather general. There are association rules, which,

conditional on the value of xt, restrict the possible values of yt. For example,

the rule “if the Democratic candidate wins the election, taxes will rise”says

something about the rate of taxation, yt if the president is a Democrat (i.e.,

if xt assumes a certain value). Such a rule does not restrict prediction in

case its antecedent does not hold. By contrast, there are functional rules,

which predict that yt be equal to f(xt) for a certain function f . Other

rules may be time-dependent, and allow yt to be a function of xt as well

as of t itself. Further, rules may differ in their domain. In particular, GSS

(2010) provide an example of rule-based reasoning in which the rules predict

a certain constant y value beginning with a given period t, and making no

predictions prior to that t.

In this paper we restrict attention to rules that can be viewed as general

theories. Such theories are constrained to make a specific prediction (i.e., a

single yt) at each and every t, and for any possible value of xt. Moreover, we

will allow such functions to depend on the entire history ht, and thus on pre-

vious values (xi, yi) for i < t. However, we make one important assumption:

all the functions we consider are computable by Turing machines. That is, we

consider only those theories f : ∪t≥0Ht → Y for which there exists a Turing

machine (or, equivalently, a PASCAL program), which, for every t and every

ht, halts in finite time. This appears to be a minimal requirement because

a theory that does not halt will fail to compute the value yt = f(ht) ∈ Y

for every t. It is well known that there is only a countable number of such

theories. We denote the set of theories by R = {f1, f2, ...}.
Observe that the definition assumes that a theory fj ∈ R computes a

prediction for every history ht, including histories that are inconsistent with

fj itself. This is reminiscent of the definition of a strategy in extensive form

games. Alternatively, one may restrict the domain of a theory f only to the
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histories that do not contradict it.8

One may wish to enrich the model by introducing Turing machines (or

computer programs) explicitly. In this case, each theory f will be represented

by infinitely many machines, which are observationally equivalent. The agent

will not be able, in general, to tell which machines are equivalent, but equiv-

alent machines will be refuted at the same histories, and thus their impact

on predictions will be the same as that of the function f they represent.

To avoid problems related with undecidability,9 one may restrict attention

to a subset of theories that can be proven to always halt. As long as the

subset considered is suffi ciently rich to be able to describe any finite history,

our results will hold.

If there are no x values to be observed (that is, |X| = 1), then for every

fj ∈ R, there exists a unique state of the world compatible with it. In this
case, a model φ that puts positive weight only on theories in R can also be

viewed as a Bayesian model (as defined in GSS, 2010), namely as a model

assigning probabilities to single states.10 However, in the more general case,

a theory fj ∈ R is compatible with a non-singleton conjecture, because such
a theory, as opposed to a Bayesian conjecture, need not predict the values of

the xt’s.

For a model φ and a theory fj ∈ R, we will use φ (fj) to denote the

weight assigned by φ to the conjecture consisting of all the states that do not

contradict fj, that is, φ (fj) = φ ([fj]) where

[fj] = {ω ∈ Ω | ωY (t) = fj (ht) ∀t} .
8Such a restriction would not make a major difference, because the definition of a theory

at histories incompatible with it will be immaterial for our purposes. Clearly, a computable
theory that is defined on the restricted domain can be extended to a computable theory
on the entire domain, say, by predicting a constant y for all histories that are incompatible
with the theory.

9This is known as the "Halting Problem" by which there is no general method to
determine whether a program will halt in finite time.
10The resulting Bayesian prior, however, is restricted to have a countable support con-

sisting of computable states.
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A model φR is (a priori) purely rule-based if φR (R) = 1, equivalently,

φR (A\R) = 0 or
∑

j φR (fj) = 1. Such a model can also be viewed as a

probability distribution over R.

2.3 Case-based reasoning: analogies

Case-based conjectures are defined as in GSS (2010): for every i < t, x, z ∈
X, let

Ai,t,x,z = {ω ∈ Ω |ωX(i) = x, ωX(t) = z, ωY (i) = ωY (t)} .

We can interpret this conjecture as indicating that, if the input data in period

i are given by x and in period t —by z, then periods i and t will produce

the same outcome (value of y). Notice that a single case-based conjecture

consists of many states: Ai,t,x,z does not restrict the values of ωX(k) or ωY (k)

for k 6= i, t.

Let the set of all conjectures of this type be denoted by

CB = {Ai,t,x,z | i < t, x, z ∈ X } ⊂ A. (1)

A model φCB is a priori purely case-based if all weight is put on the case-

based conjectures. Our main interest will be, however, in the evolution of the

relative weight of case-based and rule-based reasoning over time, considering

the ratio φ(R(ht(ω)))
φ(CB(ht(ω)))

as a function of t at different states ω.

For example, the agent might have a similarity function over the charac-

teristics,

s : X ×X → R+,

and a memory decay factor β ≤ 1. Given history ht = ht(ω) ∈ Ht, a possible

outcome y ∈ Y is assigned a weight proportional to

S(ht, y) =

t−1∑
i=0

βt−is(ωX(i), ωX(t))1{ωY (i)=y},
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where 1 is the indicator function of the subscripted event. Hence, the agent

may be described as if she considered past cases in the history ht, chose all

those that resulted in some period i with the outcome y, and considered the

aggregate similarity of the respective characteristic ωX(i) to the current char-

acteristic ωX(t). The resulting sums S(ht, y) can then be used to rank the

possible outcomes y. If β = 1 and in addition the similarity function is con-

stant, the resulting number S(ht, y) is proportional to the relative empirical

frequency of y’s in the history ht.

As noted by GSS (2010), for every similarity function s and decay factor

β one may define a model φs,β by setting φs,β(Ai,t,x,z), for each t, to be

proportional to β(t−i)s(x, z), and φs,β(A\CB) = 0. In this case, for every

history ht and every y ∈ Y , φs,β(A(ht, {y})) is proportional to S(ht, y). Such

a model φs,β will be equivalent to case-based prediction according to the

function S.

2.4 Open-Mindedness

We restrict our agent to a specific type of rule-based reasoning and a similarly

specific type of case-based reasoning. Formally, we assume that the set of

conjectures is A = R ∪ CB. Within this constraint, we wish to guarantee
that the agent is open-minded. Thus, we will henceforth assume that the

agent assigns a positive weight φ(A) > 0 to each conjecture in A = R∪ CB.
We denote this set of open-minded models by Φ+.

3 Exogenous Process

3.1 Simplicity Result

For each theory fj ∈ R, recall that [fj] is the event in which fj is never

refuted. All states ω ∈ [fj] are simple in a certain sense: the computation of yt
given ht can be done in a finite time, employing a program that is independent

of t. Observe that the pattern of xt’s in ω may be rather complicated, and,
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in particular, it can be a pattern that cannot be computed by any Turing

machine. However, since the agent’s task is to predict yt given ht, we ignore

this complexity. We therefore define the set of simple states to be

S =
⋃
r≥1

[fr]

(or S =
⋃
f∈R

[f ]).

We can now state

Proposition 1 For every φ ∈ Φ+ and every ω ∈ S,

φ (CB(ht (ω)))

φ (R(ht (ω)))
→ 0

as t→∞.

That is, in all simple states, the agent will converge to reason by theories

and will gradually discard case-based reasoning.

The logic of this proposition is straightforward: if we consider a simple

state ω, where a certain simple theory fr holds, the initial weight assigned to

this theory will serve as a lower bound on φ (R(ht (ω))) for all t, because the

theory will never be refuted at ω. By contrast, the total weight of the set of

all case-based conjectures that are relevant for prediction at time t converges

to zero because it is an element in a convergent series. Intuitively, because

at ω the theory fr is correct, it retains its original weight of credence. By

contrast, case-based conjectures concern only pairs of periods, i < t, and

thus, for each new value of t, a new set of case-based conjectures is being

considered. It is inevitable that the total weight of this set (which is disjoint

from sets considered in previous periods) converge to zero.

3.2 The Fragility of Rule-Based Reasoning

Because there are only countably many simple states of the world, it is in-

tuitive that “most” states are not simple. What happens in these states?
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Clearly, in such a state no single theory can be unrefuted forever. But it is

still possible that different theories succeed each other in the agent’s mind,

so that at each period her reasoning is mostly rule-based.

While this is possible in some non-simple states, and even in many of

them, there is still a well-defined sense in which it can only happen in a small

minority of states. For example, assume that |X| = 1 and that Y = {0, 1},
so that the state space is {0, 1}N. Let λ be the measure defined by assigning
weight 2−t to any event defined by (y0, ..., yt−1) (for any sequence of t values

for the t variables). In this case, one can show that the set of states where

non-negligible weight is put on rule-based reasoning is small, as measured by

λ. More generally, we will prove this result for any finite sets X and Y , and

for a large class of measures λ.

Endow the state space Ω with the σ-algebra Σ defined by the variables

(xt, yt)t≥0. A probability measure λ on Σ is a non-trivial conditionally iid

measure if, for every x ∈ X there exists λx ∈ ∆(Y ) such that (i) for every

ht = ((x0, y0) , . . . , (xt−1, yt−1) , xt), the conditional distribution of Y given ht
according to λ is λx; and (ii) λx is non-degenerate for every x ∈ X. The

measure λ is assumed neither to govern the actual process, nor to capture

the reasoner’s beliefs. It is merely a way to quantify states of the world, and

capture the intuition that certain events are small relative to others.

Proposition 2 Let there be given φ ∈ Φ+ and let λ be a non-trivial condi-

tionally iid measure. For every ε > 0 there exists T0 such that

λ
({
ω
∣∣∣φ (R(ht (ω))) ≤ δt/2 ∀t ≥ T0

})
> 1− ε.

This result states that, apart from a λ-negligible event, the weight of

the rule-based conjectures decreases at a semi-exponential rate. Clearly, this

cannot be the case in the simple state, where the weight of the rule-based

conjectures remains bounded away from zero. But there are only countably

many simple states, and they are therefore of λ-measure zero. Thus, there can

be many non-simple states at which the weight of the rule-based conjectures
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does not decay very fast, but the total (λ-)weight of all these states, simple

or non-simple, is negligible.

Does the fast decay of the weight of the rule-based conjectures mean

that the reasoner will tend to use more case-based conjectures? The answer

depends on the rate at which the weight of the case-based conjectures tends

to zero. Thus, we are led to ask, how are the weights to be spread over the

case-based conjectures?

One may argue that it is intuitive for the total weight of the case-based

conjectures at a given time to be independent of t. However, the set of case-

based conjectures that are relevant at t is disjoint from the corresponding set

for t′ 6= t. It is therefore a mathematical necessity that the weight assigned

to all case-based conjectures relevant at period t converge to zero (as in the

proof of Proposition 1). However, there is no reason for this total weight

to converge to zero too fast. We therefore assume that the weight of all

case-based conjectures, across all periods, is split among them so that the

case-based conjectures relevant for prediction at each history ht command

a positive weight that does not diminish too fast as a function of t. This

will be the case if, for instance, the total weight is split proportionately to a

strictly positive similarity matrix S : X2 → R.
Formally, define Φp

+ ⊂ Φ+ to be the set of models φ for which there exist

γ < −1 and c > 0, such that, for every t, and every x, z ∈ X,∑
i<t

φ (Ai,t,x,z) ≥ ctγ

Under these assumptions, the opposite of that of Proposition 1 holds

almost everywhere:

Proposition 3 Let there be given a model φ ∈ Φp
+ and a non-trivial condi-

tionally iid measure λ. Then, λ-almost everywhere,

φ (R(ht (ω)))

φ (CB(ht (ω)))
→ 0

as t→∞.
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4 Endogenous Process

In this section we consider a process that is governed by the reasoning of

a set of agents. For example, consider the behavior of agents involved in a

coordination game, where each agent tries to predict the social norm that

will govern the behavior of others, and to match that norm in her choice of

strategy.

In this section we analyze the case in which all agents share the same

weight function φ ∈ Φ. Beyond serving as an important benchmark, this

extreme case attempts to capture the intuition that, while people vary in their

a priori judgment of theories, these judgments are correlated. Specifically,

people tend to prefer simpler theories to more complex ones, and similarity

judgments are correlated across people. For example, people might disagree

whether the pattern 011111... is simpler than the pattern 010101..., but

practically everyone would agree that 000000... is simpler than 011001...

(where readers might wonder how the last sequence is meant to be continued).

For such a function φ define

Ωφ =

{
ω ∈ Ω

∣∣∣∣ωY (t) ∈ arg max
y∈Y

φ(A(ht, {y})) ∀t ≥ 0

}
.

Thus, it is assumed that the agents’predictions determine the actual out-

come. As in the case of the exogenous process, the agents are not assumed

to predict the values of xt, nor to affect them.

We first note that every state of the world may unfold in an endogenous

process:

Proposition 4 For every ω ∈ Ω, there exists φ ∈ Φp
+ such that ω ∈ Ωφ.

The proof of Proposition 4 is constructive: given a state ω ∈ Ω the

proof describes an algorithm that generates φ ∈ Φp
+ such that ω ∈ Ωφ.

However, if the state ω itself is not computable, the resulting φ may also not

be computable. Hence the message of the proposition should be qualified:
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while every state may materialize as the prediction of the agents, if we make

the plausible assumption that the agents can only make predictions using a

computable φ, not all states are necessarily possible.

We therefore restrict attention to models φ that are computable functions

assuming rational values. That is, consider only the set of functions Φcp
+ ⊂ Φp

+

such that, for each φ ∈ Φcp
+ , there is a machine that computes φ(A) ∈ Q

for each conjecture A. This assumption allows us to imagine the agent as

actually trying to compute φ(A(ht, {y})) for each y ∈ Y , and choosing an

ε-maximizer of φ(A(ht, {·})) as her prediction.11 Clearly, this interpretation
is not the only one, and one may think of the computation of φ(A(ht, Y

′))

as a model that an outside observer uses in order to provide a description of

the agent’s predictions.

Our interest is in the dynamics of reasoning of the agents along states in

Ωφ for φ ∈ Φcp
+ . To this end, we introduce the following definitions. Rule-

based reasoning is dominant at state ω ∈ Ωφ at period t if

(i) φ (R(ht (ω))) > φ (CB(ht (ω)))

and

(ii) ωY (t) ∈ arg max
y∈Y

φ(R(ht, {y})).

Thus, rule-based reasoning is dominant if there is more weight put on rule-

based reasoning than on case-based reasoning, and if the prediction of the

rule based reasoning is indeed the prediction that the agents make (and that

defines the next observation yt). Similarly, we say that case-based reasoning

11Observe that the computation of φ(A(ht, {y})) involves infinite summations. Hence
the agent cannot simply compute φ(A(ht, {y})) for each y with perfect precision. How-
ever, the agent can be imagined to simultaneously approximate these values and halt the
computation if the difference between the values is larger than the residual weight, or if the
residual weight is below a certain threshold. This would result in a computable procedure
that approximates the maximization φ in the sense that it provides an ε—maximization of
φ
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is dominant at state ω ∈ Ωφ at period t if

(i) φ (R(ht (ω))) < φ (CB(ht (ω)))

and

(ii) ωY (t) ∈ arg max
y∈Y

φ(CB(ht, {y})).

Observe that, at ω ∈ Ωφ at period t we may have neither mode of rea-

soning dominating either if they happen to be equally weighty, that is, if,

φ (R(ht (ω))) = φ (CB(ht (ω))), or if the weightier mode of reasoning does

not correctly predict the outcome. This may happen, for instance, if the

conjectures in the dominant mode of reasoning split the weight between the

different predictions, so as to make the other mode of reasoning pivotal.

For φ ∈ Φcp
+ we are interested in the long-run existence of a dominant

mode of reasoning. Define ΩRBφ to be the set of states ω ∈ Ωφ such that, for

some T , rule-based reasoning is dominant at state ω ∈ Ωφ at all t ≥ T . Define

ΩCBφ accordingly to be the states at which case-based reasoning dominates

from some period on.

Proposition 5 For every φ ∈ Φcp
+ we have S ⊂ΩRBφ.

Thus, for every weight function that satisfies our assumptions, the set

of states in which rule-based reasoning is eventually dominant contains all

the simple states. One might wonder whether in complex states case-based

reasoning might be dominant in the long run. The negative answer is given

by

Proposition 6 For every φ ∈ Φcp
+ we have ΩCBφ = ∅.

The reasoning behind Proposition 6 is very simple: if ω were a state that

is, in the long run, governed by case-based reasoning, then, because φ is com-

putable, there exists a theory that simulates the case-based reasoning defined

by φ. For example, if all agents simply use the modal y for prediction, there
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exists a simple algorithm that describes their prediction, and therefore the

resulting state ω. Since an open-minded φ must have assigned this algo-

rithm a positive weight a priori, the theory described by this algorithm will

eventually prevail as the correct theory used for prediction.

By the same logic, one might be tempted to suggest that, for any com-

putable φ, ΩRBφ = Ωφ, that is, that the process ends up in a rule-based

state. This conclusion would not be warranted for two reasons: (i) the con-

dition ωY (t) ∈ arg maxy∈Y φ(A(ht, {y})) does not require that ωY (t) be a

single maximizer of φ(A(ht, {y})); in case of ties, ω may involve a pattern of
choices of y that is not computable; and, moreover, (ii) as mentioned above,

computability of φ does not imply that φ(A(ht, {y})) is computable, as the
latter involves an infinite summation. (This cannot happen when one re-

stricts attention to case-based conjectures, but it will necessarily be the case

when rule-based conjectures are concerned.)

5 Variants

5.1 Hybrid models

Consider the case of trade in financial markets. Financial assets are affected

by various economic variables that are exogenous to the market, ranging

from weather conditions to technological innovation, from demand shocks to

political revolutions. At the same time, financial assets are worth what the

market “thinks”they are worth. In other words, such markets have a strong

endogenous factor as well. It seems natural to assume that such processes

(yt) are governed partly by the predictions (ŷt) as in Section 4 and partly

by random shocks as in Section 3. For instance, assume that α (ht) is the

probability that agents’reasoning determines yt, and with the complement

probability yt is determined by a random shock. That is,

yt =

{
ŷt α (ht)
ỹt 1− α (ht)
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where ŷt ∈ arg maxy∈Y φ(A(ht, {y})) and ỹt is uniformly distributed over

Y . Thus, if α (ht) ≡ 1 we consider a model as in Section 4, which is likely

to converge to a single dominant theory, and when α (ht) ≡ 0 we consider

a model as in Section 3, coupled with a non-degenerate iid measure that

guarantees asymptotic case-based reasoning. Obviously, the interesting case

is where α (ht) ∈ (0, 1) (for most if not all histories ht).

If α (ht) is independent of history, so that α (ht) ≡ α ∈ (0, 1), no theory

can be dominant asymptotically. Indeed, every theory that correctly predicts

ŷt has a fixed positive probability (1− α) of being refuted at each period,

and will thus be refuted at some point with probability 1. Moreover, when t

is large, we know that with very high probability the number of “noise”peri-

ods is approximately (1− α) t. Over these periods we are likely to observe a

complex pattern of yt’s, and thus a result similar to Proposition 3 holds: the

total weight of rule-based conjectures decreases, on average, exponentially

fast in the number of noise periods. Because the number of noise periods

increases linearly in t (as it is roughly (1− α) t), this weight is also an ex-

ponentially decreasing function of t and thus it decays faster than do the

case-based conjectures. Thus, case-based reasoning will be asymptotically

dominant in “most”states of the world even if α (ht) ≡ α is very close to 1.

However, the probability of noise in an endogenous process is likely to

be endogenous as well. For example, consider the choice of driving on the

right or on the left in a large population. When agents are not quite sure

which equilibrium is being played, it is easier for a random shock to switch

equilibria. But when all the agents are rather certain that everyone is going

to drive, say, on the right, it is highly unlikely that at least half of them

would behave differently from what they would find optimal based on their

predictions. Thus, it stands to reason that α (ht) depends on ht, and, more-

over, that it converges to 1 as t grows, if a simple theory fits the data ht.

Such convergence would allow the process to be asymptotically dominated

by rule-based conjectures with positive probability.
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5.2 Heterogenous beliefs

The analysis in Section 4 assumes that all agents share the function φ, which

is the natural counterpart of the common prior assumption in economics.

Clearly, this assumption is not entirely realistic; people vary in their similar-

ity judgments, in their prior beliefs in theories, as well as in their tendency

to reason by theories vs. by analogies. Hence one may consider an endoge-

nous process in which the population is distributed among different credence

functions φ.

Importantly, the distinction between computable and incomputable states

is an objective one. Agents may vary in the language they use to describe

theories, and, correspondingly, in their judgment of simplicity. However, any

two languages that are equivalent to the computational model of a Turing

machine can be translated to each other. Thus, if the process follows a

simple (computable) path, all agents will notice this regularity. Different

agents may discard case-based reasoning in favor of the unrefuted theory

at different times, but (under the assumption of open-mindedness) all of

them will eventually realize that this unrefuted theory is indeed “correct”.

Interesting dynamics might emerge if the agents who are slow to switch

to prediction by the correct theory are suffi ciently numerous to refute that

theory, thereby changing the reasoning of those agents who were the first to

adopt the theory.
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6 Appendix: Proofs

6.1 Proof of Proposition 1

Assume that ω ∈ [fr] for some r. In this case the denominator is bounded

from below by the weight assigned to the correct theory fr. In fact,

R(ht (ω))↘ φ (fr) > 0

as t→∞.
By contrast, CB(ht (ω)) includes the φ-weight only of those case-based

conjectures that are relevant at t, that is

φ (CB(ht (ω))) =
∑

{(i,x,z)|i<t,ωX(i)=x,ωX(t)=z}

φ (Ai,t,x,z)

Clearly,

φ (CB(ht (ω))) ≤
∑

{(i,x,z)|i<t}

φ (Ai,t,x,z)

Defining

αt =
∑

{(i,x,z)|i<t}

φ (Ai,t,x,z)

and observing that ∑
t

αt = φ (CB) < 1

we must have

αt → 0

as t → ∞. Hence φ (CB(ht (ω))) also converges to zero as t → ∞, and this
completes the proof.

6.2 Proof of Proposition 2

Let there be given an open-minded model φ. For a period t and a sequence

x(t) = (x0, ..., xt−1) ∈ X t, consider the state space Ωx(t) defined by the corre-

sponding y(t) = (y0, ..., yt−1) ∈ Y t and containing |Y |t states. Thus Ωx(t) is a
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replica of Y t and when no confusion is likely to arise we will refer to elements

of Ωx(t) as y(t).

Let δ < 1 be such that λ0 ((x, y)) < δ for every (x, y) ∈ X × Y . Observe
that λ attaches a probability not exceeding δt to each element in the space

Ωx(t).

Let W be a random variable defined on Ωx(t) , and measuring the total

weight of rule-based conjectures that are compatible with history. That is,

for y(t) = (y0, ..., yt−1) choose an arbitrary xt ∈ X and define ht by ht =

((x0, y0) , ..., (xt−1, yt−1) , xt). Choose ω such that ht (ω) = ht and define

W (y(t)) = φ (R(ht (ω)))

Clearly, such states ω exist. Importantly, R(ht (ω)) does not depend on the

choice of xt because theories are not required to predict xt and therefore no

observation of xt will rule out any theories. It is also obvious that the choice

of ω such that ht (ω) = ht does not affect R(ht (ω)), because yet-unobserved

variables do not rule out theories.

Observe that {R(ht (ω))}ω defines a partition of R: each theory f ∈ R
is compatible with precisely one state y(t) ∈ Ωx(t) . Hence∑

y(t)∈Ωx(t)

φ (R(ht (ω))) = r < 1

and therefore

E(W ) =
∑

y(t)∈Ωx(t)

λ|x(t)
(
y(t)

)
W (y(t))

=
∑

y(t)∈Ωx(t)

λ|x(t)
(
y(t)

)
φ (R(ht (ω)))

< δtr < δt.

Denoting by Bt the event W > δt/2, and using Markov’s inequality, we

get

λ|x(t) (Bt) = λ|x(t)

(
W > δt/2

)
<
E(W )

δt/2
<

δt

δt/2
= δt/2.

23



We will also use Bt to denote the corresponding event in Ω. Since we have

shown that λ|x(t) (Bt) = λ
(
Bt|x(t)

)
< δt/2 for all x(t), we also have λ (Bt) <

δt/2.

Next observe that the bounds on the probabilities of the various Bt events

converge. In fact, ∑
t≥T

δt/2 ≤
∑
t≥0

δt/2 =
1

1−
√
δ
.

This implies that for the given ε > 0 there is a large enough T0 such that∑
t≥T0

δt/2 < ε

and thus, for this T0,

λ (∪t≥T0BT ) < ε

and

λ
({
ω
∣∣∣φ (R(ht (ω))) ≤ δt/2 ∀t ≥ T0

})
> 1− ε.

6.3 Proof of Proposition 3

Consider a given ε > 0 and let T0 be the period provided by Proposition 2.

Then, on the corresponding event (whose probability is at least 1− ε)

φ (R(ht (ω))) ≤ δt/2 ∀t ≥ T0

and this, together with the assumption that φ ∈ Φp
+, that is,

∑
i<t φ (Ai,t,x,z) ≥

ctγ for c > 0 and γ < −1, implies that

φ (R(ht (ω)))

φ (CB(ht (ω)))
<
δt/2

ctγ

where the right hand side converges to 0 as t tends to ∞.
Considering a sequence εn ↘ 0, one concludes that the convergence to 0

occurs everywhere apart from a set whose λ-measure is zero.
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6.4 Proof of Proposition 4

Let there be given ω ∈ Ω. For simplicity of notation, we define φ with-

out guaranteeing the normalization φ (A) = 1. It will be obvious from the

construction, however, that 0 < φ (A) <∞ so that φ can be normalized.

We first define φ on the case-based conjectures. For every t ≥ 1, let

φ (Ai,t,x,z) =
1

(t+ 5)3 .

(We use a “lag”of 5 periods to make sure that the rate of decay between any

two consecutive periods is not too fast. Specifically, we wish to guarantee

that each element in the sequence is at least half of its predecessor.)

Clearly,

φ (CB) ≤ |X|2
∑
t≥1

[
t

1

(t+ 5)3

]
<∞.

We now turn to define φ on R. In the proof we wish to assign weights to
subsets of conjectures in R. Note that for every subset R′ ⊂ R and every

a > 0 one may assign a positive weight φ (f) > 0 to each f ∈ R such that

φ (R′) = a, say by considering an enumeration of R′, f1, f2, ... and setting

φ (fj) = a/2j. In the rest of this proof, we will simply say “assign a weight

a > 0 to the subset R′”, referring to such an assignment.
If ω ∈ S, there exists a theory f ∈ R such that ω ∈ [f ]. In this

case, assign φ (f) = 1 and assign the weight a = 1/4 to the set of all the

other theories, R\{f}. It is easily observed that, at each t ≥ 0, ωY (t) ∈
arg maxy∈Y φ(A(ht, {y})) and thus ω ∈ Ωφ is established, while φ ∈ Φp

+

holds.

Next assume that ω /∈ S. Denote, for t ≥ 0,

Rt = R(ht (ω)).

Rt denotes the set of theories that are unrefuted by history ht (ω). Observe

that they are all relevant for prediction at period t. Clearly, R0 = R, as
h0 (ω) contains only the value of x0 and no theory makes any prediction
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about the x’s. Moreover, Rt+1 ⊂ Rt, because any theory that agrees with ω

for the first (t+1) observations also agrees with it for the first t observations.

Finally,

∩tRt = ∅

because ω /∈ S. We can thus define, for t > 1, the set of theories that are

proven wrong at period t to be

Wt = Rt−1\Rt.

Observe that

R = ∪tWt

and

Wt ∩Wt′ = ∅

whenever t 6= t′.

Thus, at period t Rt consists of all theories that were unrefuted by ht (ω),

and it is the disjoint union ofRt+1, namely the theories that correctly predict

yt = ωY (t) andWt+1, namely the theories that predict different values for yt,

and that will be proven wrong.

If we ignore the case-based conjectures, the prediction made by the the-

ories in Rt is guaranteed to be the “correct”prediction ωY (t) if

φ (Rt+1) > φ (Wt+1) .

(Observe that, as compared to ht (ω), ht+1 (ω) specifies two additional pieces

of information: the realization of yt, ωY (t), and the realization of xt+1, ωX(t+

1). However, theories do not predict the x values, and thus the theories

in Rt+1 are all those that were in Rt and that predicted yt = ωY (t); the

observation of xt+1 does not refute any additional theories.)

A simple way to construct φ ∈ Φp
+ is to make sure that the prediction at

each period is dominated by the rule-based conjectures, despite the existence
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of the case-based conjectures. To guarantee that this is the case, we set

φ (Rt) =
3

(t+ 5)2

at each t ≥ 0.

Observe that, for t ≥ 0,

φ (Rt+1) =
3

(t+ 6)2

φ (Wt+1) = φ (Rt)− φ (Rt+1)

=
3

(t+ 5)2 −
3

(t+ 6)2 .

This dictates the definition of φ onR: we start with φ (R) = φ (R0) = 3
52
,

and assign the weight 3
[
(t+ 5)−2 − (t+ 6)−2] to the subset of theoriesWt+1.

Since ∪tWt = R, this defines φ on all of R. Clearly, φ (R) is finite.

Next, observe that at each t ≥ 0, ωY (t) ∈ arg maxy∈Y φ(A(ht, {y})).
Specifically, at t = 0 we only have to compare the rule-based hypotheses. We

have

φ (R1) =
3

62

φ (W1) =
3

52
− 3

62

so that

φ (R1)− φ (W1) = 2
3

62
− 3

52
> 0.

For each t ≥ 1, the total weight of the case-based conjectures is

t
1

(t+ 5)3 .

We wish to show that the weight of the theories that predict the “correct”

continuation ωY (t), Rt+1, is larger than that of the theories that predict

other continuations, even when the latter is combined with all case-based

conjectures. Indeed,

φ (Rt+1)− φ (Wt+1) = 2
3

(t+ 6)2 −
3

(t+ 5)2 > t
1

(t+ 5)3 .
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This completes the proof that ωY (t) ∈ arg maxy∈Y φ(A(ht, {y})) for all t,
and it is easily verified that after normalization we obtain φ ∈ Φp

+ such that

ω ∈ Ωφ. �

6.5 Proof of Proposition 5

Assume that ω ∈ S. Then there exists a theory f ∈ R such that ω ∈ [f ].

Since φ ∈ Φ+, φ (f) > 0 and this implies that φ (R(ht (ω))) > φ (f) > 0 for all

t. By contrast, φ (CB(ht (ω))) ↘ 0. Similarly, φ (R(ht (ω))\R(ht+1 (ω))) ↘
0 because the sets {R(ht (ω))\R(ht+1 (ω))}t are pairwise disjoint (and the
sum of their weights is bounded). Hence, from some T onwards, theory f

dominates prediction and ω ∈ ΩRBφ. �

6.6 Proof of Proposition 6

Let there be given φ ∈ Φcp
+ and assume that ω ∈ ΩCBφ. This implies that,

from some T onwards, ωY (t) can be computed from ht (ω) by an algorithm

that mimics the summation of φ. Because φ itself is computable, there exists

a theory f ∈ R such that ω ∈ [f ], and it follows that ω ∈ ΩRBφ. Clearly,

ΩRBφ ∩ ΩCBφ = ∅ and it follows that ΩCBφ = ∅. �
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