
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


Costly Self Control and Random Self Indulgence1

Eddie Dekel2 Barton L. Lipman3

First Draft
May 2010

Current Draft
November 2011

1We thank Larry Epstein, Faruk Gul, Jawwad Noor, Andy Postlewaite, Todd Sarver, Wolf-
gang Pesendorfer, three anonymous referees and numerous seminar audiences for helpful com-
ments. We also thank the National Science Foundation, grants SES–0820333 (Dekel) and
SES–0851590 (Lipman), for support for this research.

2Economics Dept., Northwestern University, and School of Economics, Tel Aviv University
E–mail: dekel@nwu.edu.

3Boston University. E–mail: blipman@bu.edu.



Abstract

We study the random Strotz model, a version of the Strotz (1955) model with uncer-
tainty about the nature of the temptation that will strike. We show that the random
Strotz representation is unique and characterize a comparative notion of “more temp-
tation averse.” Also, we demonstrate an unexpected connection between the random
Strotz model and a generalization of the Gul–Pesendorfer (GP) (2001) model of temp-
tation which allows for the temptation to be uncertain and which we call random GP.
In particular, a preference over menus has a random GP representation iff it also has a
representation via a random Strotz model with sufficiently smooth uncertainty about the
intensity of temptation. We also show that choices of menus combined with choices from
menus can distinguish the random GP and random Strotz models.



1 Introduction

In this paper, we explore the random Strotz model which is a version of the classic Strotz
(1955) model of temptation that adds uncertainty about the nature of the temptation.
Uncertainty is both a plausible and a useful hypothesis regarding temptation. Such un-
certainty is frequently a key part of applications of the Strotz model, such as in Battaglini,
Benabou, and Tirole (2005), Benabou and Tirole (2004, 2010), Eliaz and Spiegler (2006),
and Harris and Laibson (2008). Also, as noted by Caplin and Leahy (2006), for exam-
ple, uncertainty can “smooth out” the discontinuities present in the usual nonstochastic
Strotz model.

The resulting model has some surprising connections to more recent models of temp-
tation. In particular, we show a sense in which the random Strotz model nests the
self–control model of Gul and Pesendorfer (2001) (henceforth GP). Specifically, the lat-
ter exhibits the same commitment behavior — that is, the same choice of “menus” from
which future choices will be made — as a particular class of random Strotz models. In
addition, a random generalization of the GP model is equivalent in this sense to the class
of all randomizations over Strotz models with sufficiently smooth uncertainty about the
intensity of temptation (in a sense to be made precise).

We also show that commitment behavior is sufficient to identify the random Strotz
model uniquely. In other words, any commitment behavior is consistent with at most one
random Strotz model. Given that the random Strotz model is uniquely identified from
such behavior, we can characterize how commitment choices vary as we change aspects of
the representation. More specifically, we show that a certain kind of first–order stochastic
dominance shift upward in the intensity of temptation faced corresponds to an increase
in the agent’s concern about temptation.1

Our results are useful for several reasons. First, they clarify the foundations of the
random Strotz model and some of its properties. For example, our uniqueness and
comparative results should be valuable in the study of temptation with uncertainty as in
the papers cited above. Also, the relationship between the random Strotz and random GP
models yields a simple axiomatization of a subclass of random Strotz models. Specifically,
Stovall (2010) gives an axiomatic characterization of the random GP model for the case
where the support of the measure is finite. As we explain in more detail in Section 3, the
connection between random Strotz and random GP that we demonstrate thus implies
that Stovall’s axioms characterize a subclass of random Strotz models.

1By contrast, the random GP model is not identified in the same way as random Strotz. When
commitment behavior is consistent with at least one random (or nonrandom) GP model, it is consistent
with infinitely many distinct random GP models as we show in Section 4.
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Second, the connection between the random Strotz and GP models has significant
methodological implications. Most of the work on temptation has focused on using
commitment behavior alone as a means of identifying a model, implicitly or explicitly as-
suming that subsequent choices from menus can be deduced from commitment behavior.2

Since we show that two very natural models are consistent with the same commitment
behavior but predict different choices from menus, such assumptions are not warranted in
general. Instead, our results suggest that we should broaden the set of data considered.
In particular, if we consider both commitment choices and choices from menus, then we
can separate the two models.

Finally, these results may be helpful in other areas where the random Strotz model can
be applied. For example, Olszewski (2007) and Ahn (2007) consider models of ambiguity
where an act is viewed not as a function from states to consequences but as a set of
lotteries, where this is interpreted as a set of consequences. (See also related work by
Gajdos, Hayashi, Tallon, and Vergnaud (2008).)3 In other words, a menu is interpreted
not as a set of options that the agent will choose from later but as a set of possible
outcomes from which “Nature” will choose later. Under this interpretation, the random
Strotz model represents the agent as forming various theories about what guides Nature’s
choices. Similarly, any model of control rights necessarily has a Strotzian aspect to it,
in that an agent must evaluate his utility from the expected choices by another agent
given particular constraints. Our uniqueness and comparative results should be useful
for such models. Also, as discussed earlier, our results can be combined with those of
Stovall (2010) to provide a way to axiomatize such representations.

The basic point that the GP representation can be rewritten in terms of a random
determination of which self has control has been made before, though in very different
ways. In particular, Benabou and Pycia (2002) note that the GP representation can be
written as the equilibrium payoff of a game between the current and future self engaging in
a costly battle for control. Also, Chatterjee and Krishna (2007) show that a preference
with a GP representation also has a representation where there is a menu–dependent
probability that the choice is made by the tempted self, with the choice made by the
untempted self otherwise. Unfortunately, the properties of the function relating menus
to probabilities over control make it difficult to interpret in general.4 Our result provides

2See, for example, Gul and Pesendorfer (2001) and Dekel, Lipman, and Rustichini (2009).
3The Steiner point, which plays a significant role in the analysis of Gajdos, Hayashi, Tallon, and

Vergnaud, provides an interesting connection between their work and random Strotz. One definition of
the Steiner point of a set of lotteries is that it is the expected value of the lottery chosen by an expected
utility preference which is drawn at random from a uniform distribution. Thus it is the expected choice
by a particular random Strotz agent.

4The published version of Chatterjee and Krishna’s paper, Chatterjee and Krishna (2009), considers
only the case where this probability is independent of the menu. While this provides more structure,
the constant probability model no longer nests GP. On the other hand, this version of their model is a
special case of the random Strotz model we consider.
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a tighter connection through a model which is an interesting and natural alternative
formulation in its own right.

While not the main purpose of their work, Fudenberg and Levine (2006, 2010a,
2010b)’s dual–selves model also gives a connection between GP and multiple–selves mod-
els. Our approach enables us to show an unexpected connection between the Fudenberg–
Levine model and random Strotz. Roughly speaking, an adaptation of our result linking
GP and random Strotz shows that we can recast a version of the dual–selves model which
is discussed by Noor and Takeoka (2010b) as random Strotz model. See Section 3 for a
more precise statement.

The next section defines the model and the representations considered. In Section 3,
we relate random Strotz representations to (random) GP representations. Section 4 shows
the uniqueness and comparative results described above. In Section 5, we discuss choice
from menus. Proofs not contained in the text are in the Appendix or supplementary
appendix.

2 Definitions

Fix a finite set Z of “prizes” or outcomes, let ∆(Z) denote the set of lotteries over Z,
and let X denote the set of menus, i.e., the set of compact and nonempty subsets of
∆(Z). The current self has a preference over X, denoted �, interpreted as a preference
regarding how much commitment to impose on subsequent choices. (In Section 5, we
discuss choices from menus.) Throughout, we assume that � is nontrivial in the sense
that there exist x, y ∈ X such that x � y.

A function w : ∆(Z)→ R is an expected utility (EU) function if w(λα+ (1− λ)β) =
λw(α)+(1−λ)w(β) for all λ ∈ [0, 1] and α, β ∈ ∆(Z). Both the Strotz and GP represen-
tations use two expected utility functions, u, v : ∆(Z) → R. The Strotz representation
uses u and v to evaluate a menu x by

VS(x) = max
β∈Bv(x)

u(β)

where Bv(x) is the set of best elements of x according to v. That is,

Bv(x) = {β ∈ x | v(β) ≥ v(α), ∀α ∈ x}.

Intuitively, v represents the preference of the future self who will be completely self
indulgent, choosing from the menu as he wishes, breaking ties in favor of the current self
who has utility function u.
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One unfortunate feature of the Strotz model is that the agent’s utility depends dis-
continuously on the commitments he makes. This occurs because when the choosing
self is almost indifferent, the current self may still have strong preferences regarding the
choices. A small change in commitments can then create indifference for the chooser,
leading to use of the tie–breaking rule and a large change in the current self’s payoff.
Hence small changes in commitments can have big effects on the current self’s payoff.5

This discontinuity is both intuitively implausible and analytically inconvenient.

The representation introduced by GP is continuous and hence avoids this problem.
We say that a GP representation is a pair (u, v) such that a menu x is evaluated by the
function

VGP (x) = max
β∈x

[u(β) + v(β)]−max
α∈x

v(α).

This representation also has an interesting interpretation. As GP emphasize, the agent
chooses from the menu the item which maximizes u + v, not v. In this sense, the GP
model seems behaviorally richer than the Strotz model as the agent shows partial self
control by compromising between u and v instead of simply maximizing v. The term
[maxα∈x v(α)] − v(β) can be interpreted as the cost of resisting temptation by choosing
β instead of maximizing v.

As noted, we consider random versions of the GP and Strotz models. Letting K
denote the number of elements of Z, we identify the set of EU functions with RK since
for any such function, we only need to specify the payoffs to the pure outcomes. We use
the Borel σ–algebra over RK . We say that an EU function is trivial if it is a scalar times
a vector of 1’s. We say a measure µ over RK is nontrivial if it assigns zero measure to
the set of trivial EU functions.

Definition 1. A random Strotz representation of � is a pair (u, µ) such that u is a
nontrivial expected utility function and µ is a nontrivial measure over expected utility
functions such that the function

VRS(x) =

∫
RK

max
β∈Bw(x)

u(β)µ(dw)

represents the preference.

This is the Strotz representation but where the agent is not sure what his future
self’s preference will be. It seems quite natural to suppose that an agent may not know
exactly what will tempt him in the future or to what extent. Adding uncertainty to the
Strotz model also has the potential to resolve the continuity problems noted above since
suitably atomless noise ensures that the probability the chooser is indifferent will be zero.

5This difficulty is not eliminated by changing the tie–breaking rule.
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Consequently, as Caplin and Leahy (2006) show, such atomlessness can ensure existence
of an optimal policy in Strotz’s sense.

A random GP representation generalizes the notion of a GP representation in a fashion
exactly parallel to the above: specifically, the u is fixed but there is a probability measure
over the “temptations.”

Definition 2. A random GP representation is a pair (u, ν) such that u is a nontrivial
expected utility function and ν is a nontrivial measure over expected utility functions such
that the function

VRGP (x) =

∫
RK

{
max
α∈x

[u(α) + v(α)]−max
α∈x

v(α)
}
ν(dv)

represents the preference.

For both random Strotz and random GP, the nontriviality of the measure is without
loss of generality in the sense that if a representation exists, then one with a nontrivial
measure exists. In both cases, the nontriviality of u is implied by our assumption that
� is nontrivial.

3 Random Strotz and Random GP Models

This section discusses the relationship between the models.

Theorem 1. Any preference with a random GP representation also has a random Strotz
representation.

Proof. We first show the claim for an arbitrary GP representation (u, v). Let W denote
the set of expected utility preferences such that w ∈ W iff there exists A ∈ [0, 1] with
w = v +Au. Define a measure µ over W by taking the uniform distribution over A. Let
VRS denote the random Strotz representation generated by this measure.

Fix any menu x. Let β∗(A) denote any element of x which maximizes u over the
set Bv+Au(x). Let û(A) = u(β∗(A)) and let v̂(A) = v(β∗(A)). Note that if multiple
elements of x maximize u over Bv+Au(x), the values of û(A) and v̂(A) do not depend on
the particular choice of β∗(A). Also, it is easy to show that û is nondecreasing in A and
hence measurable. Since û is also bounded, it is integrable. We have

VRS(x) =

∫ 1

0

u(β∗(A)) dA =

∫ 1

0

û(A) dA.
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Define
U(A) = v̂(A) + Aû(A) = max

Ā∈[0,1]
v̂(Ā) + Aû(Ā).

From the usual argument characterizing incentive compatibility with transferrable utility
(see, e.g., Mas–Colell, Whinston, and Green (1995), Proposition 23.D.2, page 888, or
Milgrom and Segal (2002), Theorem 2),6 we have

U(s) = U(0) +

∫ s

0

U ′(A) dA = U(0) +

∫ s

0

û(A) dA.

Hence

U(1)− U(0) =

∫ 1

0

û(A) dA = VRS(x).

But U(1) = maxβ∈x[v(β) + u(β)], while U(0) = maxβ∈x v(β). Hence the left–hand side is
the GP representation

To extend to a random GP representation, note that

VRGP (x) =

∫
RK

{
max
α∈x

u(α) + v(α)]−max
α∈x

v(α)
}
ν(dv)

so

VRGP (x) =

∫
RK

{∫ 1

0

max
β∈Bv+Au(x)

u(β) dA

}
ν(dv) (1)

which is a random Strotz representation.

Note the relationship between the random Strotz model constructed in the proof of
Theorem 1 and the GP representation (u, v) with the same preference over menus. The
random Strotz measure has a distribution over temptations given by taking v+Au where
A ∼ U [0, 1]. Thus the random Strotz has v as the unique “direction” of temptation but
has a random intensity defined by the random variable A. For larger A, the choice is based
more on the u preference and so the temptation is less intense in this sense. To obtain a
random Strotz with the same menu preference as a random GP, we use the probability
distribution over directions of temptation given by the random GP and use the same
uniform conditional distribution as in equation (1) for the intensity of temptation.

Clearly, not every random Strotz model is also a random GP. A random Strotz model
can be discontinuous since random Strotz includes nonrandom Strotz as a special case,
while the random GP model inherits the continuity of GP.

6To see the connection, consider a standard auction problem or other characterization of incentive
compatibility with quasi–linear utility. View A as the type of the agent where this is his valuation for
some good. Then Ā plays the role of the agent’s report of his type, û(Ā) is the probability the agent
obtains the good if his report is Ā, and v̂(Ā) is the transfer to him when his report is Ā.
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So which random Strotz models are also random GP models? Equation (1) gives a
partial answer. If we can write the distribution over w’s as a distribution over directions
(v’s) and intensities (A’s) of temptation as in equation (1), then the representation is also
a random GP model. Writing a distribution over w as a distribution of v and A where
w = v +Au is not itself restrictive at all. Obviously, any w can be written as v +Au for
appropriately chosen v and A. On the other hand, the requirement that the intensity of
temptation A is uniform over U [0, 1] independently of the direction of temptation v is
quite special.

We show that a much weaker requirement suffices: we can drop the independence of
the directions and intensities of temptation and consider any conditional densities over
intensities in a large class. More specifically, we generalize the random Strotz represen-
tation from the form on the right–hand side of equation (1) to what we call continuous
intensity (CI) random Strotz representations: those that can be written as∫

RK

{∫ 1

0

max
β∈Bv+Au(x)

u(β) f(A | v) dA

}
ν(dv)

where f(· | v) is a lower semicontinuous density.7

More precisely, given a random Strotz representation (u, µ), we define a decomposition
of µ to be a set V ⊆ RK , a probability measure µV on V , and a family of conditional
probability measures µA(· | v) on R such that for all measurable E ⊆ RK ,8

µ(E) =

∫
V
µA ({A ∈ R | v + Au ∈ E} | v)µV(dv).

We say that (u, µ) is continuous intensity (CI) random Strotz representation if there
exists a decomposition of µ, say (V , µV , µA(· | v)) such that for µV–almost all v ∈ V , µA
is representable by a lower semicontinuous density. That is, for almost all v ∈ V and
every measurable E ⊆ R, we have

µA(E | v) =

∫
E

f(A | v) dA

where for every a ≥ 0, {A ∈ R | f(A) > a} is open.

Theorem 2. The preference � has a random GP representation if and only if it has a
CI random Strotz representation.

7This imposes two smoothness conditions. First, the conditional distribution of intensities must
have a density. The second condition, lower semicontinuity, seems relatively weak. It strengthens the
necessary property of a density that {A | f(A) > a} be measurable to the requirement that such sets
are open. For example, a sufficient condition is that the density be Riemann integrable. (We thank
an anonymous referee for pointing this out.) See footnote 10 for comments on the role of the lower
semicontinuity requirement.

8The measures µV and each µA(· | v) are defined on the Borel σ–algebras.
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Proof sketch. The proof is in the Appendix. Here we offer an intuition for why the result
holds.

First, it is easy to see from equation (1) that if � has a random GP representation,
it must have a CI random Strotz representation. Turning to the converse, we focus on
the case where there is a single direction of intensity — that is, where V is a singleton.
The extension to the general case is straightforward.

So suppose we have a random Strotz representation of the form

V (x) =

∫
A

max
β∈Bv+Au(x)

u(β) f(A) dA

where f is a lower semicontinuous density over the intensity of temptation A and A is the
support of f . We explain how to rewrite V in the form of a random GP representation.

It is easy to see how we can rewrite the random Strotz as a random GP when A is
distributed uniformly over some interval other than [0, 1]. To see this, simply note that∫ b

a

max
β∈Bv+Au(x)

u(β)
1

b− a
dA =

∫ b−a

0

max
β∈Bv+au+Au(x)

u(β)
1

b− a
dA

=

∫ b−a

0

max
β∈B(v+au+Au)/(b−a)(x)

u(β)
1

b− a
dA.

Let v̄ = (v + au)/(b− a). Substituting:∫ b

a

max
β∈Bv+Au(x)

u(β)
1

b− a
dA =

∫ b−a

0

max
β∈Bv̄+[A/(b−a)]u(x)

u(β)
1

b− a
dA =

∫ 1

0

max
β∈Bv̄+Āu(x)

u(β) dĀ

where the last equality follows from the change of variables Ā = A/(b − a). From the
proof of Theorem 1, we see that this equals the GP representation (u, v̄).

From this fact, it is not hard to see that if we can rewrite f as a randomization over
uniform distributions over various intervals, then we can rewrite the random Strotz as
a randomization over GP representations — that is, as a random GP. It turns out that
this can be done if f is lower semicontinuous. To see the idea, consider the density f
shown in the figure below.
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x

We identify various uniform distributions by taking the supports to correspond to
upper contour sets of f as shown by the dotted lines in the figure. Index these various
collections of intervals by a where this denotes the value of f(x) to which they correspond.
To match the original density at x, we seek a distribution h such that

f(x) =

∫ f(x)

0

1

λ({x′ | f(x′) ≥ a})
h(a) da

where λ(·) denotes Lebesgue measure. Note that the problem above has a trivial solution:
Let h(a) = λ({x′ | f(x′) ≥ a}). Obviously, this makes the equality hold, so the only
question is whether this is a legitimate density. It is easy to see that h(a) ≥ 0 for all a,
so the only issue is whether it integrates to 1. That is, we need to show that∫ f∗

0

λ ({x′ | f(x′) ≥ a}) da = 1

where f ∗ = maxx f(x). Note that this integral simply gives another way to compute
the area under the density f . For each a between 0 and f ∗, it takes the measure of the
horizontal line under f at height a and adds these up, getting the area under f which is
obviously 1.
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For this to complete the proof, we need that the set of x under f at height a is a
union of (nontrivial) intervals in order to apply our earlier argument. It is not hard to
see that this is true if the density is lower semicontinuous.9

Theorems 1 and 2 complement Stovall’s (2010) axiomatization of random GP rep-
resentations. Specifically, Stovall gives axioms on a preference over menus which are
necessary and sufficient for the existence of a random GP representation which is finite
in the sense that the measure ν has a finite support. From our results, we see that his
axioms are also necessary and sufficient for the existence of a CI random Strotz repre-
sentation which is finite in a certain sense.10

Fudenberg and Levine (2006, 2010a, 2010b) and Noor and Takeoka (2010a, 2010b)
give nonlinear generalizations of the GP model which also have interesting connections
to the random Strotz model. While these papers present a variety of models, we focus on
the following class of such nonlinear extensions focused on in Noor and Takeoka (2010b).
We define a nonlinear self–control representation to be a triple consisting of (u, v, ψ)
where u and v are EU functions as before, ψ : R → R+ is an increasing function, and
the preference is represented by

VNSC(x) = max
β∈x

[
u(β)− ψ

(
max
α∈x

v(α)
)(

max
α∈x

v(α)− v(β)
)]
.

The idea is to model a notion of increasing marginal cost of self–control. More specifically,
the self–control costs are scaled up by an increasing function of the “level of temptation”
of the menu as measured by maxα∈x v(α). As observed by Lipman and Pesendorfer (2011,
footnote 16), an argument similar to the proof of Theorem 1 establishes that VNSC can
be written as a different kind of random Strotz: specifically,

VNSC(x) =

∫ τ(x)

0

max
β∈Bv+Au(x)

u(β)
1

τ(x)
dA

where τ(x) = 1/ψ(maxα∈x v(α)). Intuitively, this is a random Strotz representation
where the level of temptation of the menu affects the distribution over the intensity
of temptation. If the menu is more tempting, τ(x) is smaller, so the A’s are more
concentrated around zero.

9To clarify, the key is that there exists a lower semicontinuous density. Obviously, if we have a density
which is discontinuous at countably many points, we can choose whether the jumps are “up” or “down”
without changing the probability distribution. Hence in such cases, it is without loss of generality to
assume the density is lower semicontinuous. Thus the bite of this assumption is only in dealing with
densities with uncountably many discontinuities. For such cases, the lower semicontinuity assumption
guarantees that upper contour sets are unions of open intervals.

10In an earlier version of this paper, Dekel and Lipman (2010) extended Stovall’s theorem to give an ax-
iomatization of the class of Lipschitz continuous random Strotz representations. Since there are random
GP representations which are not Lipschitz continuous, the class of CI random Strotz representations is
still broader than that axiomatized by Dekel and Lipman.
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4 Properties of Random Strotz Representations

The relationship between random GP and random Strotz representations yields an easy
way to see that random GP representations are not uniquely identified. To be more
specific, any preference with a random GP representation has infinitely many such repre-
sentations — that is, infinitely many probability distributions over “temptations.” Fur-
thermore, as illustration of the fact that these representations are nontrivially different,
we note that each representation has a distinct prediction regarding choices from menus.11

To see this most simply, consider a GP representation. From Theorem 1, we know that

max
β∈x

[u(β) + v(β)]−max
β∈x

v(β) =

∫ 1

0

max
β∈Bv+Au(x)

u(β) dA.

Fix any partition of [0, 1] into N intervals, say [0,∆1), [∆1,∆2), . . . , [∆N−1, 1]. Obviously,∫ 1

0

max
v+Au

u dA =
N∑
n=1

∫ ∆n

∆n−1

max
v+Au

u dA.

It is easy to rewrite this as in our proof sketch for Theorem 2 as

N∑
n=1

∫ 1

0

max
vn+Au

u [∆n −∆n−1] dA

where

vn =
v + ∆n−1u

∆n −∆n−1

. (2)

Applying Theorem 1 again, this is

N∑
n=1

[∆n −∆n−1]

{
max
β∈x

[u(β) + vn(β)]−max
β∈x

vn(β)

}
, (3)

a random GP representation. (One can also show the same conclusion directly by substi-
tuting for vn from equation (2) into equation (3) and rearranging to recover the original
GP representation.) As we vary the partition, we vary the collection of vn’s and the
corresponding probability distribution. Hence there are infinitely many distinct random
GP representations, all of which represent the same preference over menus as the original
GP representation.

While all these random GP representations predict the same preferences over menus,
they predict very different probability distributions over choices from menus. Specifically,

11We thank an anonymous referee for this observation.
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as we discuss in more detail in the next section, the random GP above predicts that choice
will maximize u(β)+vn(β) with probability ∆n−∆n−1. It is easy to see that these choices
vary nontrivially with the chosen sequence {∆n}.

By contrast, if a preference has a random Strotz representation, the representation
(the u and the measure over w’s) is essentially unique. As an implication, the predicted
choice from menus is uniquely identified. To see this, suppose we have a preference �
with random Strotz representations (u, µ) and (ū, µ̄). It is easy to see that u and ū
must be the same up to a positive affine transformation. This follows from the fact that
both u and ū must represent the preference over singleton menus. That is, {α} � {β}
iff u(α) ≥ u(β), so u(α) ≥ u(β) if and only if ū(α) ≥ ū(β). Hence, just as with EU
representations, ū is a positive affine transformation of u.12

Similarly, only the choices by a given w matter for the representation, not the level
of utility for w from these choices. Thus there is no meaningful distinction between a
representation that puts probability p on w from one that puts probability p on 2w.
Hence what is — and what one would naturally want to be — identified is the measure
over EU preferences, not EU representations.

Recall that we identified the space of EU functions with RK where K is the number
of pure outcomes. Given any Borel set E ⊆ RK , let

B(E) =
{
w ∈ RK | aw + b ∈ E, some a ∈ R+, b ∈ R

}
.

That is, B(E) extends E to the set of all EU functions which represent the same prefer-
ence over lotteries as some function in E. We say that µ and µ̄ are ordinally equivalent
if for every Borel set E ⊆ RK , we have µ(B(E)) = µ̄(B(E)). Thus µ and µ̄ are ordi-
nally equivalent if the two measures give the same probability to any given set of EU
preferences, ignoring differences between the particular representations chosen for those
preferences.

Theorem 3. If (u, µ) and (ū, µ̄) are random Strotz representations of �, then u and ū
are equal up to a positive affine transformation and µ and µ̄ are ordinally equivalent.

Given that the measure is identified, it is natural to ask how properties of the measure
are related to interpretable properties of the preference it represents. To focus on the
role of the measure, we compare two preferences with random Strotz representations that
have the same u. but different µ’s. In particular, the behavioral comparison we consider
relates to a version of first–order stochastic dominance (FOSD).13

12The commitment preference u is also unique up to positive affine transformations in the random GP
representation.

13Gul and Pesendorfer (2001) also give two comparative notions related to temptation for their model.
Their comparatives are very different from ours both in spirit and formally.

12



We say that �2 is more temptation averse than �1 if the restriction of �1 and �2

to singleton menus are the same and if for all menus x and lotteries α ∈ x, whenever
{α} �1 x, we have {α} �2 x. In other words, whenever �1 strictly prefers committing to
a particular choice from the menu rather than leaving the choice open, �2 does as well.14

One way to think about this comparative is that it is analogous to comparing the
agents in terms of their “willingness to pay” for commitment. To see the idea, note that
the more an agent would be willing to give up to achieve commitment, the wider the range
of options to which he would prefer to commit. Naturally, in the absence of a common
measuring unit such as money, it is difficult to compare two agents in terms of what
they are willing to give up to achieve commitment unless they have the same preferences
over commitment options. Once we focus on preferences with the same commitment
preferences, however, the definition captures a natural notion of greater willingness to
pay to avoid temptation.

We now explain how this comparative is reflected in the representation. Suppose we
have two preferences with random Strotz representations that can be compared according
to this definition. Since they have the same preferences restricted to singleton menus,
we can take them to have the same u. So let the random Strotz representation for �i be
denoted (u, µi), i = 1, 2.

Suppose we have decompositions of µ1 and µ2, (Vi, µiVi , µ
i
A(· | v)), i = 1, 2, that are

related in the following way. First, we have V1 = V2 ≡ V and µ1
V = µ2

V ≡ µV . Second,
for µV–almost all v ∈ V , the conditional distribution µ1

A(· | v) first order stochastically
dominates µ2

A(· | v). In this case, we say that µ2 conditionally–dominates µ1.

As discussed earlier, the different v’s represent different directions of temptation while
the A’s measure the intensity of the temptation, where a larger A means less intense
temptation. It seems natural that it would be difficult to relate different directions of
temptations — e.g., is a temptation to overeat “worse” than a temptation to oversleep?
Thus we should require two preferences to be the same regarding the directions of temp-
tation that affect them in order to compare them unambiguously. On the other hand, if
one preference has uniformly higher A’s in the sense of FOSD, then it has lower intensities
and hence has “less trouble” with temptation.

This relationship characterizes our temptation aversion comparison.

Theorem 4. Fix �i with random Strotz representation (u, µi), i = 1, 2. Then �2 is

14This definition is equivalent to one used by Ahn (2007) to compare ambiguity aversion, Sarver
(2008) to compare regret attitudes, and Higashi, Hyogo, and Takeoka (2009) to compare aversion to
commitment. It is also similar in spirit to the way Epstein (1999) and Ghiradato and Marinacci (2002)
define comparisons of ambiguity aversion. Since the random Strotz representation is very different from
the representations considered in these papers, their characterization results are quite different as well.
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more temptation averse than �1 if and only if µ2 conditionally–dominates µ1.

5 Choice from Menus

To this point, we have focused on the random Strotz and random GP models as rep-
resentations of preferences over menus. In this sense, we have treated them as models
of choice of a menu. As we have seen, we cannot, in general, use choice of menus to
distinguish the random GP and random Strotz models.

On the other hand, each model also makes predictions about choice from menus. In
the case of random Strotz, it is natural to interpret the representation (u, µ) as saying
that with probability µ(w), the choice is the one made by w with ties broken in favor of u
(where this is stated for measures with finite support for simplicity). In the case of a GP
representation (u, v), Gul and Pesendorfer argue that the natural interpretation of the
choice from a menu x is that it is some maximizer of u+v from that menu. It is natural to
interpret a random GP representation (u, ν) analogously as saying that with probability
ν(v), the choice is that which maximizes u+v. In both cases, the representation theorem
tells us that we can represent the agent as if these are the choices from menus that he
anticipates. If we add to the models the hypothesis that these “anticipated” choices are
the actual choices and if we also observe both choices of menus and choices from menus,
can we then distinguish random GP and random Strotz?15,16

Formally, fix a random Strotz representation (u, µ). We define a selection function
for (u, µ) to be a measurable function β∗ : X × supp(µ) → ∆(Z) such that β∗(x,w) ∈
Bu(Bw(x)) for all (x,w) ∈ X × supp(µ). That is, the selection function β∗(x,w) gives
one way that choices could be made from menu x in the random Strotz representation
as a function of w. Then we can define a random choice function ρ : X → ∆(∆(Z)) by

ρx(E) = µ ({w ∈ W | β∗(x,w) ∈ E}) (4)

15Unsurprisingly, if we only observe choices from menus, we cannot distinguish these models in general.
Both models predict choice from menus in the form of random expected utility, though with a tie–
breaking rule in the case of random Strotz. While the tie–breaking distinction can sometimes separate
the two models on the basis of choice from menus, this is not generally possible.

16The example at the beginning of Section 4 illustrating the nonuniqueness of random GP represen-
tations might suggest that the answer is no. One can use the approach we gave to construct a sequence
of random GP representations, all with the same preference over menus, whose choice from menus con-
verges to that of a random Strotz representation with the same preference over menus. Thus if this
sequence of random GP representations converged to a random GP representation, it would show that
the answer to our question is “no.” However, one can show that this sequence does not converge to a
random GP representation.
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for every measurable E ⊆ x. We say that such a random choice function is rationalized
by (u, µ).

Turning to analogous notions for a random GP representation (u, ν), we define a
selection function to be a measurable β̂∗ : X × supp(ν) → ∆(Z) such that β̂∗(x, v) ∈
Bu+v(x) for all (x, v) ∈ X×supp(ν). We then define a random choice function ρ generated
by this selection function by

ρx(E) = ν
({
v ∈ RK | β̂∗(x, v) ∈ E

})
every measurable E ⊆ x. We say such a ρ is rationalized by (u, ν).17

Obviously, the case of no temptation is a special case for both models, so if we
are to distinguish the models, we must rule out this common case. We say that a
preference � over menus exhibits temptation if there exist α, β ∈ ∆(Z) with {α} � {β}
and {α} � {α, β}.18 It’s not hard to show that if (u, µ) is a random Strotz representation
of �, then � exhibits temptation if and only if there is a w ∈ supp(µ) such that w does
not represent the same preference over lotteries as u. Similarly, if (u, ν) is a random GP
representation of �, then � exhibits temptation iff there exists v ∈ supp(ν) such that v
does not represent the same preference over lotteries as u.

We show that if a random Strotz representation and a random GP representation
generate the same choices from menus, then they cannot represent the same preferences
over menus. Specifically, either the commitment preferences (the preferences over sin-
gleton menus) will differ or else the random GP agent’s preference over menus will be
strictly more temptation–averse.19

Theorem 5. Suppose random choice function ρ has both a random Strotz rationalization
(u, µ) and a random GP rationalization (û, ν). Let �RS be the preference represented
by (u, µ) and �RGP the preference represented by (û, ν). Then if û and u represent the
same preference over singletons,20 �RGP is more temptation averse than �RS, strictly so
if �RGP exhibits temptation.

17These definitions are essentially the same as those used in Gul and Pesendorfer (2006).
18One can show that this is equivalent to what GP call � having a preference for commitment if �

has either a random Strotz or random GP representation.
19A similar argument to the proof of Theorem 5 shows that we could also compare the choices by a

random Strotz representation and a random GP representation that correspond to the same preference
over menus. Specifically, one can then show that the agent would prefer to commit to the expected
behavior under the random GP than to the expected behavior under the random Strotz.

20The choice function alone cannot tell us whether the rationalizations have the same preference over
singletons or not. It is not hard to show that if a random choice function has a random GP rationalization,
we can find such a rationalization with any u function we choose. To see this, consider for simplicity a
random GP rationalization (u, ν) where the support of ν is {v1, . . . , vJ}. Fix any û. For j = 1, . . . , J , let
v̂j = u− û+vj , so that û+ v̂j = u+vj . Define ν̂ by ν̂(v̂j) = ν(vj). The random GP rationalization (u, ν)
says that given menu x, the choice is the one which maximizes u + vj with probability ν(vj). Clearly,
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Proof. Without loss of generality, assume û = u. To show that the comparison holds, we
show that {α} �RS x implies {α} �RGP x. To see this, fix any menu x. By definition of
the random Strotz representation, we must have x ∼RS

{∫
β ρx(dβ)

}
. Hence {α} �RS x

implies {α} �RS
{∫

β ρx(dβ)
}

. Since both rationalizations rank singletons the same way,

we have {α} �RGP
{∫

β ρx(dβ)
}

. But, letting β̂∗ denote a selection function for (u, ν),

VRGP (x) =

∫ {
max
x

[u(β) + v(β)]−max
x

v(β)
}
ν(dv)

=

∫ {
u(β̂∗(x, v)) + v(β̂∗(x, v))−max

x
v(β)

}
ν(dv)

≤
∫ {

u(β̂∗(x, v)) + v(β̂∗(x, v))− v(β̂∗(x, v))
}
ν(dv)

=

∫
u(β̂∗(x, v)) ν(dv) = u

(∫
β ρRGPx (dβ)

)
= VRGP

({∫
β ρRGPx (dβ)

})
.

Hence {
∫
β ρx(dβ)} �RGP x. So {α} �RGP

{∫
β ρx(dβ)

}
�RGP x, establishing the

desired conclusion.

To see that there must be some menu where the comparison is strict if �RGP exhibits
temptation, consider any α and β that satisfy {α} �RGP {β} and {α} �RGP {α, β}. As
noted above, this implies that there is v ∈ supp(ν) with u(α) > u(β) and v(α) < v(β). It
is easy to show that this implies that for the menu x = {α, β}, we must have VRGP (x) <
VRGP ({

∫
β ρRGPx (dβ)}). Hence the inequality above is strict for such a menu.

To see the intuition behind this result most simply, suppose� has a GP representation
and hence also a random Strotz representation. Suppose this preference has {α} �
{α, β} � {β}. In the GP case, this is rationalized by having u(α) > u(β), v(β) > v(α),
and u(α) + v(α) > u(β) + v(β). These rankings imply that

VGP ({α, β}) = max{u(α) + v(α), u(β) + v(β)} −max{v(α), v(β)}
= u(α)− [v(β)− v(α)].

Thus the predicted choice is α, the same as the “choice” from the menu {α}, but the menu
is ranked lower than {α} because of the self–control cost of v(β) − v(α). By contrast,
the random Strotz representation would have VRS(α, β) = pu(α) + (1− p)u(β) for some
p ∈ (0, 1). Thus the random Strotz representation “explains” the fact that {α} � {α, β}
not by self–control costs but by a nonzero probability of “self–indulgent” behavior under
the latter menu.

this is the same thing as saying it is the choice which maximizes û + v̂j with probability ν̂(v̂j). Hence
(û, ν̂) is also a random GP rationalization. In the case of a continuous random Strotz representation,
the tie–breaking in favor of u has no effect on choices and so we get a similar indeterminacy.

16



In other words, the random Strotz model explains the desire for commitment entirely
in terms of a fear of succumbing to temptation, while the random GP model explains it
in part by this but in part by a desire to avoid self–control costs. Hence if the choices
from menus coincide, the self–control costs lead the random GP agent to have a stronger
desire for commitment than the random Strotz agent.
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A Proof of Theorem 2

As noted in the text, we begin with a random Strotz representation of the form

V (x) =

∫
A

max
β∈Bv+Au(x)

u(β) f(A) dA

where f is lower semicontinuous and A is the support of f . We show how to rewrite V
in the form of a random GP representation.

For any a ≥ 0, let U(a) = {A ∈ R | f(A) > a}. Since f is lower semicontinuous,
U(a) is open and hence is the union of countably many disjoint open intervals for all a.
Let L(a) denote the Lebesgue measure of U(a). Then we have

V (x) =

∫
A

max
β∈Bv+Au(x)

u(β)

[∫ f(A)

0

1

L(a)
L(a) da

]
dA

=

∫
A

∫ f(A)

0

max
β∈Bv+Au(x)

u(β)
1

L(a)
L(a) da dA

Let f̄ = supA∈A f(A). Then the double integral above is over{
(A, a) ∈ R2 | A ∈ A, 0 < a < f(A)

}
=
{

(A, a) ∈ R2 | 0 < a < f̄, f(A) > a
}
.

Thus the integral is equal to∫ f̄

0

[∫
U(a)

max
β∈Bv+Au(x)

u(β)
1

L(a)
dA

]
L(a) da.

Note that
∫ f̄

0
L(a) da =

∫
A f(A) dA = 1. Hence we can view L(a) as a density over

a ∈ [0, f̄ ].

Fix any a ∈ (0, f̄). Since U(a) is a union of disjoint open intervals, we can write∫
U(a)

max
β∈Bv+Au(x)

u(β)
1

L(a)
dA =

∞∑
k=1

∫ ck

bk

max
β∈Bv+Au(x)

u(β)
1

L(a)
dA,

where (bk, ck), k = 1, 2, . . ., is the collection of intervals defining U(a) and we suppress
the dependence of the bk’s and ck’s on a for notational simplicity. Rewriting, this is

=
∞∑
k=1

ck − bk
L(a)

∫ ck

bk

max
β∈Bv+Au(x)

u(β)
1

ck − bk
dA.
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As shown in the text,∫ ck

bk

max
β∈Bv+Au(x)

u(β)
1

ck − bk
dA = max

β∈x
[u(β) + vk(β)]−max

β∈x
vk(β)

where vk = (v + bku)/(ck − bk). Hence for any a, we have∫
U(a)

max
β∈Bv+Au(x)

u(β)
1

L(a)
dA =

∞∑
k=1

ck − bk
L(a)

{
max
β∈x

[u(β) + vk(β)]−max
β∈x

vk(β)

}
.

Since
∑

k(ck − bk)/L(a) = 1, this is a random GP representation. Hence we have es-
tablished that the random Strotz representation is a randomization over random GP
representations and hence is a random GP representation.

B Proof of Theorem 3

We prove this result by showing that if we restrict attention to measures on a particular
subspace of RK which includes one EU function for each nontrivial EU preference, then
the measure is unique. The particular space we use is

W = {w ∈ RK | w · 1 = 0, w · w = 1}

where 1 is a K vector of 1’s. It is easy to see that any nontrivial EU preference is
represented by exactly one w ∈ W .

Theorem 3 is concerned only with the measure of sets of EU functions which are
closed under equivalence in the sense that if w is in the set, then every w′ equivalent to
w is in the set as well. Hence we may as well take our measures to be over W . For the
σ–algebra onW , we use the Borel σ–algebra using as our topology onW the (relativized)
usual Euclidean topology on RK .

The proofs of Lemmas 1 and 2 are straightforward algebra and hence omitted.

Lemma 1. Fix w, w̄ ∈ W. Then w · w̄ ∈ [−1, 1]. Furthermore, w · w̄ = 1 iff w = w̄ and
w · w̄ = −1 iff w = −w̄.

Let V = {v ∈ W | v · u = 0}.

Lemma 2. For every w ∈ W, there exists v ∈ V and A ∈ [−1, 1] such that w =
v
√

1− A2 + Au. If w = u, then this holds for every (A, v) ∈ {1} × V, while if w = −u,
it holds for every (A, v) ∈ {−1} × V. For every other w ∈ W, the (A, v) is unique.
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Define an order over W by w Cu ŵ (read “w is closer to u than ŵ”) if

u(α) > u(β), ŵ(α) ≥ ŵ(β) implies w(α) ≥ w(β).

In other words, w is willing to “go along with” u at least as often as ŵ. Define a set
W ⊆ W to be closed under Cu if w′ ∈ W and w Cu w

′ implies w ∈ W .

For brevity, let η(A) =
√

1− A2. The proof of the following lemma is in the supple-
mentary appendix.

Lemma 3. w1 Cu w2 if and only if there exists v ∈ V such that wi = v
√

1− A2
i + Aiu,

i = 1, 2, with A1 ≥ A2.

Given a function A∗ : V → [−1, 1], let

W (A∗) =
⋃
v∈V

{w ∈ W | w = v
√

1− A2 + Au, for some A ≥ A∗(v), A 6= −1}.

Note that by excluding A = −1, the definition of W (A∗) ensures that −u /∈ W (A∗) for
any A∗.

Lemma 4. A set W ⊆ W, W 6= W, is closed and closed under Cu if and only if there
exists a lower semi–continuous function A∗ such that W = W (A∗) and A∗(v) > −1 for
all v ∈ V.

Proof. Fix any lower semi–continuous function A∗ such that A∗(v) > −1 for all v ∈ V .
Let W = W (A∗). Since the definition of W (A∗) prevents −u ∈ W (A∗), W 6= W . From
Lemma 3, it is easy to see that W is closed under Cu if and only if v

√
1− A2 +Au ∈ W

implies v
√

1− Â2 + Âu ∈ W for all Â ∈ (A, 1]. Hence the definition of W (A∗) obviously
implies W is closed under Cu. Finally, to show that W is closed, fix any sequence wn
converging to w such that wn ∈ W for all n. We can write wn =

√
1− A2

nvn + Anu
for each n. Since wn ∈ W for all n, we have An ≥ A∗(vn) for all n. Let v denote the
limit of vn and A the limit of An. It is easy to see from the proof of Lemma 2 that
the v and A associated with a given w depend continuously on w, so we must have
w =

√
1− A2v + Au. Hence w ∈ W (A∗) if and only if limn→∞A

∗(vn) ≥ A∗(limn→∞ vn).
Since A∗ is lower semi–continuous, this holds. Hence W is closed.

For the converse, suppose W 6=W is closed and closed under Cu. For each v, let

A∗(v) = min{A ∈ [−1, 1] | v
√

1− A2 + Au ∈ W}.

Since W is closed, A∗(v) is well–defined. Since w Cu −u for all w, the fact that W 6=W
implies −u /∈ W . Hence A∗(v) > −1 for all v. Since W is closed under Cu, for every
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A ≥ A∗(v), we have v
√

1− A2 + Au ∈ W , implying that v
√

1− A2 + Au ∈ W if and
only if A ≥ A∗(v). Hence W = W (A∗).

Finally, to see that A∗ is lower semi–continuous, again, consider the sequence con-
structed above. As noted, for any such sequence, w ∈ W if and only if limn→∞A

∗(vn) ≥
A∗(limn→∞ vn). Since W is closed, we must have w ∈ W . Hence any jumps in A∗ must
be downward, so A∗ is lower semi–continuous.

We note that if A∗ is lower semi–continuous, then it is measurable.

Lemma 5. Fix any measurable function A∗ : V → [−1, 1] such that W (A∗) is closed.
Then there exists a sequence of positive numbers {εn} and a sequence of menus {xn} such
that for every random Strotz representation with commitment preference represented by
u,

lim
n→∞

V (xn)

εn
= µ(W (A∗)).

Proof. Fix such an A∗ function.

Part 1. First, suppose that A∗ is bounded in the sense that A∗(v)/
√

1− (A∗(v))2 is
bounded from above and below.

For each v ∈ V , let

αv =
1

K
1 + ϕv

βv(ε) = αv + ϕε

[
u− A∗(v)

a∗(v)
v

]
where a∗(v) =

√
1− (A∗(v))2. By the boundedness of A∗/a∗, there exists ϕ > 0 such

that for all sufficiently small ε > 0, every αv and βv(ε) is a lottery.

Let L(v) = {w ∈ W | w = av + Au, some a ≥ 0, A ∈ −[−1, 1]}. Suppose w = L(v)
and consider some v̄ which may or may not equal v. Then

w · αv̄ = aϕv · v̄

while
w · αv = aϕ.

Since v · v̄ ≤ 1, strictly if v̄ 6= v, we see that w · αv̄ ≤ w · αv, strictly so for any v̄ 6= v.
Hence if w picks any α, he must pick αv.

Also, for any v, u · αv = 0 < ϕε = u · βv(ε). So u is indifferent among the α’s,
indifferent among the β’s, and prefers the β’s to the α’s. Hence, letting xε denote the
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menu consisting of all the α’s and β’s, we see that V (xε) = ϕεµ(Wε), where

Wε =
⋃
v∈V

{w ∈ L(v) | w · βv̄(ε) ≥ w · αv, for some v̄ ∈ V}.

We now show that limε↓0 µ(Wε) = µ(W (A∗)). Note that if w = av + Au, then
a =
√

1− A2 and

w · βv(ε) = w · αv + ϕε

[
A− A∗(v)

a∗(v)
a

]
,

so w · βv(ε) ≥ w · αv iff (A/a) ≥ (A∗(v)/a∗(v)). It is not hard to show that this holds iff
A ≥ A∗(v). Hence for every ε, we have W (A∗) ⊆ Wε.

Next, we show that if w /∈ W (A∗), then there is ε̄ > 0 such that for all ε ∈ (0, ε̄), we
have w /∈ Wε. To show this, suppose not. Then there exists a sequence εn converging to
zero such that w ∈ Wεn \W (A∗) for all n.

Write w = av + Au. Then there exists a sequence v̄n such that

w · βv̄n(εn) ≥ w · αv

or

aϕv · v̄n + ϕεn

[
A− An

an
av · v̄n

]
≥ aϕ

where An = A∗(v̄n) and an =
√

1− A2
n. Rearranging yields

εn

[
A

a
− An
an
v · v̄n

]
≥ 1− v · v̄n.

Since v · v̄n ≤ 1 and An/an is bounded from below, we must have v · v̄n → 1 as n→∞.
Note for future use that this implies v̄n → v. Also, the fact that the right–hand side is
nonnegative for all n implies that

A

a
≥ An
an
v · v̄n

for all n. Recall that w ∈ L(v) and w /∈ W ∗. Hence A < A∗(v). So we have

A∗(v)

a∗(v)
>
A∗(v̄n)

a∗(v̄n)
v · v̄n.

Since v · v̄n → 1, we have
A∗(v)

a∗(v)
≥ lim

n→∞

An
an
,
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or A∗(v) ≥ limn→∞An.

By Lemma 4, the fact that W (A∗) is closed that A∗ is lower semi–continuous. Hence
we have the opposite weak inequality, so A∗(v) = limn→∞An.

But recall that
A

a
≥ An
an
v · v̄n

for all n. Hence
A

a
≥ lim

n→∞

An
an
v · v̄n =

A∗(v)

a∗(v)
.

But this implies A ≥ A∗(v) or w ∈ W (A∗), a contradiction.

Hence limn→∞ µ(Wε) = µ(W ∗). Therefore,

lim
n→∞

V (xε)

ϕεn
= lim

n→∞
µ(Wε) = µ(W ∗).

Taking the sequence referred to in the statement of the lemma to be {ϕεn} gives the
desired conclusion.

Part 2. Now we drop the assumption that A∗ is bounded. Fix a sequence {εn} with
εn > 0 for all n such that εn → 0. Define a new function

A∗n(v) =


A∗(v), if − 1 + εn ≤ A∗(v) ≤ 1− εn
−1 + εn, if A∗(v) < −1 + εn
1− εn, if A∗(v) > 1− εn

Clearly, A∗n is bounded for every n. It is tedious but not difficult to show that the
fact that W (A∗) is closed implies that W (A∗n) is closed for every n. Hence for each n, we
can find sequences {εnm} and {xnm} such that

lim
m→∞

V (xnm)

εnm
= µ(W (A∗n)).

That is, for any δ > 0, there exists Mn(δ) such that∣∣∣∣V (xnm)

εnm
− µ(W (A∗n))

∣∣∣∣ < δ, ∀m ≥Mn(δ).

Rewriting,∣∣∣∣V (xnm)

εnm
− µ(W (A∗)) + µ(W (A∗) \W (A∗n))− µ(W (A∗n) \W (A∗))

∣∣∣∣ < δ, ∀m ≥Mn(δ).
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Clearly, though, if w ∈ W (A∗) \ W (A∗n), then there must be some N such that w ∈
W (A∗) ∩W (A∗n̄) for all n̄ ≥ N . The analogous statement is true for W (A∗n) \W (A∗).

So fix any sequence {δn} converging to zero. For each n, fix mn ≥Mn(δn). Consider
the sequence {ε̂n} = {εnmn

} and {x̂n} = {xnmn
}. Clearly, for every n,∣∣∣∣V (x̂n)

ε̂n
− µ(W (A∗)) + kµ(W (A∗) \W (A∗n))− µ(W (A∗n) \W (A∗))

∣∣∣∣ < δn.

So

lim
n→∞

V (x̂n)

ε̂n
= µ(W (A∗)).

To complete the proof of Theorem 3, suppose (u, µ) and (ū, µ̄) are random Strotz
representations of � where µ and µ̄ are measures over W . Let V and V̄ denote the
utility functions over menus generated by (u, µ) and (ū, µ̄) respectively. As explained
in the text, u and ū must be the same up to a positive affine transformation. For
convenience, we transform so that u = ū.

Since V and V̄ are random Strotz representations of the same preference, there exists
a > 0 and b such that V (x) = aV̄ (x) + b for all menus x. For x = {α}, then, V ({α}) =
aV̄ ({α}) + b or u(α) = aū(α) + b. Since u = ū, then, a = 1 and b = 0. In other words,
we must have V = V̄ .

Note that the sequence of menus constructed in the proof of Lemma 5 is independent
of the representation. Hence for any set W which is closed and closed under Cu, we must
have µ(W ) = µ̄(W ).

Fix any measurable set E ⊆ W which is closed under Cu. By Theorem 12.3 of
Billingsley (1995, page 174),

µ(E) = sup
W⊆E|W closed

µ(W )

and similarly for µ̄. It is easy to see that if W ⊆ E, then if we close W under Cu, the
resulting set will be contained in E. That is,

W ∗ ≡ {w ∈ W | w Cu w
′, for some w′ ∈ W} ⊆ E.

Obviously, µ(W ∗) ≥ µ(W ). Hence

µ(E) = sup
W⊆E|W closed, closed under Cu

µ(W ).

Since µ(W ) = µ̄(W ) for any W which is closed and closed under Cu, this implies µ(E) =
µ̄(E). Thus µ and µ̄ coincide for any measurable set which is closed under Cu.
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Let P denote the collection of measurable sets E which are closed under Cu. So we
have established that µ and µ̄ coincide on P . It is easy to show that P is a π–system. To
see this, suppose E1, E2 ∈ P . Then E1 and E2 are measurable, so E1∩E2 is measurable.
Also, fix any w ∈ E1 ∩ E2 and any w′ such that w′ Cu w. Since w ∈ Ei and Ei is closed
under Cu, we must have w′ ∈ Ei, i = 1, 2. Hence w′ ∈ E1 ∩ E2. So E1 ∩ E2 is closed
under Cu and hence is an element of P . Hence P is a π–system.

Theorem 3.3 of Billingsley (1995) then implies µ = µ̄ on σ(P), the σ–algebra generated
by P . We now show that σ(P) is the Borel σ–algebra, completing the proof of uniqueness.

Fix any open set W ⊆ W and any w ∈ W \ {−u, u}. It is not hard to see that
there exists a closed V̂ ⊆ V and rational numbers r1, r2 ∈ (−1, 1] such that w ∈ W (A∗1) \
W (A∗2) ⊆ W where

A∗i (v) =

{
ri, for v ∈ V̂
1, otherwise

Obviously, W (A∗1),W (A∗2) ∈ P implies W (A∗1) \W (A∗2) ∈ σ(P). Note that {u} ∈ P and
thatW\{−u} ∈ P implies {−u} ∈ σ(P). Hence W is the union of a countable collection
of sets in σ(P) so W ∈ σ(P). Hence σ(P) contains all open sets and so contains the
Borel σ–algebra. Since all sets in P are in the Borel σ–algebra, σ(P) cannot be larger
than the Borel σ–algebra, so it must equal it.

C Proof of Theorem 4

Lemma 6. Suppose �i has a random Strotz representation (u, µi), i = 1, 2. Then �2 is
more temptation averse than �1 if and only if for every menu x,

V2(x) ≡
∫

max
β∈Bw(x)

u(β)µ2(dw) ≤
∫

max
β∈Bw(x)

u(β)µ1(dw) ≡ V1(x).

Proof of Lemma. Suppose �2 is more temptation averse than �1 but that V2(x) > V1(x)
for some menu x. Without loss of generality, assume x is closed and convex. Then there
exists α ∈ x such that {α} ∼2 x. So u(α) = V2(x) > V1(x). Hence {α} �1 x but we do
not have {α} �2 x, contradicting �2 more temptation averse. For the converse, suppose
V1(x) ≥ V2(x) for all x. Then whenever u(α) > V1(x), we have u(α) > V2(x), so �2 is
more temptation averse than �1.

First, we show that if µ2 conditionally–dominates µ1, then �2 is more temptation
averse than �1. Fix any menu and any v ∈ V . Since the utility u gets from the choice is
weakly increasing in A, we know that the expected utility of the menu conditional on v

25



is higher under µ1
A than under µ2

A for (almost) every v. Hence the same is true when we
take expectations over v since the marginals are the same. Thus V1(x) ≥ V2(x) for all x,
implying �2 is more temptation averse than �1 by Lemma 6.

For the converse, suppose �2 is more temptation–averse than �1. We construct
decompositions of µ1 and µ2 which show that µ2 conditionally–dominates µ1. We define
V as in the proof of Theorem 3. To begin constructing the relevant measures, we fix a
partition V1, . . . ,VN of V with the property that each Vi is measurable. We refer to such
a partition as a measurable partition. For any Vn and any An ∈ [−1, 1], let

µi(An,Vn) = µi

(
{w ∈ W | w = v

√
1− A2 + Au, for 1 > A ≥ An, A 6= −1, v ∈ Vn}

)
.

Note that µi(An,Vn) is defined so that it does not include the measure of u or −u. In
particular, µi(1,Vn) = 0 and

µi(−1,Vn) = µi (L(Vn)))− µi({u})− µi({−u})

where
L(Vn) =

{
w ∈ W | w = v

√
1− A2 + Au, for A ∈ [−1, 1], v ∈ Vn

}
.

Fix any A1, . . . , AN and define

W ∗ =
N⋃
n=1

⋃
v∈VN

{w ∈ W | w = v
√

1− A2 + Au, A ≥ An, A 6= −1}.

First, suppose W ∗ is closed. By Lemma 5, we know that there is a sequence of menus
xm and numbers εm such that

lim
m→∞

Vi(xm)

εm
= µi(W

∗).

Since this sequence is independent of the preference (given that both have commitment
utility u) and since V1(xm) ≥ V2(xm) for all m, we have µ1(W ∗) ≥ µ2(W ∗).

Now suppose that W ∗ is not closed. In this case, Theorem 12.3 of Billingsley (1995,
page 174) implies that

µ2(W ∗) = sup
W⊆E|W closed

µ2(W ).

As shown in the proof of Theorem 3, we can rewrite this as

µ2(W ∗) = sup
W⊆W ∗|W closed, closed under Cu

µ2(W ).
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But we know that for every W which is closed and closed under Cu, we have µ2(W ) ≤
µ1(W ). Hence

µ2(W ∗) = sup
W⊆E|W closed

µ2(W )

≤ sup
W⊆W ∗|W closed, closed under Cu

µ1(W )

= µ1(W ∗).

Summarizing, we have

µ1(u) +
N∑
n=1

µ1(An,Vn) ≥ µ2(u) +
N∑
n=1

µ2(An,Vn). (5)

for any (A1, . . . , AN) ∈ [−1, 1]N .

Note that this implies µ1(u) ≥ µ2(u) and µ1(−u) ≤ µ2(−u). The former is implied
by taking An = 1 for all n and the latter by An = −1 for all n.

Let µ∗(u) = µ1(u)− µ2(u). First, assume µ∗(u) > 0. For each n, let

λ∗n = sup
An∈[−1,1]

µ2(An,Vn)− µ1(An,Vn)

µ∗(u)
.

By assumption, µ∗(u) > 0, so this is well–defined. Also, note that for An = 1, the
difference on the right–hand side is zero. Hence λ∗n ≥ 0.

Also, ∑
n

λ∗n =
1

µ∗(u)

∑
n

sup
An∈[−1,1]

[µ2(An,Vn)− µ1(An,Vn)].

Suppose this is strictly greater than 1. Then for each n, there is a sequence {Amn } such
that

lim
m→∞

∑
n

µ2(Amn ,Vn) > µ∗(u) + lim
m→∞

∑
n

µ1(Amn ,Vn).

Substituting for µ∗(u) and rearranging,

lim
m→∞

[
µ2(u) +

∑
n

µ2(Amn ,Vn)

]
> lim

m→∞

[
µ1(u) +

∑
n

µ1(Amn ,Vn)

]
.

But this contradicts equation (5). Hence
∑

n λ
∗
n ≤ 1.
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Fix any λ1
1, . . . , λ

1
N , summing to 1, such that λ1

n ≥ λ∗n for all n. Obviously, such a λ1

exists. Then the definition of λ∗n and the fact that λ1
n ≥ λ∗n implies

λ1
nµ
∗(u) + µ1(An,Vn) ≥ µ2(An,Vn), ∀An ∈ [−1, 1], ∀n.

Substituting for µ∗(u), then,

λ1
nµ1(u) + µ1(An,Vn) ≥ λ1

nµ2(u) + µ2(An,Vn), ∀An ∈ [−1, 1], ∀n. (6)

Next, suppose µ∗(u) = 0. In this case, define λ1
n = 1/N for n = 1, . . . , N . Then

equation (5) evaluated at any fixed An with Am = 1 for all m 6= n implies equation (6).

Next, define µ∗(−u) = µ2(−u) − µ1(−u). First, assume µ∗(−u) > 0. Then define
λ2

1, . . . , λ
2
N by

λ1
nµ1(u) + µ1(−1,Vn) = λ1

nµ2(u) + µ2(−1,Vn) + λ2
nµ
∗(−u). (7)

By equation (6) at An = −1, λ2
n ≥ 0 for all n. Also, summing both sides over n and

using
∑

n λ
1
n = 1, we obtain

µ1(u) +
∑
n

µ1(−1,Vn) = µ2(u) +
∑
n

µ2(−1,Vn) + µ∗(−u)
∑
n

λ2
n.

The left–hand side is µ1(W)−µ1(−u) = 1−µ1(−u). The right–hand side is 1−µ2(−u)+
µ∗(−u)

∑
n λ

2
n. Hence we have

µ∗(−u) = µ∗(−u)
∑
n

λ2
n.

Since µ∗(−u) > 0 by assumption, we must have
∑

n λ
2
n = 1.

Second, suppose µ∗(−u) = 0. In this case, the definition of λ1 implies

λ1
nµ1(u) + µ1(−1,Vn) ≥ λ1

nµ2(u) + µ2(−1,Vn) (8)

for every n. Summing both sides over n and using
∑

n λ
1
n = 1, we obtain

µ1(u) +
∑
n

µ1(−1,Vn) ≥ µ2(u) +
∑
n

µ2(−1,Vn).

But since µ∗(−u) = 0, we have µ1(−u) = µ2(−u), so

µ1(u) +
∑
n

µ1(−1,Vn) + µ1(−u) ≥ µ2(u) +
∑
n

µ2(−1,Vn) + µ2(−u).
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But both each side of this inequality must equal 1. Hence equation (8) must hold with
equality for all n. In light of this, we can define λ2

n = 1/n for all n and equation (7) still
holds.

This implies that we can rewrite µi as a measure µ̂i over [−1, 1] × V , i = 1, 2, as
follows. For any measurable E ⊆ (−1, 1)× V , let

µ̂i(E) = µi

({
w ∈ W | w = v

√
1− A2 + Au, (A, v) ∈ E

})
.

For E = {1} × Vn, let
µ̂i(E) = λ1

nµi(u)

and for E = {−1} × Vn, let
µ̂i(E) = λ2

nµi(−u).

To see that such a measure exists, for each n, choose an arbitrary vn ∈ Vn and assign
probability λ1

nµi(u) to {1}×vn and probability λ2
nµi(−u) to {−1}×vn. Extend this to the

Borel σ–algebra on [−1, 1]×V in the obvious manner. That is, for each E ⊆ [−1, 1]×Vn,
let

µ̂i(E) = µ̂i(E ∩ [(−1, 1)× V ]) + µ̂i(E ∩ ({1} × {vi | i = 1, . . . , N}))
+ µ̂i(E ∩ ({−1} × {vi | i = 1, . . . , N})).

The key point to observe about these measures is that for every n and every An ∈
[−1, 1], we have

µ̂1([An, 1]× Vn) = λ1
nµ1(u) + µ1(An,Vn) ≥ λ1

nµ2(u) + µ2(An,Vn) = µ̂2([An, 1]× Vn)

and

µ̂1([−1, 1]× Vn) =λ1
nµ1(u) + µ1(−1,Vn) + λ2

nµ1(−u)

=λ1
nµ2(u) + µ2(−1Vn) + λ2

nµ2(−u)

=µ̂2([−1, 1]× Vn).

Generalizing, given any finite measurable partition Π of V , letMΠ be the set of pairs
of measures (µ̂1, µ̂2) over [−1, 1]× V such that

µ̂i(E) = µi

({
w ∈ W | w = v

√
1− A2 + Au, (A, v) ∈ E

})
,

∀ measurable E, i = 1, 2,
(9)

µ̂1([An, 1)× Vn) ≥ µ̂2([An, 1]× Vn), ∀An ∈ [−1, 1], ∀n, (10)
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and
µ̂1([−1, 1]× Vn) = µ̂2([−1, 1]× Vn), ∀n. (11)

We have shown that for every finite measurable partition Π, MΠ is nonempty. It is
also not hard to see that it must be closed. Clearly, if Π′ is a refinement of Π, then
MΠ′ ⊆MΠ.

EachMΠ is a closed nonempty subset of the space of pairs of measures over V , obvi-
ously a compact set. Fix a finite collection of finite measurable partitions, say Π1, . . . ,ΠT .
Let Π be the coarsest common refinement of these partitions. Then MΠ ⊆ MΠt for all
t. Since MΠ must be nonempty, we see that ∩tMΠt 6= ∅. By Kelly (1955, Chapter 5,
Theorem 1), this implies that ∩ΠMΠ is nonempty where the intersection is taken over
the set of all finite measurable partitions. Hence there is at least one pair of measures
which satisfies equations (9), (10), and (11) for every finite measurable partition.

Hence we have shown that we can rewrite µ1 and µ2 as distributions µ̂1 and µ̂2 over
(A, v) ∈ [−1, 1] × V with the following properties. First, equation (9) implies that for
every menu x,∫

w

max
β∈Bw(x)

u(β)µi(dw) =

∫
(A,v)

max
β∈B

v
√

1−A2+Au
(x)
u(β) µ̂i(d(A, v)), i = 1, 2.

This holds since we have only specified how mass at u and −u is spread across the sets
{1} × V and {−1} × V respectively. Since (1, v) and (1, v′) both correspond to utility
function u, this has no effect on the calculation of the utility of any menu.

Second, equation (10) implies that for every measurable function A∗ : V → [−1, 1],∫
v

µ̂1([A∗(v), 1]× {v}) dv ≥
∫
v

µ̂2([A∗(v), 1]× {v}) dv.

To see this, simply note since A∗ is bounded and measurable, there exists an increasing
sequence of simple functions A∗n converging to A∗ pointwise from below.21 Letting W ∗ =
{(A, v) | A ≥ A∗(v)} and Wn = {(A, v) | A ≥ A∗n(v)}, we see that W ∗ = ∩nWn, so
µ̂i(W

∗) = limn→∞ µ̂i(Wn). Hence

µ̂1(W ∗) = lim
n→∞

µ̂1(Wn) ≥ lim
n→∞

µ̂2(Wn) = µ̂2(W ∗),

where the inequality follows from equation (10).

Third, it is easy to see that equation (11) implies that the marginals of µ̂1 and µ̂2

over V are the same.

21It is straightforward to modify the proof of Theorem 13.5 in Billingsley (1995, page 185) to show
this.
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Letting µV denote the (common) marginal of µ̂1 and µ̂2 on V and µiA(· | v) a regular
version of the conditional for µ̂i, we see that (V , µiV , µiA(· | v)) is a decomposition of µi
for i = 1, 2.

Now we complete the proof by showing that µ1
A(· | v) FOSD µ2

A(· | v) for almost all
v.

Let V(Ā) denote the set of v such that µ1
A([Ā, 1] | v) < µ2

A([Ā, 1] | v) and let V∗ =
∪Ā∈[−1,1]V(Ā). We now show that V∗ has µV measure zero.

First, note that if there is an Ā such that µ1
A([Ā, 1] | v) < µ2

A([Ā, 1] | v), then there
must be a rational Ā with this property. This is obviously true if the distributions are
continuous in a neighborhood of Ā. If a distribution has a mass point at Ā, then we
can perturb the Ā slightly in one direction and maintain the inequality. Hence V∗ =
∪Ā∈RV(Ā) where R denotes the rationals. For any Ā, V(Ā) is measurable, so, as a
countable union of measurable sets, V∗ is measurable. Clearly,

µV(V∗) ≤
∑
Ā∈R

µV
(
V(Ā)

)
.

To show that the right–hand side is zero, suppose it is positive. Then there must be
some rational Ā such that µV(V(Ā)) > 0. For every v ∈ V(Ā), we have

µ1
A([Ā, 1] | v)µV(v) < µ2

A([Ā, 1] | v)µV(v).

Integrating over v ∈ V(Ā), we get

µ̂1([Ā, 1]× V(Ā)) < µ̂2([Ā, 1]× V(Ā)),

a contradiction to equation (10).
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