
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

A Model of Persuasion with a Boundedly Rational Agent

Jacob Glazer

Tel Aviv University and

Boston University

and

Ariel Rubinstein

Tel Aviv University and

New York University

Abstract

A new model of mechanism design with a boundedly rational agent is studied. A

speaker presents a request to a listener who would like to accept the request only if certain

conditions are met by the speaker’s true case. This persuasion situation is modeled as a

leader-follower relationship. The listener first announces and commits to a persuasion rule,

i.e. a set of conditions to be satisfied by the case in order for him to be persuaded. Then, the

speaker presents a case, though not necessarily the true one. The speaker is boundedly

rational in the sense that his ability to come up with a persuasive case is limited and

depends on the true case and on the persuasion rule and the way in which it is framed. We

fully characterize the circumstances under which the listener’s goal can be achieved.

First version: August 2011

Revision: 1 February 2012

The second author acknowledges financial support from ERC grant 269143.

We thank Noga Alon, Ayala Arad, Sambuddha Ghosh, Bart Lipman, Michael Richter, Rani

Spiegler and Jaber Zarezadeh. Our special thanks to Chuck Wilson for his very useful

comments and suggestions especially regarding Proposition 6.

Page 1 2/2/2012

1. Introduction

"I went to a bar and was told it was full. I asked the bar hostess by what time one should

arrive in order to get in. She said by 12 PM and that once the bar is full you can only get in

if you are meeting a friend who is already inside. So I lied that my friend was already

inside. Without having been told, I would not have known which of the possible lies to tell

in order to get in." (M.R. describing an actual experience at a Tel Aviv bar.)

In this case, M.R. was trying to persuade the bar hostess to let him in. The hostess

revealed the circumstances under which she would be persuaded. In the absence of any

means of verification, her statement informed M.R. how to persuade her.

Consider another example:

As part of a marketing campaign, you have been offered the chance to participate in a

lottery. The winner of the lottery will be awarded one million dollars. In order to be eligible

to participate, you need to answer the following three questions:

1) Do you usually go to bed before or after midnight?

2) Which of the following do you prefer: cheese cake or chocolate cake?

3) Were you born on an odd or even day of the month?

Your answers must fulfill the following conditions:

R1: If you usually go to bed before midnight and you prefer chocolate cake, then you

must have been born on an even day of the month.

R2: If you prefer chocolate cake and you were born on an odd day of the month, then

you must usually go to bed before midnight.

R3: If you usually go to bed after midnight and you prefer cheese cake

then you must have been born on an odd day of the month.

R4: If you usually go to bed after midnight and you prefer chocolate cake,

then you must have been born on an odd day of the month.

R5: If you prefer cheese cake and you were born on an even day of the month,

then you must ussually go to bed after midnight .

R6: If you usually go to bed before midnight and you were born on an even day

of the month,

then you must prefer cheese cake.

Consider three individuals: Alice, Bob and Carol.

Alice usually goes to bed before midnight, prefers cheese cake and was born on an even

Page 2 2/2/2012

day of the month. Therefore, she satisfies all six conditions.

Bob’s case is different: he goes to bed before midnight, prefers cheese cake and was

born on an even day of the month. Bob is not eligible to participate in the lottery since he

satisfies the antecedent of R5 but violates its consequent. However, R5 also guides Bob

how to modify his case in order to become eligible. By changing his profile to "usually

goes to bed after midnight", Bob will satisfy all six conditions and become eligible.

Carol goes to bed before midnight, prefers chocolate cake and was born on an odd day.

The only antecedent she satisfies is that of R1. However, if she lies in order to also satisfy

the consequent of R1 and states that she was born on an even day of the month, she will

violate R6.

Thus, all Alice has to do in order to be eligible for the lottery is to tell the truth. Bob

and Carol, on the other hand, have to lie in order to be eligible. However, the codex guides

Bob, but not Carol, how to lie successfully.

In this paper, we refer to a set of conditions (rules), such as the one above, as a "codex"

and assume that individuals essentially apply the following procedure to come up with a

"persuasive case", i.e. a case that satisfies all of a codex’ rules:

Step 1. Examine whether your true case satisfies the codex. If it does, then declare the

true case. If not, go to Step 2.

Step 2. Find a rule that is violated by your true case (i.e., your true case satisfies its

antecedent but not its consequent) and was not examined in a previous iteration of Step 2.

If there are none, go to Step 3.

Otherwise, change your case to one that satisfies the rule and check whether the

modified case satisfies the codex.

If it does, then declare the new case. If not, iterate step 2.

Step 3. Declare your true case.

Following such a procedure will make Alice and Bob, but not Carol, eligible for the

lottery.

Both of these are examples of a persuasion situation, which typically involves a speaker

and a listener. The speaker attempts to persuade the listener to take a certain action or to

adopt a certain position. The interests of the two parties are not necessarily identical and

depend on the speaker’s "case", i.e. a body of relevant facts that only the speaker knows to

Page 3 2/2/2012

be true or false. The speaker would like the listener to choose his desired action regardless

of the true case, whereas the listener wishes to be persuaded only in certain cases. In his

attempt to persuade the listener, the speaker presents a "case", though not necessarily the

true one. However, cheating effectively (i.e., finding a persuasive false case) can be

difficult, since it requires the speaker to invent a fictitious profile. Finding a "perfect lie"

may require complex calculations, analogous to those required to solve a system of

equations. The listener is aware that the speaker may be providing false information but

cannot verify this one way or another. The listener is also aware of the speaker’s difficulty

in coming up with a persuasive false case.

A persuasion situation can be modeled as a leader-follower relationship. First, the

listener (leader) publicly announces and commits to a persuasion rule, i.e. a set of

conditions that the case presented by the speaker must satisfy in order for the listener to be

persuaded. Then, the speaker (the follower) chooses a case to present. In order to persuade

the listener, the speaker can present a false case. This is where bounded rationality enters

into the analysis. We will assume that the speaker’s ability to find a persuasive case is

limited and depends on his true case and on the persuasion rule and the way in which it is

framed.

Formally, let S be a set of possible cases. The listener can choose between two actions:

either accept the speaker’s request or reject it. A subset of S, denoted by A, is the set of

cases in which the listener, if he knew the speaker’s true case, would grant the speaker’s

request. The residual set, R S − A, consists of all the cases in which the listener would

reject the speaker’s request, if he knew the true case. The speaker, on the other hand, would

like the listener to accept his request regardless of the truth. The speaker knows his true

case whereas the listener can only rely on the speaker’s statement making his decision.

In Glazer and Rubinstein (2004, 2006) the speaker’s difficulties in cheating were

modeled by introducing a function M, where Ms ⊆ S is the set of cases that the speaker

can present when his true case is s. The listener chooses a persuasion rule, modeled as a set

P ⊆ S, and commits to accepting the speaker’s request if and only if the speaker presents a

case in P. After adding a probability measure over the set S to the model, the listener’s

objective is defined to be the design of a persuasion rule that maximizes the probability that

he will take the correct action (from his point of view) subject to the constraint that the

speaker maximizes the probability that his request is granted.

In this paper, we assume not only that cheating is difficult, but also that the speaker’s

Page 4 2/2/2012

ability to cheat effectively depends on the way in which the mechanism is framed. We

model a persuasion rule, referred to as a codex, as a set of conditions formulated in a

certain language. A case is persuasive if it meets all the conditions in the codex. The ability

of the speaker to present a false case depends on his true case, the set of cases that satisfy

the codex and the framing of the codex. In this type of situation, the persuasion rule should

be complex enough that a speaker whose case is in R will not be able to persuade the

listener by manipulating the information but, at the same time, simple enough that a speaker

whose case is in A will be able to persuade the listener.

We explore two notions of implementation. First, we characterize conditions on the set

A under which the listener’s goal is truthfully implementable, in the sense that there exists a

codex which enables the speaker to persuade the listener if and only if his true case should

be persuasive (i.e. it belongs to A) and the speaker can do it without lying. Second, we

characterize conditions under which the listener’s goal is implementable, though not

necessarily truthfully, in the sense that there exists a codex such that the speaker is able to

persuade the listener if and only if his true case belongs to A, though he may need to lie.

2. The Model

The set of cases

Let V be a set of K ≥ 2 propositional variables denoted by v1, . . ,vK. Each variable can

take one of two truth values: "True" or "False". A case is a truth assignment for each of the

variables. Denote by sv the truth value of the variable v in the case s. We will sometimes

present a case s as a K-vector s1, . . , sK of 0’s and 1’s, where sk 1 means that svk T

and sk 0 means that svk F.

Let S be the set of all cases. We assume that all 2K cases are logically possible, namely

that the content of the variables is such that the truth combination of some of the variables

does not exclude the truth combination of any of the others (as would be the case, for

example, if v1 was "being a female" and v2 was "being a male").

The speaker and the listener

There are two agents: a speaker and a listener. The speaker knows which case is true

whereas the listener knows only the set S. The speaker wishes to persuade the listener to

accept a certain request regardless of the true case. The listener can either accept or reject

the request. He would like to accept the speaker’s request only if the case belongs to a

Page 5 2/2/2012

given set A. Let R S − A be the set of cases in which the listener would like to reject the

speaker’s request.

We analyze the following leader-follower scenario: First, the listener publicly commits

to a codex, a set of conditions that the case presented by the speaker must satisfy in order

for his request to be accepted. Then, the speaker (who knows the true case) announces a

case that may or may not be the true one. The listener is committed to applying the codex to

the case announced by the speaker.

The codex

A codex is defined as a set of propositions in propositional logic that uses only the

variables in the set V. We refer to a proposition in the codex as a rule. Only a case that does

not violate any of the propositions will "persuade" the listener. We make two assumptions

regarding a codex:

1) Structure: Each rule in the codex must have the structure ∧y∈W y → x where W is

a non-empty subset of V, x ∈ V − W and each v is either v or −v (the negation of v). For

example, for K 4 the proposition v4 ∧ −v1 → v3 can be a rule in a codex but v1 → −v1

cannot. For any given rule ∧y∈I y → x, we denote a ∧y∈I y (the antecedent of

) and z x (the consequent of). We interpret a rule as a statement made by the

listener: "if you are such and such (described in the antecedent), then you must also be such

and such (described in the consequent) in order for your request to be accepted."

2) Coherence: The codex does not contain rules that conflict in the following sense:

there is no pair of rules with the same variable v in their consequents, such that their

antecedents also not conflict, though the two rules must have opposite truth values for v

(namely, the consequent is v in one rule and −v in the other). Formally, a codex is coherent

if it does not contain two rules ∧y∈W1 y → x and ∧y∈W2 y → −x where for any

y ∈ W1 ∩W2 we have y y. In other words, coherence does not only require that the

codex not contain the two rules v1 → v2 and v1 → −v2 but also that it not contain the two

rules v1 → v3 and v2 → −v3 (i.e., the antecedents do not conflict but the consequents do). In

our view, a codex containing these two rules is problematic: a speaker whose true case, s, is

such that sv1 sv2 T, will rightly complain that the codex imposes on him two

conflicting requirements regarding the variable v3.

In our lottery example (appeared in the introduction), where the three variables are

v1 "goes to bed before midnight", v2 "prefers cheese cake over chocolate cake" and

Page 6 2/2/2012

v3"were born on an odd day", the codex presented in the Introduction, consists of the

following six rules:

v1 ∧ −v2 → −v3, −v2 ∧ v3 → v1, −v1 ∧ v2 → v3, −v1 ∧ −v2 → v3, v2 ∧ v3 → −v1 and

v1 ∧ −v3 → v2.

Notation

For a proposition and a case s, we use the notation s to represent the statement

"proposition is true in case s". (In other words , s ∧y∈I y → x unless:

(i) the antecedent of is satisfied, i.e. for all y ∈ I we have sy T if y y and

sy F if y −y; and

(ii) the consequent of is violated, i.e. either sy T and y −y or sy F and

y y.

Let T be the set of cases for which is true, i.e. T s| s .

For a codex , let T be the set of cases that satisfy all propositions in , i.e.

T s| s for all ∈ ∩∈ T.

Guidance

The speaker can either state the true case or make up a false one. A fully rational

speaker can come up with a case that satisfies the codex regardless of what the true case is.

We assume, however, that the speaker is boundedly rational in the sense that he is limited

in his ability to come up with a persuasive false case. The speaker cannot conceive of all

cases but rather only the true case and the cases he is "guided to" from the true case by

using the codex. We say that, given , the speaker is guided to s′ from s (denoted as

s → s′) if for every variable v for which s′v ≠ sv, there is a rule ∈ such that:

(1) s a and s′ a; and

(2) either z v and s′v T or z −v and s′v F (and thus s′).

In other words, the speaker is guided from s to s′ if he can justify to himself any switch

from sv to s′v by a rule whose antecedent refers only to the unchanged variables and is

satisfied at s, which suggests that the value of the variable v should be s′v. We refer to

the relation → as the guidance relation induced by .

The speaker may be guided from one case to several others cases. For example,

suppose that K 4 and contains the three rules v1 → −v3, v2 → −v4 and

v2 ∧ v3 ∧ v4 → −v1. Then, the speaker is guided by from 1,1,1,1 to any one of the

Page 7 2/2/2012

cases 1,1,1,1, 1,1,0,1, 1,1,1,0, 1,1,0,0 and 0,1,1,1.

The following simple lemma states some of the properties of the relation → :

Lemma 1:

(a) The relation → is reflexive and anti-symmetric (i.e. for any distinct cases s and s′,

if s → s′ then s′ s).

(b) If s is opposed to s′ (sv ≠ s′v for all v), then s s′.

(c) If s → t and s′ is between s and t (that is sv ≠ s′v implies that s′v tv),

then s → s′ and s′ → t.

Given a binary relation →, define T→ s | for no t ≠ s, s → t and

P→ s | there is t ∈ T→ such that s → t. If → is reflexive, then T→ ⊆ P→.

The following lemma shows that the guidance relation → fully conveys the

information about T, the set of cases that satisfy the codex .

Lemma 2: T T→

Proof: Assume that s ∉ T. Then there is a rule ∧y∈I y → x in such that

s is not true, i.e., s satisfies the antecedent ∧y∈I y but not the consequent x. Thus,

s → s′ where s′ is the case that differs from s only in the truth value of the variable x, i.e.,

s ∉ T→ .

In the other direction, assume that s ∉ T→ . Then there is a case t ≠ s such that

s → t. Thus, there is a variable x and a rule ∧y∈I y → x such that s and t satisfy ’s

antecedent, tx ≠ sx, and t . Hence, s does not satisfy and therefore s ∉ T.

Persuasion

Given a codex , we say that the speaker in s can persuade the listener if s → s′ for

some s′ ∈ T. Define P P→ . P is the set of cases in which the speaker can

persuade the listener. Note that it is possible for the speaker to be guided from the true case

to some cases which are persuasive and some others not. By our definition, it is sufficient

for the speaker to be guided to one persuasive case in order to be able to persuade the

listener. Note also that we do not allow the speaker to be guided sequentially, i.e., first

from s to s′ and then from s′ to s′′.

Page 8 2/2/2012

Implementation

The set A is implementable if there is a codex such that A P.

The set A is truthfully implementable if there is a codex such that P T A.

Thus, if a codex implements A then the speaker is able to persuade the listener in all

cases in which the listener should be persuaded, but in none of the cases in which he should

not. However, in some of the cases in which the listener should be persuaded the speaker

has to "alter the truth" in order to persuade the listener. If a codex truthfully implements A,

then the speaker whose case should persuade the listener is able to do so by simply telling

the truth.

Note that the "revelation principle" does not hold in our framework and, as we will see

later, there are sets that are implementable but not truthfully implementable.

The neighborhood relation

A key element in the analysis is the neighborhood binary relation N on the set S.

Define sNs′ if s and s′ differ in the truth value of exactly one variable. The relation N is

symmetric and irreflexive. A useful property of the relation N is that two neighbors of the

same case are not neighbors. We will refer to ds, s′ |v |sv ≠ s′v| as the distance

between s and s′.

A path is a sequence of distinct cases s1, . . . , sL such that s1Ns2N. . .NsL. If L 2 and

sLNs1, then the path is a cycle. Note that any cycle contains an even number of cases. We

say that a cycle is a counting cycle (referred to in graph theory as a Hamiltonian Cycle) of

the set X if it contains all elements of X. Obviously, S has a counting cycle. A sequence

s0, s1, , , . . . , sL is a ray from s0 if sl1Nsl and dsl, s0 l.

Let Ns be the set of neighbors of s. For any two cases s and s′, |Ns ∩ Ns′| is either

0 or 2. In particular, if rNsNt then there is a unique u such that r, s, t,u is a cycle. Denote

this u by Nr, s, t.

Complete rules

A complete rule is one of the type ∧y∈V−x y → x. In other words, its antecedent

refers to K − 1 variables and the consequent to the remaining one. If a codex contains the

complete rule ∧y∈V−x y → x, then s → s′ where s and s′ are the two neighbors defined

by s ∧y∈V−x y ∧ −x and s′ ∧y∈V−x y ∧ x.

For any two neighbors s and s′, let s, s′ be the complete rule ∧y∈V−x y → x

where both s ∧y∈V−x y ∧ −x and s′ ∧y∈V−x y ∧ x. Thus, s → s′ for any codex

Page 9 2/2/2012

 that contains .

Canonical codexes

We now define a special form of a codex which does not necessarily have a natural

interpretation but is analytically useful.

A codex is canonical if:

(i) It consists of complete rules.

(ii) For every s, there is at most one t such that s → t.

(iii) For every s ∈ P − T, there is r ∈ R such that r → s.

If a canonical codex implements the set A, then the number of its rules is at least equal

to the number of cases in R and thus is typically large. Given our assumptions about the

speaker’s limited ability to come up with a persuasive case, a canonical codex makes the

speaker’s task relatively simple, since he can simply check the K neighboring cases.

Note that the language of a codex allows the specification of any subset X ⊆ S:

Lemma 3: For every set X ⊆ S, there is a codex such that T X.

Proof: Let s1, , , . . . , sL be a counting cycle of S. The set sl, sl1 | sl ∉ X is

coherent and thus is a codex. Obvioulsy, T X.

3. Examples

Example 1: The set S is truthfully implementable by the empty codex. The empty set is

implementable by the codex , which contains all rules sl, sl1 where s1, , , . . . , s2K is a

counting cycle of S. Obviously, T ∅ and thus P ∅ as well. This implementation

is truthful in a degenerate sense.

Example 2: This example demonstrates the critical role of the framing of the codex. Let

K 3 and A 1,1,1, 0,0,0. The following table presents three codexes that are

satisfied by the same A. However, the codexes differ in the sets of cases in which the

speaker can persuade the listener. Only the last one (truthfully) implements A. For

notational convenience we identify v4 with v1 and v5 with v2.

Page 10 2/2/2012

 v2 and v3 as v1 v2 as v1; v3 as v2 2T → 1T and 1T → 2T

v1 → v2 v1 → v2 −vi ∧ vi1 → vi2 (∀i)

v1 → v3 −v1 → −v2 vi ∧ −vi1 → −vi2 (∀i)

−v1 → −v2 v2 → v3

−v1 → −v3 −v2 → −v3

T A A A

P S S − 1,0,0, 0,1,1 A

Example 3: Let K 3 and A 1,0,0, 0,1,0, 0,0,1. We will see that A is not

implementable. Assume that implements A.

Case (1): T A. The case 0,0,0 is not in T and hence there is a rule in that

this case does not satisfy and w.l.o.g. that rule is either −v1 → v3 or −v1 ∧ −v2 → v3 . If

−v1 → v3 is in the codex, then 0,1,0 ∉ T. If −v1 ∧ −v2 → v3 is in the codex, then

0,0,0 → 0,0,1 and hence 0,0,0 ∈ P although 0,0,0 ∉ A. In either case, we

arrive at a contradiction.

Case (2): One of the cases in A, w.l.o.g. 0,0,1, is not in T. Then, there must be

another case in A, w.l.o.g. 0,1,0, such that 0,0,1 → 0,1,0. This requires that

−v1 → v2 be in the codex. However, in that case, 0,0,0 → 0,1,0 ∈ T and therefore

0,0,0 ∈ P although 0,0,0 ∉ A, a contradiction.

Example 4: Let A consist of all cases except for the K cases in which exactly one

variable receives the value T. The set A is implemented (although, as is shown in example

3 for K 3, its complement is not implementable) by the codex that consists of the

KK − 2 rules vi → vj where j ≠ i 1 (K 1 is taken to be 1). Obviously, T all F,

all T. The codex guides the speaker to "all T" from every case in A except for "all F".

For any s ∈ R where there is a unique vi for which svi T, the speaker is guided from s

only to cases in which vi1 receives the value F and hence they violate the codex. Thus,

s ∉ P.

Example 5: Let Am s| s receives the value T for at least m variables where

0 m K. We will show that Am is implementable.

Let be the codex containing all rules of the type ∧v∈W v ∧ ∧v∈X−W−y − v → y

where W is a set of at most m variables and y ∉ W. The codex requires that if from among

K − 1 variables at most m variables receive the value T̸, then the K′th variable should

Page 11 2/2/2012

receive the value T as well. T Am1 and P Am. Thus, the speaker whose case

assigns the truth value T to exactly m variables is guided to slightly exaggerate and to claim

that there are m 1 true variables. This implementation is not truthful, but as will be

shown later in Proposition 3, Am is truthfully implementable for K 3 and m 2.

Example 6: For K 2 all sets are implementable except for the four singletons and the

two sets that each consist of two opposing cases. It is sufficient w.l.o.g. to consider the

following sets:

(a) A 1,0, 1,1 is implementable by −v1 → −v2, − v2 → v1, v1 → v2, a

codex that induces the guidance relation 0,1 → 0,0 → 1,0 → 1,1. Clearly,

T 1,1 and P A.

(b) A S − 0,0) is implementable by the codex −v1 → v2, v2 → v1 which

induces the guidance relation 0,0 → 0,1 → 1,1. Thus, T 1,1, 1,0 and

P A.

(c) A 1,1 is not implementable. Assume that implements A. It must be that

P T 1,1. The codex excludes the case 0,0 and thus (w.l.o.g.) −v1 → v2 is

in the codex. The case 0,1 has to be excluded. Since is coherent it must be that

−v1 → −v2 is not in the codex and hence v2 → v1 is. However, in that case, 0,1 → 1,1

and 0,1 ∈ P, thus contradicting P A.

(d) A 1,0, 0,1 is not implementable. Assume that implements A. Since A is

composed of two opposing cases the speaker cannot be guided from one to the other and

thus it must be that P T A. The case 1,1 is excluded, i.e. w.l.o.g. v1 → −v2 is

a rule in the codex. However, in that case, 1,1 → 1,0 and thus 1,1 ∈ P, a

contradiction.

3. Truthful Implementability

In this section, we fully characterize the truthfully implementable sets. In particular, we

show that when a set A is truthfully implementable, implementation can be achieved by

using a codex that devotes one rule to every case s in R and "misguides" the speaker whose

true case is s to a neighboring case in R.

Proposition 1: If the set A is truthfully implementable, then it is truthfully

implementable by a canonical codex.

Proof: Let be a codex such that T P A.

Page 12 2/2/2012

By Lemma 2, T T→ and thus for every s ∈ R there is a case t ≠ s such that

s → t. Let ns be a neighbor of s that is between s and t. By Lemma 1, we have

s → ns → t and therefore ns ∉ T. The canonical codex ′ s,ns |s ∈ R

truthfully implements A.

We say that a set of cases C is connected if for any two cases s, s′ ∈ C there is a path of

elements in C connecting s and s′. C is a connected component of R if it is a maximal

connected subset of R.

Proposition 2: The set A is truthfully implementable if and only if every connected

component of R contains a cycle.

Proof: Assume that A is truthfully implementable. By Proposition 1, the set is

implementable by a canonical codex . Then, for every s ∈ R there is a case s′ ∈ R such

that sNs′ and s → s′. Let s1 be an arbitrary element in R . Then, there exists s2 ∈ R such

that s1Ns2 and s1 → s2. Continuing in this manner, we obtain s1Ns2N. . .NsL where

sL sL′ for some L′ L and sl ∈ R for all l. In other words, s1 is connected in R to a cycle

of elements in R.

In the other direction, assume that any connected component of R has a cycle . Define

the binary relation → on R as follows: Let C be a connected component of R. Select a

subset of cases in C that form a cycle s1Ns2N. . ,NsLNs1. For any l, add sl → sl1 to the

relation (L 1 is taken to be 1). For any element s ∈ C − s1. . . , sL, choose a shortest path

t1Nt2. . ,NtN where t1 s and tN is in the cycle and add t1 → t2 to the relation. Let

 s, s′ | s → s′. Obviously, the relation → is anti-symmetric and thus is coherent.

The relation → is identical to → and P T A.

The following proposition describes families of sets that are truthfully implementable.

The first family consists of all sets that are "small" in the sense that they contain no more

than K − 1 cases. Each of the sets in the second family consists of all cases for which the

number of variables that are true exceeds a certain threshold. The sets belonging to the

third family have the property that a particular variable is true (or false) in all cases

included in the set. The last family consists of all sets for which there are two variables,

such that the inclusion of a case in the set is independent of their truth values. These two

"degenerate" variables are used in the codex merely to "confuse" the undeserving speaker.

Page 13 2/2/2012

Proposition 3: For K ≥ 3, any set A that satisfies at least one of the following

conditions is truthfully implementable:

(1) A is "small" with at most K − 1 cases.

(2) The number of true variables must exceed a threshold: there exists a number m ≥ 3,

such that A Am s| at least m variables receive the value T at s.

(3) There is a particular variable whose value must be true (or false): there exists a

variable v such that A ⊆ Tv (or T−v). (Recall that Tv is the set of all cases in which v

receives the value T.)

(4) There are two irrelevant variables v ′ and v ′′ such that if s ∈ A, then so is any case s′

for which sv s′v for all v other than v ′ and v ′′.

Proof: Due to Proposition 2, it is sufficient to show that every s ∈ R is connected by a

path in R to a cycle in R.

(1) First, we show that the set R is connected. It is wellknown that for any two cases s

and t in R that are not neighbors, there are K "disjoint" paths connecting s and t. Since A

contains at most K − 1 elements, at least one of the paths contains only elements of R. Thus,

R is connected.

Second, we show that R contains a cycle. Otherwise, let s1Ns2N. . . .NsL be a longest

path of distinct elements in R. Since R contains more than half of the cases, there must be

two opposing elements belonging to R and thus L ≥ K 1 ≥ 4.

Since s3 ∈ Ns2 ∩ Ns4 there is another case x such that s2NxNs4. The case x must be

in A since otherwise s2, s3, s4,x forms a cycle in R. The case x is not a neighbor of s1 since

s1 is a neighbor of s2. The set Ns1 consists of s2 ∈ R and K − 1 other cases. It is

impossible that all of them are in A since x is not one of them. Thus, Ns1 contains

another element in R (in addition to s2) and we can extend the path.

(2) R is connected since each case in R is connected to the "all F" case. The set R

contains the 2K-element cycle

1,0, . . . , 0, 1,1,0, . . . , 0, 0,1,0, . . . , 0, 0,1,1,0, . . . , 0, . . . , 0,0, . . . , 1, 1,0, . . . , 0, 1

(3) Since A ⊆ Tv the set T−v ⊆ R and it has a counting cycle. Any element in R is

either in T−v or is a neighbor of a case in T−v. Thus, R is connected and contains a

cycle.

(4) Any s ∈ R belongs to a cycle consisting of the four cases in the set t| tv sv

for any v ∉ v ′,v ′′. By assumption these four cases are in R.

Page 14 2/2/2012

An alternative interpretation of truthful implementation: Let K 3 and let

 v1 → v2, v2 → v3. Then, 1,0,0 → 1,1,0 and 1,1,0 → 1,1,1. However,

by our assumptions, the speaker cannot be guided "sequentially" and thus is not guided

from 1,0,0 to the persuasive case 1,1,1. Of course, sequential guidance is not

equivalent to full rationality Had we allowed the speaker to be guided sequentially, the

following alternative definition of implementation would have applied:

We say that A is implementable in the alternative sense if there exists a codex such

that:

(i) for every s ∈ A there is a chain s s1 → s2. . . .→ sL where sL ∈ T.

(ii) for no s ∈ R does there exist a chain s s1 → s2. . . .→ sL where sL ∈ T.

Lemma 4: The set A is implementable in the alternative sense if and only if it is

truthfully implementable.

Proof: If A is truthfully implementable, then there exists a codex such that

P T A. Part (i) of the alternative definition is satisfied since for any s ∈ A,

s → s ∈ Ṫ. Part (ii) is satisfied since if there exists s ∈ R and a chain

s s1 → s2. . . .→ sL where sL ∈ T, then there exists some l for which sl ∈ R,

sl1 ∈ T and sl → sl1, contradicting the assumption that implements A. Hence, A is

implementable in the alternative sense.

On the other hand, assume that implements the set A in the alternative sense. By (ii),

there is no member of R in T and thus by Lemma 2 for any s ∈ R there exists some s′

such that s → s′ and by Lemma 3 we can assume w.l.o.g. that s′Ns. Had s′ been in A, then

by (i) there would have been a chain s′ s1 → s2. . . .→ sL with sL ∈ T and then we

would have s → s1 → s2. . . .→ sL, contradicting (ii). Thus, s′ ∈ R. Consider the codex

′ s, s′ | s ∈ R. Then, P′ T′ A.

4. Implementability (not necessarily truthful)

In the following propositions we show that when a set A is implementable (but not

necessarily truthfully), implementation can be achieved by using a codex such that:

(i) Some cases in A satisfy the codex.

(ii) For some other cases in A agents are guided by the codex to cheat effectively, i.e. to

pretend to be a (neighboring) case in A that satisfies the codex.

(iii) For each case in R, there is a unique rule that "misguides" an agent to a neighboring

Page 15 2/2/2012

case which is either in R or is one of those cases in A in which the agent is guided to cheat

effectively.

Proposition 4: A set A is implementable by a canonical codex if and only if there is a

reflexive binary relation → satisfying:

(1) Anti-symmety.

(2) P→ A.

(3) If s → s′ and s ≠ s′, then sNs′.

(4) for every s there is at most one s′ such that s → s′.

(5) for every s ∈ P→ − T→, there is t ∈ S − P→ such that t → s.

Proof: Assume that A is implementable by a canonical codex . The relation →

satisfies properties (1,2,3,4,5)since the coherence of the codex implies (1), the

implementability of A by the codex is equivalent to (2), and the fact that the codex is

canonical implies (3,4,5).

On the other hand, given a relation → that satisfies (1,2,3,4,5), consider

 s, s′ | s ≠ s′ and s → s′. (1) implies that the codex is coherent and (3,4,5)

implies that the codex is canonical. The relation → is equal to → and by (2) we have

P P→ P→ A.

The next result is analogous to Proposition 1. A necessary and sufficient condition for

implementability is implementability by a canonical codex.

Proposition 5: If the set A is implementable, then it is implementable by a canonical

codex.

Proof: Let be a codex that implements A. We start with the relation → and modify

it to become a relation satsifying the five properties spelled out in Proposition 4.

The relation → is reflexive, satisfies (1,2) and in addition has the following property:

(6) Betweenness: If s → s′ and t is a case "between" s and s′, then s → t → s′.

First, define a new reflexive relation → as follows:

(a) For every s ∈ A − T, choose one case s′ ∈ T such that s → s′ and define

s → s′.

(b) For every s ∈ R, choose one case s′ ≠ s for which s → s′. Since → satisfies (6),

we can assume that s′Ns. Since s ∉ P, s′ ∉ T. Define s → s′.

The relation → satisfies (1,2,4) and:

Page 16 2/2/2012

(7) If s ∈ R then there is a unique s′ such that s → s′ and s′ ∉ T→ and s′Ns. If s ∈ A

and s → s′, then s′ ∈ T→ and all cases between s and s′ are in A.

We now modify the relation → recursively as follows:

(i) For every s ∈ A − T→ such that the set Ns ∩ T→ ≠ ∅ and s → x for

x ∉ Ns, divert the relation from s → x to s → y for some y ∈ Ns ∩ T→.

(ii) Let s ∈ A be such that s → s′ and s′ ∉ Ns. Let s′′ be a neighbor of s between s and

s′. By (7) s′′ ∈ A and by (2) there exists s′′′ ∈ T→ such that s′′ → s′′′. Delete s′′ → s′′′ and

s → s′ from the relation and add s → s′′. If there is a case r → s′′, then r ∈ R and by (7), s′′

and r are neighbors. Both s and r are neighbors of s′′ and let t Ns, s′′, r (the other joint

neighbor of s and r). By (i), t ∉ T→. If t ∈ A, then add r → t. If t ∈ R, then delete t → t′

(t ′ can be r!) and add r → t and t → s. The new relation satisfies (1), (2), (4) and (7) but

with one less element in A which goes to a non-neighbor.

Go back to (i). Following a finite number of iterations we obtain a relation satisfying

(1,2,3,4).

Finally, for every s ∈ A for which s → t and since there is no r → s for some r ∈ R, we

can omit the arrow s → t to obtain a relation which also satisfies also 5.

Proposition 6: The set A is implementable if and only if every connected component of

R contains (i) a cycle or (ii) a case r such that there are two cases s, t ∈ A and rNsNt.

Proof: Assume that A is implementable. By Proposition 5, it is implementable by a

canonical codex and by Proposition 4 there is a binary relation → satisfying (1,2,3,4,5).

Consider a connected component Y of R. By (2,3), for every r ∈ Y there is sr ∈ Nr

such that r → sr. If for every r ∈ Y the case sr ∈ R, then Y must contain a cycle.

Otherwise, there is an r ∈ Y with r → s and s ∈ A. Then, by (2), it must be that

s ∈ P→ − T→ and thus there must be some t ∈ T→ ⊆ A such that s → t and by (3)

rNsNt.

In the other direction, let Y1, . . ,YN be a sequence of all connected components of R. If

N 0, the set A S is trivially implementable (see Example 1). If N 0, we inductively

construct a relation → which at the end of stage n − 1 will satsify (1,3,4,5) and also

P→ S − Y1 . . .Yn−1 as well as P→ − T→ ⊆ A (and thus Yn . . .YN ⊆ T→).

At the end of stage n N , we obtain a relation satisfying (1,2,3,4,5) and by Proposition 4

Page 17 2/2/2012

the set A is implementable.

We now describe the n’th stage of the inductive construction of →:

(i) The modification of → for the case in which Yn contains a cycle is straightforward

(following the construction in Proposition 2).

(ii) If there exists r ∈ Yn which is a neighbor of s ∈ P→ − T→, then we can extend

the relation → by adding r → s and x → y | x ∈ YN and y is a neighbor of x on the path

from x to r (there is only one path from x to r since Yn does not contain a cycle).

We can now concentrate on the case in which there is r∗ ∈ Yn such that r∗Ns∗Nt∗ and

s∗, t∗ ∈ A and there is no r ∈ Yn that has a neighbor s ∈ P→ − T→.

(iii) Next, it can be assumed that we can assume that there is no s such that s → s∗.

If there is and s → s∗, then s ∉ R since if s ∈ R it must be that s∗ ∈ P→ − T→, a

situation already included in (ii). Thus, assume that s → s∗ and s ∈ A. By (5), there is

r ∈ R such that r → s. The case x Nr∗, s∗, s ∉ R since if x ∈ R it is also in Yn and xNs

and we are back to the situation dealt with in (ii). Also, x ∉ P→ − T→ since r∗Nx.

Thus, x ∈ T→ and we can delete s → s∗ and add s → x.

(iv) We are left with the situation in which r∗Ns∗Nt∗, s∗, t∗ ∈ A, s∗ ∈ T→ and there is

no s → s∗.

If s∗ has a neighbor x in A ∩ T→ then we can extend the relation → such that

r∗ → s∗ → x and for any other r ∈ YN we can add r → s where r, s, . . , r∗ is the path from r

to r∗ in YN.

Otherwise, t∗ ∉ T→ and by (5) there are some cases in R which are directed to t∗.

For every r such that r → t∗, let xr Nr, t∗, s∗. We have already dealt with the case

in which for at least one r we have xr ∈ A ∩ T→. We are left with two possibilities to

consider:

(a) If xr ∈ P→ − T→, i.e. there is y ∈ A such that xr → y, we can redirect

r → xr.

(b) If xr ∈ R it must be in Y1 . . .Yn−1 since xrNr and r ∈ Y1 . . .Yn−1. Then, for

each such r redirect r → xr and xr → s∗.

There are now remaing cases directed to t∗ and as before we can extend the relation

such that r∗ → s∗ → t∗ and r → s | r ∈ Yn and r, s, . . , r∗ is the path from r to r∗ in YN.

Using the above characterization, Proposition 7 presents families of sets that are

Page 18 2/2/2012

implementable:

Proposition 7: For K ≥ 3, any set A that satisfies at least one of the following

conditions is implementable:

(1) A ⊇ Tv for some variable v (recall that Tv is the set of all cases in which the

variable v receives the value T).

(2) A ⊇ B where B is a truthfully implementable set and every case in A − B is a

neighbor of a case in B.

(3) |R|≤ K.

(4) A’s connected components are all non-singletons.

(5) A is monotonic in the following sense: if s ∈ A and s′ is a case such that, for every

variable v, whenever sv T also s′v T, then s′ ∈ A.

Proof:

(1) Every case in R is a neighbor of a case in Tv, which has another neighbor in Tv.

(2) Since B is truthfully implementable, then by Proposition 1 there is a binary relation

→ such that for any r ∈ S − B there is a unique s ∈ S − B such that r → s and rNs.

Consider any r ∈ R. If the path of the relation → that starts from r does not have a cycle in

R, then it reaches an element in A − B which has a neighbor in B. Thus, the connected

component of R, which contains r, either contains a cycle or includes a case which has a

neighbor in A − B ⊆ A, which in turn has a neighbor in B ⊆ A.

(3) By |R|≤ K, any r ∈ R has a neighbor s in A and if s does not have K neighbors in R

then it must have a neighbor in A. If there exists s∗ ∈ A such that R Ns∗, then for

every r ∈ R there is a ray s∗, r,nr,n2r and nr and n2r must be in A.

(4) One of the cases in any connected component of R must have a neighbor in A that

has a neighbor in A.

(5) The case A alltruth is dealt with in Proposition 3(1). Otherwise A is a

connected set (all cases are connected to alltruth) which is not a singleton.

Corollary: (i) If there exists s∗ ∈ R such that A ⊇ Ns∗ and for any x ∈ Ns∗ we

have Nx ⊆ R, then A is not implementable.

(ii) If all connected components of A are singletons and A is not truthfully

Page 19 2/2/2012

implementable, then A is not implementable.

The set A 0,1,0,0, 0,0,1,0, 0,0,0,1, 1,1,1,0, 1,1,0,1, 1,0,1,1 is an

example of a set satisfying (2) but not (1).

Corollary: For K 3:

(a) A is not implementable if and only if it consists of 3 or 4 "isolated" cases.

(b) A is truthfully implementable if and only if either (i) A consists of at most two cases

or (ii) A is a subset of Tv or T−v for some variable v.

Proof:

(a) By Proposition 3(1), any set A such that |A|≤ 2 is truthfully implementable. If

A ⊃ C, a set of two opposing cases, then any member of A is a neighbor of a case in C and,

thus by Proposition 7(2), is implementable. Similarly, if A ⊃ C, a set of two neighboring

cases, and A does not contain a pair of opposing cases, then any case in A is a neighbor of a

case in C and, again, by Proposition 7(2), A is thus implementable. We are left with the

possibility that A contains 3 or 4 isolated cases. In that case, there is a case r ∈ R such that

all of its neighbors are in A and isolated and therefore by the previous corollary it is not

implementable.

(b) If A satsifies (i) or (ii), it is truthfully implementable by parts (1) and (3) of

Proposition 3.

On the other hand, if A is truthfully implementable and contains more than 2 cases, then

by Proposition 2 the set R contains a cycle of 4 cases, isomorphic to

Tv1 1,1,1, 1,1,0, 1,0,0, 1,0,1. Then A is a subset of some T−v1.

5. Discussion

5.1. Experimental Evidence

We obviously do not view the bounded rationality element in our model as an exact

description of reality. Nevertheless, we believe that it captures some elements of real life.

In order to test this belief, we conducted a series of experiments based on the lottery

example described in the Introduction. Subjects from more than 30 countries who had all

taken a game theory course were asked to participate in a short web-based experiment. The

subjects were first asked three questions about themselves:

1) On most days, do you go to bed before midnight or after midnight?

Page 20 2/2/2012

2) Which of the following do you prefer: cheese cake or chocolate cake?

3) Were you born on an odd or even day of the month?

After answering the three questions, the subjects were presented with a new screen:

"Assume now that as part of a marketing campaign you have been offered the chance to

participate in a lottery. The winner of the lottery will be awarded one million dollars (in

this experiment the prize is only $100). In order to be eligible to participate, you must

answer three questions about yourself and your answers must not violate any of the

following six restrictions:"

Then the codex 1 R1, . . . ,R6 described in the Introduction was presented in

random order and the subjects were asked the following question:

"Assume that you very much want to participate in the lottery and you know that the

company has no way of verifying whether your answers are true. How would you answer

the following three questions in this case?"

This was followed by the same three questions presented above.

Letting v1 "before", v2 "cheese" and v3"odd", the codex 1 consists of the six

rules: v1 ∧ −v2 → −v3, −v2 ∧ v3 → v1, −v1 ∧ v2 → v3, −v1 ∧ −v2 → v3, v2 ∧ v3 → −v1 and

v1 ∧ −v3 → v2. The induced guidance relation is: 111 →1 011,

100 →1 110, 010 →1 011, 101 →1 100, 001 →1 101 and 000 →1 001. Thus,

T1 011, 110 and P1 T1 111, 100, 010.

We partitioned the subjects into three groups T T1, P P1 − T1 and

R R1, according to their "declared profile" in the first screen. Each row in the table

refers to one of these groups. The numbers in the first column, denoted by T, represent the

proportion of each group whose answers in the second screen belong to T1. The

numbers in the second column, denoted by "Honest", represent the proportion of each

group who submitted the same profile in the second screen as in the first. (Notice that the

answer of a subject in T will be counted in two columns.) The numbers in the third column,

denoted by "Other", represent the proportion of each group whose answer was neither in T

nor honest.

Page 21 2/2/2012

1 T MRT Honest Other N

T 80% 125s 71% 20% 104

P 54% 157s 29% 17% 180

R 36% 317s 34% 30% 261

Following are our main observations:

1) The results support our main assumption that the ability of a subject to come up with

an eligible case strongly depends on his true case. While 80% of the subjects in T

presented a persuasive case, the success rate dropped to 54% among the subjects in P and

to 36% among the subjects in R.

2) The median response time of successful subjects varied from 125s for subjects in T to

157s for subjects in P and to 317s for subjects in R. This supports our assumption that

subjects in R find it more difficult to come up with a persuasive case than subjects in P and

T. Note, however, that the sample is not large enough to draw firm conclusions based on

response time.

3) According to 1, each of the three cases in P is guided by the codex to a single case

in T (two cases are guided to 011 and one is guided to 110). Indeed, of the 97 subjects in P

who presented a persuasive case, 68% followed the guide. This result supports our main

assumption that subjects use the codex as a guide in coming up with a persuasive case using

their true case as a starting point.

4) The choices of the 251 subjects in P R who did not present a persuasive case are

far from being random. 56% of the subjects were honest while 35% chose a case that one

of the six rules led to (100, 101, or 001). Only 9% chose a case that none of the six rules

led to (111, 010, or 000).

5) One could suggest an alternative model of bounded rationality, according to which a

subject is restricted to presenting either the true case or one of its three neighboring cases

(this model is in line with Glazer and Rubinstein (2006)). However, the results do not

support this hypothesis. First, note that for the 111 and 010 subjects the two persuasive

cases are neighboring ones. However, they are guided by the codex only to 011 (and not to

110). Indeed, 75% of the 72 subjects who presented a persuasive case followed the guide

and chose 011. Second, the success rate of the 001 subjects (37%) who had a neighboring

case in T was no different than that of the other two R cases (101 and 000) which do not

Page 22 2/2/2012

have a neighboring case in T (37% and 33% respectively).

An alternative explanation for the popularity of 011 among the 111 and 010 subjects is

that 011 is confirmed by two rules. Therefore, we conducted a second experiment with a

modified codex 2 whose guidance relation is: 111 →2 011, 100 →2 110, 010 →2 110,

001 →2 011, 101 →2 100 and 000 →2 001. For this codex, T2 T1 but

P2 − T2 consists of four cases: 111 and 011 (guided by the codex to 011), and 100

and 010 (guided to 110). The following table summarizes some of the results:

2 T Honest Other N

T 88% 75% 12% 52

P 63% 27% 10% 123

R 45% 15% 40% 65

Once again, we observe a strong dependence of the success rate on the subject’s true

case. Thus, almost all T cases, 63% of the P cases and only 45% of the R cases came up

with a persuasive case.

Particularly interesting is the group of 123 subjects whose case is in P. Each of the four

cases in P is guided by the codex to a unique case in T. Of the 78 successful subjects in P,

51 subjects (65%) seem to be guided by the codex guidance. We believe that this strongly

supports our main assumption that individuals first examine whether their true case satisfies

the codex and if it is not they are guided by the codex to the next case for consideration.

Finally we also experimented with another codex, 3, which truthfully implements

110, 011. The induced guidance relation is 111 →3 101 100 →3 101 010 →3 000,

101 →3 100 001 →3 101 and 000 →3 001. The following table summarizes the

results.

3 T Honest Other N

T 81% 77% 19% 26

R 34% 44% 22% 100

Once again, there is a dramatic difference between the success rates of the T’s (81%)

and the R’s (34%). The success rate (34%) and the median response time (332s) of the R’s

are similar to those of the R’s in the previous experiments and only one R subject chose a

Page 23 2/2/2012

case that none of the rules led to.

5.2. Related Literature

The idea that cheating is difficult is, of course, not a new one. Within the economic

literature, it appears, for example, in Kamien and Zemel (unpublished, 1990). They

reinterpreted Cook’s Theorem (see Cook (1971)), which proves the NP completeness of

deciding whether a given Boolean formula in conjunctive normal form has an assignment

that makes the formula true.

Kartik (2009) analyzed a model of persuasion in which a speaker incurs a cost in order

to misrepresent private information. He shows that inflated language naturally arises in this

environment.

The idea that the framing of a mechanism may also provide some guidance to the

participants appeared in (the completely ignored) Glazer and Rubinstein (1996). In that

paper, we introduced the concept of "guided iterative elimination of dominated strategies"

and showed that it is equivalent to implementation using a subgame perfect equilibrium of

an extensive game with perfect information.

The idea that the mechanism itself can affect agents’ preferences and thus the

implementability of social outcomes appears in Glazer and Rubinstein (1998). In that

paper, a number of experts receive noisy signals regarding a public decision. Two

“cultures” were compared: In the first, the experts are driven only by the public motive to

increase the probability that the desirable action will be taken. In the second, each expert is

also driven by a private motive to have his recommendation adopted. We show that only

the second culture gives rise to a mechanism whose unique equilibrium outcome achieves

the public target.

A model of implementation with bounded rationality can be found in Eliaz (2002) who

investigated the implementation problem when some of the players are "faulty", in the

sense that they fail to act optimally. He introduces a solution concept called "fault-tolerant

implementation", which requires robustness to deviations from equilibrium. He shows that

under symmetric information any choice rule that satisfies certain properties can be

implemented if the number of faulty players is sufficiently small.

5.3. Conclusion

The model presented here facilitates the discussion of some basic considerations used

Page 24 2/2/2012

by a principal attempting to elicit information from an agent who may have an incentive to

cheat. The principal would like the mechanism to be complex enough that an agent, whose

interests clash with his own, will not be guided by the mechanism itself to successfully

distort the information he conveys. At the same time, he would like the mechanism to be

simple enough that an agent whose interests coincide with his own will be able to persuade

him.

Following are some of the main insights of the paper:

(1) In some cases, it is optimal for the listener to use a codex that will help the speaker

"alter the truth", that is, present a false but persuasive case. This result is consistent with the

casual observation that some exaggeration is sometimes viewed as necessary in real-life

situations.

(2) If the circumstances under which the listener should (from his point of view) accept

the speaker’s request are rare, then truthful implementation is easy. This will be

accomplished by means of a codex that will trap all "undeserving" speakers (i.e. speakers

whose case should not be accepted) in a "circle of lies." In other words, an undeserving

speaker is (mis)guided by the codex to pretend to be another undeserving speaker whose

case is rejected by the codex and who, in turn, is guided by the codex to pretend to be a

third undeserving speaker whose case is rejected and so on. This procedure continues until

one of the undeserving speakers is guided by the codex to present a case that appears

previously in the chain. This "trick" is used in all mechanisms that achieve truthful

implementation.

(3) If the circumstances under which the listener should reject the speaker’s request are

rare, then the optimal mechanism may require some of the deserving speakers to

(successfully) cheat. The codex, in this case, will actually guide some undeserving speakers

to pretend to be deserving ones whose case is rejected by the codex while the deserving

speakers are guided by the codex to pretend to have a case that is accepted by the codex.

This kind of "trick" is used in all the cases where untruthful implementation is feasible but

truthful implementation is not.

In general, our model is not intended to closely mirror real-life situations. Nevertheless,

it should suggest a new direction for research into mechanism design with boundedly

rational agents.

Page 25 2/2/2012

References

Cook, Stephen A. (1971). "The Complexity of Theorem Proving Procedures".

Proceedings Third Annual ACM Symposium on Theory of Computing, 151-158.

Eliaz, Kfir (2002). “Fault Tolerant Implementation”. Review of Economic Studies, 69,

589-610.

Glazer, Jacob and Ariel Rubinstein (1996). "An Extensive Game as a Guide for Solving

a Normal Game". Journal of Economic Theory, 70, 32-42.

Glazer, Jacob and Ariel Rubinstein (1998). "Motives and Implementation: On the

Design of Mechanisms to Elicit Opinions". Journal of Economic Theory, 79, 157-173.

Glazer, Jacob and Ariel Rubinstein (2004). "On Optimal Rules of Persuasion".

Econometrica, 72, 1715-1736.

Glazer, Jacob and Ariel Rubinstein (2006). "A Study in the Pragmatics of Persuasion: A

Game Theoretical Approach". Theoretical Economics, 1, 395-410.

Kartik, Navin (2009). "Strategic Communication with Lying Costs". Review of

Economic Studies, 76, 1359-1395.

Kamien , Morton I. and Eitan Zemel (1990). "Tangled Webs: A Note on the

Complexity of Compound Lying". (mimeo)

Page 26 2/2/2012

