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Abstract

A decision maker is characterized by two binary relations. The first
reflects decisions that are rational in an “objective” sense: the decision
maker can convince others that she is right in making them. The second
relation models decisions that are rational in a “subjective” sense: the
decision maker cannot be convinced that she is wrong in making them.
We impose axioms on these relations that allow a joint representation by

a single set of prior probabilities. It is “objectively rational” to choose f
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in the presence of g if and only if the expected utility of f is at least as
high as that of g given each and every prior in the set. It is “subjectively
rational” to choose f rather than g if and only if the minimal expected
utility of f (relative to all priors in the set) is at least as high as that
of g.

1 Introduction

1.1 Reasoned choice

Consider a policymaker who has to make a decision such as the determination
of environmental, economic, or foreign policy. The decision maker wishes to
know what her policy should be. That is, she constructs her preferences in as
rational a way as she can.

Economic theory typically assumes the existence of a binary relation -,
reflecting preferences between pairs of alternatives, acts, or courses of action.
When consumer theory is discussed, this relation is most commonly interpreted
descriptively, assumed to reflect the consumer’s preferences, as revealed by her
choices. It is almost a truism that this relation is complete, namely, that
between any two courses of action, f and g, we will observe f = g or g = f.!
Moreover, the leading interpretation of the relation 7 is of a preference that
exists without a complicated reasoning process.

By contrast, a decision maker such as a government official who seeks to
determine environmental policy does not necessarily have pre-defined prefer-
ences 7. Rather, she is in the process of determining these preferences. In the
terms of Gilboa, Postlewaite, and Schmeidler (2004, 2007) the relation 7~ in
this problem reflects “reasoned choice” rather than “raw preferences”. Corre-

spondingly, it is not obvious that such a relation may be assumed complete.

!The completeness axiom is not vacuous, as it implicitly requires that the same choices
will be made under the same conditions. However, it cannot be refuted by a single choice be-
tween two alternatives, whereas other axioms typically can be refuted by a single observation

of the preference between any pair of alternatives involved.



At the end of the reasoning process completeness should better be satisfied, or
else the decision maker will be caught in indecision. But at the outset com-
pleteness typically does not hold. Well-defined preferences are the goal, not
the data.

1.2 Two notions of rationality

We submit that standard models in decision theory, using a single binary
relation 7, are too austere to describe the process by which a decision maker
generates her preferences. Such models are also not rich enough to distinguish
between choices that the decision maker feels strongly about, and choices that
are made out of necessity.

The purpose of this paper is to extend the standard model in a modest way,
upgrading it to have two binary relations as primitives, rather than one. These
two relations would distinguish between preferences that are based on sound
reasoning and those that are not necessarily so. Clearly, a pair of binary
relations is also too limited to describe the dynamic process of generating
preferences, or an entire dialog between policymakers and their consultants.
But a model with two relations will allow us to capture more of the subtleties

of decision under uncertainty, without losing too much in terms of parsimony.

1.2.1 Objective rationality

Let one binary relation, 7-*, denote preferences that are rational in the objective
sense: when we write f 72* g, we mean to say that the decision maker can be
convinced that act f is at least as desirable as act g. That is, this preference can
be justified and defended on more or less objective grounds, given the decision
maker’s goals, values, and desires.? If the decision maker seeks expert advice,
the relation —* would reflect the preferences that the advisor could derive,
using logical, statistical, and decision-theoretic reasoning, from the decision

maker’s utility, data, and his own expertise.

2We use the term “objective” in a highly qualified way. See subsection 3.4 below.



The informal definition of “objective rationality” revolves around the abil-
ity to convince others. We wish to focus on the ability to convince based on
sound arguments, rather than on rhetorical ruses or personal style. It is there-
fore useful to think of “being convinced” as saying “being convinced and being
able to convince others in turn”. That is, the relation f ~—* g can be read as
saying “the decision maker finds f at least as desirable as g, and she also feels
quite confident that she can convince any reasonable person that, according to
her utility, f is indeed at least as desirable as g.” For example, if the decision
maker would hire an assistant, she believes that the latter would see the logic
behind the decisions described by 7=*.

Unfortunately, in many decision problems under uncertainty, a relation 7~*
that can be interpreted as “objectively rational” would fail to be complete.
There will typically be many pairs of acts f and g between which no well-
reasoned preferences exist. Even if the decision maker’s utility function is
clearly defined, absence of information is likely to leave the decision maker
unable to logically justify preferences that depend on plausibility judgments.
Indeed, the scientific method allows us to settle many questions of belief, but
it has to remain silent on others.

How should the theory of decision under uncertainty cope with the chal-
lenge posed by incompleteness? One approach is to make do with an incom-
plete relation. According to this approach, if there is no compelling reason
to prefer f to g nor g to f, we might be better off explicitly modeling this
absence. Models of incomplete preferences date back to Aumann (1962), Kan-
nai (1963), and Peleg (1970). Walley (1981) and Bewley (2002) focused on
incompleteness that is due to uncertainty, namely to the absence of an agreed-
upon probability. Such models have recently received renewed attention (cf.
Ok, 2002, Dubra, Maccheroni, and Ok, 2004, Mandler, 2005, Evren and OKk,
2007, Nehring, 2008, Ok, Ortoleva, and Riella, 2008). Many of these authors
have also argued that there is nothing irrational about incompleteness of pref-
erences. In the absence of information, it appears more rational to be silent

than to pretend to have knowledge that one does not have.



1.2.2 Subjective rationality

Despite the arguments for allowing incompleteness, the standard justification
of the completeness axiom for rational choice still remains: eventually, a de-
cision will be made. If we do not describe this decision in the model, we
might be left with a very well-reasoned relation ~* that has little to do with
actual decisions. The relation 7—* might be the epitome of rationality, while
the decisions that will be taken in practice fail to satisfy basic consistency
requirements such as transitivity. An expert who derives the relation ~—* for
a decision maker might be appalled to learn what follies were allowed by his
cautious analysis.

We are therefore led to introduce a second binary relation, ,%, which we
expect to be complete. The relation f% will reflect preferences that are rational
in the subjective sense: when we write f ?:jg, we mean to say that the decision
maker cannot be convinced that choosing f in the presence of g is wrong.
Intuitively, such a choice does not lead to any contradiction with other choices
of the decision maker, and does not seem illogical given the decision maker’s
goals and the data available to her.

Thus subjective rationality is also defined by the ability to convince others.
But it does not require that the decision maker be able to convince others that
she is right, only that others will not be able to convince her that she is wrong.
Should the decision maker hire an assistant, she may not be certain that he
would come up with the choices reflected in %; but she feels confident that

these choices would not appear silly to him.

1.2.3 Analogy: statistics

The relations (i*,i) are analogous to the classical and the Bayesian ap-
proaches to statistics, respectively. Classical statistics aspires to objectivity,
at the price of completeness. When a hypothesis Hj is rejected by a scientific
study, it is expected that any reasonable person would find Hy incompatible

with evidence. This high standard of objective rationality has the obvious im-



plication that in many cases neither a hypothesis Hy nor its negation H; can
be rejected. Seeking objectivity, science has to remain silent on many issues.?

Bayesian statistics, by contrast, has a well-defined probability for any event
of interest. In this sense, it obeys the completeness axiom: it can state, for
any hypothesis and given any data base, whether, given the evidence, the
hypothesis is more or less likely than its negation, and, indeed, precisely how
likely it is. Such likelihood judgments cannot be derived based on evidence and
logical reasoning alone, and therefore they cannot be expected to be shared by

all. Hence, Bayesian statistics depends on a subjective prior.

1.2.4 Analogy: law

The distinction between the two relations, ~* and ?:‘J is reminiscent of that
between criminal and civil law. Criminal law requires that guilt be proven
beyond a reasonable doubt. Thus, a verdict of “guilty” can be read as “judging
the defendant to be guilty is preferred, in the sense of objective rationality, 7-*,
to acquitting him”. It is expected that the court be able to convince others
that such a verdict was indeed justified. It is accepted, however, that questions
of guilt may remain doubtful. In other words, what can be legally “proven”
defines an incomplete relation 7-*. This incomplete relation is completed by the
default of a “not guilty” verdict.*By contrast, civil cases are more symmetric
in their treatment of the two parties involved. In the absence of an obvious
default, an incomplete order is unsatisfactory, as it does not specify the court’s
ruling. Thus, the decision in a civil case can be thought of as a complete order,

which may be less robustly justified than a decision in criminal case. That is,

3Rather than the statements made by science, one may consider science’s choice among
the three alternatives, “state Hy”, “state H1”, and “remain silent”. In this meta-problem

” is the preferred choice unless

we may consider complete preferences, where “remain silen
one of the hypotheses may be rejected. When classical statistics is used for decision making,

preferences are often completed by resorting to a default such as the status quo.
4This is a little different from the default choice of “remain silent” in science. The law

is committed to treat “not proven guilty” and “proven innocent” in the same way, whereas

science should better not treat “not proven false” as equivalent to “proven true”.



as compared to criminal law, civil law is closer to subjective rationality, 7,

than to objective rationality.

1.3 The role of axioms

Decision theory offers sets of axioms that are shown to be equivalent to par-
ticular representations of preferences. For example, a complete and transitive
relation over a finite set can be represented as maximizing a certain utility
function. The literature also offers a variety of axiomatic models for decision
making under uncertainty. Most notably, building on ideas of Ramsey (1931)
and de Finetti (1937), Savage (1954) and Anscombe and Aumann (1963) pro-
vided axiomatic models of subjective expected utility maximization. These
models are often interpreted descriptively, as supporting the claim that eco-
nomic agents can be modeled as expected utility maximizers, relative to their
subjective probabilities. In this paper we are mostly interested in the norma-
tive interpretation of such models, supposedly helping the decision maker to

determine what her preferences should be.

1.3.1 Normative role of universal statements

There are at least two rather different ways in which axioms can be normatively
interpreted. The first is as general mathematical conditions, and the second
— as specific instances of preferences. Consider, for example, the transitivity
axiom. One might consider a hypothetical dialog with a decision maker, in
which a decision theorist says, “Consider the claim that, for every three choices,
f, g, and h, if you prefer f to ¢ and also g to h, you should prefer f to h.?
Wouldn’t you like to satisfy it? Wouldn’t you feel uneasy with ever be found
to violate it?” If the decision maker is sophisticated enough to understand this
type of general statement, involving a universal quantifier over the variables
f, g, and h, she might say, “I adopt this axiom. I would hate to find myself

violating it.” Then the decision theorist can, as it were, flash a slide with a

SFor simplicity, we use “prefer” instead of “prefer or find equivalent”.



representation theorem, and say, “Well, if you agree with this axiom, and your
preference is complete, you have to maximize a utility function. It’s a theorem.
Now wouldn’t it be simpler to try to estimate your utility function for each
alternative?” That is, the decision theorist uses a set of axioms, viewed as
abstract universal statements, to convince the decision maker that she should
adopt a particular model of decision making. The axioms do not necessitate
preference between any two particular choices f and g¢; they only impose a

general structure on the totality of the decision maker’s choices.

1.3.2 Normative role of concrete instances

By contrast, axioms such as transitivity can also be interpreted in a concrete
way, as building blocks in a reasoning process. For example, assume that
a consultant tells the decision maker, “If I recall correctly, we have already
determined that f is preferred to g. Moreover, last week you have chosen
g over h. Now it would seem to me that, if you put these two decisions
together, you should also prefer f to h.” In this type of reasoning, f, g, and
h are particular choices. The decision maker does not engage in an abstract
argument with variables and universal quantifiers. Rather, she is shown the
logic of the axiom in a particular instance.

In the concrete interpretation, axioms are viewed as “reasoning templates”,
namely as ways to use arguments for some preferences in order to construct
from them arguments for other preferences. If one were to model this process
formally, one could consider particular instances of preferences as propositions,
and decision theoretic axioms as “inference rules”, allowing the concatenation

of such propositions to generate the formal object of a “proof”.%

1.3.3 Comparison

When axioms are interpreted as universal statements, they demand a rather

high degree of sophistication on the decision maker’s part. Relatedly, when the

6Observe that the decision theoretic axioms are the inference rules, not the “axioms” as

used in propositional logic.



decision maker is asked to judge the plausibility of axioms in the abstract, she is
susceptible to “framing effects”: an axiom may appear more or less compelling
depending on its representation. Moreover, an axiom that is logically stronger
may be more compelling than an axiom that is weaker. For example, the axiom,
“there should be no cycles of strict preference” is probably more compelling
than the axiom “there should be no cycles of strict preference of odd length.”

The concrete interpretation, by contrast, requires less abstract thinking,
and leaves less room for different representations of the same statement. Cor-
respondingly, in the concrete interpretation the set of preferences than can
be derived from an axiom increases with its logical strength: a more general
axiom will allow a larger set of preferences to be deduced from it.

Perhaps the most important distinction between the two normative inter-
pretations of axioms is that the universal one often does not help the decision
maker in determining her preferences, only their structure. They deal with
form rather than with content. For example, assume that a decision maker
wonder whether a certain policy to cope with global warming is to be adopted.
She consults an expert who convinces her of the logic of Savage’s axioms,
viewed as universal statements. Then she is told that, by a mathematical the-
orem, she should have a utility function and a probability measure, and she
should maximize her subjective expected utility. But this general conclusion
says nothing about which utility function she should choose, or about which
subjective probability she should adopt. In particular, she was just convinced
that she should be able to quantify the probability of the globe warming up
by at least 2 degrees over the next five years. But nothing tells her what these
beliefs of her should be.

By contrast, the concrete interpretation of the very same axioms would
take some preferences that the decision maker already has, and build up from
them some others. There is no guarantee that this process will end up with a
complete relation, but it will typically have more pairs of choices (f,g) in it
than the relation that the process started out with.

Yet another distinction between the two interpretations has to do with the



scope of the preference relation. Most axiomatic derivations of decision models
require a rather rich domain of preferences for the proofs of the theorems
to hold true. These may include choices between implausible alternatives.
By contrast, the concrete interpretation of axioms requires choices between
concrete alternatives that are actually available, and some variations thereof,
but typically not between all conceivable pairs of choices.

While the rest of this paper can be read with more than one interpretation
in mind, we try to adhere to the concrete interpretation, which we find more
conducive to actual decision making processes than the universal one. We
imagine the decision maker as starting with some preference propositions and
building up to generate new ones. However, which are the initial preference
propositions, and which axioms should be used as inference rules would depend
on the interpretation of the preference order as reflecting objective or subjective

rationality.

1.4 The present model

In this paper we present a model that makes two simplifying assumptions.
First, we assume that the decision maker has a well-defined utility function,
so that she has a rather clear idea how she would trade-off various goals, what
her ethical constraints are, and so forth. Her main difficulty is how to deal
with uncertainty. Second, we assume that, should the decision maker consult
with experts, her utility function is honestly adopted by them. Thus, we
abstract away from the problems discussed in the recent literature on strategic
consultants (see, for instance, Scharfstein and Stein, 1990, Prendergast and
Stole, 1996, Levy, 2004), and ask a simpler question: how should the decision
maker and her consultants work together to obtain the most rational decision
(for the decision maker) in the face of uncertainty?

Our focus is on situations where probabilities are neither given, nor can
they be easily deduced or estimated. As mentioned above, the works of Ramsey
(1931), de Finetti (1937), Savage (1954), and Anscombe and Aumann (1963)

famously championed the Bayesian approach, suggesting that any uncertainty
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can be reduced to risk using the notion of subjective probabilities. The latter
are defined behaviorally, as degrees of willingness to bet, embedded in a model
of expected utility maximization.

Many statisticians were opposed to this line of reasoning,” and Ellsberg’s
(1961) well-known experiments have shown that people often fail to behave in
accordance with the Bayesian approach. In the 1980’s two models were pro-
posed, relaxing the axioms underlying subjective expected utility theory and
generalizing it by allowing a representation of beliefs by a set of probabilities,
rather than by a single probability. These approaches are often referred to
as multiple prior models, and they tend to be closer to the classical statistics
mindset, in which a set of distributions defines the inference problem, but no
prior belief over the set can be assumed. One approach (Bewley, 2002, see also
Walley, 1981) uses the set of priors to define a partial order by unanimity: f
is at least as desirable as ¢ if and only if the expected utility of f is at least
as high as that of g for each and every prior in the set.® The other (Gilboa
and Schmeidler, 1989) retains the completeness axiom, and derives a repre-
sentation by the maxmin rule: f is preferred to g if and only if the minimal
expected utility of f, over all possible priors in the set, is higher than the

minimal expected utility of g.

~ )~

We start with two binary relations, <>* ;), interpreted as objective and
subjective rationality relation, as suggested above. Formally, we assume that
the first satisfies the axioms of Bewley (2002),” and the second — of Gilboa

See Cifarelli and Regazzini (1996), who describe Cantelli’s reactions to de Finetti’s ideas

as “... speaking to Cantelli about subjective probability ... was tantamount to pulling a

tiger by its tail.” See also Knight (1921) and Keynes (1921).
8Bewley’s model dealt with a strict preference, represented by a strict inequality for each

prior. Mathematically, it relied on Aumann (1962).

Seidenfeld, Schervish, and Kadane (1995) offer a model in which preferences are described
by sets of probability-utility pairs. A derivation of Bewley’s result in a purely subjec-
tive probability set-up is provided in Ghirardato, Maccheroni, Marinacci, and Siniscalchi

(GMMS, 2003).
9As explained below, our formulation differs from Bewley’s on several minor points: it

is closer to those of Shapley and Baucells (1998), GMMS (2003), and Girotto and Holzer
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and Schmeidler (1989). This means that each relation can be represented by
a set of priors: 7—* by unanimity, and ?:‘J by the maxmin rule. However, the
two sets of priors are unrelated. They may be different or even disjoint. We
therefore introduce two additional axioms, explicitly relating the two relations,
and show that these axioms hold if and only if the two sets of priors are indeed
identical. Taken together, the axioms imply the existence of a set of priors
that represents both ~* and ,% simultaneously: the former via unanimity, and
the latter — via the maxmin rule.

We describe the axioms and results in the next section. As a by-product,
we offer a version of Bewley (2002) that deals with a general state space. This
facilitates the comparison with the Gilboa and Schmeidler (1989) model, but
may also be of interest in its own right. Section 3 is devoted to a discussion.
In particular, it argues that the present treatment highlights the extremity
of the maxmin rule, and suggests alternative notions of subjective rationality.
Specifically, we also mention a variation in which the subjectively rational
relation is Bayesian, that is, a model in which objective rationality is defined
by unanimity with respect to a set of probabilities, but subjective rationality
is defined by a Bayesian approach relative to a single probability in this set.

We conclude with general discussions of rationality and the related literature.

2 Model and Results

2.1 Preliminaries
We use a version of the Anscombe and Aumann (AA, 1963) model as re-stated
by Fishburn (1970).

Let X be a set of outcomes. The set of von Neumann-Morgenstern (vINM,
1944) lotteries is

L:{P:X—>[O,1] S Pa) -1

#{z|P(z) > 0} < o0, } |

(2005).
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and it is endowed with a mixing operation: for every P, () € L and every

a€l0,1], aP + (1 — a)Q € L is given by
(aP+(1—-a)Q) (z) =aP(x)+ (1 —a)Q(x) VrelX.

The set of states of the world is S endowed with an algebra ¥ of events. The
set A (X) of (finitely additive) probabilities on ¥ is endowed with the event-
wise convergence topology.'’ The set of (simple) acts F consists of all simple
measurable functions f : S — L. It is endowed with a mixture operation as
well, performed pointwise. That is, for every f,g € F and every a € [0,1],
af + (1 —a)g € F is given by

(f + (1= a)g) (s) = af(s) + (1 —a)g(s) VseS.

The decision maker is characterized by two binary relations ~~* and ?:: on
F', denoting objective and subjective rational preferences, respectively. The
relations =*, ~*, =, < are defined as usual, namely, as the asymmetric and
symmetric parts of 7~* and E‘J, respectively.

We extend 7—* and % to L as usual. Thus, for P,Q) € L, P 77, () means
fp 7= fo where, for every R € L, fr € F is the constant act given by fr(s) = R
for all s € S and 7 is either ~* or f% The set of all constant acts is denoted
by F,.!!

For a function v : X — R we will use the notation

Epu=Y  P(x)u(z)

zeX

for all P € L.'? Thus, if the decision maker chooses f € F and Nature chooses
s € S, the decision maker gets a lottery f(s), which has the expected u-value

of
Epwu =Y f(s)(@)u(z).

rzeX

1A net {pi} converges to p if and only if py (A) — p(A) for all A € X.
1'We sometimes abuse the notation writing R instead of fr and L instead of F...
120ne may replace L by any convex subset of a vector space, or even any mixture space,

and E pu with the evaluation at P of an affine function v on L. All our results remain valid.
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2.2 Several basic conditions

We now turn to discuss the axioms. It will be convenient to start with axioms
and conditions that both relations are assumed to satisfy. As discussed in the
introduction, completeness will not be among these conditions, as it is not a
natural requirement when objective rationality is concerned.

The following conditions are stated for a generic relation ~~. They will be

imposed on both relations ~* and ,%

Basic Conditions:

Preorder: 7 is reflexive and transitive.

Monotonicity: For every f,g € F, f(s) 2 g(s) for all s € S implies f 7~ g.

Archimedean Continuity: For all f,g,h € F, the sets {\ € [0,1] : \f + (1 —
NgzZh} and {\ € [0,1]: h 5 Af + (1 — N)g} are closed in [0,1].

Non-triviality: There exist f,g € F such that f > g.

2.2.1 Reflexivity

In general, reflexivity is a matter of notation more than a substantive axiom:
it does not say much about the decision maker’s preferences. Rather, it reflects
the modeler’s choice to use the language of weak rather than strong preferences.
However, it is important to observe that the language of preference, in which
the dialog between the decision maker and her consultants is assumed to take
place, does not have a term for strict preference. For example, we may find
that f 7—* g but not g =* f. In our (standard) notation, this implies that
f =* g. Yet, it will be inappropriate to read this relation as “the decision
maker can be convinced that f is strictly preferred to ¢”. All we can say is
that “the decision maker can be convinced that f is at least as good as g. She
cannot be convinced of the fact that ¢ is at least as good as f.” The latter
statement differs from the former. In particular, the proposition “f is strictly

preferred to g” cannot be stated in the language of the discussion.
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To see a concrete example, assume that there are two states of the world.
The payoffs guaranteed by f are (1,0) and by g — (0, 0). There is no information
about the probability of the states. It should be relatively easy to convince the
decision maker that f 2=* ¢. (In fact, this will also follow from the monotonicity
axiom.) Clearly, a reasonable decision maker will not be convinced of the
converse. Hence f =* g. But the decision maker cannot be convinced that
f is strictly better than g. Should she think about it, she might say that it
is possible that the probability of state 1 is zero, and then the two acts are
equivalent. But the logical reasoning we have in mind does not have strict

preference as a primitive of the language.'?

2.2.2 Transitivity

Transitivity of objective rationality is rather compelling. If a consultant has a
compelling argument that f should be at least as desirable as g, and another —
that g should be at least as desirable as h, transitivity suggests that these two
arguments can be concatenated to generate a compelling argument for con-
cluding that f is at least as desirable as h. In a more formal model, one could
model each such argument as a proof, namely, an ordered list of propositions,
each one following from its predecessors, and the transitivity axiom would be
an inference rule generating a longer proof (that f 72* h) from two shorter ones
(of f 2" g and g Z* h).

Next consider subjective transitivity. In this case, the preferences f f% g and
g?:jh need not be compelling. They may well be nearly arbitrary decisions that
the decision maker made, shrugging her shoulders, simply because a decision
was called for. Hence, if the consultant starts an argument with “clearly, f
is at least as good as ¢”, the decision maker might stop him and say, “It’s
not so clear. I made this decision and I know exactly what went into the
decision process. It was, in fact, a rather arbitrary decision I made under time

pressure. Let’s not build theories around it.” At this point the consultant might

13The model can be further elaborated, allowing strict preferences for objective and sub-

jective rationality to be explicitly part of the preference statements.
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say, “OK, so maybe it was arbitrary. But if you make arbitrary decisions to
choose f in the presence of g, and ¢ in the presence of h, but refuse to choose f
because h is available, you’ll be in trouble. Just imagine the headlines. Hence,
my best advice to you is to now choose f. Even if the first two preferences were
arbitrary, the very fact that they were made indicates a certain commitment.”

We therefore assume transitivity both for objective and for subjective ra-
tionality. We find that transitivity is compelling enough, as an inference rule,
to be valid even if the preference statements on which it relies were not fully
justified.

2.2.3 Monotonicity

In general, monotonicity is also a condition of internal coherence: it says that
if certain preferences hold, then others should hold as well. In the present
case, the antecedent has to do with a preference between the vINM lottery
obtained by f to that obtained by ¢ at each and every state, whereas the
consequent is the preference between f and g. As in the case of transitivity,
this axiom appears powerful enough to be a valid inference rule even if its
input, namely the statewise preferences between vINM lotteries, may not have
been fully justified.

However, we assume that the utility function is given and agreed-upon.
Hence the pointwise preference f(s) 7 g(s) needs no justification, and it is
not a matter of arbitrary choice either. Given a utility function, an expected
utility of the lottery f(s) that is no lower than that of the lottery g(s) can
be viewed as “hard evidence” that at state s, f is at least as good as g. This
evidence calls for no further justifications. And using it, a simple inference

suggests that f 7~ g for both notions of rationality.

2.2.4 Continuity

The Archimedean continuity axiom is the standard Herstein and Milnor (1953)

continuity axiom. It cannot be directly refuted by finitely many observations,
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and its scientific stature is therefore dubious. It is therefore common to dismiss
such axioms as a matter of mathematical necessity and discuss them no further.

We mention in passing that, in the context of the construction of preferences
and the rhetorical arguments involved in it, axioms such as continuity may be
elevated to a more conceptual realm. For instance, if a decision maker can
express a preference f > ¢ only at the cost of a discontinuity somewhere in
her preferences, she might be convinced that it makes more sense to have
g 7= f. However, we assume that the decision maker only conducts explicit
reasoning in the language of weak preferences, and such an interpretation would
be inappropriate in our model. It is therefore more natural to think of the
continuity axiom as part of the discussion among decision theorists rather
than the discussion between the decision maker and her consultants.

Be that as it may, this standard continuity axiom is be assumed for both

relations.

2.2.5 Non-triviality

The non-triviality axiom is a condition designed to rule out the case in which
the decision maker might be ascribed a constant utility function. In this case
the representation results hold, but the uniqueness results do not: preferences
can be represented by a constant utility function and any beliefs whatsoever
(whether beliefs are represented by a single probability measure, a set thereof,
etc.). Thus, the non-triviality axiom is part of the theoretical discussion rather
than the discussion between the decision maker and her consultants. In fact,
rather than stating an explicit axiom, one could add a caveat at the end of
the representation theorems, qualifying the uniqueness statement.!* Since the
two relations will be assumed to agree on constant acts, both will satisfy this

axiom as soon as the utility function is not constant.

4 The tradition, following Savage’s axiom P5, is to state an explicit axiom to rule out the
special uninteresting case of trivial preferences. This practice reminds us that the project
of elicitation of beliefs from observed choices is predicated on the existence of non-trivial

preferences.
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2.3 Axioms for objective and for subjective rationality

We now turn to discuss the axioms that are specific to objective or to subjective

rationality.®

2.3.1 Completeness

C-Completeness: For every f,g€ F., f =*qg or g 72" f.
Completeness: For every f,g € F, f,%g or gf%f.

As discussed above, subjective rationality is required to be complete, be-
cause eventually some decision will be taken. Objective rationality, by contrast,
is not necessarily complete, because one may not have compelling reasons to
determine preferences between certain pairs of alternatives. However, we do
require that objective rationality be complete when restricted to the subset
of constant acts. C-completeness verifies that the incompleteness of the ob-
jectively rational relation 7—* is not due to any difficulties that the decision
maker might have about determining her preferences under certainty. That is,
we are not faced with a decision maker who can’t decide whether she prefers
chocolate to vanilla ice cream in terms of their immediate hedonic value. Any
incompleteness of preferences will therefore be attributed to uncertainty about

future outcomes of the options involved. (See Subsection 3.5 below.)

2.3.2 Independence
Independence: For every f,g,h € F, and every a € (0, 1),

fz=rg iff af+(1—-—a)hZ ag+(1—a)h.
C-Independence: For every f,g € F, every h € F,, and every a € (0,1),

fﬁg iff Ozf—i—(l—oz)h,%ozg—l—(l—oz)h.

15Since each of the following axioms will be assumed for one relation only, we state them

directly in terms of this relation, rather than in terms of an abstract relation 2~ as above.
In the sequel, we allow ourselves to use phrases such as “C-Completeness” and “~* satisfies

C-Completeness” interchangeably.
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We thus require that objective rationality satisfies the original AA inde-
pendence axiom, whereas subjective rationality — only the weaker version re-
ferred to as C-Independence. The reason is the following: if the preference
between f and g is based on objective, perhaps even scientific reasoning, i.e.,
f 7=* g, this very preference may be used as a reason to prefer a.f + (1 —«)h to
ag+ (1 —a)h. That is, if preference propositions only refer to preferences that
can be “proven”, then they are sound enough to build upon, and the indepen-
dence axiom used by Anscombe and Aumann is a reasonable inference rule.
If all reasonable decision makers would accept that f is at least as good as g,
they should also accept that a.f + (1 —a)h is at least as good as ag+ (1 — a)h.
This reasoning may also be reversed: if there are good, sound reasons to prefer
af 4+ (1 —a)h to ag+ (1 — a)h, one may argue that there are even better rea-
sons to prefer f to g: if a small step from h “towards” f is better than taking
the same step “towards” ¢, continuing in the respective directions presumably
only strengthens this preference. In short, the basic intuition of the classical
independence axiom is assumed to be compelling when one restricts attention
to justified preferences.

This is not the case when subjective rationality is concerned. In this case,
the relation f i] g may follow from more arbitrary considerations, or from lack
of information. For example, assume that there are two states of the world,
and that f = (1,0) and g = (0,1). The decision maker has no information
about the probability of the two states, and therefore the objective rationality
relation does not rank them. Having to make a decision, the decision maker
might shrug her shoulders and decide that they are equivalent, namely, that
f~g, due to symmetry.

Next consider the mixing of f and g with h = f. For a = 0.5, the mixture
ag+(1—a)h completely hedges against uncertainty, leaving the decision maker
with a risky act. The mixture of f with h = f clearly leaves the decision
maker with f, without any reduction of uncertainty. The decision maker might
plausibly argue that a.f + (1 — a)h is not equivalent to ag + (1 — a)h. Indeed,

the former is uncertain whereas the latter — only risky. A consultant might try
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to construct a “proof” that the two are equivalent, starting with “Don’t you
recall that you said that f and g were equivalent on your eyes? All we’re doing
now is to mix both of them with A!” But the decision maker might counter,
“Wait a minute, when I said that f and g were equivalent, I didn’t know they
were, | only used a default decision. This is not the kind of decision you can
now construct a new theory upon.” “Aren’t you concerned that you will be
perceived as irrational?” the consultant might ask. “Leave this to me” would
be the response; “I barely understand this mixture operation of yours and if

my worst sin is that f<g but ag + (1 — a)f=f, I can live with that.”

By contrast, we maintain that C-Independence is a reasonable inference rule
even if the preference propositions are not fully justified. The reason is that
mixing f and g with a constant act h can be viewed as a change of scale on the
expected utility axis, namely, adding a constant and multiplying by a positive
constant. Hence a decision maker might be embarrassed to simultaneously
express preferences such as f,%g and ag + (1 — a)h=af + (1 — a)h. Each
of these may be a possible decision on its own, but if h is a constant, the
conjunction of the two appears inconsistent.

Clearly, certain decision makers will find Independence a reasonable con-
dition for both ~* and ?:‘J, while others may find that even C-Independence is
too strong for both. How many decision makers actually accept Independence
for 7z* and (only) C-Independence for = is an empirical question. For that
reason, the following results are only an example of the way the two notions

of rationality can be modeled.'®
We will resort to an additional axiom:
Uncertainty Aversion: For every f,g € F, if f~g, then (1/2) f+(1/2) g=g.

The uncertainty aversion axiom has been introduced in Schmeidler (1986,

1989) for the subjective preference =, and it says that the decision maker

~)

16For example, C-Independence can be weakened as in the variational preferences of Mac-
cheroni, Marinacci, and Rustichini (2006). In this case we expect that in Theorem 3 a

variational representation would hold for %
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prefers “smoothing out” acts, replacing potential uncertainty about the states
of the world by objective risk about the outcomes to be obtained in each and
every state. To be more concrete, imagine that a decision maker expressed the
preference f~g. This choice might have been due to symmetry considerations,
and it might have been completely arbitrary as well. However, the consultant
may now approach the decision maker and say, “If you express preference
f=(1/2) f + (1/2) g, it would appear as if you like the uncertain situation.
That is, you could have reduced the dependence on unknown probabilities,
but you preferred not to. It’s fine for a gambler, but it doesn’t look very good
for a public figure like yourself.”

As in the case of C-independence, this reasoning may or may not convince
the decision maker. Our focus in this paper is on decision makers who do
accept this reasoning, namely, decision makers who find Uncertainty Aversion
a reasonable inference rule for subjective rationality propositions. Decision
makers who do not accept it might be modeled by more general decision rules,
as in Ghirardato, Maccheroni, and Marinacci (GMM, 2004).

The Uncertainty Aversion axiom has no counterpart for objective rational-
ity, because it is implied by the standard Independence axiom of AA, which is

assumed to be satisfied by objective rationality.

To conclude, objective rationality, 7—*, satisfies versions of axioms that

~ )

appeared in Aumann (1962), Bewley (2002), GMMS (2003), and Girotto and
Holzer (2005). Subjective rationality, ij, satisfies the axioms of Gilboa and
Schmeidler (1989).

2.4 Representation of objective and of subjective ratio-

nality
2.4.1 Representing partial orders

We remind the reader that objective rationality is assumed to be reflexive. As
observed above, in the presence of incompleteness, results stated in terms of

reflexive relations may not have immediate counterparts in terms of irreflexive
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relations and vice versa. A brief explanation may be in order.

Aumann (1962) assumed a reflexive relation, corresponding to our 77*. He
defined a “utility” for 2—* to be a function that respects both strict preference
>* and indifference ~*. That is, if U : F' — R is an Aumann-utility for =¥,

we have
f="gefZ 9,92 f1=Uf)>Ulg)
and

f~gefZ 997 f1=Uf)=Ulg).

Aumann proved that such utilities exist, but he did not provide a char-
acterization of ~*. Clearly, one does not expect a single utility function to
fully characterize incomplete preferences. But a set of utilities might provide
a joint characterization. In particular, one may consider a “multiple utility”

representation by a set of functions U such that
f-"ge VU eU U(f)>U(g) (1)

or

fZrgeMUeU U(f)>U(g). (2)

Bewley (2002) considers as primitive a strict preference relation, that is, an
irreflexive one, and provides a characterization as in (1), where each U is an
expected utility functional relative to a certain prior. Ghirardato, Maccheroni,
Marinacci, and Siniscalchi (GMMS, 2003) provide a representation as in (2),
and this is also the approach we adopt here. Thus, we begin with a reflexive
order as does Aumann (1962), but seek a complete characterization as provided
in Bewley (2002).

Using a reflexive relation as primitive makes some of the results simpler to
state. As opposed to Bewley’s model, we do not assume a finite state space,
and our results are not restricted to sets of probabilities that are all strictly
positive. However, it is important to observe that in our case strict preference

would not imply strict inequality for each and every representing functional
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U € U. Explicitly, the representation (2) implies

fetgo vUeu U(f)=Ulg) 3)
WeUd UWf)>Ulg) |

If we were to consider a decision matrix in which rows correspond to elements
of F' and columns — to functionals U in U, the representation we obtain, (3)

corresponds to weak dominance, whereas Bewley’s, (1) — to strict dominance.

2.4.2 Unanimity representation of objective rationality

The axioms we imposed on —* deliver a unanimity representation. Our first
result extends Bewley (2002) to an infinite state space (see discussion in Section
3.6).

Theorem 1 The following are equivalent:
(i) 7=* satisfies the Basic Conditions, C-Completeness, and Independence;

(i) there exist a non-empty closed and convex set C* of probabilities on %

and a non-constant function u* : X — R such that, for every f,g € F
fzhg if /Ef(s)U* dp(s) > /Eg(s)u* dp(s) VpeC.  (4)
S 5

Furthermore, in this case C* is unique and u* is cardinally unique.*”

Remark 1 There is a natural trade-off between Archimedean Continuity and
Independence. Theorem 1 holds unchanged if we replace Archimedean Conti-

nuity with the stronger:

(a) Foralle, f,g,h € F, the set {\ € [0,1] : \f+(1—=N)g =" Ah+ (1= N)e}

is closed in [0,1].
and Independence with the weaker:

(b) For every f,g,h € F, and every o € (0,1), f 72" g implies af + (1 —
a)h Z* ag+ (1 — a)h.

1T"We say that u* is cardinally unique if it is unique up to a positive linear transformation.
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2.4.3 Maxmin representation of subjective rationality

The axioms we imposed on 7~ deliver a maxmin rule.

Theorem 2 (Gilboa and Schmeidler, 1989, Theorem 1) The following

are equivalent:

(i) ,% satisfies the Basic Conditions, Completeness, C-Independence, and

Uncertainty Aversion;

(ii) there exist a non-empty closed and convex set C' of probabilities on ¥ and
a non-constant function u : X — R such that, for every f,g € F

=g iff min/Ef(s)u dp (s) > min/Eg(s)u dp (s) . (5)
PeC Js S

peC

Furthermore, in this case C' is unique and u is cardinally unique.

2.5 Relating objective and subjective rationality

We now come to discuss the relationship between the two orders.

2.5.1 Consistency
Consistency: f 7—* g implies f?:jg.

Consistency seems to be rather compelling given our interpretation of the
two relations: if there are sound, objective reasons to weakly prefer f to g, we
will not allow the decision maker to exhibit the preference g~ f. The choices
of the decision maker cannot contradict evidence or logical reasoning. If an
expert can prove that f is at least as good as g, given the decision maker’s
goals, the decision maker should obey this conclusion.'®

This axiom can also be viewed as part of the definition of subjective ratio-
nality: intuitively, we argued that it is subjectively rational to prefer f to g if

the decision maker cannot be convinced that she is wrong in exhibiting such

18See Nehring (2000,2008) for similar reasoning.
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a preference. One way in which the decision maker can be proven wrong is by
pointing out internal inconsistencies to her. Indeed, the axioms imposed on %
rule out such potential embarrassments. However, the decision maker can be
proven wrong also directly, namely, if there are compelling, objective reasons
to exhibit the opposite preference. Viewed thus, the consistency axiom com-
plements the definition of subjective rationality, making sure that the decision
maker will be proven wrong neither by internal inconsistency nor by external
inconsistency.

Consistency can also be viewed as a reasoning template, or as an infer-
ence rule, provided the language allows preference propositions of both types
(objective and subjective).

Observe that we do not require here the strict counterpart of the consistency
axiom, namely that f =* g would imply f~¢g. Given the representation that
we have in mind, this condition is somewhat less compelling: f >* g means
that it is established that f is as good as g, and that the converse is not
established. But it does not mean that f was proven to be better than g — the
possibility of equivalence cannot be ruled out. Hence, a thoughtful decision

maker may admit that f >=* g but still hesitate to strictly prefer f to g.

2.5.2 Caution
Caution: For g € F and f € F., g Z* f implies fijg.

This axiom implies that the decision maker in question is rather averse to
ambiguity. Comparing a potentially uncertain act g and a constant (risky)
act f, the decision maker first checks whether there are compelling reasons to
prefer g to f. If there are, namely, g =—* f, the axiom is vacuous (and g,% f
would follow from Consistency). If, however, no such reasons can be found,
the decision maker would opt for the risky act over the uncertain one.

This ambiguity aversion content of the Caution axiom clearly emerges in
Theorem 3, which shows that in our derivation Caution implies that r% satisfies

the Uncertainty Aversion axiom.!’

9Tn fact, in Theorem 3 the maxmin representation is derived without assuming the Un-
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Observe that the decision maker may find that there are compelling reasons
to strictly prefer the risky act, that is, it may be the case that f >* ¢g. In this
case Caution would imply f ,%g, as would Consistency. However, the import of
the Caution axiom is in completing preferences when pure reason cannot do
the job. That is, if objective reasoning can neither suggest that f is preferred
to g nor vice versa, then Caution can be invoked to settle the matter by opting
for the sure thing.

This axiom is quite extreme in its aversion to uncertainty. See the discus-
sion in Subsection 3.2.

Observe also that Caution differs from the other axioms in that it does not
lend itself to a natural description in first order logic. Its antecedent, g 7* f,
is interpreted as “there does not exist a proof that ¢ is at least as good as f”.
Such a statement is beyond the scope of the simple preference propositions we
were referring to in the discussion of the other axioms. However, the practical
meaning of Caution is quite intuitive. We can imagine a process by which the
consultant works with the decision maker and builds the relation —* as best
they can. At some point, they find that they ran out of preferences that can
be inferred from already existing ones and the AA axioms. At this point it is
meaningful to compare any ¢ to any risky f and complete the relation between

them according to Caution.

2.5.3 Result

Theorem 3 The following are equivalent:

(i) 7* satisfies the Basic Conditions, C-Completeness, and Independence,
- satisfies the Basic Conditions, Completeness, C-Independence, and

~

jointly (** ;> satisfy Consistency and Caution;

~ )~

(ii) There exist a non-empty closed and convex set C' of probabilities on %

certainty Aversion axiom. Since the representation implies the Uncertainty Aversion axiom,
the latter is then implied by the other axioms in part (i) of Theorem 3. The only one among

these axioms that relates to uncertainty aversion is indeed the Caution axiom.
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and a non-constant function u : X — R such that, for every f,g € F,

g i [ Broudn() 2 [EByudp(s) Ypec  ©
S S

and
frg iff min /S Ef(syu dp(s) = min [S Eyu dp(s). (7)

Furthermore, in this case C s unique and u is cardinally unique.

Notice that we do not need to assume that ?:j satisfies Uncertainty Aver-
sion. In fact, its connection with ~* through Caution already guarantees that
,% satisfies this property. In other words, Caution can be viewed as “fully”
capturing uncertainty aversion in this dual setting.

For this reason, Theorem 3 can be also viewed as providing a novel foun-
dation for the maxmin representation (5), based on the interplay of the two

preferences =* and .
Remark 2 Consider the following, stronger version of Caution:
(a) Forg € F and f € F., g 2* [ implies f=g.
Conditions (i) and (i) of Theorem & are equivalent to the following:

(iii) 7* satisfies the conditions (i) of Theorem 1, ,% satisfies Preorder, Archimedean
Continuity, and Completeness. Jointly, they satisfy Consistency and the

above condition (a).

3 Discussion

3.1 Observability

One of the goals of characterization theorems as those presented above is to
relate theoretical concepts to observable ones. For instance, Theorems 1 and 2

can be viewed as relating an observable relation — 2* and f%, respectively — to
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a utility function and a set of probability measures such that these mathemat-
ical constructs represent the observable relation via an appropriate condition.
Adopting this view, one may ask, which is the revealed preference relation, =~*
or ,%?

It is probably best to interpret our results as suggesting that both ~* and f%
are observable, though not necessarily through choice behavior alone. Consider
a decision maker who consults with experts. After a series of discussions, the
decision maker writes down the preferences of which she is sure, 7Z*. If this
relation is complete, she is done. If not, she seeks to complete her preferences
and generate ?:‘J Alternatively, one may consider the advice of several experts,
and view —* as the relation that reflects the unanimity among them, whereas
A% designates the eventual preference, which may be a result of compromise.
Viewed thus, both relations 77* and ?:j are observable, though “observability”
includes the possibility of preferences being stated, not only revealed through
action.

Extending the notion of observability beyond pure choice data seems es-
sential for the discussion of incomplete preference, as well as the process by
which preferences are generated. Indeed, a pure revealed preference approach
would hold that, since choice is eventually made, incompleteness cannot be
observed.?’ If we wish to discuss incomplete preferences, and the process by
which preferences are formed, that is, a model in which incomplete preferences
become complete, we need to formally refer to other entities beyond the final
choices that are observed.

Our main goal, however, is not to represent preferences for their use in

descriptive models, but to enrich the language in which the dialog between the

20Completeness in fact means a little more than that a certain choice has been observed.
It also implies that the same choice is expected to be observed in similar choice situations.
But if the repeated choice is modeled formally, it is again not obvious how incompleteness
can be observed.

Danan and Ziegelmeyer (2006), for example, propose an interesting revelation approach
to incompleteness by allowing subjects to postpone their commitment to alternatives at a

small cost.
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policymaker and her advisors is conducted. That is, our main application is
normative in spirit. We do not think of the economist as an outsider observer,
analyzing data generated by “black-box” decision makers, but as an expert
whose advice is sought in an open discussion. In this interpretation, the various
axioms imposed on 7Z* and on f% are not viewed as scientific conditions to be
tested for their descriptive accuracy, but as reasoning templates or inference
rules, to be used in an open discussion between the expert and the decision
maker.

Having said that, we mention that if we observe only the decision maker’s
final choice, =, under the assumptions of Theorem 3, =~* is also indirectly

’ ~)

observable. In fact, GMM (2004) showed that, in this case,?!
frrg it Af+(1—=NhZAg+(1—MNh VYA€[0,1],heF.

We discuss the relationship between the two papers in subsection 3.6.

3.2 Extremity of the maxmin rule

The Caution axiom is rather extreme. It says that, when an uncertain act is
compared to a risky one, unless we know for sure that the former dominates
the latter, we should prefer the latter. If, for example, we have no information
whatsoever, so that the entire simplex A(S) is considered possible, we may
set C'= A(S). In this case the relation 7~* corresponds to weak dominance,
and r% — to the maxmin rule (without probabilities). Consider an act g such
that Egu = 1 for all s # sg, and E,)u = —¢ for some state sy and a small
¢ > 0. Let f be a constant act with expected utility of zero. Act g has a higher
expected utility than does f for almost all priors in C' = A(.S). Still, for some
priors the expected utility of g is below that of f, and Caution dictates that
f be preferred to g.

This extreme nature of Caution is reflected in the extremity of the maxmin

rule, when the set of probabilities C' is interpreted as representing “hard ev-

2L A similar identification result was proposed by Klaus Nehring in a talk in 1996.
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idence”. Indeed, it has often been argued that evaluating an act f by its
worst-case expected utility is unreasonable.

However, the set C' in Gilboa and Schmeidler (1989) is derived from prefer-
ences. It need not coincide with a set of probabilities that are externally given
to the decision maker. The set C' is defined in behavioral terms, as a represen-
tation of a binary relation ?::, and it need not coincide with any cognitive notion
of a set of probabilities. Gajdos, Hayashi, Tallon, and Vergnaud (GHTV, 2007)
study the maxmin model given different sets of objectively provided informa-
tion, and axiomatize a maxmin rule with respect to a class of probabilities
that is a subset of the probabilities provided to the decision maker. That is,
their model allows the set of probabilities derived from observed behavior to
be a strict subset of the set that is cognitively available.

By contrast, if we think of objective rationality as a cognitive concept, and,
specifically, view ~* as the preferences that are justified by all probabilities
that are considered possible, then Caution does take a strict interpretation of
the set of priors, identifying the set of measures used in the maxmin rule with
the set of measures used to define objective rationality.

It follows that one may consider alternatives to the axiom of Caution. Sim-
ply dropping the axiom allows a representation of ~* by one set of probabilities,
C*, as in (6), and a representation of ,% by another set of probabilities, C, as
in (7), where C' C C* (see the proof of Theorem 3 in the appendix). One may
formulate alternative axioms that will correspond to the way that the decision
maker selects a subset of priors C' as in GHTV (2007).

Another possible direction would be to impose different axioms on subjec-

~

tive rationality, ~. For example, one may assume that this relation involves
some aggregation of expected utilities based on second-order probabilities, as
in Klibanoff, Marinacci, and Mukerji (2005) or Seo (2007).

Yet another possibility is to assume that the decision maker’s notion of
internal consistency is structured enough to make f% an Anscombe-Aumann
relation. That is, subjectively rational decisions can be elaborate enough to

allow subjective expected utility representation. One obvious way to do so
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would be for the decision maker to choose a prior out of the set C*, and to
maximize expected utility with respect to this prior. In fact, any other way of
complying with Anscombe-Aumann axioms and Consistency is observationally
equivalent to such a selection of a prior.

We believe that Consistency is a fundamental axiom. In fact, it may be
viewed as part of the definition of ~* and ?::: if the former does not imply
the latter, it is not clear that these relations can be thought of as objective
and subjective rationality of the same decision maker. By contrast, the other
axioms presented here should be viewed as examples. One may consider dif-
ferent axioms on 2~* and on %, and certainly also alternatives to the axiom of

Caution.

3.3 Rationality

The term “rationality” has been used in many ways. Economic theory tends to
identify it with constrained optimization of a utility function, and of expected
utility in face on uncertainty. (See Arrow, 1986.) The tradition in philoso-
phy, by contrast, holds that rationality should mean much more than internal
consistency.?? Psychologists, on the other hand, have challenged the concept
as too strong to describe human behavior. Simon (1957) introduced the con-
cept of “bounded rationality”, and Kahneman and Tversky (1979, Tversky
and Kahneman, 1973, 1974, 1981) famously showed failures of basic axioms
of rationality. Whereas descriptive failures of rationality need not imply that
the concept should be weakened, many authors feel that rationality should be
defined in a way that makes in an attainable goal. In particular, both Aumann
(1962) and Bewley (2002) argue that there is nothing irrational in having in-
complete preferences. Similarly, Gilboa, Postlewaite, and Schmeidler (2004)
challenge Savage’s axioms as too demanding.

We suggest to define rationality in a way that may simplify the theoreti-

22Some modern philosophical essays are closer to the economic notion of rationality. See,
for example, Weirich (2007), who offers a discussion of different notions of rationality in the

context of group decisions.
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cal discussion of decisions and its interaction with actual decisions. A useful
definition of rationality would help us distinguish situations in which an ex-
pert, or a decision theorist can change the minds of the decision makers she
addresses, from situations in which decision makers find the theory irrelevant.
For example, decision makers who are sensitive to framing effects (Tversky and
Kahneman, 1981) tend to be embarrassed when their decisions are explained
to them, and they wish to change these decisions. Thus, a decision theorist
can convince such decision makers in the normative appeal of classical decision
theory, which can help avoid the pitfalls of framing effects. By contrast, chess
players who fail to play chess optimally are rarely embarrassed by this fact. We
may dub them irrational, or boundedly rational, but no matter how badly we
insult them, they will not change their behavior, simply because they cannot
figure out the optimal strategies in chess.

Following this pragmatic line of thought, Gilboa and Schmeidler (2001)
suggested to use the term “rationality” as follows: a mode of behavior is
wrrational for a decision maker if, when exposed to the analysis of her behavior,
the decision maker feels embarrassed, or wishes to change her choices, and so
forth. Clearly, this definition is subjective and qualitative. A mode of behavior
might be rational for some decision makers, and not to others. Moreover, less
intelligent decision makers may fail to understand the analysis of their choices,
or the abstract reasoning involved in certain axioms, and may therefore not
exhibit any regret or embarrassment. As a result, they may appear more
rational than intelligent decision makers who make the same decisions, but
can understand why these decisions are not coherent.

It may appear unfair that, according to this definition, it is easier to be
rational if one is less intelligent. But our point of view is that the term “ra-
tionality” should not be used as a medal of honor, bestowed upon smart de-
cision makers. Rather, our definitions should facilitate the discussion between
decision makers, experts, and decision theorists. As such, the definition of
rationality suggested above helps categorize observed deviations from classical

decision theory. If a deviation is irrational, explaining the theory may change
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behavior, and thus the theory may be useful as a normative one. If, on the
other hand, no amount of explanation helps, the theory is not very successful
as a normative one, and the theorist should better accept that fact, and devise
a more acceptable one. The definition of rationality may thus help us decide
what we should do, as theorists, in the face of descriptive failures of the theory,
in a way that retains the ultimate sovereignty of the decision maker.

The concept of “rationality” in Gilboa and Schmeidler (2001) corresponds
to subjective rationality in the present context. A decision maker who is em-
barrassed by the analysis of her decisions is not subjectively rational; she can
be convinced to change her decisions. How can she be so embarrassed? The
present paper suggests two ways: first, her decisions may not be internally
coherent, as in the case of cyclical preferences. The axioms on r% are supposed
to rule out these internally incoherent patterns of choice. Second, the decisions
may appear ridiculous because they are at odds with evidence and basic rea-
soning, that is, they do not satisfy external coherence. The consistency axiom
guarantees that this will not be the case: if there is strong evidence that f is
preferred to g, namely, f ~* g, then we also require ff%g.

In this context, the present paper refines the definition of rationality by
adding the notion of objective rationality. Imagining a dialogue between a
decision maker and her advisor, a mode of behavior is subjectively rational if
the advisor cannot convince the decision maker to change it. It is objectively
rational if the advisor can convince the decision maker to adopt it. One should
expect that there will be a grey area between the two, namely that certain
modes of behavior will not be irrational enough to be discarded, yet not rational
enough to be adopted.

The two notions of rationality may be applied to other contexts as well. In
particular, one may delve into the structure of the relation ~* and ask what
does it mean to “prove”, based on evidence, scientific reasoning, and so forth,
that one act is preferred to another. How should evidence be used in such
a “proof”’? Are there more or less rational ways to interpret and use data

for inference? Should one perhaps have a collection of objectively rational
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relations, depending on one’s degree of certainty in a “proof’, as there are
degrees of significance in hypotheses testing? Such questions are beyond the

scope of the present paper.

3.4 Objectivity

The term “objectivity” should be understood in the context of decision and
economic theory in the 20th century. The theory assumes that both utility
and probability can only be subjective terms, and no reference to a “truly”
objective reality is ever made in it. Anscombe and Aumann (1963) assumed
that all probabilities are subjective, and used the term “objective” to refer to
a probability measure that is shared by all individuals considered. That is,
they used the term “objective” where authors in other disciplines would have
used “intersubjective” at most.

Our definition of “objectivity” (as in Gilboa and Schmeidler, 2001) requires
more than a potentially coincidental agreement among subjective terms. We
assume that a view is objective if it is held by the relevant individuals, and if
they believe that other, “reasonable” individuals would also share this view.
Thus, “objectivity” means an agreement that is not coincidental, and that is
believed to be a view than others would be convinced of.

Clearly, it remains a matter of subjective judgment whether another per-
son is “reasonable” and whether such a reasonable person would indeed be
convinced of a particular view. Thus, our notion of “objectivity” remains ulti-
mately subjective. But this subjective assessment is at a higher order of belief,
that is, a belief about the beliefs that others would hold.

3.5 Incompleteness of tastes and of beliefs

This paper deals with “incompleteness of beliefs”, namely, with incompleteness
of preferences that is due only to the absence of information, for which the de-
cision maker does not know what the probabilities of various states of the world

are. The completeness axiom has also been challenged under certainty, due to
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the fact that the decision maker simply may not have well-defined preferences.
This type of incompleteness, which may be dubbed “incompleteness of tastes”,
includes the models by Aumann (1962), Kannai (1963), and, more recently, Ok
(2002), Dubra, Maccheroni, and Ok (2004), and Mandler (2005). Ok, Ortol-
eva, and Riella (2008) suggest a model in which there is both incompleteness
of tastes and of beliefs.

Incompleteness of tastes is explicitly excluded by our C-Completeness as-
sumption. Observe that, in principle, one might reduce incompleteness of
tastes to incompleteness of beliefs. In some cases, such a reduction is rather
intuitive. For example, suppose that a decision maker is about the rent a car,
and is offered a choice between two models at the same cost. One is smaller and
easier to park, the other is more convenient for long trips. The decision maker
may find the choice difficult to make, partly because she is unsure about her
travel plans, the amount of time she will spend in the car due to traffic jams,
and so forth. In this case it is natural to argue that the “certain” outcome of
a car is, in fact, an uncertain act, providing different degrees of well-being at
various states of the world.

In principle, such a reduction can always be performed, by introducing a
“well-being” function whose maximization is tautologically the objective of
the decision maker, and by modeling outcomes that cannot be ranked as acts
whose outcomes are not known. But such a reduction is not always very
intuitive. For example, suppose that a decision maker is at a restaurant she
knows well, and she has to make a choice between a steak or a lobster. She
is not concerned with long-term effects of this choice, nor does she have any
meaningful uncertainty about the quality of the two dishes. She simply can’t
decide what she feels like having. In such a case, reduction of incompleteness
of tastes to incompleteness of beliefs may not generate the most convenient or
most intuitive model.

Our general approach, and, in particular, the two definitions of rationality,
may apply to incompleteness of tastes as well. Indeed, the analysis above may

benefit from generalizations to deal with incompleteness of preferences that
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derives both from incompleteness of beliefs and of tastes.

3.6 Related literature

GMM (2004) model a preference relation ?:‘J which may exhibit non-neutrality
to ambiguity, and they derive from it a relation that captures “unambiguous
preferences”. This relation, which they also denote by 7—*, is incomplete when-
ever f% fails to satisfy the independence axiom. Moreover, when f% is a maxmin
expected utility relation, 7~* turns out to be a unanimity relation with respect
to the same set of priors.

The present paper is very close to GMM (2004) in terms of the mathemati-
cal structure, and we have indeed relied on GMM’s derivation of the unanimity
rule (as opposed to the earlier work by Bewley, 2002). However, the emphasis
is slightly different. In our case, both é and ~—* are assumed as primitive
relations, and the focus is on the relationships between them, as a step in the
direction of modeling the reasoning process behind the completion of 7Z* to a
subjectively rational, but complete order r% If, for instance, one were to re-
place Caution by the axiom that ?:‘J satisfies independence, the derived relation
~* in GMM would equal ,% By contrast, our model would still distinguish
between subjective and objective rationality, and may be used to discuss the
process by which a particular prior (corresponding to i‘,) is selected out of the
set of possible priors (corresponding to =*).

Nehring (2000, 2008) also discusses the tension between the inability to
have complete preferences that are rationally derived, and the need to make
decisions. His model also deals with a pair of relations and the connection
between them. In particular, he suggests that “contexts” can be used to choose
a way of completing a relation, and has an axiom similar to our Consistency.

Formally, our unanimity representation result for 72*, though independent,
is very similar to Girotto and Holzer (2005): the setup is slightly different and
the proof is simpler.

Rubinstein (1988) discusses preferences between simple lotteries, each guar-

anteeing a monetary prize z with a probability p, and 0 with probability (1—p).
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He assumes two similarity relations, one on the interval of monetary prizes,
and the other — on the interval of probabilities, and imposes a certain coher-
ence between the preferences over lotteries and these similarity relations. Our
approach is similar to Rubinstein’s (1988) in that we assume more than one
preference relation as primitive, in an attempt to gain some insight into the
process by which preferences are generated. The two models deal, however,
with different problems.

Another model that starts out with more than one relation is proposed
by Mandler (2005). He suggests to distinguish between “psychological pref-
erences”, which may be incomplete, and “revealed preferences”, which are
complete but may be intransitive. Our decision maker is closer to standard ra-
tionality assumptions in two ways: first, the incomplete preferences we assume
are due to absence of information, or the inability to reject hypotheses. Sec-
ond, the complete preferences in our model are supposed to be “subjectively”
rational, and, in particular, transitive.

Danan (2006) also deals with two relations, cognitive and behavioral. Cog-
nitive strict preference results in behavioral preference, but cognitive indiffer-
ence might still be observed as a choice of a particular alternative, and thus
appear as strict preference. In his language, our focus is on incompleteness of
cognitive preferences. That is, we do not deal with the gap between the “true”
preferences and their revelation in choice behavior, but with the problem of

generating preferences in the first place.
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4 Appendix: Proofs and related material

By(X) is the vector space generated by the indicator functions of the elements
of ¥, endowed with the supnorm. We denote by ba(X) the set of all bounded,
finitely additive set functions on X, and by A(X) the set of all probabilities
on . As it is well known, ba(X), endowed with the total variation norm, is
isometrically isomorphic to the norm dual of By(X), in this case the weak*
topology, w*, of ba(X) coincides with the event-wise convergence topology.

Given a non singleton interval K in the real line (whose interior is denoted
K°) we denote by By(X, K) the subset of the functions in By(X) taking values
in K. Clearly, By(X) = By(3, R).

We recall that a binary relation 2 on By(3, K) is:

e a preorder if it is reflexive and transitive;

e continuous if o, 2 1, for all n € N, ¢, — ¢ and 1, — ¥ imply ¢ = ¥;

o Archimedean if the sets {\ € [0,1] : A\p+ (1 — A\)p = n} and {\ € [0,1] :
n 2 Ap+ (1 = Ny} are closed in [0, 1] for all ¢, 1, n € By(%, K);

o affineiffor all p,v,n € By(X, K)and « € (0,1), o = ¢ iff ap+(1—a)n =
ay) + (1 — a)n;

e monotonic if ¢ > 1) implies ¢ 2 ;

e non-trivial if there exists ¢,19 € By(X, K) such that ¢ = v but not
2

Proposition 1 (GMM, 2004, Proposition A.1) For i = 1,2, let C; be
nonempty subsets of A (X) and Z; be the relations defined on By(X, K) by

wziwﬁ/wde/wdp Vp € C;.
S S

Then
o2 / dp > /wdp Vp € 2" (C),
S S

and the following statements are equivalent:
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(i) o 210 = ¢ 22 for all p and Y in By(X, K).
(ii) e (Cy) C 0¥ (C}).
(iid) infrecy [ pdp > infpec, f5idp for all o € By(S, K).

Proposition 2 (GMM, 2004, Proposition A.2) > is a non-trivial, con-
tinuous, affine, and monotonic preorder on By(%, K) if and only if there exists
a non-empty subset C' of A(X) such that

¢Z¢<:>/S<pdp2/swdp VpeC. (8)

Moreover, co®" (C') is the unique weak* closed and convex subset of A(X) rep-

resenting 2 in the sense of Eq. (8).

4.1 Lemmas

To prove our results we need some lemmas.

Lemma 1 If K = R and 2 is a preorder, then 2 is affine iff p = 1 implies
Yo +nZ Y+ foralne By(X) and all v € R,

Proof. If 2 is affine and ¢ 2 1, then for all n € By(X) we have

11 11
= Zp+ = m) > - 2
e+ 290+2(<p+ n)~2¢+2(s0+ n)
1 1 11
:§SO+§(¢+277)Z§¢+§(¢+277):¢+77-

While if v > 0 and per contra vp Z i), it cannot be v = 0,1. If v € (0,1),

we have
Yo+ (1=9)0Z v+ (1-7)0,

which is absurd since ¢ 2 v and 2 is affine. Else v > 1, and y¢ Z 71 together
with affinity delivers

o= 0o)+ (1-2)ozzw)+ (1-)o=w
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which is absurd.

Conversely, it is obvious that ¢, 9, n € By(X), o € (0,1), and ¢ = 1) imply
ap+(1—a)n 2 ap+ (1 —a)n. On the other hand ¢, 1), n € By(X), a € (0,1),
and ap + (1 — a)n 2 arp + (1 — a)n imply

a—1 a—1

wzé(va(l—a)n)Jr nZé(az/Hr(l—a)nH n=1.

Lemma 2 If 2 is an affine preorder on By(X, K), then there exists a unique
affine preorder > on By(X) that coincides with > on By(X, K). Moreover, if 2,
is monotonic (resp. Archimedean), then > is monotonic (resp. Archimedean)

too.
Proof. Suppose first 0 € K°. We begin with a Claim:

Claim. Given any @, 1) € By(X, K), the following facts are equivalent:

i) ¢ 29,
(ii) there exists a > 0 such that ap, i) € By(3, K) and ap 2 a,

(iii) ap Z ap for all a > 0 such that ap, arp € By(3, K).

Proof of the Claim. (i)=(ii) and (iii)=-(i) are obvious. We show (ii)=-(iii).
By (ii), there exists @ > 0 such that ap,a) € By(X, K) and ap 2 aip. If
0 < B < «, then by affinity

B@zéagva(I—E)OZéa@b—l—(l—é)O:B@D,
o a a

(07

i.e., B = p1. Therefore, if (iii) does not hold, there exists 5 > « > 0 such
that By, S € By(X, K) and By Z 1. Then by affinity

«

asozﬁﬂw(l—%)oz%ﬁw(1—9)0=a¢,

B

a contradiction. O
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If p,1) € By(X), set p 2F ) <= ap = aip for some a > 0 such that
ap,arp € By(3, K). By the Claim, >* is a well defined binary relation on
Boy(X), which coincides with > on By(X, K). Moreover, ¢ >F 1 if and only if
ag 2 aip for all a > 0 such that ap, ) € By(X, K). Next we show that >*
is an affine preorder (monotonic if 2 is monotonic).

Since 0 € K°, then for all ¢ € By(X) there exists a > 0 such that ap €
Bo(%, K), reflexivity of > implies that ap > ap and ¢ >* ¢. Thus >F is
reflexive.

If p,1,n € Bo(X) are such that ¢ >F 1 and ¢ =¥ n, take o > 0 such that
ap, ah, an € By(X, K), then

ap 2 ap and ar) = an

thus ap > an and ¢ >* n. Thus >* is transitive.
If p,v,n € Bo(X) and A € (0,1), take @ > 0 such that ap,ap,an €
Bo(S, K), then

a(Ap+ (1 =A)n) = A(ap) + (1 = A) (an) € Bo(%, K),
() + (1 = A) (an) € Bo(E, K).

Q
>
==
+
=
|
Vs
=
I
>

Then

2 = ap 2 ah <= Aap) + (1= X) (an) 2 A(ap) + (1 = A) (an)
= aQp+ (1= 2 a(M+(1-A)n)
X+ A=+ (1= V.

Thus >* is affine.

Assume now that 2 is monotonic. If ¢, 1) € By(X) are such that ¢ > 1,
take @ > 0 such that ap, ar) € By(3, K), then ap > arp and monotonicity of
> delivers a > 1) and ¢ >F ). Thus >* monotonic.

As to uniqueness, let > be an affine preorder on By(X) that coincides with
2 on By(X, K). Forall p, ¢ € By(X), take o > 0 such that ap, ap € By(%, K),
then the Claim (applied to >”), the fact that >’ coincides with > on By (%, K),
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and the definition of >* guarantee that
P2 Y ap X ap == ap 2 ay = 0 2,
that is, >” coincides with >f on By(X).

Suppose 0 ¢ K°. Given any k € K°, for p,9 € By(X, K — k) set ¢ =%
Y <<= o+ k 2 ¥+ k. Itis easy to verify that 2, is an affine preorder on
By(3, K — k) (monotonic if 2 is monotonic). Since 0 belongs to the interior of
K — k, by what we just proved there is a unique affine preorder Zﬁk on By(%)
that coincides with 2 on By(X, K — k) (monotonic if 2 is monotonic). Such
extension coincides with 2 on By(X, K), and it is the unique affine preorder

on By(X) with this property.

Finally, assume > is Archimedean, and denote by >* the unique affine pre-
order on By(X) which coincides with 2 on By(X, K). Notice that, by Lemma
1, if p, 79 € By(X) and o > 0, § € R are such that ap+ 5,0+ € By(%, K),
then

pP = ap+ R+ ap+ B o+

Now, for all p,9,n € By(X) take o« > 0 and S € R such that ap + 3, a1) +
B,an+ 5 € By(%, K). For all X € [0,1],

a(Ao+ (1 =NY)+B=A(ap+B)+ (1 =X (ap+ 3) € Bo(E, K)
and
Ao+ (1= 2= ae+(1-Ng)+8Zan+ 03
= AMap+8)+ (1= A) (i +B) 2 an+B.

Then {\ € [0,1] : Ap+ (1 —=N)9» =¥ n} coincides with {\ € [0,1] : A (ap + ) +
(1—=X) (e + B) Z an+ B} which is closed since 2 is Archimedean. A similar
argument shows that {\ € [0,1] : 7 =¥ Ao + (1 — \)9} is closed too. Thus >*

is Archimedean. [}

Lemma 3 An affine and monotonic preorder on By(3, K) is continuous if

and only if it is Archimedean.
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Proof. Obviously, continuity implies the Archimedean property.

Conversely, assume 2 is Archimedean. Since 2 is monotonic and Archimedean,
then the affine preorder >* on By(X) that coincides with > on By(%, K) is
monotonic and Archimedean too (Lemma 2).

If ¢, 2% 0 for all n € N and ¢, — ¢, let M = sup,.q ¢ (s), which is indeed

a maximum. For all € € (0,1) there is n such that

on<ptexs<ote(M+1)xs—¢).

In fact, Mxs > ¢ implies (M + 1) xs — ¢ > xs.>> Therefore, for all € € (0, 1)
there is n € N such that

E(M+1)xs] +(1—e)p=p+e((M+1)xs—¢) > e, >*0.
Monotonicity of >* delivers that, for all ¢ € (0, 1),
el(M+1) xs] +(1—-e)p 2F0. (9)

But >* is Archimedean, hence the set of all € such that (9) holds is closed,
and, containing (0, 1), it also contains 0, in particular ¢ >F 0.

Conclude that, if ¢, — ¢, ¥, — 1, and ¢, >f 9, for all n € N, then
On — Y 240 for all n € N and ¢, — ¥, — ¢ — ¥; therefore ¢ — 1) >F 0,
that is ¢ > 1. Thus >* is continuous, which immediately implies that > is

continuous too. [ |

Now Lemma 3 and Proposition 2 deliver:

Corollary 1 2 is a non-trivial, Archimedean, affine, and monotonic preorder

on By(X, K) if and only if there exists a nonempty subset C' of A(X) such that
ezv e [piz [vip wec (10)
s S

Moreover, co®" (C') is the unique weak* closed and convex subset of A(X) rep-

resenting 2 in the sense of Eq. (10).

All the results we have proved so far hold more generally if By(X) is replaced

by any normed Riesz space with unit.

23yg is the constant function taking value 1 on S.
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4.2 Proof of Theorem 1

Assume Z* is a preorder satisfying Monotonicity, Archimedean Continuity,
Non-triviality, C-Completeness, and Independence.

Archimedean Continuity, C-Completeness, and Independence, together with
the von Neumann-Morgenstern Expected Utility Theorem (see the axiomat-
ics of Herstein and Milnor, 1953), imply that there exists a cardinally unique
function v* : X — R such that P z7* Q iff Epu* > Equ*, provided P, Q) € L.
Monotonicity and Non-triviality imply that u* is not constant. In what follows
we write U (R) instead of Egu* if R € L. Clearly U : L — R is affine and
non-constant.

If f e FthenUof € By(X,U(L)). Conversely, if ¢ € By (3,U (L)),
then ¢ (s) = U (Q;) if s € A; for suitable Q1,...,Qn € L and a partition
{A1, Ay, ..., Ax} of S in X. Therefore, setting f(s) = Q; if s € A; we have
¢ =U o f. We can conclude that By (X,U (L)) ={Uo f : f € F'}. Moreover,
Uof=Uogift U(f(s)) =U(g(s)) for all s € S iff f(s) ~* g(s) for all
s € S, which by Monotonicity implies f ~* g.

For ¢,1 € By (X,U (L)), set

p2F <= f " gforsome f,g € Fsuchthat p=Uo f, ¢y =Uog.

By what we have just observed, 2* is well defined on By (3, U (L)) and it is

characterized by
p2* < frrgforall f,g € Fsuchthat p=Uof, v =Uog.

For all p = Uo f € By(X,U (L)), f z=* f implies ¢ 2* ¢. Thus =>* is
reflexive.

Ifo=Uofp=Uogn=Uoh€ By(X,U(L)), p 2* 1 and b 2* 1
amount to f =~* g and g =* h, thus f =—* h and ¢ =* 1. Thus =* is transitive,
and a preorder.

Since there are f, g such that f =* g (by Non-triviality of 2=*), then Uo f >*

Uog and =* is non-trivial.
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Ifo=Uofyp=Uogmn=Uohe€ By(X,U (L)) and a € (0,1), then

e <= frrg<—=af+(1l—a)hZ ag+ (1 —a)h
< Uo(af+(1—a)h) 2" Uo(ag+ (1 —a)h)
S ap+(1—an 2 ap+(1—a).

Therefore =* is affine.
Ifo=Uofyp=Uogn=Uohé€ By(3,U (L)), then

Ael0,1]: x4+ 1 =XNY 2" nt={A€[0,1] :Uo(Af+(1—=Ng) 2" Uoh}
={Ae0,1]:Af+(1—-Ng " h}

is closed in [0, 1] because of Archimedean Continuity of 7—*, and an analogous
argument shows that {\A € [0,1] : 7 2* Ap + (1 — A\)9p} is closed too. Thus =>*
is Archimedean.

If op =Uofip =Uog € By(X,U(L)) are such that ¢ > 1, then
U(f(s) >U(g(s)) for all s € S. Therefore f(s) Z* g(s) for all s € S, and
by Monotonicity of 2—*, f =—* g, that is ¢ 2* 1. Thus =* is monotonic.

By Corollary 1, there exists a unique non-empty weak® closed and convex
subset C* of A(X) such that, for ¢, € By (X,U (L)),

@Z*¢<:>/Ss0dp2/swdp vp e,
therefore, for f,g € F,
[Rg e Uof 2 Uoges [(Uond= [Wogdp wpec
— /SEf(S)u* dp (s) > /SEQ(S)U* dp(s) VpecC™.
The rest is trivial.

Alternative Axioms: Next we call Strong Archimedean Continuity require-
ment (a) of Remark 1 and Weak Independence requirement (b) of Remark
1. Clearly, Strong Archimedean Continuity implies Archimedean Continuity
while Shapley and Baucells (1998, Lemma 1.2) show that Preorder, Strong
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Archimedean Continuity and Weak Independence imply Independence. Thus
representation (4) holds if Archimedean Continuity and Independence are re-
placed by Strong Archimedean Continuity and Weak Independence. Con-
versely, representation (4) implies Strong Archimedean Continuity and (Weak)

Independence.

4.3 Proof of Theorem 3

Assume that

e ~* is a preorder satisfying Monotonicity, Archimedean Continuity, Non-

triviality, C-Completeness, and Independence;

. f% is a preorder satisfying Monotonicity, Archimedean Continuity, Non-

triviality, Completeness, C-Independence;

° (i* ;> satisfy Consistency.

)~

By Theorem 1, there exist a non-empty closed and convex set C* of prob-
abilities on ¥ and a non-constant function u* : X — R such that, for every
f[geF

frrg iff /Ef(s)u* dp (s) > /Eg(s)u* dp(s) VpeC . (11)
S S
Set
frlgeF it A +(1—=NhzAg+(1—ANh VYA€[0,1],h€F.

Lemma 1 and Propositions 5 and 7 of GMM (2004), guarantee that there exist
a non-empty closed and convex set C of probabilities on ¥, a non-constant
function v : X — R, and a monotonic and constant linear functional I :
By (¥) — R such that, for every f,g € F

fZg i T(Bgu) > 1 (Bgu), (12)

o i [Brudp() [Buds) el (1)
S s

min/ Efgyu dp(s) <1 (Epu), (14)

peC S
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moreover, equality holds in (14) for all f € F if (and only if) - satisfies

~Y

Uncertainty Aversion.
If @, R € L, then, by (11), Consistency, and (12),

Equ* > Egu* <= Q =" R — Q=R <= Equ > Egu.

Corollary B.3 of GMM (2004) delivers the existence of a > 0 and 5 € R such
that v* = au + 3. Wlog, u* = u.

Propositions 4 of GMM (2004) implies that 7=’ is the maximal (relative to
the inclusion in F' x F') relation on F' satisfying Independence and contained
in ,% Consistency guarantees that =* is contained in ,%, and 7—* satisfies

Independence, thus
fzrg = [IZy
(11), (13), and Proposition 1 deliver C' C C*.
Assume that also Caution holds. If there is g € F' such that

I (Eyu) > min / Egyou dp(s),
S

peC*

then, there is ) € L such that

I (Egu) > Egu > min / Eg(syu dp (s)
peC* S

that is, g Z* Q and g=@Q, which violates Caution. Thus, by (14) and C' C C*,

: < < i < mi
I;élél/SEf(s)u dp(s) <I(Esu) < fééQ[gEf(s)u dp (s) < ggg/SEg(s)u dp(s) VfeF

and Proposition 1 delivers C* C C.*

The rest is trivial.

Alternative Axioms: Next we call Default to Certainty the strong caution
requirement (a) of Remark 2.

Assume that

24Gince, as f ranges in F, E(yu ranges in By (X, K'), where K is the non-trivial interval
{Equ:Q € L}.
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e " is a preorder satisfying Monotonicity, Archimedean Continuity, Non-

triviality, C-Completeness, and Independence;
. f% is a preorder satisfying Archimedean Continuity and Completeness;

° (i*, %) satisfy Consistency and Default to Certainty.

By Theorem 1, there exists a non-empty closed and convex set C' of prob-

abilities on ¥ and a non-constant function u : X — R such that, for every
fgeF

fzrg iff /SEf(s)U dp (s) > /SEg<s>u dp(s) VpeC. (15)

Let P,Q € L. By Consistency

P =" @ implies Pr%Q
By Default to Certainty

P =*(Q implies P=Q.

Therefore ,% and ~~* coincide on L, and P — Epu represents both preorders
on L.

In particular, = satisfies Monotonicity, in fact, f (s) ,%g (s) for all s € S
implies, by what we have just shown, f (s) z2* ¢ (s) for all s € S, which, by
Monotonicity of 7—* implies f ~* g, and Consistency delivers f?:jg.

For all f € F, let P,QQ € L be such that P%f (s) ?::Q for all s € S, then
P,%f,%Q. By Archimedean Continuity the sets {a € [0,1] : P+ (1 — oz)Q,%f}
and {o € [0,1] : f=aP + (1 — a)Q} are closed; they are nonempty since 1
belongs to the first and 0 to the second; their union is the whole [0, 1]. Since
[0, 1] is connected, their intersection is not empty, hence there exists 8 € [0, 1]
such that SP + (1 — 5)Q~f. In particular, for each act f there exists Ry € L
such that R;~f.

There are two possibilities
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e f " Ry, in this case Er,u < fs Efsyu dp (s) for all p € C, that is

Eru < min/ Efsu dp(s).
S

peC
e [ 7* Ry, in this case, by Default to Certainty R;> f, which is absurd.

Moreover, if Er,u < minyee [ Epyu dp (s), take P € L such that P=f(s)
for all s € S. Then

Er,u < min/ E¢syu dp(s) < Epu,
S

peC

and there is v € (0, 1] such that

Eriu < Eypi(1—y)R,U = min/ Efsyu dp (s)
pGC S

thus
fZ*YP+(1—7) Ry=Ry

and, by Consistency, f> Ry, which is absurd. In conclusion,

Er,u = min/ Efsyu dp (s)
s

peC

for all f € F' and all Ry € L such that R;~f.
Finally,

JZg <= RyZRy <= Erju > Ep,u
in [ Eseudp(s)>min [ Eyuudp(s).
‘:’%18[9 fls)U p(S)_gglg[g g(s)t dp ()

The rest is trivial.

49



5 References

Aumann, R. J. (1962), “Utility Theory without the Completeness Axiom”,
FEconometrica, 30: 445-462.

Anscombe, F. J. and R. J. Aumann (1963), “A Definition of Subjective Prob-
ability”, The Annals of Mathematics and Statistics, 34: 199-205.

Arrow, K. J. (1986), “Rationality of Self and Others in an Economic System”,
Journal of Business, 59: S385-S399.

Bewley, T. (2002), “Knightian Decision Theory: Part I”, Decisions in Eco-
nomics and Finance, 25: 79-110. (Working paper, 1986).

Cifarelli, D. M. and E. Regazzini (1996), “De Finetti’s Contribution to Prob-
ability and Statistics”, Statistical Science, 11: 253-282.

de Finetti, B. (1937), “La Prevision: Ses Lois Logiques, Ses Sources Subjec-

tives”, Annales de 'Institute Henri Poincare, 7, 1-68.
Danan, E. (2006), “Revealed Preference and Indifferent Selection”, mimeo.

Danan, E. and A. Ziegelmeyer (2006), “Are Preferences Complete? An Exper-

imental Measurement of Indecisiveness under Risk”, mimeo.

Dubra, J., F. Maccheroni, and E. A. Ok (2004), “Expected Utility Theory
without the Completeness Axiom”, Journal of Economic Theory, 115: 118-
133.

Ellsberg, D. (1961), “Risk, Ambiguity and the Savage Axioms”, Quarterly
Journal of Economics, 75: 643-669.

Evren, O. and E. A. Ok (2007), “On the Multi-Utility Representation of Pref-

erence Relations”, mimeo.

Fishburn, P.C. (1970) Utility Theory for Decision Making. John Wiley and
Sons, 1970.

Gajdos, T., T. Hayashi, J.-M. Tallon, and J.-C. Vergnaud (2007), “Attitude

toward Imprecise Information”, mimeo.

50



Ghirardato, P., F. Maccheroni, and M. Marinacci (2002), “Ambiguity from the
Differential Viewpoint”, Caltech Social Science Working Paper.

(2004), “Differentiating Ambiguity and Ambiguity Attitude”, Journal
of Economic Theory, 118: 133-173.

Ghirardato, P., F. Maccheroni, M. Marinacci, and M. Siniscalchi (2003), “A
Subjective Spin on Roulette Wheels”, Econometrica, 71: 1897-1908.

Gilboa, 1., A. Postlewaite, and D. Schmeidler (2004), “Rationality of Belief”,

mimeo, revised, 2007.

Gilboa, I. and D. Schmeidler (1989), “Maxmin Expected Utility with a Non-
Unique Prior”, Journal of Mathematical Economics, 18: 141-153.

(2001), A Theory of Case-Based Decisions, Cambridge: Cambridge

University Press.

Girotto, B. and S. Holzer (2005), “Representation of Subjective Preferences
under Ambiguity”, Journal of Mathematical Psychology, 49: 372-382.

Herstein, I.N. and J. Milnor (1953), “An Axiomatic Approach to Measurable
Utility”, Econometrica, 21: 291-297.

Kahneman, D. and A. Tversky (1979), “Prospect Theory: An Analysis of
Decision Under Risk”, Econometrica, 47: 263-291.

Kannai, Y. (1963), “Existence of a Utility in Infinite Dimensional Partially
Ordered Spaces”, Israel Journal of Mathematics, 1: 229-234.

Keynes, J. M. (1921), A Treatise on Probability. London: MacMillan and Co.

Klibanoff, P., M. Marinacci, and S. Mukerji (2005), “A Smooth Model of
Decision Making under Ambiguity”, Econometrica, 73, 1849-1892.

Knight, F. H. (1921), Risk, Uncertainty, and Profit. Boston, New York:
Houghton Mifflin.

Levy, G. (2004), “Anti-Herding and Strategic Consultation”, Furopean Eco-
nomic Review, 48: 503-525.

ol



Mandler, M. (2005), “Incomplete Preferences and Rational Intransitivity of
Choice”, Games and Economic Behavior, 50: 255-277.

Nehring, K. (2000), “A Theory of Rational Decision Under Ignorance”, Theory
and Decision, 48: 205-240.

Nehring, K. (2008), “Decision-Making in the Context of Imprecise Probabilistic

Beliefs”, Journal of Economic Theory, forthcoming.

Ok, E. A. (2002), “Utility Representation of an Incomplete Preference Rela-
tion”, Journal of Economic Theory, 104: 429-449.

Ok, E. A., P. Ortoleva, and G. Riella (2008), “Incomplete Preferences under

Uncertainty: Indecisiveness in Beliefs vs. Tastes”, mimeo.

Peleg, B. (1970), “Utility Functions for Partially Ordered Topological Spaces,”
Econometrica, 38: 93-96.

Prendergast, C. and L. Stole (1996), “Impetuous Youngsters and Jaded Old-
Timers: Acquiring a Reputation for Learning”, The Journal of Political Econ-
omy, 104: 1105-1134.

Ramsey, F. P. (1931), “Truth and Probability”, in The Foundation of Mathe-

matics and Other Logical Essays. New York: Harcourt, Brace and Co.
Richter, M. (1966), “Revealed Preference Theory”, Econometrica, 34: 625-645.

Rubinstein, A. (1988), “Similarity and Decision-Making Under Risk”, Journal
of Economic Theory, 46: 145-153.

Savage, L. J. (1954), The Foundations of Statistics. New York: John Wiley
and Sons. (Second addition in 1972, Dover)

Scharfstein, D. and J. Stein, (1990), “Herd Behavior and Investment”, Amer-
1can Economic Review, 80: 465-479.

Schmeidler, D. (1986), “Integral Representation without Additivity.” Proceed-
ings of the American Mathematical Society, 97: 255-261.

(1989), “Subjective Probability and Expected Utility without Addi-
tivity”, Econometrica, 57: 571-587.

02



Seidenfeld, T., M. J. Schervish, and J. B. Kadane (1995), “A Representation
of Partially Ordered Preferences”, The Annals of Statistics, 23: 2168-2217.

Seo, K. (2007), “Ambiguity and Second-Order Belief”, mimeo.

Shapley, L. S., and M. Baucells (1998), “A Theory of Multiperson Utility”,
UCLA Working Paper 779.

Simon, H. A. (1957), Models of Man. New York: John Wiley and Sons.

Tversky, A., and D. Kahneman, (1973), “Availability: a heuristic for judging
frequency and probability”, Cognitive Psychology 5: 207-232.

(1974), “Judgment under uncertainty: Heuristics and biases”, Science,
185: 1124-1131.

(1981), “The Framing of Decisions and the Psychology of Choice”,
Science, 211: 453-458.

von Neumann, J. and O. Morgenstern (1944), Theory of Games and Economic

Behavior. Princeton, N.J.: Princeton University Press.
Walley, P. (1981), “Coherent Lower (and Upper) Probabilities”, mimeo.

Weirich, P. (2007), “Collective, Universal, and Joint Rationality”, Social Choice
and Welfare, 29: 683-701.

53



