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Abstract

A decision maker is characterized by two binary relations. The first

reflects decisions that are rational in an “objective” sense: the decision

maker can convince others that she is right in making them. The second

relation models decisions that are rational in a “subjective” sense: the

decision maker cannot be convinced that she is wrong in making them.

We impose axioms on these relations that allow a joint representation by

a single set of prior probabilities. It is “objectively rational” to choose f
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in the presence of g if and only if the expected utility of f is at least as

high as that of g given each and every prior in the set. It is “subjectively

rational” to choose f rather than g if and only if the minimal expected

utility of f (relative to all priors in the set) is at least as high as that

of g.

1 Introduction

1.1 Reasoned choice

Consider a policymaker who has to make a decision such as the determination

of environmental, economic, or foreign policy. The decision maker wishes to

know what her policy should be. That is, she constructs her preferences in as

rational a way as she can.

Economic theory typically assumes the existence of a binary relation %,
reflecting preferences between pairs of alternatives, acts, or courses of action.

When consumer theory is discussed, this relation is most commonly interpreted

descriptively, assumed to reflect the consumer’s preferences, as revealed by her

choices. It is almost a truism that this relation is complete, namely, that

between any two courses of action, f and g, we will observe f % g or g % f .1

Moreover, the leading interpretation of the relation % is of a preference that

exists without a complicated reasoning process.

By contrast, a decision maker such as a government official who seeks to

determine environmental policy does not necessarily have pre-defined prefer-

ences %. Rather, she is in the process of determining these preferences. In the
terms of Gilboa, Postlewaite, and Schmeidler (2004, 2007) the relation % in

this problem reflects “reasoned choice” rather than “raw preferences”. Corre-

spondingly, it is not obvious that such a relation may be assumed complete.

1The completeness axiom is not vacuous, as it implicitly requires that the same choices

will be made under the same conditions. However, it cannot be refuted by a single choice be-

tween two alternatives, whereas other axioms typically can be refuted by a single observation

of the preference between any pair of alternatives involved.
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At the end of the reasoning process completeness should better be satisfied, or

else the decision maker will be caught in indecision. But at the outset com-

pleteness typically does not hold. Well-defined preferences are the goal, not

the data.

1.2 Two notions of rationality

We submit that standard models in decision theory, using a single binary

relation %, are too austere to describe the process by which a decision maker
generates her preferences. Such models are also not rich enough to distinguish

between choices that the decision maker feels strongly about, and choices that

are made out of necessity.

The purpose of this paper is to extend the standard model in a modest way,

upgrading it to have two binary relations as primitives, rather than one. These

two relations would distinguish between preferences that are based on sound

reasoning and those that are not necessarily so. Clearly, a pair of binary

relations is also too limited to describe the dynamic process of generating

preferences, or an entire dialog between policymakers and their consultants.

But a model with two relations will allow us to capture more of the subtleties

of decision under uncertainty, without losing too much in terms of parsimony.

1.2.1 Objective rationality

Let one binary relation, %∗, denote preferences that are rational in the objective
sense: when we write f %∗ g, we mean to say that the decision maker can be
convinced that act f is at least as desirable as act g. That is, this preference can

be justified and defended on more or less objective grounds, given the decision

maker’s goals, values, and desires.2 If the decision maker seeks expert advice,

the relation %∗ would reflect the preferences that the advisor could derive,
using logical, statistical, and decision-theoretic reasoning, from the decision

maker’s utility, data, and his own expertise.

2We use the term “objective” in a highly qualified way. See subsection 3.4 below.
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The informal definition of “objective rationality” revolves around the abil-

ity to convince others. We wish to focus on the ability to convince based on

sound arguments, rather than on rhetorical ruses or personal style. It is there-

fore useful to think of “being convinced” as saying “being convinced and being

able to convince others in turn”. That is, the relation f %∗ g can be read as
saying “the decision maker finds f at least as desirable as g, and she also feels

quite confident that she can convince any reasonable person that, according to

her utility, f is indeed at least as desirable as g.” For example, if the decision

maker would hire an assistant, she believes that the latter would see the logic

behind the decisions described by %∗.
Unfortunately, in many decision problems under uncertainty, a relation %∗

that can be interpreted as “objectively rational” would fail to be complete.

There will typically be many pairs of acts f and g between which no well-

reasoned preferences exist. Even if the decision maker’s utility function is

clearly defined, absence of information is likely to leave the decision maker

unable to logically justify preferences that depend on plausibility judgments.

Indeed, the scientific method allows us to settle many questions of belief, but

it has to remain silent on others.

How should the theory of decision under uncertainty cope with the chal-

lenge posed by incompleteness? One approach is to make do with an incom-

plete relation. According to this approach, if there is no compelling reason

to prefer f to g nor g to f , we might be better off explicitly modeling this

absence. Models of incomplete preferences date back to Aumann (1962), Kan-

nai (1963), and Peleg (1970). Walley (1981) and Bewley (2002) focused on

incompleteness that is due to uncertainty, namely to the absence of an agreed-

upon probability. Such models have recently received renewed attention (cf.

Ok, 2002, Dubra, Maccheroni, and Ok, 2004, Mandler, 2005, Evren and Ok,

2007, Nehring, 2008, Ok, Ortoleva, and Riella, 2008). Many of these authors

have also argued that there is nothing irrational about incompleteness of pref-

erences. In the absence of information, it appears more rational to be silent

than to pretend to have knowledge that one does not have.
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1.2.2 Subjective rationality

Despite the arguments for allowing incompleteness, the standard justification

of the completeness axiom for rational choice still remains: eventually, a de-

cision will be made. If we do not describe this decision in the model, we

might be left with a very well-reasoned relation %∗ that has little to do with
actual decisions. The relation %∗ might be the epitome of rationality, while
the decisions that will be taken in practice fail to satisfy basic consistency

requirements such as transitivity. An expert who derives the relation %∗ for
a decision maker might be appalled to learn what follies were allowed by his

cautious analysis.

We are therefore led to introduce a second binary relation, %̂, which we
expect to be complete. The relation %̂ will reflect preferences that are rational
in the subjective sense: when we write f%̂g, we mean to say that the decision
maker cannot be convinced that choosing f in the presence of g is wrong.

Intuitively, such a choice does not lead to any contradiction with other choices

of the decision maker, and does not seem illogical given the decision maker’s

goals and the data available to her.

Thus subjective rationality is also defined by the ability to convince others.

But it does not require that the decision maker be able to convince others that

she is right, only that others will not be able to convince her that she is wrong.

Should the decision maker hire an assistant, she may not be certain that he

would come up with the choices reflected in %̂; but she feels confident that
these choices would not appear silly to him.

1.2.3 Analogy: statistics

The relations
³
%∗, %̂

´
are analogous to the classical and the Bayesian ap-

proaches to statistics, respectively. Classical statistics aspires to objectivity,

at the price of completeness. When a hypothesis H0 is rejected by a scientific

study, it is expected that any reasonable person would find H0 incompatible

with evidence. This high standard of objective rationality has the obvious im-
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plication that in many cases neither a hypothesis H0 nor its negation H1 can

be rejected. Seeking objectivity, science has to remain silent on many issues.3

Bayesian statistics, by contrast, has a well-defined probability for any event

of interest. In this sense, it obeys the completeness axiom: it can state, for

any hypothesis and given any data base, whether, given the evidence, the

hypothesis is more or less likely than its negation, and, indeed, precisely how

likely it is. Such likelihood judgments cannot be derived based on evidence and

logical reasoning alone, and therefore they cannot be expected to be shared by

all. Hence, Bayesian statistics depends on a subjective prior.

1.2.4 Analogy: law

The distinction between the two relations, %∗ and %̂ is reminiscent of that

between criminal and civil law. Criminal law requires that guilt be proven

beyond a reasonable doubt. Thus, a verdict of “guilty” can be read as “judging

the defendant to be guilty is preferred, in the sense of objective rationality, %∗,
to acquitting him”. It is expected that the court be able to convince others

that such a verdict was indeed justified. It is accepted, however, that questions

of guilt may remain doubtful. In other words, what can be legally “proven”

defines an incomplete relation%∗. This incomplete relation is completed by the
default of a “not guilty” verdict.4By contrast, civil cases are more symmetric

in their treatment of the two parties involved. In the absence of an obvious

default, an incomplete order is unsatisfactory, as it does not specify the court’s

ruling. Thus, the decision in a civil case can be thought of as a complete order,

which may be less robustly justified than a decision in criminal case. That is,

3Rather than the statements made by science, one may consider science’s choice among

the three alternatives, “state H0”, “state H1”, and “remain silent”. In this meta-problem

we may consider complete preferences, where “remain silent” is the preferred choice unless

one of the hypotheses may be rejected. When classical statistics is used for decision making,

preferences are often completed by resorting to a default such as the status quo.
4This is a little different from the default choice of “remain silent” in science. The law

is committed to treat “not proven guilty” and “proven innocent” in the same way, whereas

science should better not treat “not proven false” as equivalent to “proven true”.
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as compared to criminal law, civil law is closer to subjective rationality, %̂,
than to objective rationality.

1.3 The role of axioms

Decision theory offers sets of axioms that are shown to be equivalent to par-

ticular representations of preferences. For example, a complete and transitive

relation over a finite set can be represented as maximizing a certain utility

function. The literature also offers a variety of axiomatic models for decision

making under uncertainty. Most notably, building on ideas of Ramsey (1931)

and de Finetti (1937), Savage (1954) and Anscombe and Aumann (1963) pro-

vided axiomatic models of subjective expected utility maximization. These

models are often interpreted descriptively, as supporting the claim that eco-

nomic agents can be modeled as expected utility maximizers, relative to their

subjective probabilities. In this paper we are mostly interested in the norma-

tive interpretation of such models, supposedly helping the decision maker to

determine what her preferences should be.

1.3.1 Normative role of universal statements

There are at least two rather different ways in which axioms can be normatively

interpreted. The first is as general mathematical conditions, and the second

— as specific instances of preferences. Consider, for example, the transitivity

axiom. One might consider a hypothetical dialog with a decision maker, in

which a decision theorist says, “Consider the claim that, for every three choices,

f , g, and h, if you prefer f to g and also g to h, you should prefer f to h.5

Wouldn’t you like to satisfy it? Wouldn’t you feel uneasy with ever be found

to violate it?” If the decision maker is sophisticated enough to understand this

type of general statement, involving a universal quantifier over the variables

f , g, and h, she might say, “I adopt this axiom. I would hate to find myself

violating it.” Then the decision theorist can, as it were, flash a slide with a

5For simplicity, we use “prefer” instead of “prefer or find equivalent”.
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representation theorem, and say, “Well, if you agree with this axiom, and your

preference is complete, you have to maximize a utility function. It’s a theorem.

Now wouldn’t it be simpler to try to estimate your utility function for each

alternative?” That is, the decision theorist uses a set of axioms, viewed as

abstract universal statements, to convince the decision maker that she should

adopt a particular model of decision making. The axioms do not necessitate

preference between any two particular choices f and g; they only impose a

general structure on the totality of the decision maker’s choices.

1.3.2 Normative role of concrete instances

By contrast, axioms such as transitivity can also be interpreted in a concrete

way, as building blocks in a reasoning process. For example, assume that

a consultant tells the decision maker, “If I recall correctly, we have already

determined that f is preferred to g. Moreover, last week you have chosen

g over h. Now it would seem to me that, if you put these two decisions

together, you should also prefer f to h.” In this type of reasoning, f , g, and

h are particular choices. The decision maker does not engage in an abstract

argument with variables and universal quantifiers. Rather, she is shown the

logic of the axiom in a particular instance.

In the concrete interpretation, axioms are viewed as “reasoning templates”,

namely as ways to use arguments for some preferences in order to construct

from them arguments for other preferences. If one were to model this process

formally, one could consider particular instances of preferences as propositions,

and decision theoretic axioms as “inference rules”, allowing the concatenation

of such propositions to generate the formal object of a “proof”.6

1.3.3 Comparison

When axioms are interpreted as universal statements, they demand a rather

high degree of sophistication on the decision maker’s part. Relatedly, when the

6Observe that the decision theoretic axioms are the inference rules, not the “axioms” as

used in propositional logic.
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decision maker is asked to judge the plausibility of axioms in the abstract, she is

susceptible to “framing effects”: an axiom may appear more or less compelling

depending on its representation. Moreover, an axiom that is logically stronger

may be more compelling than an axiom that is weaker. For example, the axiom,

“there should be no cycles of strict preference” is probably more compelling

than the axiom “there should be no cycles of strict preference of odd length.”

The concrete interpretation, by contrast, requires less abstract thinking,

and leaves less room for different representations of the same statement. Cor-

respondingly, in the concrete interpretation the set of preferences than can

be derived from an axiom increases with its logical strength: a more general

axiom will allow a larger set of preferences to be deduced from it.

Perhaps the most important distinction between the two normative inter-

pretations of axioms is that the universal one often does not help the decision

maker in determining her preferences, only their structure. They deal with

form rather than with content. For example, assume that a decision maker

wonder whether a certain policy to cope with global warming is to be adopted.

She consults an expert who convinces her of the logic of Savage’s axioms,

viewed as universal statements. Then she is told that, by a mathematical the-

orem, she should have a utility function and a probability measure, and she

should maximize her subjective expected utility. But this general conclusion

says nothing about which utility function she should choose, or about which

subjective probability she should adopt. In particular, she was just convinced

that she should be able to quantify the probability of the globe warming up

by at least 2 degrees over the next five years. But nothing tells her what these

beliefs of her should be.

By contrast, the concrete interpretation of the very same axioms would

take some preferences that the decision maker already has, and build up from

them some others. There is no guarantee that this process will end up with a

complete relation, but it will typically have more pairs of choices (f, g) in it

than the relation that the process started out with.

Yet another distinction between the two interpretations has to do with the
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scope of the preference relation. Most axiomatic derivations of decision models

require a rather rich domain of preferences for the proofs of the theorems

to hold true. These may include choices between implausible alternatives.

By contrast, the concrete interpretation of axioms requires choices between

concrete alternatives that are actually available, and some variations thereof,

but typically not between all conceivable pairs of choices.

While the rest of this paper can be read with more than one interpretation

in mind, we try to adhere to the concrete interpretation, which we find more

conducive to actual decision making processes than the universal one. We

imagine the decision maker as starting with some preference propositions and

building up to generate new ones. However, which are the initial preference

propositions, and which axioms should be used as inference rules would depend

on the interpretation of the preference order as reflecting objective or subjective

rationality.

1.4 The present model

In this paper we present a model that makes two simplifying assumptions.

First, we assume that the decision maker has a well-defined utility function,

so that she has a rather clear idea how she would trade-off various goals, what

her ethical constraints are, and so forth. Her main difficulty is how to deal

with uncertainty. Second, we assume that, should the decision maker consult

with experts, her utility function is honestly adopted by them. Thus, we

abstract away from the problems discussed in the recent literature on strategic

consultants (see, for instance, Scharfstein and Stein, 1990, Prendergast and

Stole, 1996, Levy, 2004), and ask a simpler question: how should the decision

maker and her consultants work together to obtain the most rational decision

(for the decision maker) in the face of uncertainty?

Our focus is on situations where probabilities are neither given, nor can

they be easily deduced or estimated. As mentioned above, the works of Ramsey

(1931), de Finetti (1937), Savage (1954), and Anscombe and Aumann (1963)

famously championed the Bayesian approach, suggesting that any uncertainty
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can be reduced to risk using the notion of subjective probabilities. The latter

are defined behaviorally, as degrees of willingness to bet, embedded in a model

of expected utility maximization.

Many statisticians were opposed to this line of reasoning,7 and Ellsberg’s

(1961) well-known experiments have shown that people often fail to behave in

accordance with the Bayesian approach. In the 1980’s two models were pro-

posed, relaxing the axioms underlying subjective expected utility theory and

generalizing it by allowing a representation of beliefs by a set of probabilities,

rather than by a single probability. These approaches are often referred to

as multiple prior models, and they tend to be closer to the classical statistics

mindset, in which a set of distributions defines the inference problem, but no

prior belief over the set can be assumed. One approach (Bewley, 2002, see also

Walley, 1981) uses the set of priors to define a partial order by unanimity: f

is at least as desirable as g if and only if the expected utility of f is at least

as high as that of g for each and every prior in the set.8 The other (Gilboa

and Schmeidler, 1989) retains the completeness axiom, and derives a repre-

sentation by the maxmin rule: f is preferred to g if and only if the minimal

expected utility of f , over all possible priors in the set, is higher than the

minimal expected utility of g.

We start with two binary relations,
³
%∗, %̂

´
, interpreted as objective and

subjective rationality relation, as suggested above. Formally, we assume that

the first satisfies the axioms of Bewley (2002),9 and the second — of Gilboa

7See Cifarelli and Regazzini (1996), who describe Cantelli’s reactions to de Finetti’s ideas

as “... speaking to Cantelli about subjective probability ... was tantamount to pulling a

tiger by its tail.” See also Knight (1921) and Keynes (1921).
8Bewley’s model dealt with a strict preference, represented by a strict inequality for each

prior. Mathematically, it relied on Aumann (1962).

Seidenfeld, Schervish, and Kadane (1995) offer a model in which preferences are described

by sets of probability-utility pairs. A derivation of Bewley’s result in a purely subjec-

tive probability set-up is provided in Ghirardato, Maccheroni, Marinacci, and Siniscalchi

(GMMS, 2003).
9As explained below, our formulation differs from Bewley’s on several minor points: it

is closer to those of Shapley and Baucells (1998), GMMS (2003), and Girotto and Holzer
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and Schmeidler (1989). This means that each relation can be represented by

a set of priors: %∗ by unanimity, and %̂ by the maxmin rule. However, the

two sets of priors are unrelated. They may be different or even disjoint. We

therefore introduce two additional axioms, explicitly relating the two relations,

and show that these axioms hold if and only if the two sets of priors are indeed

identical. Taken together, the axioms imply the existence of a set of priors

that represents both %∗ and %̂ simultaneously: the former via unanimity, and
the latter — via the maxmin rule.

We describe the axioms and results in the next section. As a by-product,

we offer a version of Bewley (2002) that deals with a general state space. This

facilitates the comparison with the Gilboa and Schmeidler (1989) model, but

may also be of interest in its own right. Section 3 is devoted to a discussion.

In particular, it argues that the present treatment highlights the extremity

of the maxmin rule, and suggests alternative notions of subjective rationality.

Specifically, we also mention a variation in which the subjectively rational

relation is Bayesian, that is, a model in which objective rationality is defined

by unanimity with respect to a set of probabilities, but subjective rationality

is defined by a Bayesian approach relative to a single probability in this set.

We conclude with general discussions of rationality and the related literature.

2 Model and Results

2.1 Preliminaries

We use a version of the Anscombe and Aumann (AA, 1963) model as re-stated

by Fishburn (1970).

Let X be a set of outcomes. The set of von Neumann-Morgenstern (vNM,

1944) lotteries is

L =

(
P : X → [0, 1]

¯̄̄̄
¯ #{x|P (x) > 0} <∞,P

x∈X P (x) = 1

)
.

(2005).
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and it is endowed with a mixing operation: for every P,Q ∈ L and every

α ∈ [0, 1], αP + (1− α)Q ∈ L is given by

(αP + (1− α)Q) (x) = αP (x) + (1− α)Q(x) ∀x ∈ X.

The set of states of the world is S endowed with an algebra Σ of events. The

set ∆ (Σ) of (finitely additive) probabilities on Σ is endowed with the event-

wise convergence topology.10 The set of (simple) acts F consists of all simple

measurable functions f : S → L. It is endowed with a mixture operation as

well, performed pointwise. That is, for every f, g ∈ F and every α ∈ [0, 1],
αf + (1− α)g ∈ F is given by

(αf + (1− α)g) (s) = αf(s) + (1− α)g(s) ∀s ∈ S.

The decision maker is characterized by two binary relations %∗ and %̂ on
F , denoting objective and subjective rational preferences, respectively. The

relations Â∗, ∼∗, Â̂, ∼̂ are defined as usual, namely, as the asymmetric and
symmetric parts of %∗ and %̂, respectively.
We extend %∗ and %̂ to L as usual. Thus, for P,Q ∈ L, P % Q means

fP % fQ where, for every R ∈ L, fR ∈ F is the constant act given by fR(s) = R

for all s ∈ S and % is either %∗ or %̂. The set of all constant acts is denoted
by Fc.11

For a function u : X → R we will use the notation

EPu =
X
x∈X

P (x)u(x)

for all P ∈ L.12 Thus, if the decision maker chooses f ∈ F and Nature chooses

s ∈ S, the decision maker gets a lottery f(s), which has the expected u-value

of

Ef(s)u =
X
x∈X

f(s)(x)u(x).

10A net {pk} converges to p if and only if pk (A)→ p (A) for all A ∈ Σ.
11We sometimes abuse the notation writing R instead of fR and L instead of Fc.
12One may replace L by any convex subset of a vector space, or even any mixture space,

and EPu with the evaluation at P of an affine function u on L. All our results remain valid.
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2.2 Several basic conditions

We now turn to discuss the axioms. It will be convenient to start with axioms

and conditions that both relations are assumed to satisfy. As discussed in the

introduction, completeness will not be among these conditions, as it is not a

natural requirement when objective rationality is concerned.

The following conditions are stated for a generic relation %. They will be
imposed on both relations %∗ and %̂.

Basic Conditions:

Preorder: % is reflexive and transitive.

Monotonicity: For every f, g ∈ F , f(s) % g(s) for all s ∈ S implies f % g.

Archimedean Continuity: For all f, g, h ∈ F , the sets {λ ∈ [0, 1] : λf + (1 −
λ)g % h} and {λ ∈ [0, 1] : h % λf + (1− λ)g} are closed in [0, 1].

Non-triviality: There exist f, g ∈ F such that f Â g.

2.2.1 Reflexivity

In general, reflexivity is a matter of notation more than a substantive axiom:

it does not say much about the decision maker’s preferences. Rather, it reflects

the modeler’s choice to use the language of weak rather than strong preferences.

However, it is important to observe that the language of preference, in which

the dialog between the decision maker and her consultants is assumed to take

place, does not have a term for strict preference. For example, we may find

that f %∗ g but not g %∗ f . In our (standard) notation, this implies that

f Â∗ g. Yet, it will be inappropriate to read this relation as “the decision

maker can be convinced that f is strictly preferred to g”. All we can say is

that “the decision maker can be convinced that f is at least as good as g. She

cannot be convinced of the fact that g is at least as good as f .” The latter

statement differs from the former. In particular, the proposition “f is strictly

preferred to g” cannot be stated in the language of the discussion.
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To see a concrete example, assume that there are two states of the world.

The payoffs guaranteed by f are (1, 0) and by g — (0, 0). There is no information

about the probability of the states. It should be relatively easy to convince the

decision maker that f %∗ g. (In fact, this will also follow from the monotonicity
axiom.) Clearly, a reasonable decision maker will not be convinced of the

converse. Hence f Â∗ g. But the decision maker cannot be convinced that

f is strictly better than g. Should she think about it, she might say that it

is possible that the probability of state 1 is zero, and then the two acts are

equivalent. But the logical reasoning we have in mind does not have strict

preference as a primitive of the language.13

2.2.2 Transitivity

Transitivity of objective rationality is rather compelling. If a consultant has a

compelling argument that f should be at least as desirable as g, and another —

that g should be at least as desirable as h, transitivity suggests that these two

arguments can be concatenated to generate a compelling argument for con-

cluding that f is at least as desirable as h. In a more formal model, one could

model each such argument as a proof, namely, an ordered list of propositions,

each one following from its predecessors, and the transitivity axiom would be

an inference rule generating a longer proof (that f %∗ h) from two shorter ones
(of f %∗ g and g %∗ h).
Next consider subjective transitivity. In this case, the preferences f%̂g and

g%̂h need not be compelling. They may well be nearly arbitrary decisions that
the decision maker made, shrugging her shoulders, simply because a decision

was called for. Hence, if the consultant starts an argument with “clearly, f

is at least as good as g”, the decision maker might stop him and say, “It’s

not so clear. I made this decision and I know exactly what went into the

decision process. It was, in fact, a rather arbitrary decision I made under time

pressure. Let’s not build theories around it.” At this point the consultant might

13The model can be further elaborated, allowing strict preferences for objective and sub-

jective rationality to be explicitly part of the preference statements.
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say, “OK, so maybe it was arbitrary. But if you make arbitrary decisions to

choose f in the presence of g, and g in the presence of h, but refuse to choose f

because h is available, you’ll be in trouble. Just imagine the headlines. Hence,

my best advice to you is to now choose f . Even if the first two preferences were

arbitrary, the very fact that they were made indicates a certain commitment.”

We therefore assume transitivity both for objective and for subjective ra-

tionality. We find that transitivity is compelling enough, as an inference rule,

to be valid even if the preference statements on which it relies were not fully

justified.

2.2.3 Monotonicity

In general, monotonicity is also a condition of internal coherence: it says that

if certain preferences hold, then others should hold as well. In the present

case, the antecedent has to do with a preference between the vNM lottery

obtained by f to that obtained by g at each and every state, whereas the

consequent is the preference between f and g. As in the case of transitivity,

this axiom appears powerful enough to be a valid inference rule even if its

input, namely the statewise preferences between vNM lotteries, may not have

been fully justified.

However, we assume that the utility function is given and agreed-upon.

Hence the pointwise preference f(s) % g(s) needs no justification, and it is

not a matter of arbitrary choice either. Given a utility function, an expected

utility of the lottery f(s) that is no lower than that of the lottery g(s) can

be viewed as “hard evidence” that at state s, f is at least as good as g. This

evidence calls for no further justifications. And using it, a simple inference

suggests that f % g for both notions of rationality.

2.2.4 Continuity

The Archimedean continuity axiom is the standard Herstein and Milnor (1953)

continuity axiom. It cannot be directly refuted by finitely many observations,
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and its scientific stature is therefore dubious. It is therefore common to dismiss

such axioms as a matter of mathematical necessity and discuss them no further.

Wemention in passing that, in the context of the construction of preferences

and the rhetorical arguments involved in it, axioms such as continuity may be

elevated to a more conceptual realm. For instance, if a decision maker can

express a preference f Â g only at the cost of a discontinuity somewhere in

her preferences, she might be convinced that it makes more sense to have

g % f . However, we assume that the decision maker only conducts explicit

reasoning in the language of weak preferences, and such an interpretation would

be inappropriate in our model. It is therefore more natural to think of the

continuity axiom as part of the discussion among decision theorists rather

than the discussion between the decision maker and her consultants.

Be that as it may, this standard continuity axiom is be assumed for both

relations.

2.2.5 Non-triviality

The non-triviality axiom is a condition designed to rule out the case in which

the decision maker might be ascribed a constant utility function. In this case

the representation results hold, but the uniqueness results do not: preferences

can be represented by a constant utility function and any beliefs whatsoever

(whether beliefs are represented by a single probability measure, a set thereof,

etc.). Thus, the non-triviality axiom is part of the theoretical discussion rather

than the discussion between the decision maker and her consultants. In fact,

rather than stating an explicit axiom, one could add a caveat at the end of

the representation theorems, qualifying the uniqueness statement.14 Since the

two relations will be assumed to agree on constant acts, both will satisfy this

axiom as soon as the utility function is not constant.

14The tradition, following Savage’s axiom P5, is to state an explicit axiom to rule out the

special uninteresting case of trivial preferences. This practice reminds us that the project

of elicitation of beliefs from observed choices is predicated on the existence of non-trivial

preferences.
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2.3 Axioms for objective and for subjective rationality

We now turn to discuss the axioms that are specific to objective or to subjective

rationality.15

2.3.1 Completeness

C-Completeness: For every f, g ∈ Fc, f %∗ g or g %∗ f .

Completeness: For every f, g ∈ F , f%̂g or g%̂f .

As discussed above, subjective rationality is required to be complete, be-

cause eventually some decision will be taken. Objective rationality, by contrast,

is not necessarily complete, because one may not have compelling reasons to

determine preferences between certain pairs of alternatives. However, we do

require that objective rationality be complete when restricted to the subset

of constant acts. C-completeness verifies that the incompleteness of the ob-

jectively rational relation %∗ is not due to any difficulties that the decision
maker might have about determining her preferences under certainty. That is,

we are not faced with a decision maker who can’t decide whether she prefers

chocolate to vanilla ice cream in terms of their immediate hedonic value. Any

incompleteness of preferences will therefore be attributed to uncertainty about

future outcomes of the options involved. (See Subsection 3.5 below.)

2.3.2 Independence

Independence: For every f, g, h ∈ F , and every α ∈ (0, 1),

f %∗ g iff αf + (1− α)h %∗ αg + (1− α)h.

C-Independence: For every f, g ∈ F , every h ∈ Fc, and every α ∈ (0, 1),

f%̂g iff αf + (1− α)h%̂αg + (1− α)h.

15Since each of the following axioms will be assumed for one relation only, we state them

directly in terms of this relation, rather than in terms of an abstract relation % as above.

In the sequel, we allow ourselves to use phrases such as “C-Completeness” and “%∗ satisfies
C-Completeness” interchangeably.
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We thus require that objective rationality satisfies the original AA inde-

pendence axiom, whereas subjective rationality — only the weaker version re-

ferred to as C-Independence. The reason is the following: if the preference

between f and g is based on objective, perhaps even scientific reasoning, i.e.,

f %∗ g, this very preference may be used as a reason to prefer αf +(1−α)h to
αg+(1−α)h. That is, if preference propositions only refer to preferences that
can be “proven”, then they are sound enough to build upon, and the indepen-

dence axiom used by Anscombe and Aumann is a reasonable inference rule.

If all reasonable decision makers would accept that f is at least as good as g,

they should also accept that αf +(1−α)h is at least as good as αg+(1−α)h.
This reasoning may also be reversed: if there are good, sound reasons to prefer

αf +(1−α)h to αg+(1−α)h, one may argue that there are even better rea-

sons to prefer f to g: if a small step from h “towards” f is better than taking

the same step “towards” g, continuing in the respective directions presumably

only strengthens this preference. In short, the basic intuition of the classical

independence axiom is assumed to be compelling when one restricts attention

to justified preferences.

This is not the case when subjective rationality is concerned. In this case,

the relation f%̂g may follow from more arbitrary considerations, or from lack

of information. For example, assume that there are two states of the world,

and that f = (1, 0) and g = (0, 1). The decision maker has no information

about the probability of the two states, and therefore the objective rationality

relation does not rank them. Having to make a decision, the decision maker

might shrug her shoulders and decide that they are equivalent, namely, that

f∼̂g, due to symmetry.
Next consider the mixing of f and g with h = f . For α = 0.5, the mixture

αg+(1−α)h completely hedges against uncertainty, leaving the decision maker
with a risky act. The mixture of f with h = f clearly leaves the decision

maker with f , without any reduction of uncertainty. The decision maker might

plausibly argue that αf +(1−α)h is not equivalent to αg+(1−α)h. Indeed,

the former is uncertain whereas the latter — only risky. A consultant might try
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to construct a “proof” that the two are equivalent, starting with “Don’t you

recall that you said that f and g were equivalent on your eyes? All we’re doing

now is to mix both of them with h!” But the decision maker might counter,

“Wait a minute, when I said that f and g were equivalent, I didn’t know they

were, I only used a default decision. This is not the kind of decision you can

now construct a new theory upon.” “Aren’t you concerned that you will be

perceived as irrational?” the consultant might ask. “Leave this to me” would

be the response; “I barely understand this mixture operation of yours and if

my worst sin is that f∼̂g but αg + (1− α)fÂ̂f , I can live with that.”

By contrast, we maintain that C-Independence is a reasonable inference rule

even if the preference propositions are not fully justified. The reason is that

mixing f and g with a constant act h can be viewed as a change of scale on the

expected utility axis, namely, adding a constant and multiplying by a positive

constant. Hence a decision maker might be embarrassed to simultaneously

express preferences such as f%̂g and αg + (1 − α)hÂ̂αf + (1 − α)h. Each

of these may be a possible decision on its own, but if h is a constant, the

conjunction of the two appears inconsistent.

Clearly, certain decision makers will find Independence a reasonable con-

dition for both %∗ and %̂, while others may find that even C-Independence is
too strong for both. How many decision makers actually accept Independence

for %∗ and (only) C-Independence for %̂ is an empirical question. For that

reason, the following results are only an example of the way the two notions

of rationality can be modeled.16

We will resort to an additional axiom:

Uncertainty Aversion: For every f, g ∈ F , if f∼̂g, then (1/2) f+(1/2) g%̂g.

The uncertainty aversion axiom has been introduced in Schmeidler (1986,

1989) for the subjective preference %̂, and it says that the decision maker
16For example, C-Independence can be weakened as in the variational preferences of Mac-

cheroni, Marinacci, and Rustichini (2006). In this case we expect that in Theorem 3 a

variational representation would hold for %̂.
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prefers “smoothing out” acts, replacing potential uncertainty about the states

of the world by objective risk about the outcomes to be obtained in each and

every state. To be more concrete, imagine that a decision maker expressed the

preference f∼̂g. This choice might have been due to symmetry considerations,
and it might have been completely arbitrary as well. However, the consultant

may now approach the decision maker and say, “If you express preference

fÂ̂ (1/2) f + (1/2) g, it would appear as if you like the uncertain situation.
That is, you could have reduced the dependence on unknown probabilities,

but you preferred not to. It’s fine for a gambler, but it doesn’t look very good

for a public figure like yourself.”

As in the case of C-independence, this reasoning may or may not convince

the decision maker. Our focus in this paper is on decision makers who do

accept this reasoning, namely, decision makers who find Uncertainty Aversion

a reasonable inference rule for subjective rationality propositions. Decision

makers who do not accept it might be modeled by more general decision rules,

as in Ghirardato, Maccheroni, and Marinacci (GMM, 2004).

The Uncertainty Aversion axiom has no counterpart for objective rational-

ity, because it is implied by the standard Independence axiom of AA, which is

assumed to be satisfied by objective rationality.

To conclude, objective rationality, %∗, satisfies versions of axioms that
appeared in Aumann (1962), Bewley (2002), GMMS (2003), and Girotto and

Holzer (2005). Subjective rationality, %̂, satisfies the axioms of Gilboa and
Schmeidler (1989).

2.4 Representation of objective and of subjective ratio-

nality

2.4.1 Representing partial orders

We remind the reader that objective rationality is assumed to be reflexive. As

observed above, in the presence of incompleteness, results stated in terms of

reflexive relations may not have immediate counterparts in terms of irreflexive
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relations and vice versa. A brief explanation may be in order.

Aumann (1962) assumed a reflexive relation, corresponding to our %∗. He
defined a “utility” for %∗ to be a function that respects both strict preference
Â∗ and indifference ∼∗. That is, if U : F → R is an Aumann-utility for %∗,
we have

f Â∗ g ⇔ [f %∗ g,¬g %∗ f ]⇒ U(f) > U(g)

and

f ∼∗ g ⇔ [f %∗ g, g %∗ f ]⇒ U(f) = U(g).

Aumann proved that such utilities exist, but he did not provide a char-

acterization of %∗. Clearly, one does not expect a single utility function to
fully characterize incomplete preferences. But a set of utilities might provide

a joint characterization. In particular, one may consider a “multiple utility”

representation by a set of functions U such that

f Â∗ g ⇔ [∀U ∈ U U(f) > U(g)] (1)

or

f %∗ g ⇔ [∀U ∈ U U(f) ≥ U(g)] . (2)

Bewley (2002) considers as primitive a strict preference relation, that is, an

irreflexive one, and provides a characterization as in (1), where each U is an

expected utility functional relative to a certain prior. Ghirardato, Maccheroni,

Marinacci, and Siniscalchi (GMMS, 2003) provide a representation as in (2),

and this is also the approach we adopt here. Thus, we begin with a reflexive

order as does Aumann (1962), but seek a complete characterization as provided

in Bewley (2002).

Using a reflexive relation as primitive makes some of the results simpler to

state. As opposed to Bewley’s model, we do not assume a finite state space,

and our results are not restricted to sets of probabilities that are all strictly

positive. However, it is important to observe that in our case strict preference

would not imply strict inequality for each and every representing functional
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U ∈ U . Explicitly, the representation (2) implies

f Â∗ g ⇔
"
∀U ∈ U U(f) ≥ U(g)

∃U ∈ U U(f) > U(g)

#
. (3)

If we were to consider a decision matrix in which rows correspond to elements

of F and columns — to functionals U in U , the representation we obtain, (3)
corresponds to weak dominance, whereas Bewley’s, (1) — to strict dominance.

2.4.2 Unanimity representation of objective rationality

The axioms we imposed on %∗ deliver a unanimity representation. Our first
result extends Bewley (2002) to an infinite state space (see discussion in Section

3.6).

Theorem 1 The following are equivalent:

(i) %∗ satisfies the Basic Conditions, C-Completeness, and Independence;

(ii) there exist a non-empty closed and convex set C∗ of probabilities on Σ

and a non-constant function u∗ : X → R such that, for every f, g ∈ F

f %∗ g iff
Z
S

Ef(s)u
∗ dp (s) ≥

Z
S

Eg(s)u
∗ dp (s) ∀p ∈ C∗. (4)

Furthermore, in this case C∗ is unique and u∗ is cardinally unique.17

Remark 1 There is a natural trade-off between Archimedean Continuity and

Independence. Theorem 1 holds unchanged if we replace Archimedean Conti-

nuity with the stronger:

(a) For all e, f, g, h ∈ F , the set {λ ∈ [0, 1] : λf +(1−λ)g %∗ λh+(1−λ)e}
is closed in [0, 1].

and Independence with the weaker:

(b) For every f, g, h ∈ F , and every α ∈ (0, 1), f %∗ g implies αf + (1 −
α)h %∗ αg + (1− α)h.

17We say that u∗ is cardinally unique if it is unique up to a positive linear transformation.
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2.4.3 Maxmin representation of subjective rationality

The axioms we imposed on %̂ deliver a maxmin rule.

Theorem 2 (Gilboa and Schmeidler, 1989, Theorem 1) The following

are equivalent:

(i) %̂ satisfies the Basic Conditions, Completeness, C-Independence, and

Uncertainty Aversion;

(ii) there exist a non-empty closed and convex set C of probabilities on Σ and

a non-constant function u : X → R such that, for every f, g ∈ F

f%̂g iff min
p∈C

Z
S

Ef(s)u dp (s) ≥ min
p∈C

Z
S

Eg(s)u dp (s) . (5)

Furthermore, in this case C is unique and u is cardinally unique.

2.5 Relating objective and subjective rationality

We now come to discuss the relationship between the two orders.

2.5.1 Consistency

Consistency: f %∗ g implies f%̂g.

Consistency seems to be rather compelling given our interpretation of the

two relations: if there are sound, objective reasons to weakly prefer f to g, we

will not allow the decision maker to exhibit the preference gÂ̂f . The choices
of the decision maker cannot contradict evidence or logical reasoning. If an

expert can prove that f is at least as good as g, given the decision maker’s

goals, the decision maker should obey this conclusion.18

This axiom can also be viewed as part of the definition of subjective ratio-

nality: intuitively, we argued that it is subjectively rational to prefer f to g if

the decision maker cannot be convinced that she is wrong in exhibiting such

18See Nehring (2000,2008) for similar reasoning.
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a preference. One way in which the decision maker can be proven wrong is by

pointing out internal inconsistencies to her. Indeed, the axioms imposed on %̂
rule out such potential embarrassments. However, the decision maker can be

proven wrong also directly, namely, if there are compelling, objective reasons

to exhibit the opposite preference. Viewed thus, the consistency axiom com-

plements the definition of subjective rationality, making sure that the decision

maker will be proven wrong neither by internal inconsistency nor by external

inconsistency.

Consistency can also be viewed as a reasoning template, or as an infer-

ence rule, provided the language allows preference propositions of both types

(objective and subjective).

Observe that we do not require here the strict counterpart of the consistency

axiom, namely that f Â∗ g would imply fÂ̂g. Given the representation that
we have in mind, this condition is somewhat less compelling: f Â∗ g means
that it is established that f is as good as g, and that the converse is not

established. But it does not mean that f was proven to be better than g — the

possibility of equivalence cannot be ruled out. Hence, a thoughtful decision

maker may admit that f Â∗ g but still hesitate to strictly prefer f to g.

2.5.2 Caution

Caution: For g ∈ F and f ∈ Fc, g 6%∗ f implies f%̂g.

This axiom implies that the decision maker in question is rather averse to

ambiguity. Comparing a potentially uncertain act g and a constant (risky)

act f , the decision maker first checks whether there are compelling reasons to

prefer g to f . If there are, namely, g %∗ f , the axiom is vacuous (and g%̂f
would follow from Consistency). If, however, no such reasons can be found,

the decision maker would opt for the risky act over the uncertain one.

This ambiguity aversion content of the Caution axiom clearly emerges in

Theorem 3, which shows that in our derivation Caution implies that %̂ satisfies
the Uncertainty Aversion axiom.19

19In fact, in Theorem 3 the maxmin representation is derived without assuming the Un-
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Observe that the decision maker may find that there are compelling reasons

to strictly prefer the risky act, that is, it may be the case that f Â∗ g. In this
case Caution would imply f%̂g, as would Consistency. However, the import of
the Caution axiom is in completing preferences when pure reason cannot do

the job. That is, if objective reasoning can neither suggest that f is preferred

to g nor vice versa, then Caution can be invoked to settle the matter by opting

for the sure thing.

This axiom is quite extreme in its aversion to uncertainty. See the discus-

sion in Subsection 3.2.

Observe also that Caution differs from the other axioms in that it does not

lend itself to a natural description in first order logic. Its antecedent, g 6%∗ f ,
is interpreted as “there does not exist a proof that g is at least as good as f”.

Such a statement is beyond the scope of the simple preference propositions we

were referring to in the discussion of the other axioms. However, the practical

meaning of Caution is quite intuitive. We can imagine a process by which the

consultant works with the decision maker and builds the relation %∗ as best
they can. At some point, they find that they ran out of preferences that can

be inferred from already existing ones and the AA axioms. At this point it is

meaningful to compare any g to any risky f and complete the relation between

them according to Caution.

2.5.3 Result

Theorem 3 The following are equivalent:

(i) %∗ satisfies the Basic Conditions, C-Completeness, and Independence,
%̂ satisfies the Basic Conditions, Completeness, C-Independence, and

jointly
³
%∗, %̂

´
satisfy Consistency and Caution;

(ii) There exist a non-empty closed and convex set C of probabilities on Σ

certainty Aversion axiom. Since the representation implies the Uncertainty Aversion axiom,

the latter is then implied by the other axioms in part (i) of Theorem 3. The only one among

these axioms that relates to uncertainty aversion is indeed the Caution axiom.
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and a non-constant function u : X → R such that, for every f, g ∈ F ,

f %∗ g iff
Z
S

Ef(s)u dp (s) ≥
Z
S

Eg(s)u dp (s) ∀p ∈ C (6)

and

f%̂g iff min
p∈C

Z
S

Ef(s)u dp (s) ≥ min
p∈C

Z
S

Eg(s)u dp (s) . (7)

Furthermore, in this case C is unique and u is cardinally unique.

Notice that we do not need to assume that %̂ satisfies Uncertainty Aver-

sion. In fact, its connection with %∗ through Caution already guarantees that
%̂ satisfies this property. In other words, Caution can be viewed as “fully”

capturing uncertainty aversion in this dual setting.

For this reason, Theorem 3 can be also viewed as providing a novel foun-

dation for the maxmin representation (5), based on the interplay of the two

preferences %∗ and %̂.

Remark 2 Consider the following, stronger version of Caution:

(a) For g ∈ F and f ∈ Fc, g 6%∗ f implies fÂ̂g.

Conditions (i) and (ii) of Theorem 3 are equivalent to the following:

(iii) %∗ satisfies the conditions (i) of Theorem 1, %̂ satisfies Preorder, Archimedean
Continuity, and Completeness. Jointly, they satisfy Consistency and the

above condition (a).

3 Discussion

3.1 Observability

One of the goals of characterization theorems as those presented above is to

relate theoretical concepts to observable ones. For instance, Theorems 1 and 2

can be viewed as relating an observable relation — %∗ and %̂, respectively — to

27



a utility function and a set of probability measures such that these mathemat-

ical constructs represent the observable relation via an appropriate condition.

Adopting this view, one may ask, which is the revealed preference relation, %∗

or %̂?
It is probably best to interpret our results as suggesting that both%∗ and %̂

are observable, though not necessarily through choice behavior alone. Consider

a decision maker who consults with experts. After a series of discussions, the

decision maker writes down the preferences of which she is sure, %∗. If this
relation is complete, she is done. If not, she seeks to complete her preferences

and generate %̂. Alternatively, one may consider the advice of several experts,
and view %∗ as the relation that reflects the unanimity among them, whereas
%̂ designates the eventual preference, which may be a result of compromise.

Viewed thus, both relations %∗ and %̂ are observable, though “observability”
includes the possibility of preferences being stated, not only revealed through

action.

Extending the notion of observability beyond pure choice data seems es-

sential for the discussion of incomplete preference, as well as the process by

which preferences are generated. Indeed, a pure revealed preference approach

would hold that, since choice is eventually made, incompleteness cannot be

observed.20 If we wish to discuss incomplete preferences, and the process by

which preferences are formed, that is, a model in which incomplete preferences

become complete, we need to formally refer to other entities beyond the final

choices that are observed.

Our main goal, however, is not to represent preferences for their use in

descriptive models, but to enrich the language in which the dialog between the

20Completeness in fact means a little more than that a certain choice has been observed.

It also implies that the same choice is expected to be observed in similar choice situations.

But if the repeated choice is modeled formally, it is again not obvious how incompleteness

can be observed.

Danan and Ziegelmeyer (2006), for example, propose an interesting revelation approach

to incompleteness by allowing subjects to postpone their commitment to alternatives at a

small cost.
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policymaker and her advisors is conducted. That is, our main application is

normative in spirit. We do not think of the economist as an outsider observer,

analyzing data generated by “black-box” decision makers, but as an expert

whose advice is sought in an open discussion. In this interpretation, the various

axioms imposed on %∗ and on %̂ are not viewed as scientific conditions to be
tested for their descriptive accuracy, but as reasoning templates or inference

rules, to be used in an open discussion between the expert and the decision

maker.

Having said that, we mention that if we observe only the decision maker’s

final choice, %̂, under the assumptions of Theorem 3, %∗ is also indirectly
observable. In fact, GMM (2004) showed that, in this case,21

f %∗ g iff λf + (1− λ)h%̂λg + (1− λ)h ∀λ ∈ [0, 1] , h ∈ F.

We discuss the relationship between the two papers in subsection 3.6.

3.2 Extremity of the maxmin rule

The Caution axiom is rather extreme. It says that, when an uncertain act is

compared to a risky one, unless we know for sure that the former dominates

the latter, we should prefer the latter. If, for example, we have no information

whatsoever, so that the entire simplex ∆(S) is considered possible, we may

set C = ∆(S). In this case the relation %∗ corresponds to weak dominance,
and %̂ — to the maxmin rule (without probabilities). Consider an act g such

that Eg(s)u = 1 for all s 6= s0, and Eg(s0)u = −ε for some state s0 and a small
ε > 0. Let f be a constant act with expected utility of zero. Act g has a higher

expected utility than does f for almost all priors in C = ∆(S). Still, for some

priors the expected utility of g is below that of f , and Caution dictates that

f be preferred to g.

This extreme nature of Caution is reflected in the extremity of the maxmin

rule, when the set of probabilities C is interpreted as representing “hard ev-

21A similar identification result was proposed by Klaus Nehring in a talk in 1996.
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idence”. Indeed, it has often been argued that evaluating an act f by its

worst-case expected utility is unreasonable.

However, the set C in Gilboa and Schmeidler (1989) is derived from prefer-

ences. It need not coincide with a set of probabilities that are externally given

to the decision maker. The set C is defined in behavioral terms, as a represen-

tation of a binary relation %̂, and it need not coincide with any cognitive notion
of a set of probabilities. Gajdos, Hayashi, Tallon, and Vergnaud (GHTV, 2007)

study the maxmin model given different sets of objectively provided informa-

tion, and axiomatize a maxmin rule with respect to a class of probabilities

that is a subset of the probabilities provided to the decision maker. That is,

their model allows the set of probabilities derived from observed behavior to

be a strict subset of the set that is cognitively available.

By contrast, if we think of objective rationality as a cognitive concept, and,

specifically, view %∗ as the preferences that are justified by all probabilities
that are considered possible, then Caution does take a strict interpretation of

the set of priors, identifying the set of measures used in the maxmin rule with

the set of measures used to define objective rationality.

It follows that one may consider alternatives to the axiom of Caution. Sim-

ply dropping the axiom allows a representation of%∗ by one set of probabilities,
C∗, as in (6), and a representation of %̂ by another set of probabilities, C, as
in (7), where C ⊆ C∗ (see the proof of Theorem 3 in the appendix). One may

formulate alternative axioms that will correspond to the way that the decision

maker selects a subset of priors C as in GHTV (2007).

Another possible direction would be to impose different axioms on subjec-

tive rationality, %̂. For example, one may assume that this relation involves
some aggregation of expected utilities based on second-order probabilities, as

in Klibanoff, Marinacci, and Mukerji (2005) or Seo (2007).

Yet another possibility is to assume that the decision maker’s notion of

internal consistency is structured enough to make %̂ an Anscombe-Aumann

relation. That is, subjectively rational decisions can be elaborate enough to

allow subjective expected utility representation. One obvious way to do so
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would be for the decision maker to choose a prior out of the set C∗, and to

maximize expected utility with respect to this prior. In fact, any other way of

complying with Anscombe-Aumann axioms and Consistency is observationally

equivalent to such a selection of a prior.

We believe that Consistency is a fundamental axiom. In fact, it may be

viewed as part of the definition of %∗ and %̂: if the former does not imply
the latter, it is not clear that these relations can be thought of as objective

and subjective rationality of the same decision maker. By contrast, the other

axioms presented here should be viewed as examples. One may consider dif-

ferent axioms on %∗ and on %̂, and certainly also alternatives to the axiom of
Caution.

3.3 Rationality

The term “rationality” has been used in many ways. Economic theory tends to

identify it with constrained optimization of a utility function, and of expected

utility in face on uncertainty. (See Arrow, 1986.) The tradition in philoso-

phy, by contrast, holds that rationality should mean much more than internal

consistency.22 Psychologists, on the other hand, have challenged the concept

as too strong to describe human behavior. Simon (1957) introduced the con-

cept of “bounded rationality”, and Kahneman and Tversky (1979, Tversky

and Kahneman, 1973, 1974, 1981) famously showed failures of basic axioms

of rationality. Whereas descriptive failures of rationality need not imply that

the concept should be weakened, many authors feel that rationality should be

defined in a way that makes in an attainable goal. In particular, both Aumann

(1962) and Bewley (2002) argue that there is nothing irrational in having in-

complete preferences. Similarly, Gilboa, Postlewaite, and Schmeidler (2004)

challenge Savage’s axioms as too demanding.

We suggest to define rationality in a way that may simplify the theoreti-

22Some modern philosophical essays are closer to the economic notion of rationality. See,

for example, Weirich (2007), who offers a discussion of different notions of rationality in the

context of group decisions.

31



cal discussion of decisions and its interaction with actual decisions. A useful

definition of rationality would help us distinguish situations in which an ex-

pert, or a decision theorist can change the minds of the decision makers she

addresses, from situations in which decision makers find the theory irrelevant.

For example, decision makers who are sensitive to framing effects (Tversky and

Kahneman, 1981) tend to be embarrassed when their decisions are explained

to them, and they wish to change these decisions. Thus, a decision theorist

can convince such decision makers in the normative appeal of classical decision

theory, which can help avoid the pitfalls of framing effects. By contrast, chess

players who fail to play chess optimally are rarely embarrassed by this fact. We

may dub them irrational, or boundedly rational, but no matter how badly we

insult them, they will not change their behavior, simply because they cannot

figure out the optimal strategies in chess.

Following this pragmatic line of thought, Gilboa and Schmeidler (2001)

suggested to use the term “rationality” as follows: a mode of behavior is

irrational for a decision maker if, when exposed to the analysis of her behavior,

the decision maker feels embarrassed, or wishes to change her choices, and so

forth. Clearly, this definition is subjective and qualitative. A mode of behavior

might be rational for some decision makers, and not to others. Moreover, less

intelligent decision makers may fail to understand the analysis of their choices,

or the abstract reasoning involved in certain axioms, and may therefore not

exhibit any regret or embarrassment. As a result, they may appear more

rational than intelligent decision makers who make the same decisions, but

can understand why these decisions are not coherent.

It may appear unfair that, according to this definition, it is easier to be

rational if one is less intelligent. But our point of view is that the term “ra-

tionality” should not be used as a medal of honor, bestowed upon smart de-

cision makers. Rather, our definitions should facilitate the discussion between

decision makers, experts, and decision theorists. As such, the definition of

rationality suggested above helps categorize observed deviations from classical

decision theory. If a deviation is irrational, explaining the theory may change
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behavior, and thus the theory may be useful as a normative one. If, on the

other hand, no amount of explanation helps, the theory is not very successful

as a normative one, and the theorist should better accept that fact, and devise

a more acceptable one. The definition of rationality may thus help us decide

what we should do, as theorists, in the face of descriptive failures of the theory,

in a way that retains the ultimate sovereignty of the decision maker.

The concept of “rationality” in Gilboa and Schmeidler (2001) corresponds

to subjective rationality in the present context. A decision maker who is em-

barrassed by the analysis of her decisions is not subjectively rational; she can

be convinced to change her decisions. How can she be so embarrassed? The

present paper suggests two ways: first, her decisions may not be internally

coherent, as in the case of cyclical preferences. The axioms on %̂ are supposed
to rule out these internally incoherent patterns of choice. Second, the decisions

may appear ridiculous because they are at odds with evidence and basic rea-

soning, that is, they do not satisfy external coherence. The consistency axiom

guarantees that this will not be the case: if there is strong evidence that f is

preferred to g, namely, f %∗ g, then we also require f%̂g.
In this context, the present paper refines the definition of rationality by

adding the notion of objective rationality. Imagining a dialogue between a

decision maker and her advisor, a mode of behavior is subjectively rational if

the advisor cannot convince the decision maker to change it. It is objectively

rational if the advisor can convince the decision maker to adopt it. One should

expect that there will be a grey area between the two, namely that certain

modes of behavior will not be irrational enough to be discarded, yet not rational

enough to be adopted.

The two notions of rationality may be applied to other contexts as well. In

particular, one may delve into the structure of the relation %∗ and ask what
does it mean to “prove”, based on evidence, scientific reasoning, and so forth,

that one act is preferred to another. How should evidence be used in such

a “proof”? Are there more or less rational ways to interpret and use data

for inference? Should one perhaps have a collection of objectively rational
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relations, depending on one’s degree of certainty in a “proof”, as there are

degrees of significance in hypotheses testing? Such questions are beyond the

scope of the present paper.

3.4 Objectivity

The term “objectivity” should be understood in the context of decision and

economic theory in the 20th century. The theory assumes that both utility

and probability can only be subjective terms, and no reference to a “truly”

objective reality is ever made in it. Anscombe and Aumann (1963) assumed

that all probabilities are subjective, and used the term “objective” to refer to

a probability measure that is shared by all individuals considered. That is,

they used the term “objective” where authors in other disciplines would have

used “intersubjective” at most.

Our definition of “objectivity” (as in Gilboa and Schmeidler, 2001) requires

more than a potentially coincidental agreement among subjective terms. We

assume that a view is objective if it is held by the relevant individuals, and if

they believe that other, “reasonable” individuals would also share this view.

Thus, “objectivity” means an agreement that is not coincidental, and that is

believed to be a view than others would be convinced of.

Clearly, it remains a matter of subjective judgment whether another per-

son is “reasonable” and whether such a reasonable person would indeed be

convinced of a particular view. Thus, our notion of “objectivity” remains ulti-

mately subjective. But this subjective assessment is at a higher order of belief,

that is, a belief about the beliefs that others would hold.

3.5 Incompleteness of tastes and of beliefs

This paper deals with “incompleteness of beliefs”, namely, with incompleteness

of preferences that is due only to the absence of information, for which the de-

cision maker does not know what the probabilities of various states of the world

are. The completeness axiom has also been challenged under certainty, due to
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the fact that the decision maker simply may not have well-defined preferences.

This type of incompleteness, which may be dubbed “incompleteness of tastes”,

includes the models by Aumann (1962), Kannai (1963), and, more recently, Ok

(2002), Dubra, Maccheroni, and Ok (2004), and Mandler (2005). Ok, Ortol-

eva, and Riella (2008) suggest a model in which there is both incompleteness

of tastes and of beliefs.

Incompleteness of tastes is explicitly excluded by our C-Completeness as-

sumption. Observe that, in principle, one might reduce incompleteness of

tastes to incompleteness of beliefs. In some cases, such a reduction is rather

intuitive. For example, suppose that a decision maker is about the rent a car,

and is offered a choice between two models at the same cost. One is smaller and

easier to park, the other is more convenient for long trips. The decision maker

may find the choice difficult to make, partly because she is unsure about her

travel plans, the amount of time she will spend in the car due to traffic jams,

and so forth. In this case it is natural to argue that the “certain” outcome of

a car is, in fact, an uncertain act, providing different degrees of well-being at

various states of the world.

In principle, such a reduction can always be performed, by introducing a

“well-being” function whose maximization is tautologically the objective of

the decision maker, and by modeling outcomes that cannot be ranked as acts

whose outcomes are not known. But such a reduction is not always very

intuitive. For example, suppose that a decision maker is at a restaurant she

knows well, and she has to make a choice between a steak or a lobster. She

is not concerned with long-term effects of this choice, nor does she have any

meaningful uncertainty about the quality of the two dishes. She simply can’t

decide what she feels like having. In such a case, reduction of incompleteness

of tastes to incompleteness of beliefs may not generate the most convenient or

most intuitive model.

Our general approach, and, in particular, the two definitions of rationality,

may apply to incompleteness of tastes as well. Indeed, the analysis above may

benefit from generalizations to deal with incompleteness of preferences that
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derives both from incompleteness of beliefs and of tastes.

3.6 Related literature

GMM (2004) model a preference relation %̂ which may exhibit non-neutrality
to ambiguity, and they derive from it a relation that captures “unambiguous

preferences”. This relation, which they also denote by %∗, is incomplete when-
ever %̂ fails to satisfy the independence axiom. Moreover, when %̂ is a maxmin
expected utility relation, %∗ turns out to be a unanimity relation with respect
to the same set of priors.

The present paper is very close to GMM (2004) in terms of the mathemati-

cal structure, and we have indeed relied on GMM’s derivation of the unanimity

rule (as opposed to the earlier work by Bewley, 2002). However, the emphasis

is slightly different. In our case, both %̂ and %∗ are assumed as primitive
relations, and the focus is on the relationships between them, as a step in the

direction of modeling the reasoning process behind the completion of %∗ to a
subjectively rational, but complete order %̂. If, for instance, one were to re-
place Caution by the axiom that %̂ satisfies independence, the derived relation
%∗ in GMM would equal %̂. By contrast, our model would still distinguish
between subjective and objective rationality, and may be used to discuss the

process by which a particular prior (corresponding to %̂) is selected out of the
set of possible priors (corresponding to %∗).
Nehring (2000, 2008) also discusses the tension between the inability to

have complete preferences that are rationally derived, and the need to make

decisions. His model also deals with a pair of relations and the connection

between them. In particular, he suggests that “contexts” can be used to choose

a way of completing a relation, and has an axiom similar to our Consistency.

Formally, our unanimity representation result for %∗, though independent,
is very similar to Girotto and Holzer (2005): the setup is slightly different and

the proof is simpler.

Rubinstein (1988) discusses preferences between simple lotteries, each guar-

anteeing a monetary prize x with a probability p, and 0 with probability (1−p).
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He assumes two similarity relations, one on the interval of monetary prizes,

and the other — on the interval of probabilities, and imposes a certain coher-

ence between the preferences over lotteries and these similarity relations. Our

approach is similar to Rubinstein’s (1988) in that we assume more than one

preference relation as primitive, in an attempt to gain some insight into the

process by which preferences are generated. The two models deal, however,

with different problems.

Another model that starts out with more than one relation is proposed

by Mandler (2005). He suggests to distinguish between “psychological pref-

erences”, which may be incomplete, and “revealed preferences”, which are

complete but may be intransitive. Our decision maker is closer to standard ra-

tionality assumptions in two ways: first, the incomplete preferences we assume

are due to absence of information, or the inability to reject hypotheses. Sec-

ond, the complete preferences in our model are supposed to be “subjectively”

rational, and, in particular, transitive.

Danan (2006) also deals with two relations, cognitive and behavioral. Cog-

nitive strict preference results in behavioral preference, but cognitive indiffer-

ence might still be observed as a choice of a particular alternative, and thus

appear as strict preference. In his language, our focus is on incompleteness of

cognitive preferences. That is, we do not deal with the gap between the “true”

preferences and their revelation in choice behavior, but with the problem of

generating preferences in the first place.
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4 Appendix: Proofs and related material

B0(Σ) is the vector space generated by the indicator functions of the elements

of Σ, endowed with the supnorm. We denote by ba(Σ) the set of all bounded,

finitely additive set functions on Σ, and by ∆(Σ) the set of all probabilities

on Σ. As it is well known, ba(Σ), endowed with the total variation norm, is

isometrically isomorphic to the norm dual of B0(Σ), in this case the weak*

topology, w∗, of ba(Σ) coincides with the event-wise convergence topology.

Given a non singleton interval K in the real line (whose interior is denoted

K◦) we denote by B0(Σ,K) the subset of the functions in B0(Σ) taking values

in K. Clearly, B0(Σ) = B0(Σ,R).
We recall that a binary relation & on B0(Σ, K) is:

• a preorder if it is reflexive and transitive;

• continuous if ϕn & ψn for all n ∈ N, ϕn → ϕ and ψn → ψ imply ϕ & ψ;

• Archimedean if the sets {λ ∈ [0, 1] : λϕ+ (1− λ)ψ & η} and {λ ∈ [0, 1] :
η & λϕ+ (1− λ)ψ} are closed in [0, 1] for all ϕ, ψ, η ∈ B0(Σ,K);

• affine if for all ϕ, ψ, η ∈ B0(Σ,K) and α ∈ (0, 1), ϕ & ψ iff αϕ+(1−α)η &
αψ + (1− α)η;

• monotonic if ϕ ≥ ψ implies ϕ & ψ;

• non-trivial if there exists ϕ, ψ ∈ B0(Σ,K) such that ϕ & ψ but not

ψ & ϕ.

Proposition 1 (GMM, 2004, Proposition A.1) For i = 1, 2, let Ci be

nonempty subsets of ∆ (Σ) and &i be the relations defined on B0(Σ, K) by

ϕ &i ψ ⇐⇒
Z
S

ϕdp ≥
Z
S

ψdp ∀p ∈ Ci.

Then

ϕ &i ψ ⇐⇒
Z
S

ϕdp ≥
Z
S

ψdp ∀p ∈ cow
∗
(Ci),

and the following statements are equivalent:
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(i) ϕ &1 ψ =⇒ ϕ &2 ψ for all ϕ and ψ in B0(Σ,K).

(ii) cow
∗
(C2) ⊆ cow

∗
(C1).

(iii) infp∈C2
R
S
ϕdp ≥ infP∈C1

R
S
ϕdp for all ϕ ∈ B0(Σ,K).

Proposition 2 (GMM, 2004, Proposition A.2) & is a non-trivial, con-

tinuous, affine, and monotonic preorder on B0(Σ,K) if and only if there exists

a non-empty subset C of ∆(Σ) such that

ϕ & ψ ⇐⇒
Z
S

ϕdp ≥
Z
S

ψdp ∀p ∈ C. (8)

Moreover, cow
∗
(C) is the unique weak* closed and convex subset of ∆(Σ) rep-

resenting & in the sense of Eq. (8).

4.1 Lemmas

To prove our results we need some lemmas.

Lemma 1 If K = R and & is a preorder, then & is affine iff ϕ & ψ implies

γϕ+ η & γψ + η for all η ∈ B0(Σ) and all γ ∈ R+.

Proof. If & is affine and ϕ & ψ, then for all η ∈ B0(Σ) we have

ϕ+ η =
1

2
ϕ+

1

2
(ϕ+ 2η) & 1

2
ψ +

1

2
(ϕ+ 2η)

=
1

2
ϕ+

1

2
(ψ + 2η) & 1

2
ψ +

1

2
(ψ + 2η) = ψ + η.

While if γ ≥ 0 and per contra γϕ 6& γψ, it cannot be γ = 0, 1. If γ ∈ (0, 1),
we have

γϕ+ (1− γ) 0 6& γψ + (1− γ) 0,

which is absurd since ϕ & ψ and & is affine. Else γ > 1, and γϕ 6& γψ together

with affinity delivers

ϕ =
1

γ
(γϕ) +

µ
1− 1

γ

¶
0 6& 1

γ
(γψ) +

µ
1− 1

γ

¶
0 = ψ,
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which is absurd.

Conversely, it is obvious that ϕ,ψ, η ∈ B0(Σ), α ∈ (0, 1), and ϕ & ψ imply

αϕ+(1−α)η & αψ+(1−α)η. On the other hand ϕ,ψ, η ∈ B0(Σ), α ∈ (0, 1),
and αϕ+ (1− α)η & αψ + (1− α)η imply

ϕ =
1

α
(αϕ+ (1− α)η) +

α− 1
α

η & 1

α
(αψ + (1− α)η) +

α− 1
α

η = ψ.

¥

Lemma 2 If & is an affine preorder on B0(Σ,K), then there exists a unique

affine preorder &` on B0(Σ) that coincides with & on B0(Σ,K). Moreover, if &
is monotonic (resp. Archimedean), then &` is monotonic (resp. Archimedean)

too.

Proof. Suppose first 0 ∈ K◦. We begin with a Claim:

Claim. Given any ϕ,ψ ∈ B0(Σ,K), the following facts are equivalent:

(i) ϕ & ψ,

(ii) there exists α > 0 such that αϕ, αψ ∈ B0(Σ, K) and αϕ & αψ,

(iii) αϕ & αψ for all α > 0 such that αϕ, αψ ∈ B0(Σ,K).

Proof of the Claim. (i)⇒(ii) and (iii)⇒(i) are obvious. We show (ii)⇒(iii).
By (ii), there exists α > 0 such that αϕ, αψ ∈ B0(Σ,K) and αϕ & αψ. If

0 ≤ β ≤ α, then by affinity

βϕ =
β

α
αϕ+

µ
1− β

α

¶
0 & β

α
αψ +

µ
1− β

α

¶
0 = βψ,

i.e., βϕ & βψ. Therefore, if (iii) does not hold, there exists β > α > 0 such

that βϕ, βψ ∈ B0(Σ,K) and βϕ 6& βψ. Then by affinity

αϕ =
α

β
βϕ+

µ
1− α

β

¶
0 6& α

β
βψ +

µ
1− α

β

¶
0 = αψ,

a contradiction. ¤
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If ϕ, ψ ∈ B0(Σ), set ϕ &` ψ ⇐⇒ αϕ & αψ for some α > 0 such that

αϕ,αψ ∈ B0(Σ,K). By the Claim, &` is a well defined binary relation on

B0(Σ), which coincides with & on B0(Σ, K). Moreover, ϕ &` ψ if and only if

αϕ & αψ for all α > 0 such that αϕ,αψ ∈ B0(Σ, K). Next we show that &`

is an affine preorder (monotonic if & is monotonic).
Since 0 ∈ K◦, then for all ϕ ∈ B0(Σ) there exists α > 0 such that αϕ ∈

B0(Σ, K), reflexivity of & implies that αϕ & αϕ and ϕ &` ϕ. Thus &` is

reflexive.

If ϕ,ψ, η ∈ B0(Σ) are such that ϕ &` ψ and ψ &` η, take α > 0 such that

αϕ,αψ, αη ∈ B0(Σ,K), then

αϕ & αψ and αψ & αη

thus αϕ & αη and ϕ &` η. Thus &` is transitive.

If ϕ,ψ, η ∈ B0(Σ) and λ ∈ (0, 1), take α > 0 such that αϕ,αψ, αη ∈
B0(Σ, K), then

α (λϕ+ (1− λ)η) = λ (αϕ) + (1− λ) (αη) ∈ B0(Σ,K),

α (λψ + (1− λ)η) = λ (αψ) + (1− λ) (αη) ∈ B0(Σ, K).

Then

ϕ &` ψ ⇐⇒ αϕ & αψ ⇐⇒ λ (αϕ) + (1− λ) (αη) & λ (αψ) + (1− λ) (αη)

⇐⇒ α (λϕ+ (1− λ)η) & α (λψ + (1− λ)η)

⇐⇒ λϕ+ (1− λ)η &` λψ + (1− λ)η.

Thus &` is affine.

Assume now that & is monotonic. If ϕ,ψ ∈ B0(Σ) are such that ϕ ≥ ψ,

take α > 0 such that αϕ, αψ ∈ B0(Σ, K), then αϕ ≥ αψ and monotonicity of

& delivers αϕ & αψ and ϕ &` ψ. Thus &` monotonic.

As to uniqueness, let &^ be an affine preorder on B0(Σ) that coincides with

& onB0(Σ, K). For all ϕ,ψ ∈ B0(Σ), take α > 0 such that αϕ,αψ ∈ B0(Σ,K),

then the Claim (applied to &^), the fact that &^ coincides with & on B0(Σ,K),
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and the definition of &` guarantee that

ϕ &^ ψ ⇐⇒ αϕ &^ αψ ⇐⇒ αϕ & αψ ⇐⇒ ϕ &` ψ,

that is, &^ coincides with &` on B0(Σ).

Suppose 0 /∈ K◦. Given any k ∈ K◦, for ϕ,ψ ∈ B0(Σ,K − k) set ϕ &k

ψ ⇐⇒ ϕ + k & ψ + k. It is easy to verify that &k is an affine preorder on

B0(Σ, K−k) (monotonic if & is monotonic). Since 0 belongs to the interior of
K − k, by what we just proved there is a unique affine preorder &`

k on B0(Σ)

that coincides with &k on B0(Σ, K − k) (monotonic if & is monotonic). Such
extension coincides with & on B0(Σ, K), and it is the unique affine preorder

on B0(Σ) with this property.

Finally, assume & is Archimedean, and denote by &` the unique affine pre-

order on B0(Σ) which coincides with & on B0(Σ,K). Notice that, by Lemma

1, if ϕ,ψ ∈ B0(Σ) and α > 0, β ∈ R are such that αϕ+β, αψ+β ∈ B0(Σ,K),

then

ϕ &` ψ ⇐⇒ αϕ+ β &` αψ + β ⇐⇒ αϕ+ β & αψ + β.

Now, for all ϕ, ψ, η ∈ B0(Σ) take α > 0 and β ∈ R such that αϕ + β, αψ +

β, αη + β ∈ B0(Σ,K). For all λ ∈ [0, 1],

α (λϕ+ (1− λ)ψ) + β = λ (αϕ+ β) + (1− λ) (αψ + β) ∈ B0(Σ,K)

and

λϕ+ (1− λ)ψ &` η ⇐⇒ α (λϕ+ (1− λ)ψ) + β & αη + β

⇐⇒ λ (αϕ+ β) + (1− λ) (αψ + β) & αη + β.

Then {λ ∈ [0, 1] : λϕ+(1−λ)ψ &` η} coincides with {λ ∈ [0, 1] : λ (αϕ+ β)+

(1−λ) (αψ + β) & αη+β} which is closed since & is Archimedean. A similar
argument shows that {λ ∈ [0, 1] : η &` λϕ+ (1− λ)ψ} is closed too. Thus &`

is Archimedean. ¥

Lemma 3 An affine and monotonic preorder on B0(Σ, K) is continuous if

and only if it is Archimedean.
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Proof. Obviously, continuity implies the Archimedean property.

Conversely, assume& is Archimedean. Since& is monotonic and Archimedean,
then the affine preorder &` on B0(Σ) that coincides with & on B0(Σ, K) is

monotonic and Archimedean too (Lemma 2).

If ϕn &` 0 for all n ∈ N and ϕn → ϕ, letM = sups∈S ϕ (s), which is indeed

a maximum. For all ε ∈ (0, 1) there is n such that

ϕn ≤ ϕ+ εχS ≤ ϕ+ ε ((M + 1)χS − ϕ) .

In fact, MχS ≥ ϕ implies (M + 1)χS − ϕ ≥ χS.23 Therefore, for all ε ∈ (0, 1)
there is n ∈ N such that

ε[(M + 1)χS] + (1− ε)ϕ = ϕ+ ε ((M + 1)χS − ϕ) ≥ ϕn &` 0.

Monotonicity of &` delivers that, for all ε ∈ (0, 1),

ε[(M + 1)χS] + (1− ε)ϕ &` 0. (9)

But &` is Archimedean, hence the set of all ε such that (9) holds is closed,

and, containing (0, 1), it also contains 0, in particular ϕ &` 0.

Conclude that, if ϕn → ϕ, ψn → ψ, and ϕn &` ψn for all n ∈ N, then
ϕn − ψn &` 0 for all n ∈ N and ϕn − ψn → ϕ − ψ; therefore ϕ − ψ &` 0,

that is ϕ &` ψ. Thus &` is continuous, which immediately implies that & is

continuous too. ¥

Now Lemma 3 and Proposition 2 deliver:

Corollary 1 & is a non-trivial, Archimedean, affine, and monotonic preorder
on B0(Σ,K) if and only if there exists a nonempty subset C of ∆(Σ) such that

ϕ & ψ ⇐⇒
Z
S

ϕdp ≥
Z
S

ψdp ∀p ∈ C. (10)

Moreover, cow
∗
(C) is the unique weak* closed and convex subset of ∆(Σ) rep-

resenting & in the sense of Eq. (10).

All the results we have proved so far hold more generally ifB0(Σ) is replaced

by any normed Riesz space with unit.
23χS is the constant function taking value 1 on S.
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4.2 Proof of Theorem 1

Assume %∗ is a preorder satisfying Monotonicity, Archimedean Continuity,
Non-triviality, C-Completeness, and Independence.

Archimedean Continuity, C-Completeness, and Independence, together with

the von Neumann-Morgenstern Expected Utility Theorem (see the axiomat-

ics of Herstein and Milnor, 1953), imply that there exists a cardinally unique

function u∗ : X → R such that P %∗ Q iff EPu∗ ≥ EQu∗, provided P,Q ∈ L.

Monotonicity and Non-triviality imply that u∗ is not constant. In what follows

we write U (R) instead of ERu∗ if R ∈ L. Clearly U : L → R is affine and
non-constant.

If f ∈ F then U ◦ f ∈ B0 (Σ, U (L)). Conversely, if ϕ ∈ B0 (Σ, U (L)),

then ϕ (s) = U (Qi) if s ∈ Ai for suitable Q1, ..., QN ∈ L and a partition

{A1, A2, ..., AN} of S in Σ. Therefore, setting f (s) = Qi if s ∈ Ai we have

ϕ = U ◦ f . We can conclude that B0 (Σ, U (L)) = {U ◦ f : f ∈ F}. Moreover,
U ◦ f = U ◦ g iff U (f (s)) = U (g (s)) for all s ∈ S iff f (s) ∼∗ g (s) for all
s ∈ S, which by Monotonicity implies f ∼∗ g.
For ϕ, ψ ∈ B0 (Σ, U (L)), set

ϕ &∗ ψ ⇐⇒ f %∗ g for some f, g ∈ F such that ϕ = U ◦ f, ψ = U ◦ g.

By what we have just observed, &∗ is well defined on B0 (Σ, U (L)) and it is

characterized by

ϕ &∗ ψ ⇐⇒ f %∗ g for all f, g ∈ F such that ϕ = U ◦ f, ψ = U ◦ g.

For all ϕ = U ◦ f ∈ B0 (Σ, U (L)), f %∗ f implies ϕ &∗ ϕ. Thus &∗ is
reflexive.

If ϕ = U ◦ f, ψ = U ◦ g, η = U ◦ h ∈ B0 (Σ, U (L)), ϕ &∗ ψ and ψ &∗ η
amount to f %∗ g and g %∗ h, thus f %∗ h and ϕ &∗ η. Thus &∗ is transitive,
and a preorder.

Since there are f, g such that f Â∗ g (by Non-triviality of%∗), then U◦f >∗

U ◦ g and &∗ is non-trivial.
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If ϕ = U ◦ f, ψ = U ◦ g, η = U ◦ h ∈ B0 (Σ, U (L)) and α ∈ (0, 1), then

ϕ &∗ ψ ⇐⇒ f %∗ g ⇐⇒ αf + (1− α)h %∗ αg + (1− α)h

⇐⇒ U ◦ (αf + (1− α)h) &∗ U ◦ (αg + (1− α)h)

⇐⇒ αϕ+ (1− α)η &∗ αψ + (1− α)η.

Therefore &∗ is affine.
If ϕ = U ◦ f, ψ = U ◦ g, η = U ◦ h ∈ B0 (Σ, U (L)), then

{λ ∈ [0, 1] : λϕ+ (1− λ)ψ &∗ η} = {λ ∈ [0, 1] : U ◦ (λf + (1− λ)g) &∗ U ◦ h}
= {λ ∈ [0, 1] : λf + (1− λ)g %∗ h}

is closed in [0, 1] because of Archimedean Continuity of %∗, and an analogous
argument shows that {λ ∈ [0, 1] : η &∗ λϕ+ (1− λ)ψ} is closed too. Thus &∗

is Archimedean.

If ϕ = U ◦ f, ψ = U ◦ g ∈ B0 (Σ, U (L)) are such that ϕ ≥ ψ, then

U (f (s)) ≥ U (g (s)) for all s ∈ S. Therefore f (s) %∗ g (s) for all s ∈ S, and

by Monotonicity of %∗, f %∗ g, that is ϕ &∗ ψ. Thus &∗ is monotonic.
By Corollary 1, there exists a unique non-empty weak* closed and convex

subset C∗ of ∆(Σ) such that, for ϕ, ψ ∈ B0 (Σ, U (L)),

ϕ &∗ ψ ⇐⇒
Z
S

ϕdp ≥
Z
S

ψdp ∀p ∈ C∗,

therefore, for f, g ∈ F ,

f %∗ g ⇐⇒ U ◦ f &∗ U ◦ g ⇐⇒
Z
S

(U ◦ f) dp ≥
Z
S

(U ◦ g) dp ∀p ∈ C∗

⇐⇒
Z
S

Ef(s)u
∗ dp (s) ≥

Z
S

Eg(s)u
∗ dp (s) ∀p ∈ C∗.

The rest is trivial.

Alternative Axioms: Next we call Strong Archimedean Continuity require-

ment (a) of Remark 1 and Weak Independence requirement (b) of Remark

1. Clearly, Strong Archimedean Continuity implies Archimedean Continuity

while Shapley and Baucells (1998, Lemma 1.2) show that Preorder, Strong
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Archimedean Continuity and Weak Independence imply Independence. Thus

representation (4) holds if Archimedean Continuity and Independence are re-

placed by Strong Archimedean Continuity and Weak Independence. Con-

versely, representation (4) implies Strong Archimedean Continuity and (Weak)

Independence.

4.3 Proof of Theorem 3

Assume that

• %∗ is a preorder satisfying Monotonicity, Archimedean Continuity, Non-
triviality, C-Completeness, and Independence;

• %̂ is a preorder satisfying Monotonicity, Archimedean Continuity, Non-
triviality, Completeness, C-Independence;

•
³
%∗, %̂

´
satisfy Consistency.

By Theorem 1, there exist a non-empty closed and convex set C∗ of prob-

abilities on Σ and a non-constant function u∗ : X → R such that, for every
f, g ∈ F

f %∗ g iff
Z
S

Ef(s)u
∗ dp (s) ≥

Z
S

Eg(s)u
∗ dp (s) ∀p ∈ C∗. (11)

Set

f %0 g ∈ F iff λf + (1− λ)h%̂λg + (1− λ)h ∀λ ∈ [0, 1] , h ∈ F.

Lemma 1 and Propositions 5 and 7 of GMM (2004), guarantee that there exist

a non-empty closed and convex set C of probabilities on Σ, a non-constant

function u : X → R, and a monotonic and constant linear functional I :
B0 (Σ)→ R such that, for every f, g ∈ F

f%̂g iff I (Efu) ≥ I (Egu) , (12)

f %0
g iff

Z
S

Ef(s)u dp (s) ≥
Z
S

Eg(s)u dp (s) ∀p ∈ C, (13)

min
p∈C

Z
S

Ef(s)u dp (s) ≤ I (Efu) , (14)
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moreover, equality holds in (14) for all f ∈ F if (and only if) % satisfies

Uncertainty Aversion.

If Q,R ∈ L, then, by (11), Consistency, and (12),

EQu
∗ ≥ ERu∗ ⇐⇒ Q %∗ R =⇒ Q%̂R⇐⇒ EQu ≥ ERu.

Corollary B.3 of GMM (2004) delivers the existence of α > 0 and β ∈ R such
that u∗ = αu+ β. Wlog, u∗ = u.

Propositions 4 of GMM (2004) implies that %0 is the maximal (relative to
the inclusion in F × F ) relation on F satisfying Independence and contained

in %̂. Consistency guarantees that %∗ is contained in %̂, and %∗ satisfies
Independence, thus

f %∗ g =⇒ f %0 g.

(11), (13), and Proposition 1 deliver C ⊆ C∗.

Assume that also Caution holds. If there is g ∈ F such that

I (Egu) > min
p∈C∗

Z
S

Eg(s)u dp (s) ,

then, there is Q ∈ L such that

I (Egu) > EQu > min
p∈C∗

Z
S

Eg(s)u dp (s)

that is, g 6%∗ Q and gÂ̂Q, which violates Caution. Thus, by (14) and C ⊆ C∗,

min
p∈C

Z
S

Ef(s)u dp (s) ≤ I (Efu) ≤ min
p∈C∗

Z
S

Ef(s)u dp (s) ≤ min
p∈C

Z
S

Eg(s)u dp (s) ∀f ∈ F

and Proposition 1 delivers C∗ ⊆ C.24

The rest is trivial.

Alternative Axioms: Next we call Default to Certainty the strong caution

requirement (a) of Remark 2.

Assume that
24Since, as f ranges in F , Ef(·)u ranges in B0 (Σ,K), where K is the non-trivial interval

{EQu : Q ∈ L}.
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• %∗ is a preorder satisfying Monotonicity, Archimedean Continuity, Non-
triviality, C-Completeness, and Independence;

• %̂ is a preorder satisfying Archimedean Continuity and Completeness;

•
³
%∗, %̂

´
satisfy Consistency and Default to Certainty.

By Theorem 1, there exists a non-empty closed and convex set C of prob-

abilities on Σ and a non-constant function u : X → R such that, for every
f, g ∈ F

f %∗ g iff
Z
S

Ef(s)u dp (s) ≥
Z
S

Eg(s)u dp (s) ∀p ∈ C. (15)

Let P,Q ∈ L. By Consistency

P %∗ Q implies P %̂Q.

By Default to Certainty

P Â∗ Q implies P Â̂Q.

Therefore %̂ and %∗ coincide on L, and P 7→ EPu represents both preorders

on L.

In particular, %̂ satisfies Monotonicity, in fact, f (s) %̂g (s) for all s ∈ S

implies, by what we have just shown, f (s) %∗ g (s) for all s ∈ S, which, by

Monotonicity of %∗ implies f %∗ g, and Consistency delivers f%̂g.
For all f ∈ F , let P,Q ∈ L be such that P %̂f (s) %̂Q for all s ∈ S, then

P %̂f%̂Q. By Archimedean Continuity the sets {α ∈ [0, 1] : αP +(1−α)Q%̂f}
and {α ∈ [0, 1] : f%̂αP + (1 − α)Q} are closed; they are nonempty since 1
belongs to the first and 0 to the second; their union is the whole [0, 1]. Since

[0, 1] is connected, their intersection is not empty, hence there exists β ∈ [0, 1]
such that βP + (1− β)Q∼̂f . In particular, for each act f there exists Rf ∈ L

such that Rf∼̂f .
There are two possibilities
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• f %∗ Rf , in this case ERf
u ≤

R
S
Ef(s)u dp (s) for all p ∈ C, that is

ERf
u ≤ min

p∈C

Z
S

Ef(s)u dp (s) .

• f 6%∗ Rf , in this case, by Default to Certainty RfÂ̂f , which is absurd.

Moreover, if ERf
u < minp∈C

R
S
Ef(s)u dp (s), take P ∈ L such that P %̂f (s)

for all s ∈ S. Then

ERf
u < min

p∈C

Z
S

Ef(s)u dp (s) ≤ EPu,

and there is γ ∈ (0, 1] such that

ERf
u < EγP+(1−γ)Rf

u = min
p∈C

Z
S

Ef(s)u dp (s)

thus

f %∗ γP + (1− γ)RfÂ̂Rf

and, by Consistency, fÂ̂Rf , which is absurd. In conclusion,

ERf
u = min

p∈C

Z
S

Ef(s)u dp (s)

for all f ∈ F and all Rf ∈ L such that Rf∼̂f .
Finally,

f%̂g ⇐⇒ Rf%̂Rg ⇐⇒ ERf
u ≥ ERgu

⇐⇒ min
p∈C

Z
S

Ef(s)u dp (s) ≥ min
p∈C

Z
S

Eg(s)u dp (s) .

The rest is trivial.
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