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Abstract  

The paper introduces a new allocation game, related to the Colonel Blotto game: each 

tennis coach assigns his four different skilled players to four positions, and then each team 

plays all other teams in the tournament.  

 The set of equilibria is characterized and experimental behavior in variants of the 

game is analyzed in light of an adapted level-k model. The results exhibit a systematic 

pattern- a majority of the subjects used a small number of strategies. However, although 

level-k thinking is naturally specified in this context, only a limited use of low level-k 

thinking was found. Thus, the results illuminate some bounds of the level-k approach. 
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1. Introduction 

This paper introduces a new allocation game called the Tennis Coach problem, which 

captures the essence of some interesting strategic interactions observed in competitive 

environments. The game is analyzed both theoretically and experimentally and serves as a 

platform for studying iterated reasoning and non-equilibrium models based on this 

concept. 

 

The Tennis Coach problem 

Consider a tournament in which each participant plays the role of a tennis coach who is 

planning to send his team to the tournament. Each team consists of four players with four 

different skill levels: A+, A, B+ and B, where A+ is the highest level and B is the lowest. 

The coach's task is to assign his players to positions 1, 2, 3 and 4 (one player to each 

position). Each team plays against each of the other teams in the tournament.  

 A battle between two teams includes four matches: a player that was assigned by 

his coach to a particular position plays once against the player on the other team assigned 

to the same position. In any match between two players of different levels, the one with 

the higher level wins and scores one point for his team. When two players with the same 

level play against each other, the outcome is a tie and each team receives half a point. 

Thus, a battle between two teams ends with one of the teams winning 3:1 or 2.5:1.5, or in 

a tie of 2:2. The team's score at the end of the tournament is the total number of points it 

received in all the battles. The goal of the coaches is to win the tournament, i.e. to achieve 

the highest score among all the teams. 

 The strategic interaction between the coaches will be referred to as "the tennis 

game". 

 

Theoretical motivation  

The tennis game is of interest primarily because it is an intuitively appealing version of the 

popular Colonel Blotto game, introduced by Borel (1921). In the Colonel Blotto game, 

two players simultaneously allocate a fixed number of troops to N battlefields. A player 

wins a battle if the number of troops he assigns to a particular battlefield is higher than 

that assigned by his opponent and whoever wins more battles is the winner of the game.1 

                                                 
1 A number of papers have analyzed the game on a theoretical level though there is still no complete 

characterization of equilibrium in the continuous case. See some recent progress in Weinstein (2005) and 
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The game has been widely interpreted as a competition between two players, in which 

each distributes his limited resources across N tasks and succeeds in a task if he assigns 

more resources to it than his opponent. A well-known application of the game involves the 

interaction between vote-maximizing parties in an election campaign, in which the 

promises made by the parties are modeled as the various ways to divide a homogeneous 

good and are assumed to determine the outcome of the election. The basic idea is that an 

individual votes for party X if it has promised him more than party Y and the party that 

receives more votes wins the election. This scenario could also be interpreted as vote-

buying.2 

 Whereas in the Blotto game all partitions (and in some versions only discrete 

partitions) of the total resources are possible, in the tennis game a player is restricted to a 

finite number of allocations. This does not make the tennis game a special case of the 

Blotto game, but rather a different and somewhat simpler version, yet one which captures 

much of its strategic spirit. Moreover, in many cases, the tennis game reflects more 

realistic assumptions than the Blotto game. For example, a general might not be able to 

assign any number of troops to a single battlefield and may be restricted by the internal 

organization of his army to assigning one division to each battlefield, where the divisions 

differ in ability and strength. More generally, the tennis game is better suited to 

competitive scenarios in which human resources are allocated among several tasks.   

 The tennis game is also able to capture the interaction in the campaign promises 

game, in which promises are made in the form of a list of priorities (an ordering of 

projects) that a candidate guarantees to adhere to after being elected. If different projects 

are associated with different groups (each with equal voting power) then declaring the list 

of priorities is equivalent to the problem of the tennis coach.  

 The tennis game is also related to the game discussed in Fershtman and Rubinstein 

(1997), in which a treasure is hidden in one of N locations. Each of two players tries to be 

the first to reach the location of the treasure. Each player i has resources to sequentially 

search Ni locations and must choose the order in which to conduct the search (to specify 

which location he searches in each date).  In the case of Ni=N, choosing the order of the 

                                                                                                                                                   
Roberson (2006). Hart (2007) provides a complete characterization of equilibrium in the discrete case.  I am 

not aware of experimental studies of the game, apart from a comment by Jonathan Partington (see 

http://www.geocities.com/j_r_partington/blotto.html) and an unpublished work by Ariel Rubinstein. 

2 See variants of the promises game in Myerson (1993), Laslier and Picard (2002) and Dekel, Jackson and 

Wolinsky (2008). 
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search is equivalent to allocating N players to N positions in the tennis game.3 When two 

players search according to their ordering, then the probability that a player will find the 

treasure is equivalent to the number of points earned by a team in the tennis game. Note 

that Fershtman and Rubinstein did not analyze the set of equilibria in this game.  The 

game with the pair (Ni, Nj) is used as a second stage once each player i has chosen Ni in 

the first stage. 

 In the spirit of this analogy, the tennis game can be interpreted as an R&D race, in 

which each firm chooses the order of the routes it will follow in trying to solve a particular 

problem or the order of the projects it will undertake. This interpretation is appropriate for 

cases in which each of the various projects or routes is equally promising. 

 Calculating the value of the symmetric tennis game is straightforward. However, 

equilibrium payoffs tell us only part of the story and as in the game-theoretic analysis of 

other strategic scenarios, the interaction is explored by studying the set of equilibria. 

Characterizing the set of equilibria in the game is quite involved and relies on its special 

structure, in which any pure strategy has a unique "best response"4 and the best response 

function induces a partition of the game's 24 strategies into 6 cycles of 4 strategies each 

(within a cycle, each strategy is the best response to the preceding strategy in that cycle). 

The characterization yields some interesting results. For example, it will be shown that the 

simplest mixed strategy equilibrium (simple in terms of number of strategies in the 

support of the equilibrium strategies) involves the use of two pure strategies, with the 

property that each is the best response to the best response of the other strategy. 

 The game-theoretic analysis of the tennis game ignores the existence of a focal 

strategy, in which players are allocated according to their correct ranking, and the induced 

framing effect. Note that the tennis game can capture circumstances in which N different 

levels of resources need to be distributed across N labeled tasks. The labeling may result 

in task i being differentiated from task j psychologically. The theoretical analysis is not 

affected by labeling, as long as the labels do not affect players' payoffs. In the R&D race, 

for instance, the labels might reflect the perceived differences in the attractiveness of the 

various routes that can be taken. The framing of the case in which the probability to 

                                                 
3  The players' skill levels are analogous to the search schedule. For example, assigning A+ to the second 

position in the tennis game is equivalent to searching first in location 2. 

4 A strategy S is the "best response" to the strategy T if S achieves the highest possible score (3 points) when 

playing against T. 
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succeed in route i is presumed to be slightly higher than in route i+1 resembles the 

framing in the tennis game.  

 

Experimental motivation 

The tennis game's special structure and its psychological properties, which are a result of 

the existence of a focal strategy, call for addressing solution concepts other than 

equilibrium, which are based on iterative reasoning. In particular, I discuss the concept of 

level-k thinking which has recently become increasingly popular.5  

 Level-k non-equilibrium models assume that the population of players consists of 

several types, each of which follows a different decision rule. L0 is a non-strategic type 

who chooses his action naively by following a particular rule of behavior that depends on 

the context and is determined by the modeler. L1 best responds to the belief that all other 

players are L0, L2 best responds to the belief that all other players are L1, and so on. Thus, 

a type Lk, for k>0, is behaving rationally in the sense that he best responds to his belief 

regarding other players' actions. However, the belief held by Lk is not the "correct" belief 

as required by Nash equilibrium. Level-k models were first introduced by Stahl and 

Wilson (1994, 1995) and Nagel (1995). Since then, they have been developed extensively 

and used to explain experimental results in a variety of settings. For example, Crawford 

and Iriberri (2007b) apply the model to explain behavior in auctions.6  

  Papers that use level-k models to explain experimental results usually estimate the 

frequency of each type in a particular context. The appeal of this approach is due to a 

finding stated clearly in Crawford and Iriberri (2007b, page 1725): "The estimated 

distribution tends to be stable across games, with most of the weight on L1 and L2. Thus 

the anchoring L0 type exists mainly in the minds of higher types." 

 When analyzing experimental results using a level-k approach, one of the principal 

tasks is to reasonably specify the behavior of L0 in that particular context. Often (though 

not always) L0 is taken to be a uniform randomization over the strategy space. In the 

tennis game, the specification of L0 is intuitively appealing due to the existence of a 

                                                 
5 The term "iterated reasoning" is usually associated with "iterated dominance", although the term is more 

general and describes a process in which a player applies arguments recursively. In this paper, I do not 

discuss iterated elimination of dominated strategies since there are no dominated strategies in the tennis 

game. Thus, throughout the paper I refer to level-k thinking as "iterated reasoning". 

6  Some other examples are: Ho, Camerer and Weigelt (1998), Costa-Gomes, Crawford, and Broseta (2001), 

Crawford (2003), Camerer, Ho, and Chong (2004) and Costa-Gomes and Crawford (2006). 
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salient strategy or focal point (A+, A, B+, B), which is the natural starting point for 

iterated reasoning.7 Decision rules based on level-k reasoning are expected to be reflected 

in subjects' choices also because, given this anchor (starting point), best responding to an 

Lk type is cognitively simple (as I confirmed experimentally). Furthermore, compared to 

many other level-k models, the adapted model in the tennis game assumes weaker and 

more plausible assumptions on subjects' beliefs. Thus, as will be shown in Section 2.4, the 

typical choice of Lk is not only optimal given the belief that all (or almost all) other 

subjects are Lk-1 types, but is also the best response to the belief that the majority of 

subjects are Lk-1, or to the belief that the most frequent type is Lk-1 and that the rest of 

the choices are uniformly distributed. 

 Since level-k types are naturally specified in the tennis game, the level-k approach 

appears to be suitable a priori. On the other hand, the strategy space in the game is large 

enough and the structure of the game rich enough to leave room for other kinds of 

decision rules which are not based on iterated reasoning (examples will be discussed at a 

later stage). Therefore, the tennis game is an ideal platform for testing the extent to which 

level-k models are capable of explaining behavior in novel settings.  

 As expected, experimental behavior in the one-shot game was not consistent with 

any equilibrium predictions. The adapted model of level-k reasoning explained only some 

of the behavior in the tennis game. Patterns based on iterated reasoning were indeed 

found, but most choices seemed to be driven by other kinds of deliberations. The 

distribution of strategies reflects a low level of reasoning – even the first step of iterated 

reasoning was not very common and the second and higher steps were almost totally 

absent. These frequencies are much lower than those reported in the literature for the 

parallel steps in other games. The findings are also supported by the results obtained using 

other experimental techniques, i.e. recording subjects' response time and requesting that 

subjects provide ex-post explanations of their decisions.  

  

                                                 
7 The non-strategic type L0 in this paper resembles the truthful L0 type in Crawford and Iriberri (2007b), 

who bids the value that his own private signal suggests. The specification of L0 in the tennis game also has 

features in common with the specification in Crawford and Iriberri (2007a), which adopts a level-k approach 

to explain experimental behavior in hide-and-seek games (presented in Rubinstein, Tversky and Heller, 

1996). In particular, both specifications take into account the instinctive attention to focal points.  
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 The rest of the paper is organized as follows: Section 2 presents a game-theoretic 

analysis of the tennis game and an adapted level-k model; Section 3 describes the 

experimental design; Section 4 reports and discusses the experimental results; and Section 

5 concludes. 

 

2. Theoretical Analysis of the Tennis Game 

 

2.1 Formal Presentation of the Game  

 

Players and strategies 

The players in the game consist of N tennis coaches who participate in a single round-

robin tournament. Coaches choose their strategies simultaneously at the beginning of the 

tournament. A pure strategy in this game is an assignment of the four players, with skill 

levels A+, A, B+ and B, respectively, to the four positions.  Denote A+ by 1, A by 2, B+ 

by 3 and B by 4.  Formally, denote a pure strategy by a four-tuple, which is a permutation 

of (1, 2, 3, 4), where the jth component is the level of the player assigned to position j. An 

abbreviation will often be used to represent a strategy, where, for example, 2134 will 

represent the strategy (2, 1, 3, 4). Since any order of the four players is permissible, there 

are 24 possible strategies in the game. 

 

Scoring  

When two teams play against each other, four points are divided between them. A team 

receives one point when it assigns a better player to a particular position and no points if 

the other team assigns a better player. Each team receives half a point when the two 

players assigned to a position are equally ranked.  

Let { } { }iiii yxiyxiyyyyxxxxscore =+>=><>< |5.0|),,,,,,,( 43214321  be the total 

number of points earned by a team that uses a strategy ),,,( 4321 xxxxS =  against a team 

using the strategy ),,,( 4321 yyyyT = . Thus, 4),(),( =+ STscoreTSscore  for all S and T. 

 Note that a team can never score less than one point in a battle against another 

team since the best tennis player is unbeatable and in the case that he ties, the second-best 

player cannot lose and at worst will tie. This implies that a team cannot earn more than 3 

points in a battle and that there are five possible scores: 3, 2.5, 2, 1.5 and 1. 
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Payoffs  

Each team will play all the other teams in the tournament. The total score of a team that 

chooses strategy S is the sum of points it scores in all battles. Each team wishes to score 

the highest number of points among all the teams in order to win the tournament but does 

not care about its total score per se. This is in fact characteristic of many real-life 

situations, in which competitors only care about winning and the total points earned or the 

gap between the winner and runners-up is only of secondary importance. (This was also 

characteristic of the experiments reported on later in the paper.) Since the prize is shared 

between the winning teams in the tournament, a team prefers winning together with M 

other teams over winning with N>M other teams (this assumption prevents the game from 

having trivial equilibria in which all coaches win by choosing the same assignment). Thus, 

in a tournament between two players, the payoff structure is simple: unlike the score 

function which can receive five values, the payoff function can now receive only three 

(since each coach prefers winning the tournament over a draw and a draw over losing).  

 

2.2 The Score Function  

The possible scores in any battle between two strategies can be presented in a matrix. 

Presenting the score function in an illuminating way (see the appendix) requires an 

appropriate choice of the strategy order. This sub-section presents some properties of the 

score function that help direct us to it. 

   

Permutations  

Given a strategy S and a permutationσ , )(Sσ  is also a strategy. Note that 

))(),((),( TSscoreTSscore σσ=  since the score is determined by the matching of players 

from the two teams. The position of a matched pair does not matter. 

 

Partition of strategies into cycles 

We say that a strategy S wins a battle against strategy T, if 2),( >TSscore . A strategy S 

defeats strategy T if 3),( =TSscore . For any strategy S, let D(S) be the unique strategy 

that defeats S. Given a level  4}3,2,{1,∈x and an integer Ζ∈n , denote by x+n the level 

y satisfying y=x+n (mod 4). Then, )1,1,1,1(),,,()( 43214321 −−−−== xxxxxxxxDSD . 

The function D is reversible. Thus, for each strategy S, there is exactly one strategy D(S) 

that defeats S and exactly one strategy D-1(S) that is defeated by S. 
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 If we perform D on S four times, we again obtain S. This implies that the function 

D induces a partition of the game's strategies into six disjoint cycles of four strategies 

each.  

  

 Following are the basic properties of the score function: 

 

Property 1. ( , ) 2score S S = , 1))(,( =SDSscore , 2))(,( 2 =SDSscore  and 

3))(,( 3 =SDSscore . 

 The following property, which states that any strategy that confronts a pair of non-

sequential strategies in a cycle scores a total of 4 points, is of particular importance. 

 

Property 2.  For any T and S, 4))(,(),( 2 =+ SDTscoreSTscore . 

 

Cycles 1 and 2 

Although the score function is invariant to any permutation of the positions, some 

strategies are more salient than others.  For instance, the strategy 1234 is a focal point 

because it immediately suggests itself and because of its special characteristics (levels and 

positions correlate perfectly). Moreover, it is a strategy that can be observed in numerous 

real-life situations. The cycle that contains 1234 is of particular importance in the 

experimental part of the study.  Denote 1234 by L0, D(L0)=L1, D(L1)=L2, and D(L2)=L3. 

Cycle 1 is denoted as [L0, L1, L2, L3].  

 Different notations are used for the other cycles.  Thus, for any { }6,..,2∈i , denote 

Cycle i by [S0(i), S1(i), S2(i), S3(i)].  For Cycle 2, I choose S0(2)=4321, which is another 

possible focal point. Thus, Cycle 2 is denoted as [4321, 3214, 2143, 1432].8 

 

Property 3. If 1CycleS ∈  and 2CycleT ∈ , then 2),( =STscore  

 

 Thus, any strategy in Cycle 1 ties with each of the strategies in Cycle 2. A pair of 

cycles with this property will be called twin cycles. 

                                                 
8 In addition to the focal point property, Cycle 1 and 2 have the special property of being cognitively easy to 

construct relative to other cycles in the game. The reason is that in these cycles the strategy that defeats S is 

created by a technical "shift" to the right (left) of strategy S: each tennis player moves to the position to his 

right (left) and the last (first) tennis player moves to the first (last) position. 



 10

 Cycles 3, 4, 5 and 6 

Four other cycles will now be identified and the strategies ordered in a manner that will 

simplify the analysis. The first strategy in each of these cycles is chosen to be a 

permutation of 1234 that swaps two players at adjacent levels: x and x+1. Let S0(3)=1324, 

S0(4)=4231, S0(5)=1243 and S0(6)=2134. 

  

Property 4. Cycles 3 and 4 are twin cycles, as are Cycles 5 and 6. 

 

Property 5.  For 30 ≤≤ k  and 63 ≤≤ i : 2))(,( =iSLscore kk
, 5.1))(,( 1 =+ iSLscore kk , 

,2))(,( 2 =+ iSLscore kk  and 5.2))(,( 3 =+ iSLscore kk .  

 

 We define Cycles 3, 4, 5 and 6 as being parallel to Cycle 1. This term is 

appropriate since for i=3,4,5,6 kL  ties with )(iSk  for any k and the score obtained by kL  

when played against )(iSm  is close to that obtained by kL  when played against mL  

( 5.00))(,(),( oriSLscoreLLscore mkmk =− ).  

  

 Due to symmetry considerations, any Cycle i can serve as the starting point for 

identifying parallel cycles (by identifying the order of strategies in four other cycles, 

which makes these cycles parallel to Cycle i). In this way, the score can be determined for 

any two strategies. 

    

 quilibrium  E3.2  

This subsection characterizes the population equilibrium in the tennis game. The Nash 

equilibrium of a tournament with a large number of teams can be approximated using the 

following concept of population equilibrium: A distribution of strategies is a population 

equilibrium if the average score of a strategy in the support of the distribution is at least as 

high as any other strategy when playing against this distribution.   

Denote by P(S) the probability assigned by the distribution P to the strategy S. 

There is no equilibrium with P(S) =1 since any strategy T for which score(T,S)>2 earns a 

higher score than S. Thus, the support contains at least two pure strategies. 
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Claim 1. A probability distribution P is a population equilibrium if and only if the 

average score for all 24 strategies is 2 points.  

Proof: 

� First, all strategies in the support yield the same average score only if the average is 2 

points. Second, the score of any strategy outside the support must be at most 2; however, 

if some strategy Sk receives strictly less than 2 points, property 2 implies that Sk+2 receives 

more than 2 points.  

 If all the strategies in the game earn 2 points, then by definition P is an equilibrium. ■ 

  

 Before moving on to a complete characterization of equilibrium, I present several 

claims concerning simple forms of equilibrium that will clarify the intuition behind the 

characterization. 

 

Claim 2. A probability distribution P, whose support is contained in a single 

cycle   ],,,[ 3210 SSSS , is an equilibrium if and only if P(S0)=P(S2) and P(S1)=P(S3). 

Proof:  

 By property 2, each strategy in the game receives 2 points and thus P is an equilibrium. 

� If for some   ],,,[ 3210 SSSSS ∈ , P(D2(S))>P(S), then D3(S) earns more than 2 points. 

To see this, recall that D3(S) earns 2 points, on average, when played against D(S) and 

D
3(S) and more than 2 points, on average, when played against S and D2(S). ■ 

 

 Note that the only thing that matters in this class of equilibria is that P(D2(S))-

P(S)=0 for any S. It does not matter what P(S) is per se. In fact, this understanding leads to 

a large class of equilibria that can be described compactly by the notion of differences 

between the probabilities of two non-sequential strategies, S and D2(S).  

 

Claim 3. If P satisfies  P(S)=P(D
2
(S)) for any strategy S, then P is an equilibrium. 

Proof:  

Each strategy T in the game receives an average score of 2 points when played against a 

pair of non-sequential strategies. Since for all S, P(S)=P(D2(S)), the expected score for 

any T is 2 points. ■ 
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 The analysis of equilibrium remains unchanged if 2 points are subtracted from any 

possible score in the score matrix. Such a transformation implies that in equilibrium there 

is no strategy with an average score different from zero. For convenience, what follows is 

analyzed accordingly. 

 

Claim 4. Any equilibrium P with a support contained in two cycles satisfies 

 P(S)-P(D2(S))=0  for all S. 

Proof:  

Assume the contrary. Consider iCycleS ∈  for which P(S)-P(D2(S))=A is maximal. Since 

D(S) earns a positive score A when played against strategies in Cycle i, it must earn a 

negative payoff (-A) when played against strategies in Cycle j in order to reach the 

equilibrium score (0 points). This can occur only if P(D2(T))-P(T)=2A for the strategy 

jCycleT ∈ , for which score(D(S),T)=0.5 (score(D(S),T)=2.5 in the original score 

function). However, A is the maximal difference between the probabilities of non-

sequential strategies in a cycle, a contradiction. ■ 

  

 Claim 2 implies that a minimum of two pure strategies is used in equilibrium. 

Claim 4 adds that these two strategies must be non-sequential in the same cycle. In other 

words, the simplest mixed strategy equilibrium involves the use of two strategies, with the 

property that each is the "best response" to the "best response" of the other strategy. 

 

 We now consider the full characterization of the game's equilibrium. Define: 

( ) ( )1 2 12 2 0 3 1 2 0 3 1, , , ( ) ( ), ( ) ( ), ( (2)) ( (2)) , ( (6)) ( (6))X x x x p L p L p L p L p S p S p S p S= ≡ − − − −L L

 

Proposition 1. A probability distribution P is an equilibrium if and only if: 
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Outline of the proof: In equilibrium, the score earned by any strategy must be zero. 

Using Property 2, it is sufficient to verify that in any cycle, two arbitrary adjacent 
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strategies both earn 0 points (which implies that each of the other two adjacent strategies 

also earns 0 points). The next step is to understand that the points earned by a strategy S 

are determined only by differences between the probabilities of two non-sequential 

strategies that do not tie with S. Solving the system of 12 linear equations (see the 

appendix) yields the solution given in the proposition. ■ 

  

Comments 

(I) The only equilibria with a support contained in three cycles belong to the class 

suggested in Claim 3. This is because there are 6 degrees of freedom in the system. 

Therefore, if we substitute zero for the 6 variables, we obtain a single solution: X=0. This 

claim does not hold for equilibria with a support contained in four cycles. By Proposition 

1, the following distributions are equilibria for which the condition in Claim 3 is not 

satisfied:  

1 1 1 1
(0,0, ,0, 0,0, ,0, ,0,0,0, ,0,0,0, 0,0,0,0, 0,0,0,0)

4 4 4 4
P =  

and 
1 1 1 1 1 1 1
( ,0, ,0, ,0, ,0, ,0,0,0, ,0, ,0, 0,0,0,0, 0,0,0,0)
12 6 12 6 12 4 6

P = .  

Note that these two examples induce different vectors of the 

type ( , , , , , , , ,0,0,0,0)X a b a b a b a b= − − − − , which reflects the structure of equilibria with a 

support contained in the first four cycles. 

(II) The analysis in this sub-section is equivalent to that of a symmetric mixed-strategy 

Nash equilibrium in a two-player game, in which the payoff matrix is the score matrix of 

the tennis game. In other words, the analysis also captures scenarios in which each of the 

two players aims at maximizing his objective score and not just to obtain a higher score 

than his opponent. In fact, P is a population equilibrium if and only if it is an equilibrium 

mixed strategy (possibly asymmetric) in this two-player game. 

(III) Consider the two-player tournament, in which the players' payoffs are 1 for winning 

the tournament, 0 for a draw and -1 for losing. It is straightforward to show that in this 

game, a probability distribution G is a Nash equilibrium mixed strategy if and only if 

G(S)=G(D
2
(S)) for any S.  

 

2.4 Best Response Function 

This sub-section focuses on finding the best responses to some interesting distributions of 

choices. In particular, I identify the best responses for distributions that I consider to be 
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natural beliefs and which may be those actually held by coaches. Examples of natural 

beliefs include: "All other coaches will choose S", "Most of the coaches will choose S" 

and "The most frequent choice will be S".   

 As intuition suggests, the best response to the belief that "almost all other coaches 

will choose Sk(i)" is D(Sk(i)). However, given the belief that all other coaches will choose 

Sk(i), any D(Sk(j)) for a parallel Cycle j is also a best response (a coach who chooses 

D(Sk(j)) earns an average score of 2.5 points but wins the tournament since it is the highest 

score among the coaches). The next proposition refers to the natural belief that "most of 

the coaches will choose S". The adapted level-k model that will be constructed in Section 

2.6 relies on this proposition. 

 

Proposition 2. If 1>P(S)>0.5 for some S, then D(S) is the unique best response to P.  

Outline of the proof:  Assume without loss of generality that 1>P(L0)>0.5. We need to 

show that no strategy earns as much as L1. It is enough to show that for any 1X L≠ , 

if )3(),( 0 tLXscore −= , then tYLscoreYXscore ≤− ),(),( 1  for any Y. In other words, X 

cannot compensate for its inferiority to L1 when played against L0 by its superiority when 

played against some other strategies. The proof covers all the possible strategies X and 

confirms that the condition on the score is satisfied (see the appendix). ■ 

 

 Now consider the belief that "all choices will be in Cycle i and the most frequent 

choice will be S". For such a belief, the optimal choice is not necessarily D(S). For 

example, if P(S0)=0, P(S1)=0.4, P(S2)=0.3 and P(S3)=0.3, then the optimal choice is S3, 

and not S2. The reason is that the optimal choice, when choices are in a single cycle, is 

determined by the differences between two non-sequential strategies. The optimal choice 

in this case is Sk+1, for k that maximize P(Sk)-P(Sk+2). 

  This last example also demonstrates why D(S) is not necessarily the optimal 

strategy given the belief that "the most frequent strategy is S". However, it is easy to see, 

as an implication of Property 2, that D(S) is the optimal strategy for the belief that the 

most popular choice is S and that the rest of the chosen strategies are uniformly 

distributed. Essentially, this claim states that D(S) is the best response to a belief that 

attributes high probability to the strategy S and takes into account some level of noise. 
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2.5 A Variant of the Game 

In the experimental part of the paper, a second version of the game is discussed, which is 

denoted as Version 2. It differs from the first version only in the method of scoring. Thus, 

in Version 2, a team receives one point only if it wins three matches out of four against 

another team. At any other case, it does not receive any points.  

 In this version of the game, and given a probability distribution P, it is always 

optimal to choose D(S*), where S* is the strategy for which P(S) is maximal. Therefore, 

Proposition 2 becomes trivial in this context and can be extended to the following 

proposition: If none of the strategies are chosen more often than S, then D(S) is a best 

response. If, in addition, none of the strategies are chosen as often as S, D(S) is the only 

optimal strategy. Equilibrium analysis also becomes simpler in this version. Thus, the 

probability distribution P constitutes an equilibrium if and only if, for any S and T in the 

support, P(S)=P(T) and in any Cycle i, P(S0(i))= P(S1(i))= P(S2(i))= P(S3(i)).  

 

2.6 The Adapted Level-k Model 

In this sub-section, the equilibrium solution concept is abandoned and an alternative 

approach is considered in an attempt to account for the experimental behavior in the tennis 

game. The game's structure and its psychological properties call for applying the concept 

of level-k thinking, which is based on iterative reasoning.  

 Level-k non-equilibrium models assume that the population consists of several 

different types of decision makers and that each type uses a different level of iterated 

reasoning. L0 is a non-strategic type who chooses his action naively. L1 best responds to 

the belief that all other players are L0; L2 best responds to the belief that all other players 

are L1; and so on.9 In each game, the specification of L0 determines the definition of the 

other Lk types in that particular context. Type L0 is often assumed to choose a strategy by 

performing a uniform randomization over the strategy space, but there are cases in which 

L0 is specified differently. A relevant example is presented by Crawford and Iriberri 

(2007a) who construct an adapted level-k model to explain behavior in hide-and-seek 

games with non-neutral framing. Their L0 type instinctively recognizes focal points10 and 

his typical decision rule is taken to be a mixed strategy which puts greater weight on focal 

points. Their specification of the naive L0 type accurately captures a psychological effect 

                                                 
9  In some cases, Lk is assumed to best respond to a combination of lower types. See, for example, Camerer 

et al. (2004). 

10  Bacharach and Stahl (1997) propose a general framework that captures this idea. 
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that is also relevant in the tennis game. Another related specification is that used by 

Crawford and Iriberri (2007b) in the context of auctions, in which the truthful L0 bids the 

value that his own private signal suggests. 

 Note that any distribution of choices can be explained trivially by specifying L0 as 

a decision maker who chooses according to that particular distribution. A level-k model 

attempts to explain the data primarily through the behavior of L1, L2 or higher types and 

by considering only a small number of natural non-strategic types. In other words, the 

explanatory power of level-k models is based on the typical behavior of the strategic types.  

 

Specification of L0 in the tennis game 

The main assumption I make in this subsection is that the natural starting point for iterated 

reasoning in the tennis game is the focal strategy 1234 (L0), which is associated with the 

non-strategic type L0. Since this naive strategy is a natural choice, a sophisticated coach 

might choose to best respond to such a strategy by choosing 4123 (L1). Forming a belief 

concerning the opponent's strategy and best responding to it is the first step of iterated 

reasoning and thus the type who chooses this strategy is denoted as L1. An iteration of this 

process involves best responding to the belief that other coaches will choose L1. Therefore, 

L2 will typically choose the strategy 3412 (L2) which reflects the second step of iterated 

reasoning. The highest level of iterated reasoning that this model takes into account is the 

third iteration11 which leads to type L3 choosing 2341 (L3). 

 Note that if a coach simply wants to win the tournament and believes that all other 

coaches will choose L0, then he actually has five possible best responses: L1, S1(3), S1(4), 

S1(5) and S1(6), though the score for S1(i) against L0 is less than that for L1 against L0. The 

justification for my definition of types is Proposition 2, which states that if "the majority 

of the coaches choose T" (rather than all the coaches), then the only optimal strategy is 

D(T). This kind of belief reflects a rough estimation of the opponents' choices and is likely 

to be more common than the belief that all other coaches will choose a specific strategy. 

Therefore, the assumption made here concerning coaches' beliefs is more plausible than 

                                                 
11 This is because the fourth level of iterated reasoning and the choice of L0 cannot be distinguished. Tennis 

teams were defined as consisting of 4 rather than 3 players because in previous experimental studies of other 

games, the fourth level of iterated reasoning was rarely observed, whereas the third level was more 

commonly observed. This finding justifies the assumption that L3 is the highest type. 
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those made in other level-k models.12 In fact, the typical choices of types defined in the 

model can be sustained even under a weaker assumption, according to which type Lk best 

responds to the belief that the most frequent choice is Lk-1 and that the rest of the choices 

are uniformly distributed. 

 Another strategy to be considered as an anchor for iterated reasoning is 4321 

(S0(2)).  Allocating the players in the reverse order can be viewed as a focal strategy, 

though a weaker one than 1234. It is likely that non-strategic types would choose this 

strategy while strategic types might treat it as an anchor for iterative reasoning. Thus, the 

choice of Sk(2) is considered as a possible outcome of another level-k decision rule, based 

on a different anchor. Clearly, allowing for another kind of level-0 type can only improve 

the fit of the level-k model. 

 The experimental results will be analyzed in light of the above specification, thus 

allowing for two possible anchors and two possible types that use each level of reasoning. 

In other words, all the strategies in Cycle 1 and Cycle 2 are associated with level-k 

reasoning. 

 

Comment: The notion of level-k reasoning does not necessarily contradict the concept of 

Nash equilibrium, although it may lead to outcomes that are essentially different from 

equilibrium outcomes. In this game, a subset of equilibria can be achieved if the 

population consists of various level-k types using different levels of iterated reasoning. For 

example, if the proportion of each Lk type is 0.125, then the resulting distribution of 

strategies will constitute an equilibrium. 

 

Alternative specifications of L0 

There are other intuitively appealing specifications of level-0 types. For example, consider 

a non-strategic type who chooses each strategy in the game randomly and equally often, 

excluding the strategy 1234 which he chooses more frequently. Given this alternative 

specification, L1, who best responds to L0, would choose 4123 as before and hence higher 

types would also behave as before. Note that from L1's point of view, the interpretation of 

this L0 is the same as in the original model, under the assumption that type Lk best 

responds to the belief that the most frequent choice is Lk-1 and that the rest of the choices 

                                                 
12 In many other games appearing in the literature (for example, Costa-Gomes et al. 2001), the definition of 

level-k types would be affected dramatically by a transition to this assumption.  
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are uniformly distributed. The non-strategic type could be specified in a similar manner 

under the assumption that the strategy 4321 is chosen more frequently than the rest or 

under the assumption that both 1234 and 4321 are chosen more frequently than other 

strategies. In this last case, as long as 1234 receives more weight than 4321, the best 

response to this type would be 4123. Allowing the existence of two non-strategic types, 

one who gives more weight to 1234 and another who gives more weight to 4321, implies 

that the two types who use the first step of iterated reasoning (based on the two possible 

anchors) choose L1 and S1(2), respectively. Note that the alternative specifications of L0 

above would not change the typical behavior of higher types and hence should not affect 

the explanatory power of the model.  The only possible change that could result is an 

increase or decrease in the proportion of behavior that can be explained by the level-0 

types.  

Taking L0 to be a type who chooses a strategy randomly and uniformly is also 

intuitively appealing; however, it does not produce any constraint on the k-level types for 

any k>0.  In fact, all 24 strategies are best responses to this strategy and thus, for any 

strategy and for any k, one can say that the strategy is the choice of a level-k type (see 

Crawford and Iriberri (2007a) for an explanation of why they avoid specifying L0 as a 

type who practices uniform randomization). In addition, the best response to this L0 type 

guarantees a tie and thus differs fundamentally from best responses that guarantee winning 

the tournament (such as the best responses to the L0 types discussed above). Therefore, I 

do not treat the uniform randomization decision rule as an outcome of level-k thinking. 

 

3. Experimental Design 

Three experiments were designed with the following goals in mind: to test whether the 

adapted level-k model can explain behavior in the game, to ascertain the depth of iterated 

reasoning in this context and to explore the triggers of this kind of reasoning. The 

experiments were conducted through the website: http://gametheory.tau.ac.il, which was 

created by Ariel Rubinstein and provides tools for conducting choice and game theoretic 

experiments. The original text used for the questions in the experiments appears in the 

appendix. All the experiments are based on the Tennis Coach problem introduced in 

Section 1. Each experiment was carried out in the form of a tournament in which subjects 

choose a strategy and then automatically play against their classmates (using that 
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strategy). A total of 1,624 students participated in the experiments, most of them 

undergraduates in game theory and other economics courses. 

 

3.1 Experiments 1 and 2 

The subjects in Experiment 1 consisted of 641 students in 14 different courses, originating 

from 7 countries.13 Subjects in Experiment 2 consisted of 704 students in 22 different 

courses, originating from 14 countries.14 The lecturers in these courses assigned the 

Tennis Coach problem as a compulsory homework problem. The website's server recorded 

the time each subject spent on making the decision (response time) together with the 

strategy that he chose.15 Following the decision, subjects were asked to explain why they 

had chosen the strategy they did. The subjects did not know in advance that they would be 

asked to explain their choice or that their response time would be recorded. Lecturers were 

not able to observe the individual decisions made by their students. However, they did 

have access to the distribution of choices made, the three winning strategies and the 

identities of the three winning students. The winners in the tournament did not receive a 

monetary prize. Nevertheless, they had an incentive to treat the tournament seriously in 

order to have the honor of being announced in class as one of the winners. 

 The game played in Experiment 1 was the original version of the game, which is 

presented in Section 1 and denoted by Version 1. In Experiment 2 subjects played a 

variant of the game denoted by Version 2, which is presented in Section 2.4. Recall that 

the only difference between the two versions is in the system of scoring. In Version 2, a 

team scores 1 point only if it wins three matches out of four against another team.  

According to the adapted level-k model presented in Section 2.5, the process of 

iterated reasoning in the tennis game is based on two ordered components: 

(I) Forming a concrete belief of the type "Most subjects will choose strategy S" and (II) 

Best responding to that belief by choosing D(S). Since in Version 2, D(S) is the only best 

response to the belief that S is the most frequent choice, the adapted level-k model is 

                                                 
13  The US, the UK, Colombia, the Slovak Republic, Argentina, Canada and Brazil. 

14 The US, Mexico, Brazil, Chile, India, Switzerland, Moldova, Ecuador, France, Brunei Darussalam,    

Germany, Portugal, Spain and Israel. 

15 Strategies were not presented in a list in order to avoid order effects. Subjects faced a matrix with four 

columns representing players' levels and four rows representing the different positions. They allocated the 

tennis players on their team by marking one box in each row.  
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even more appropriate in Version 2 than it is in Version 1. In a sense, the scoring system 

in Version 2 provides some guidance in the second component of the process and perhaps 

triggers the first component. By comparing behavior in the two versions, it is possible to 

determine whether the changes in the score function and the resulting guidance increase 

the use of iterated reasoning.  

 

3.2 Experiment 3 

This experiment responds to the concern that subjects in Experiment 1 and 2 were not 

motivated by monetary incentives. In addition, it further investigates the subjects' 

understanding of the best response function by testing whether they optimally respond to a 

concrete belief. 

 Students from three undergraduate economics courses in Israel (at Tel Aviv 

University, Haifa University and Ben-Gurion University, respectively) were invited by 

email to take part in the online experiment. 279 subjects who decided to participate were 

randomly assigned to play either Version 1 or Version 2. The winner of the tournament in 

each class won NIS 200 (around $60). After explaining their choices, subjects answered 

three questions that tested their understanding of the best response function. They were 

asked to provide an optimal response to each of the following beliefs: "All other subjects 

will choose (A, B, A+, B+)", "All other subjects will choose (B+, B, A+, A)" and "Most of 

the subjects will choose (B, A+, A, B+)". Subjects who played Version 1 were told that 

there is at least one correct answer to each question while subjects in Version 2 were told 

that there is only one correct answer to each question. They were told that those who 

answered the questions correctly would win some CD’s.  

 Recall that in Experiment 1 and 2, lecturers asked their students to participate and 

hence subjects treated it as a compulsory exercise. In this experiment, lecturers were not 

involved and did not have access to any of their students’ answers. Since the number of 

students who entered the website and only then decided not to participate was negligible, I 

conclude that a subject’s decision to participate in the experiment was no different in 

character than the decision to participate in a laboratory experiment. Therefore, there is no 

reason to think that the recruiting method used here attracted a subject pool different from 

that of any other experiment. 
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3.3 Response Time and Explanations  

As the analysis in Costa-Gomes et al. (2001) suggests, it is possible to draw incorrect 

conclusions concerning the frequencies of types based on observed choice alone. They 

used subjects' patterns of information search to interpret their choices in normal-form 

games. The approach in this paper is to use subjects' response time and explanations to 

interpret their observed choices.  

A subject’s explanation of his choice may reveal the decision rule he used and in 

particular whether it was based on an iterated reasoning process. Recall that subjects were 

asked to explain their choices only after making the decision and therefore their choices 

could not have been affected.  

 Response time is defined as the number of seconds from the moment that the 

server receives the request for the problem until the moment that an answer is returned to 

the server. This additional information is used to classify strategies in the game as intuitive 

choices or as an outcome of cognitive deliberation. This method is discussed in Rubinstein 

(2007), whose main claim is that the response time of choices made using cognitive 

reasoning is longer than that of choices made instinctively, i.e. on the basis of emotional 

response.16 This is in line with dual-system theories, such as that in Kahneman and 

Frederick (2002). 

 

4. Experimental Results   

 

4.1 Experiment 1 (Version 1) 

Table 1 presents the aggregate data for all 641 subjects. I focus on analyzing the aggregate 

data and comment only briefly on the distribution of choices for each of the classes.  

 

Main results 

Each of the 24 strategies was chosen by at least 1.25% of the subjects. About 57% of 

subjects' choices were strategies in the first two cycles (see the table below), where 41% 

of the subjects chose one of the following three strategies: L0 (22%), L1 (10.1%) or S0(2) 

                                                 
16  Of particular relevance are Rubinstein's findings concerning the 2/3-beauty contest, which has been 

intensively studied in the level-k literature. He found that the median response time of the second step of 

iterative reasoning in this game was much longer than that of choices representing the first step of reasoning, 

which in turn was much longer than the response time of other (perhaps less strategic) choices. 
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(8.7%). Strategies in other cycles were chosen far less frequently – almost always by less 

than 4% of the subjects.  The main features of the distribution of choices are preserved in 

the four large classes (77, 80, 92 and 115 students) and even in the small classes L0 is 

relatively common and L1 is rarely absent. 

 

Strategies L0 L1 L2 L3 S0(2) S1(2) S2(2) S3(2) Other 

Percentage 22% 10.1% 3.3% 3.6% 8.7% 3.6% 2.8% 2.7% 43% 

 

Following are the main findings concerning level-k thinking, taking into account subjects’ 

response time and explanations:17  

1. 22% of the subjects chose the naive strategy L0, which confirms its focality and its role 

as a potential anchor for iterated reasoning. Its significantly lower response time 

(median=125s) relative to other strategies suggests that it is typically an instinctive choice 

or an outcome of a low level of sophistication.  

2. 10.1% of the subjects chose L1. Their explanations and significantly higher response 

time (median=194s) suggest that most of them actually used the first level of iterated 

reasoning with L0 as an anchor.  

3. 3.3% of the subjects chose L2 while 3.6% chose L3, strategies that are supposed to 

reflect the second and third steps of iterated reasoning, respectively. Subjects’ 

explanations suggest that many (though not all) of those who chose this category used 

alternative decision rules rather than high levels of iterated reasoning.  

4. 8.7% of the subjects chose S0(2), the reverse order strategy. The response time of this 

strategy (median=158.5s) was significantly higher than L0’s, suggesting that subjects who 

chose it were not confused and had not intended to choose L0.  

5. S1(2) was chosen by 3.6%. Subjects' explanations suggest that only a small fraction of 

the choices were the result of an iterated reasoning process with S0(2) as the anchor. S2(2) 

and S3(2) were chosen even less often and, according to subjects' explanations, do not 

seem to have been the result of such a process. 

 

 

 

                                                 
17 See the appendix for a detailed discussion of subjects' response times and explanations.  
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Equilibrium 

The distribution of strategies is not consistent with any equilibrium prediction. One way to 

see this is by examining the expected score of the strategies presented in Table 1. The 

strategy L1 is the clear leader and the only strategy that comes close to it is S1(3). These 

strategies were chosen by only 14% of the subjects. Thus, the vast majority of the subjects 

could have significantly improved their chances of winning by deviating to L1.  

It is possible that small changes in the distribution of strategies would significantly 

affect the strategies' score. In such a case, the previous argument would not be convincing. 

Thus, a different method is used to show that the distribution is far from being an 

equilibrium. An equal number of subjects was subtracted from each pair of non-sequential 

strategies in a cycle – the choices of 283 subjects remained. A consequence of Property 2 

is that subtracting an equal number of coaches who choose S and D2(S) does not change 

the best response. Hence, the resulting distribution is an equilibrium if and only if the 

original distribution is as well. In the resulting distribution, P(L0)=0.42 and P(L2)=0 (see 

the distribution after normalization in Table 1). This implies that L1 would earn more than 

the equilibrium score even if all other choices were concentrated around S2(i), for 

i=3,4,5,6 since the weight on these strategies in equilibrium needs to be at least twice as 

much as the weight on L0. The argument is strengthened by the fact that P(S2(i))=0, for 

i=3,4,5,6. 

 

Explanations 

70% of the subjects (out of 526 who were asked) provided an explanation of their choices. 

Each of the explanations is classified according to one of the following categories and the 

proportion of each category is estimated: 

1. Intuitive choice (18%)  

This category includes explanations such as: "It was a guess"; "I don't know why"; "It felt 

right" and "Intuition".  45% of subjects who provided intuitive explanations chose L0.  

2. Random choice (18%)  

This category includes explanations that mentioned the word "random". Some of them 

explained the randomization as an attempt to choose a different strategy from that of other 

players or to surprise their opponent. The category also includes explanations such as: "It 

does not matter what I choose because the distribution of choices is practically uniform if I 

don't know it". Among subjects in this category, 10% chose L0 and explained that it did 
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not matter what they chose. The other 90% said that they randomized and 19 strategies 

were chosen by them.18  

3. First step of iterated reasoning (10%)  

This category includes explanations that describe best responding to the belief that most of 

the choices will be X (primarily L0 or S0(2)). 80% of the subjects in this category chose L1 

and 8% chose S1(2).  

4. Second step of iterated reasoning (three subjects, less than 1%)   

This category includes explanations that describe best responding to the belief that most of 

the choices will be L1.  

5. Other strategic decision rules (53%) 

This category includes explanations such as: "I was trying to be original", "I am mixing 

good and bad players", "I am sacrificing the weak player in order to win in other 

positions", "My choice was based on my life experience", "The best players of my 

opponent were likely to be in the middle positions and therefore I put mine on the edges" 

and "The player in the first position should be the best one since my opponent will put A 

in the first position" (or something similar based on some other partial belief). It also 

includes explanations based on incorrect reasoning (such as “I am trying to achieve a tie”) 

or irrelevant considerations (such as taking into account order effects).  Each of the 24 

strategies was chosen by subjects in this category.  

 

Comment: Only four subjects mentioned the concept of Nash equilibrium in their 

explanation, although many of the subjects had studied game theory.  

 

Discussion of Experiment 1  

As stated by Crawford and Iriberri (2007b): "The estimated distribution tends to be stable 

across games, with most of the weight on L1 and L2. Thus, the anchoring L0 type exists 

mainly in the minds of higher types." The results of Experiment 1 reflect a low level of 

sophistication in terms of level-k reasoning. Moreover, many choices do not reflect level-k 

reasoning at all and are the result of other types of considerations.  

The frequency of non-strategic types (level-0) is higher and the frequency of level-

1 types relatively lower than in other studies; higher types are in fact almost totally absent. 

                                                 
18  Unchosen strategies: 4231, 2143, 1243, 1432 and 1342. Most frequently chosen strategies: 1234 (24%), 

2413 (14%), 4321 (13%) and 1324 (6%). 
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The proportion of subjects that actually use a high level of iterated reasoning might be 

even smaller than that indicated by observed choice since subjects who chose randomly or 

use decision rules other than iterated reasoning may also have chosen L2, L3, S2(2) or S3(2). 

I do not consider the choice of L0 to be an outcome of four steps of iterated reasoning 

since in previous studies this level of reasoning was not evident. This approach is also 

supported by L0's low response time and the fact that no one who made this choice 

explained it as being a best response to L3.  

 Response times and explanations provide support not only for the interpretation 

that the observed choices reflect a low level of iterated reasoning, but also for the 

specification of level-k reasoning in this context. The subjects' explanations indicate that 

the only common starting point for iterated reasoning in players' minds was L0. A 

secondary and less common anchor for iterated reasoning was S0(2). Furthermore, 

strategies not in Cycle 1 or Cycle 2 have shorter response times than L1, suggesting that 

there are no other pure strategies with the same role as L1. 

 The distribution of strategies in the experiment was far from being an equilibrium. 

However, if subjects were to play the game repeatedly and in each round would internalize 

the distribution of strategies in the previous round, they might converge to one of the 

equilibria of the one-shot game. Since subjects may notice the patterns based on iterated 

reasoning in earlier rounds, they might modify their choices in later rounds accordingly. In 

particular, I conjecture that in later rounds subjects’ choices would be concentrated in the 

first cycle. Thus, level-k reasoning may turn out to influence not only outcomes of one-

shot games, but also the selection of equilibrium in the long run. 

 

4.2 Experiment 2 (Version 2) 

Table 2 presents the aggregate data for all 704 subjects.  

 

Main Results 

The aggregate data show that each of the 24 strategies was chosen by at least 1.14 % of 

the subjects.  About 55% of subjects' choices were strategies in the first two cycles, where 

37% were one of the following three strategies: L0 (18.6%), L1 (12.9%) or S0(2) (5.8%). 

Strategies in other cycles were chosen less frequently, with most of them chosen by only 

1-4% of the subjects. The main features of the distribution are preserved in the two large 

classes (99 and 209 students) and even in the smaller classes L0 is relatively common and 

L1 is rarely absent. 
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 The following table presents the frequencies of strategies that may reflect iterated 

reasoning and compares them to those in Experiment 1. 

 

 L0 L1 L2 L3 S0(2) S1(2) S2(2) S3(2) Other 

Version 2 18.6% 12.9% 5.3% 2.8% 5.8% 5.4% 2.4% 1.7% 45% 

Version 1 22% 10.2% 3.5% 3.6% 8.6% 3.6% 2.8% 2.6% 43% 

 

The distributions of strategies in the two versions are similar though not identical. In 

Version 2, fewer subjects chose S0(2) and L0 while more chose S1(2) , L1 and L2. These 

differences suggest that Version 2 leads to less intuitive choices and somewhat more 

choices based on iterated reasoning. Applying the chi-square test with respect to nine 

categories (one for each strategy in the first two cycles and another for the rest), it was 

found that the difference between the frequencies of categories in the two versions is 

significant at the 5% level (chi-square=16; df=8; p=0.04).19 It is also of interest that the 

response time of choices in Version 2 was significantly longer than in Version 1.20  

 

Equilibrium 

The distribution of chosen strategies is not consistent with any equilibrium prediction. 

Only 13% chose the winning strategy L1 while the score earned by other strategies is far 

below that of L1. Thus, the vast majority of the subjects could have significantly improved 

their chances of winning by deviating to L1 and therefore the distribution of the results is 

far from an equilibrium.   

 To see this in a different way, note that the necessary conditions for equilibrium 

discussed in Section 2.4 are violated. We have P(L0)=0.185, P(L1)=0.129, P(L2)=0.053 

and P(L3)=0.028, while in equilibrium the probability of each strategy in a cycle must be 

equal.  Moreover, the weight on Cycle 1 is more than twice that on any other cycle, 

whereas in equilibrium the weight on each cycle in the support must be equal. 

 

                                                 
19   If we treat each strategy in the game as a category, the distributions of choices in the two versions are not 

significantly different according to a chi-square test (chi-square=25.85 df=23 p=0.31). However, we are 

primarily interested in the differences between choices in the first two cycles and hence the partition into 

nine categories is more appropriate here.  

20  The median RT is 147 in Version 2 and 140 in Version 1.The average RT of observations under 600s is 

170 in Version 2 and 156 in Version 1. 
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Explanations  

70% of the subjects provided an explanation of their choice. The explanations are 

classified into the same categories as in Version 1.  

1. Intuitive choice (15%)  

30% of the subjects chose 1234. 

2. Random choice (20%)  

16% of the subjects in this category explained that it did not matter what they chose (only 

half of them chose 1234). The rest (84%) said that they had tried to randomize. Each of 

the 24 strategies was chosen by these subjects.21  

3. First step of iterated reasoning (15%)  

84% of the subjects chose L1 and 12% chose S1(2).  

4. Second or third step of iterated reasoning (3%)   

Twelve explanations were based on level-2 reasoning. Nine best responded to L1 and three 

best responded to S1. Two explanations were based on level-3 reasoning. 

5. Other strategic decision rules (47%)  

Each of the 24 strategies was chosen. Subjects used the same decision rules as in Version 

1. 

 

 The proportions of the various categories were similar in the two experiments, with 

somewhat more weight on the categories that support the use of iterated reasoning in 

Version 2 and less weight on intuitive explanations and other strategic rules. Although 

equilibrium is simpler in this case, only two subjects mentioned this concept in their 

explanations.  

 

Discussion of Experiment 1 and 2  

The data from the two experiments confirms that the specification of level-k types was 

appropriate in this setting. However, iterated reasoning was not triggered as often in the 

tennis game as in other games studied in the literature. In both versions, iterated reasoning 

was observed only in Cycles 1 and 2, with most of the weight on level-0 and level-1. 

Version 2 induces slightly more choices and explanations that involve iterated reasoning. 

The increased use of iterated reasoning might be a result of the "guidance" provided by the 

scoring system (which requires winning three out of four matches in order to earn a point). 
                                                 
21
 Most frequent choices: 1234 (12%), 2314 (10%) and 3214 (7%).  
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It may also indicate that the assumptions of the adapted level-k model in Version 2 are 

more plausible than those in Version 1. In particular, the assumption that Lk best responds 

to the belief that the most frequent choice is Lk-1 has greater plausibility. 

 The conventional definition of strategic thinking requires forming a belief on the 

opponent's strategy and best responding to it. The choices and explanations of subjects in 

the two experiments suggest that this kind of thinking is not prevalent. However, the 

results do reveal partial strategic thinking. Many of the decisions are apparently based on a 

partial belief over the opponents' choices and thus exhibit an attempt to forecast features 

of other players’ choices.  

 

4.3 Experiment 3 (Version 1 and 2)  

Table 3 presents the observed frequencies of strategies in Version 1 and 2. The total 

number of subjects is 279, where 131 subjects received Version 1 of the game and 148 

received Version 2.  

 

Main results 

Each of the 24 strategies was chosen. In both versions, 12% of the choices were in Cycle 2 

and 44% in Cycle 1. The main features of the distributions of strategies were similar in all 

three classes. The following table presents the frequencies of strategies in the first two 

cycles for Version 1 and 2. 

 

 L0 L1 L2 L3 S0(2) S1(2) S2(2) S3(2) Others 

Version 1 10.7% 19.1% 4.6% 2.3% 7.6% 5.3% 6.1% 0.8% 43.5% 

Version 2 10.1% 18.9% 6.8% 2.0% 4.1% 10.8% 2.7% 1.4% 43.2% 

 

There are no significant differences between the distributions of choices in the two 

versions, whether we treat each strategy as a category (chi-square=31.75; df=23; p=0.11) 

or treat all strategies in Cycles 3,4,5 and 6 as a single category (chi-square=6.79 df=8 

p=0.56). 

 In both versions, the first step of iterated reasoning was reflected more often in 

choices and explanations (i.e. L1 and S1(2) were more frequent) than in Experiment 1 and 

2 while the naive choice of L0 was less frequent than in Experiment 1 and 2. The 

distribution of choices in Version 1 (in this experiment) differs significantly from Version 
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1 in Experiment 1 (chi-square=45.1; df=23; p=0.004) and the distribution of choices in 

Version 2 differs significantly from that in Experiment 2 (chi-square=43.1; df=23; 

p=0.007). 

 

Equilibrium 

As in the previous experiments, it is straightforward to confirm that the distribution of 

strategies in each of the versions is far from being an equilibrium. The best response to the 

distribution in both versions is clearly L2, which was chosen by less than 7% of the 

subjects.   

 

Best responding to a concrete belief 

In the second part of the experiment, subjects were asked to provide an optimal response 

to each of the following beliefs: 1. All other subjects will choose (A, B, A+, B+) 2. All 

other subjects will choose (B+, B, A+, A) and 3. Most of the subjects will choose (B, A+, 

A, B+). 125 out of 131 subjects in Version 1 and 143 out of 148 subjects in Version 2 

participated in this part of the experiment. The following table summarizes the results: 

 

At least two out of three  1 & 2 & 3 3 2 1 % that answered correctly: 

93% 81% 89% 90% 93% Version 1 

93% 89% 93% 94% 91% Version 2 

 

Comment: Among those who chose 1234 or 4321 in both versions, only 12% (5 students 

out of 41) did not answer the three best response questions correctly. In other words, their 

possibly naive choice does not indicate that they did not understand the game or did not 

know how to best respond to a concrete belief.  

 

Discussion of Experiment 3 

The finding that naive choices were less frequent in Experiment 3 than in Experiment 1 

and 2 and that the first level of reasoning was more common, can be explained by three 

factors: (1) Subjects in Experiment 3 were asked to respond to only one problem whereas 

in Experiment 1 and 2 subjects were asked to respond to additional (unrelated) problems 

as a part of their homework (2) In Experiment 3, the subjects had monetary incentives and 

(3) Participation in Experiment 1 and 2 was mandatory and it is likely that some subjects 

were not motivated to invest effort in the task. The greater seriousness of subjects in 
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Experiment 3 was reflected in longer response times, as well as in the proportion of 

subjects that provided explanations (80% in Experiment 3 vs. 70% in Experiment 1 and 

2). 

 However, note that the use of higher levels of iterated reasoning is not 

dramatically higher than in Experiment 1 and 2 and not as frequent as in other games 

studied in the literature. 

 In the second part of the experiment, at least 81% of the subjects answered all 

three questions correctly in both versions. This indicates that subjects understood the game 

and are cognitively able to best respond to a concrete belief, such as the belief that all 

other choices will be S. The high percentage of correct answers to Question 3 implies that 

subjects also have the correct intuition regarding the optimal response to the belief that 

most of the subjects (rather than all) will choose S. This result is important since the belief 

that most of the subjects will choose S sounds more plausible than the belief that all of 

them will choose S.  

 In answering Question 1 and 2, almost all subjects in Version 1 chose the best 

response that defeats the strategy (i.e. wins 3 out of 4 matches) assumed to be chosen by 

other coaches. Only a few chose one of the four pure strategies that earn 2.5 points. These 

findings provide support for the definition of iterated reasoning used in this game (i.e. that 

the typical choice of Lk defeats the strategy chosen by Lk-1). It also suggests that the first 

component of the process of iterated reasoning is lacking in this context. In other words, 

most of the subjects do not hold a concrete belief, such as the belief that most of the 

subjects will choose Lk.  

 

5. Concluding Remarks 

The tennis game captures various strategic real-life interactions. Examples include:  

allocating troops among a number of battlefields, choosing the order of R&D projects to 

be undertaken, promises in election campaigns, assigning workers to projects in a 

competitive environment and, of course, assigning players in sports games. The paper's 

theoretical analysis provides a complete characterization of equilibria in the tennis game. 

In an attempt to explain the experimental behavior in the game, the equilibrium solution 

concept is replaced by an adapted level-k model, which is based on a natural specification 

of iterated reasoning in this setting.  
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 Although level-k thinking seems to be highly appropriate in the tennis game, the 

adapted model explains only part of the experimental results and many of the choices 

seem to be the result of other decision rules not based on level-k thinking. Perhaps the 

most striking result is the low frequency of types that use high levels of iterated reasoning. 

Even the first step of iterated reasoning is not very common in the two versions of the 

game and higher steps of reasoning are almost totally absent. These findings are supported 

by the subjects' explanations. Furthermore, their explanations hint that many of them do 

not hold a concrete belief over other subjects' choices and certainly do not best respond to 

the belief that most of the subjects are level-k types.    

 The results in this paper differ from those obtained in previous studies, which 

found high frequencies of level-k reasoning among subjects in various games. I suggest 

two reasons for this: First, the pure strategies attributed to level-k reasoning in the tennis 

game are only a small fraction of the possible choices in the game.  Second, there is a 

natural tendency in the tennis game to form partial beliefs over the opponents' strategies.  

In other words, the rich structure of the game triggers other kinds of strategic thinking.  

Further research is needed in order to more clearly identify the circumstances in which the 

level-k approach is successful at explaining the data.  
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7. Appendix:  

 

The score matrix 

 

Cycle 1               Cycle 2              Cycle 3               Cycle 4                 Cycle 5                Cycle 6  
3 4 1 2 2 3 4 1 1 2 3 4 2 3 4 1 1 2 3 4 2 3 4 1 

2 3 4 1 3 4 1 2 3 4 1 2 4 1 2 3 4 1 2 3 3 4 1 2 

4 1 2 3 1 2 3 4 4 1 2 3 3 4 1 2 3 4 1 2 4 1 2 3 

1 2 3 4 4 1 2 3 2 3 4  1 1 2 3 4 2 3 4 1 1 2 3 4 

Strategies 
by cycles 
(score of 
the row 
player) 

2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2 2 2 2 3 2 1 2 1234 

2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 2 2 2 2 1 2 3 4123 

1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 2 2 2 2 1 2 3 2 3412 

2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1.5 2 2 2 2 2 3 2 1 2341 

1.5 2 2.5 2 1.5 2 2.5 2 2.5 2  1.5 2 2.5 2 1.5 2 3 2 1 2 2 2 2 2 4321 

2 2.5 2 1.5 2 2.5 2 1.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1 2 3 2 2 2 2 3214 

2.5 2 1.5 2 2.5 2 1.5 2 1.5 2 2.5 2 1.5 2 2.5 2 1 2 3 2 2 2 2 2 2143 

2 1.5 2 2.5 2 1.5 2 2.5 2 2.5 2 1.5 2 2.5 2 1.5 2 3 2 1 2 2 2 2 1432 

2 1.5 2 2.5 2 2.5 2 1.5 2 2 2 2 3 2 1 2 2.5 2 1.5 2 2.5 2 1.5 2 1324 

1.5 2 2.5 2 2.5 2 1.5 2 2 2 2 2 2 1 2 3 2 1.5 2 2.5 2 1.5 2 2.5 4213 

2 2.5 2 1.5 2 1.5 2 2.5 2 2 2 2 1 2 3 2 1.5 2 2.5 2 1.5 2 2.5 2 3142 

2.5 2 1.5 2 1.5 2 2.5 2 2 2 2 2 2 3 2 1 2 2.5 2 1.5 2 2.5 2 1.5 2431 

2 2.5 2 1.5 2 1.5 2 2.5 3 2 1 2 2 2 2 2 2.5 2 1.5 2 2.5 2 1.5 2 4231 

2.5 2 1.5 2 1.5 2 2.5 2 2 1 2 3 2 2 2 2 2 1.5 2 2.5 2 1.5 2 2.5 3124 

2 1.5 2 2.5 2 2.5 2 1.5 1 2 3 2 2 2 2 2 1.5 2 2.5 2 1.5 2 2.5 2 2413 

1.5 2 2.5 2 2.5 2 1.5 2 2 3 2 1 2 2 2 2 2 2.5 2 1.5 2 2.5 2 1.5 1342 

2 2 2 2 3 2 1 2 2 2.5 2 1.5 2 1.5 2 2.5 1.5 2 2.5 2 2.5 2 1.5 2 1243 

2 2 2 2 2 1 2 3 2.5 2 1.5 2 1.5 2 2.5 2 2 2.5 2 1.5 2 1.5 2 2.5 4132 

2 2 2 2 1 2 3 2 2 1.5 2 2.5 2 2.5 2 1.5 2.5 2 1.5 2 1.5 2 2.5 2 3421 

2 2 2 2 2 3 2 1 1.5 2 2.5 2 2.5 2 1.5 2 2 1.5 2 2.5 2 2.5 2 1.5 2314 

3 2 1 2 2 2 2 2 2 1.5 2 2.5 2 2.5 2 1.5 1.5 2 2.5 2 2.5 2 1.5 2 2134 

2 1 2 3 2 2 2 2 1.5 2 2.5 2 2.5 2 1.5 2 2 2.5 2 1.5 2 1.5 2 2.5 1423 

1 2 3 2 2 2 2 2 2 2.5 2 1.5 2 1.5 2 2.5 2.5 2 1.5 2 1.5 2 2.5 2 4312 

2 3 2 1 2 2 2 2 2.5 2 1.5 2 1.5 2 2.5 2 2 1.5 2 2.5 2 2.5 2 1.5 3241 

 

Proofs 

 

Proposition 1: A probability distribution P constitutes an equilibrium if and only if:  
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Proof: The following system of 12 linear equations characterizes the game’s set of 

equilibria:  
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
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and its solution is the 6-dimension space that appears in the proposition. ■  
 

Proposition 2. If 1>P(S)>0.5 for some S, then D(S) is the best response to P.  

Proof:   

Assume without loss of generality that 1>P(L0)>0.5. We need to show that no strategy 

earns as high a score as L1. It is sufficient to show that for 

any 1X L≠ , )3(),( 0 tLXscore −=  implies that tYLscoreYXscore ≤− ),(),( 1  for any Y. In 

other words, X cannot compensate for its inferiority to L1 against L0 by its superiority 

when playing against some other strategies. The proof continues by considering all the 

possible strategies X and confirms that the condition on the payoffs is satisfied for all of 

them: 

(I) The case of X=L3 is straightforward: 1),( 03 =LLscore , 

and 2),(),( 13 ≤− YLscoreYLscore  since the lowest possible score is 1 point and the 

highest is 3 points. 

(II) If 2),( 0 =LXscore , assume to the contrary that 1),(),( 1 >− YLscoreYXscore . This 

implies that 1),( 1 =YLscore or 1.5 and thus Y can only be L2 or S2(i), for i=3,4,5,6. 

However, the only strategies that score 2.5 or 3 points against L2 or S2(i) are S3(i) and L3, 

which do not tie with L0, a contradiction. 

(III) In the case of X=S1(i), for i=3,4,5,6, 5.2),( 0 =LXscore . Since S1(i) is parallel to L1, 

it scores at most half a point more than L1 against iCycleY ∈  or Cycle 1. S1(i) can score at 

most 2.5 points against 1cycleoricycleY ∉ , while L1 scores at least 1.5 points. 

5.1),( 1 =YLScore  only if Y=S2(j) for j=3,4,5,6, and 5.2))(),(( 21 <jSiSscore . 

(IV) In the case of X=S3(i), for i=3,4,5,6, 5.1),( 0 =LXscore . S3(i) cannot score 2 points 

more than L1 against some other strategy Y: 3)),(( 3 =YiSscore  only for Y=S2(i), and 

5.1))(,( 21 =iSLscore  and not 1. ■ 
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Experimental results 

Table 1 and 2 below present the aggregate quantitative data for Version 1 and 2. The 

columns from left to right are: row number; all 24 possible strategies in the game; median 

response time (RT) of each strategy; the number and then proportion of subjects who 

chose the strategy; the average score of that strategy in the general tournament; the 

notation used for each strategy; and in Table 1 an additional column presents the 

distribution following the normalization discussed on page 23. 

 

Table 1 

 

Version 1 

N=641 
 

Normalization  Notation Score % # RT Strategies  

         

42.40% L0 1.94 22% 141 125s 1234 1 

14.84% L1 2.22 10.14% 65 194s 4123 2 

 0% L2 2.06 3.28% 21 165s 3412 3 

 0% L3 1.78 3.59% 23 196s 2341 4 

         

13.43% S0(2) 1.96 8.74% 56 158.5s 4321 5 

2.12% S1(2) 2.06 3.59% 23 172s 3214 6 

0%  S2(2) 2.04 2.81% 18 167s 2143 7 

 0% S3(2) 1.94 2.65% 17 221s 1432 8 

         

7.77% S0(3) 1.94 5.15% 33 80s 1324 9 

5.30% S1(3) 2.16 3.9% 25 146s 4213 10 

 0%  S2(3) 2.06 1.72% 11 109s 3142 11 

0%  S3(3) 1.84 1.56% 10 165s 2431 12 

         

0% S0(4) 1.95 3.59% 23 96s 4231 13 

1.41% S1(4) 2.12 2.81% 18 181.5s 3124 14 

 0% S2(4) 2.05 3.59% 23 102s 2413 15 

0%  S3(4) 1.88 2.18% 14 120s 1342 16 

         

2.47% S0(5) 2.01 2.34% 15 106s 1243 19 

0%  S1(5) 2.08 2.03% 13 140s 4132 20 

0%  S2(5) 1.99 1.25% 8 126.5s 3421 17 

4.95% S3(5)  1.92 4.21% 27 128s 2314 18 

         

3.18% S0(6) 1.96 2.96% 19 96s 2134 21 

0%  S1(6) 2.07 1.72% 11 101s 1423 22 

0%  S2(6) 2.04 1.56% 10 112.5s 4312 23 

2.12% S3(6)  1.93 2.65% 17 141s 3241 24 
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Table 2 

 

Version 2 

N=704 

Notation Score % # RT Strategies   

              

L0 0.03 18.61% 131 116s 1234 1 

L1 0.19 12.93% 91 194s 4123 2 

L2 0.13 5.26% 37 170s 3412 3 

L3 0.05 2.84% 20 157s 2341 4 

              

S0(2) 0.02 5.82% 41 161s 4321 5 

S1(2) 0.06 5.40% 38 187s 3214 6 

S2(2) 0.05 2.41% 17 179s 2143 7 

S3(2) 0.02 1.70% 12 158s 1432 8 

              

S0(3) 0.02 3.41% 24 90.5s 1324 9 

S1(3) 0.03 4.69% 33 173s 4213 10 

S2(3) 0.05 2.13% 15 128s 3142 11 

S3(3) 0.02 1.56% 11 106s 2431 12 

              

S0(4) 0.01 4.26% 30 124s 4231 13 

S1(4) 0.04 2.41% 17 130s 3124 14 

S2(4) 0.02 3.12% 22 193.5s 2413 15 

S3(4) 0.03 1.14% 8 141.5s 1342 16 

              

S0(5) 0.05 2.56% 18 136s 1243 19 

S1(5) 0.03 2.41% 17 171s 4132 20 

S2(5) 0.02 1.14% 8 122s 3421 17 

S3(5) 0.01 4.69% 33 115s 2314 18 

              

S0(6) 0.03 3.98% 28 136s 2134 21 

S1(6) 0.04 2.98% 21 208s 1423 22 

S2(6) 0.03 1.56% 11 139s 4312 23 

S3(6) 0.02 2.98% 21 128s 3241 24 
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Table 3 

Comparison of the two versions in Experiment 3 

 

N=279, 131 in Version 1 and 148 in Version 2. 

 

Score in Version 2  Score in Version 1  Version 2 (%) Version 1 (%) Strategies 

      

0.02  1.87 10.1% 10.7% 1234  - L0 

0.1 2.1 18.9% 19.1% 4123  - L1 

0.19 2.23 6.8% 4.6% 3412  - L2 

0.07 2 2.0% 2.3% 2341  - L3 

      

0.01 2.02 4.1% 7.6% 4321 - S0(2) 

0.04 2.06 10.8% 5.3% 3214 - S1(2) 

0.11 2.07 2.7% 6.1% 2143 - S2(2) 

0.03 2.04 1.4% 0.8% 1432 - S3(2) 

      

0.03 1.98 1.4% 1.5% 1324 

0.01 2.06 6.8% 1.5% 4213 

0.07 2.12 2.0% 3.1% 3142 

0.02 2.04 2.7% 3.8% 2431 

      

0.02 1.91 3.4% 2.3% 4231 

0.03 2.1 5.4% 3.1% 3124 

0.05 2.18 8.1% 2.3% 2413 

0.08 2 2.0% 3.1% 1342 

      

0.03 ---- 0.7% 0% 1243 

0.01 2.04 0.7% 3.8% 4132 

---- 2.14 0% 2.3% 3421 

0 2.06 2.7% 1.5% 2314 

      

0.02 1.99 3.4% 5.3% 2134 

---- 2.1 0% 3.1% 1423 

0 2.11 2.0% 3.8% 4312 

0.02 2 2.0% 3.1% 3241 
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Details on response time and explanations in Experiment 1 

 

Subjects’ explanations and response times are used to support the interpretation of the 

main strategy choices in Experiment 1 (Version 1). 

The response time of L0 suggests that it is typically an instinctive choice. Its 

response time is lower than that of each of the strategies in cycle 1 and lower than that of 

the rest of the strategies taken as a whole, even when L1 is excluded. Furthermore, its 

response time is lower in comparison to all strategies that are not in the first cycle taken as 

a whole.22 28% of those who chose L0 did not explain their choice. Of those who did (83): 

39% belong to the intuitive category, 26% belong to the random choice category and 35% 

belong to the category of other strategic rules. 

 The choice of L1 is clearly an outcome of cognitive reasoning: It has higher 

response time than the rest of the strategies taken as a whole, even when L0 is excluded. 

Only 11% of those who chose this strategy did not provide an explanation. Among those 

who did provide an explanation (41), 75% of the explanations belong to the category of 

iterated reasoning. 

 The response time of L1 is not significantly different from those of L2 or L3, or the 

class that includes both. Among the subjects who chose L3, none of their explanations 

included a process of iterated reasoning. Only three explanations (out of 15) for the choice 

of L2 explicitly described the use of two levels of iterated reasoning. No one chose a 

strategy other than L1 and L2 while explaining that he had used two levels of iterated 

reasoning or higher. Considering the low frequencies of L2, L3, S2(2) and S3(2), and taking 

into account that various decision rules can lead to these choices, I conclude that level-2 

and level-3 types are negligible in this game. 

 The response time of S0(2) is higher than that of  L0 and not significantly lower  

than that of L1, or the response time of all other strategies taken as a whole. This finding 

suggests that the strategy S0(2) is not as instinctive as L0 and does not play the same role 

as L0. 27% of the subjects who chose it did not explain their choice. Among those who did 

provide an explanation (32), 25% of the explanations belong to the random choice 

category, around 60% are based on other strategic rules and around 15% are intuitive. 

 

                                                 
22  The Mann-Whitney U test, also known as the Wilcoxon Two-Sample Test, was used to test the 

differences in response time. The significance level for all the results was at least 5%. 52 observations with 

response times higher than 600 seconds were omitted (the RT was higher than 1000 in 50% of these 

observations). It is likely that these observations do not reflect real response times and omitting them 

reduces the noise. 
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Version 1 and 2 as they appear on the didactic website  

 

 

Games and Behavior - The Problems 
 

The Problem     

You are a tennis team coach, planning to send your team to a tournament. Each 
team in the tournament has four players: one of level A+ (the highest level), one of 
level A, one of level B+, and one of level B (the lowest level). 

 
The coach's task is to assign his players to "position 1", "position 2", "position 
3" and "position 4" (one player in each position).  
Each team will play against each of the other teams in the tournament. A game 

between two teams includes four matches: a player that was assigned by his coach 
to "position X" will play once against the player in "position X" of the other team. You 
don't know how the other coaches assign their players. 
 

In any match between two players of different levels, the one with the higher level 
wins. When two players with the same level play, the outcome is a tie. 
 

[In version 1 - A winner in a match brings his team 1 point, and a player who ends 
the match with a tie brings his team ½ a point. A loss yields 0 points.] 
 
[In version 2 - At the end of any game between two teams, a team gets 1 

point only if it won three matches out of four. In such a case, the other team 
gets 0 points. In case of any other result, none of the teams gets points.] 
 

The team's score at the end of the tournament is the number of points it gained in all 
the games against other teams. 
The winning team is the one with the highest score, and the prize is $10,000. [In 
case of several winning teams, the prize is divided between them.] 

The only goal of players and coaches (including you) is to have their team getting the 
highest score among the teams. 
 
How will you allocate your players in order to achieve this goal?** 

 
** Note that other students in your class play the role of other coaches in the 
tournament, so your total score in this game will be your team's total score, after 

playing against each of the other students' teams.  

       

  A+ A B+ B  

       pos 1 
    

  

       pos 2 
    

  

       pos 3 
    

  

       pos 4 
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