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Abstract

The paper introduces a new allocation game, related to the Colonel Blotto game: each
tennis coach assigns his four different skilled players to four positions, and then each team
plays all other teams in the tournament.

The set of equilibria is characterized and experimental behavior in variants of the
game is analyzed in light of an adapted level-k model. The results exhibit a systematic
pattern- a majority of the subjects used a small number of strategies. However, although
level-k thinking is naturally specified in this context, only a limited use of low level-k

thinking was found. Thus, the results illuminate some bounds of the level-k approach.
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1. Introduction

This paper introduces a new allocation game called the Tennis Coach problem, which
captures the essence of some interesting strategic interactions observed in competitive
environments. The game is analyzed both theoretically and experimentally and serves as a
platform for studying iterated reasoning and non-equilibrium models based on this

concept.

The Tennis Coach problem

Consider a tournament in which each participant plays the role of a tennis coach who is
planning to send his team to the tournament. Each team consists of four players with four
different skill levels: A+, A, B+ and B, where A+ is the highest level and B is the lowest.
The coach's task is to assign his players to positions 1, 2, 3 and 4 (one player to each
position). Each team plays against each of the other teams in the tournament.

A battle between two teams includes four matches: a player that was assigned by
his coach to a particular position plays once against the player on the other team assigned
to the same position. In any match between two players of different levels, the one with
the higher level wins and scores one point for his team. When two players with the same
level play against each other, the outcome is a tie and each team receives half a point.
Thus, a battle between two teams ends with one of the teams winning 3:1 or 2.5:1.5, or in
a tie of 2:2. The team's score at the end of the tournament is the total number of points it
received in all the battles. The goal of the coaches is to win the tournament, i.e. to achieve
the highest score among all the teams.

The strategic interaction between the coaches will be referred to as "the tennis

game".

Theoretical motivation

The tennis game is of interest primarily because it is an intuitively appealing version of the
popular Colonel Blotto game, introduced by Borel (1921). In the Colonel Blotto game,
two players simultaneously allocate a fixed number of troops to N battlefields. A player
wins a battle if the number of troops he assigns to a particular battlefield is higher than

that assigned by his opponent and whoever wins more battles is the winner of the game.'

" A number of papers have analyzed the game on a theoretical level though there is still no complete

characterization of equilibrium in the continuous case. See some recent progress in Weinstein (2005) and



The game has been widely interpreted as a competition between two players, in which
each distributes his limited resources across N tasks and succeeds in a task if he assigns
more resources to it than his opponent. A well-known application of the game involves the
interaction between vote-maximizing parties in an election campaign, in which the
promises made by the parties are modeled as the various ways to divide a homogeneous
good and are assumed to determine the outcome of the election. The basic idea is that an
individual votes for party X if it has promised him more than party Y and the party that
receives more votes wins the election. This scenario could also be interpreted as vote-
buying.

Whereas in the Blotto game all partitions (and in some versions only discrete
partitions) of the total resources are possible, in the tennis game a player is restricted to a
finite number of allocations. This does not make the tennis game a special case of the
Blotto game, but rather a different and somewhat simpler version, yet one which captures
much of its strategic spirit. Moreover, in many cases, the tennis game reflects more
realistic assumptions than the Blotto game. For example, a general might not be able to
assign any number of troops to a single battlefield and may be restricted by the internal
organization of his army to assigning one division to each battlefield, where the divisions
differ in ability and strength. More generally, the tennis game is better suited to
competitive scenarios in which human resources are allocated among several tasks.

The tennis game is also able to capture the interaction in the campaign promises
game, in which promises are made in the form of a list of priorities (an ordering of
projects) that a candidate guarantees to adhere to after being elected. If different projects
are associated with different groups (each with equal voting power) then declaring the list
of priorities is equivalent to the problem of the tennis coach.

The tennis game is also related to the game discussed in Fershtman and Rubinstein
(1997), in which a treasure is hidden in one of N locations. Each of two players tries to be
the first to reach the location of the treasure. Each player i has resources to sequentially
search Nj locations and must choose the order in which to conduct the search (to specify

which location he searches in each date). In the case of Ni=N, choosing the order of the

Roberson (2006). Hart (2007) provides a complete characterization of equilibrium in the discrete case. I am
not aware of experimental studies of the game, apart from a comment by Jonathan Partington (see

http://www.geocities.com/j_r_partington/blotto.html) and an unpublished work by Ariel Rubinstein.

? See variants of the promises game in Myerson (1993), Laslier and Picard (2002) and Dekel, Jackson and
Wolinsky (2008).



search is equivalent to allocating N players to N positions in the tennis game.” When two
players search according to their ordering, then the probability that a player will find the
treasure is equivalent to the number of points earned by a team in the tennis game. Note
that Fershtman and Rubinstein did not analyze the set of equilibria in this game. The
game with the pair (N;, N;) is used as a second stage once each player i has chosen N; in
the first stage.

In the spirit of this analogy, the tennis game can be interpreted as an R&D race, in
which each firm chooses the order of the routes it will follow in trying to solve a particular
problem or the order of the projects it will undertake. This interpretation is appropriate for
cases in which each of the various projects or routes is equally promising.

Calculating the value of the symmetric tennis game is straightforward. However,
equilibrium payoffs tell us only part of the story and as in the game-theoretic analysis of
other strategic scenarios, the interaction is explored by studying the set of equilibria.
Characterizing the set of equilibria in the game is quite involved and relies on its special
structure, in which any pure strategy has a unique "best response”* and the best response
function induces a partition of the game's 24 strategies into 6 cycles of 4 strategies each
(within a cycle, each strategy is the best response to the preceding strategy in that cycle).
The characterization yields some interesting results. For example, it will be shown that the
simplest mixed strategy equilibrium (simple in terms of number of strategies in the
support of the equilibrium strategies) involves the use of two pure strategies, with the
property that each is the best response to the best response of the other strategy.

The game-theoretic analysis of the tennis game ignores the existence of a focal
strategy, in which players are allocated according to their correct ranking, and the induced
framing effect. Note that the tennis game can capture circumstances in which N different
levels of resources need to be distributed across N labeled tasks. The labeling may result
in task 7 being differentiated from task j psychologically. The theoretical analysis is not
affected by labeling, as long as the labels do not affect players' payoffs. In the R&D race,
for instance, the labels might reflect the perceived differences in the attractiveness of the

various routes that can be taken. The framing of the case in which the probability to

? The players' skill levels are analogous to the search schedule. For example, assigning A+ to the second
position in the tennis game is equivalent to searching first in location 2.

YA strategy S is the "best response" to the strategy 7 if S achieves the highest possible score (3 points) when
playing against 7.



succeed in route i is presumed to be slightly higher than in route i+1 resembles the

framing in the tennis game.

Experimental motivation

The tennis game's special structure and its psychological properties, which are a result of
the existence of a focal strategy, call for addressing solution concepts other than
equilibrium, which are based on iterative reasoning. In particular, I discuss the concept of
level-k thinking which has recently become increasingly popular.’

Level-k non-equilibrium models assume that the population of players consists of
several types, each of which follows a different decision rule. L0 is a non-strategic type
who chooses his action naively by following a particular rule of behavior that depends on
the context and is determined by the modeler. L/ best responds to the belief that all other
players are L0, L2 best responds to the belief that all other players are L/, and so on. Thus,
a type Lk, for k>0, is behaving rationally in the sense that he best responds to his belief
regarding other players' actions. However, the belief held by Lk is not the "correct" belief
as required by Nash equilibrium. Level-k models were first introduced by Stahl and
Wilson (1994, 1995) and Nagel (1995). Since then, they have been developed extensively
and used to explain experimental results in a variety of settings. For example, Crawford
and Iriberri (2007b) apply the model to explain behavior in auctions.®

Papers that use level-k models to explain experimental results usually estimate the
frequency of each type in a particular context. The appeal of this approach is due to a
finding stated clearly in Crawford and Iriberri (2007b, page 1725): "The estimated
distribution tends to be stable across games, with most of the weight on L/ and L2. Thus
the anchoring L0 type exists mainly in the minds of higher types."

When analyzing experimental results using a level-k approach, one of the principal
tasks is to reasonably specify the behavior of L0 in that particular context. Often (though
not always) L0 is taken to be a uniform randomization over the strategy space. In the

tennis game, the specification of L0 is intuitively appealing due to the existence of a

> The term "iterated reasoning" is usually associated with "iterated dominance", although the term is more
general and describes a process in which a player applies arguments recursively. In this paper, I do not
discuss iterated elimination of dominated strategies since there are no dominated strategies in the tennis
game. Thus, throughout the paper I refer to level-k thinking as "iterated reasoning".

% Some other examples are: Ho, Camerer and Weigelt (1998), Costa-Gomes, Crawford, and Broseta (2001),
Crawford (2003), Camerer, Ho, and Chong (2004) and Costa-Gomes and Crawford (2006).



salient strategy or focal point (A+, A, B+, B), which is the natural starting point for
iterated reasoning.” Decision rules based on level-k reasoning are expected to be reflected
in subjects' choices also because, given this anchor (starting point), best responding to an
Lk type is cognitively simple (as I confirmed experimentally). Furthermore, compared to
many other level-k models, the adapted model in the tennis game assumes weaker and
more plausible assumptions on subjects' beliefs. Thus, as will be shown in Section 2.4, the
typical choice of Lk is not only optimal given the belief that all (or almost all) other
subjects are Lk-1 types, but is also the best response to the belief that the majority of
subjects are Lk-1, or to the belief that the most frequent type is Lk-/ and that the rest of
the choices are uniformly distributed.

Since level-k types are naturally specified in the tennis game, the level-k approach
appears to be suitable a priori. On the other hand, the strategy space in the game is large
enough and the structure of the game rich enough to leave room for other kinds of
decision rules which are not based on iterated reasoning (examples will be discussed at a
later stage). Therefore, the tennis game is an ideal platform for testing the extent to which
level-k models are capable of explaining behavior in novel settings.

As expected, experimental behavior in the one-shot game was not consistent with
any equilibrium predictions. The adapted model of level-k reasoning explained only some
of the behavior in the tennis game. Patterns based on iterated reasoning were indeed
found, but most choices seemed to be driven by other kinds of deliberations. The
distribution of strategies reflects a low level of reasoning — even the first step of iterated
reasoning was not very common and the second and higher steps were almost totally
absent. These frequencies are much lower than those reported in the literature for the
parallel steps in other games. The findings are also supported by the results obtained using
other experimental techniques, i.e. recording subjects' response time and requesting that

subjects provide ex-post explanations of their decisions.

7 The non-strategic type L0 in this paper resembles the truthful L0 type in Crawford and Iriberri (2007b),
who bids the value that his own private signal suggests. The specification of L0 in the tennis game also has
features in common with the specification in Crawford and Iriberri (2007a), which adopts a level-k approach
to explain experimental behavior in hide-and-seek games (presented in Rubinstein, Tversky and Heller,

1996). In particular, both specifications take into account the instinctive attention to focal points.



The rest of the paper is organized as follows: Section 2 presents a game-theoretic
analysis of the tennis game and an adapted level-k model; Section 3 describes the
experimental design; Section 4 reports and discusses the experimental results; and Section

5 concludes.

2. Theoretical Analysis of the Tennis Game

2.1 Formal Presentation of the Game

Players and strategies

The players in the game consist of N tennis coaches who participate in a single round-
robin tournament. Coaches choose their strategies simultaneously at the beginning of the
tournament. A pure strategy in this game is an assignment of the four players, with skill
levels A+, A, B+ and B, respectively, to the four positions. Denote A+ by 1, A by 2, B+
by 3 and B by 4. Formally, denote a pure strategy by a four-tuple, which is a permutation
of (1, 2, 3, 4), where the jth component is the level of the player assigned to position j. An
abbreviation will often be used to represent a strategy, where, for example, 2134 will
represent the strategy (2, 1, 3, 4). Since any order of the four players is permissible, there

are 24 possible strategies in the game.

Scoring

When two teams play against each other, four points are divided between them. A team
receives one point when it assigns a better player to a particular position and no points if
the other team assigns a better player. Each team receives half a point when the two

players assigned to a position are equally ranked.

Let score(< x,,X,,X5,X, >,< Y, V5, V5, V4 >) :|{i | x, > yi}|+0.5|{i | x;, = yi}| be the total
number of points earned by a team that uses a strategy S = (x,,x,,x;,x,) against a team
using the strategy 7 =(y,,»,,5,¥,). Thus, score(S,T)+ score(T,S)=4 forall Sand T.

Note that a team can never score less than one point in a battle against another
team since the best tennis player is unbeatable and in the case that he ties, the second-best
player cannot lose and at worst will tie. This implies that a team cannot earn more than 3

points in a battle and that there are five possible scores: 3, 2.5, 2, 1.5 and 1.



Payoffs

Each team will play all the other teams in the tournament. The total score of a team that
chooses strategy S is the sum of points it scores in all battles. Each team wishes to score
the highest number of points among all the teams in order to win the tournament but does
not care about its total score per se. This is in fact characteristic of many real-life
situations, in which competitors only care about winning and the total points earned or the
gap between the winner and runners-up is only of secondary importance. (This was also
characteristic of the experiments reported on later in the paper.) Since the prize is shared
between the winning teams in the tournament, a team prefers winning together with M
other teams over winning with N>M other teams (this assumption prevents the game from
having trivial equilibria in which all coaches win by choosing the same assignment). Thus,
in a tournament between two players, the payoff structure is simple: unlike the score
function which can receive five values, the payoff function can now receive only three

(since each coach prefers winning the tournament over a draw and a draw over losing).

2.2 The Score Function

The possible scores in any battle between two strategies can be presented in a matrix.
Presenting the score function in an illuminating way (see the appendix) requires an
appropriate choice of the strategy order. This sub-section presents some properties of the

score function that help direct us to it.

Permutations

Given a strategy S and a permutationo, o(S) is also a strategy. Note that
score(S,T) = score(a(S),o(T)) since the score is determined by the matching of players

from the two teams. The position of a matched pair does not matter.

Partition of strategies into cycles

We say that a strategy S wins a battle against strategy 7, ifscore(S,T)>2. A strategy S
defeats strategy 7T if score(S,T)=3. For any strategy S, let D(S) be the unique strategy
that defeats S. Given a level x € {1, 2, 3, 4} and an integer n € Z, denote by x+n the level
y satisfying y=x+n (mod 4). Then, D(S) = D(x,,x,,x;,x,) =(x;, —1Lx, —1L,x; =1, x, =1).
The function D is reversible. Thus, for each strategy S, there is exactly one strategy D(S)
that defeats S and exactly one strategy D"'(S) that is defeated by S.



If we perform D on S four times, we again obtain S. This implies that the function
D induces a partition of the game's strategies into six disjoint cycles of four strategies

each.

Following are the basic properties of the score function:

Property 1. score(S,S)=2, score(S,D(S)) =1, score(S,D*(S)) =2 and
score(S,D*(S))=3.

The following property, which states that any strategy that confronts a pair of non-

sequential strategies in a cycle scores a total of 4 points, is of particular importance.

Property 2. For any T and S, score(T,S) + score(T,D*(S)) = 4.

Cycles 1 and 2
Although the score function is invariant to any permutation of the positions, some
strategies are more salient than others. For instance, the strategy 1234 is a focal point
because it immediately suggests itself and because of its special characteristics (levels and
positions correlate perfectly). Moreover, it is a strategy that can be observed in numerous
real-life situations. The cycle that contains 1234 is of particular importance in the
experimental part of the study. Denote 1234 by Ly, D(Ly)=L;, D(L;)=L,, and D(L;)=L;.
Cycle 1 is denoted as [Ly, L;, L», L3].

Different notations are used for the other cycles. Thus, for any i € {2,..,6}, denote
Cycle 1 by [Sy(1), Si(1), S2(1), S3(1)]. For Cycle 2, I choose S¢(2)=4321, which is another
possible focal point. Thus, Cycle 2 is denoted as [4321, 3214, 2143, 1432].8

Property 3. If S € Cycle1 and T € Cycle 2, then score(T,S) =2

Thus, any strategy in Cycle 1 ties with each of the strategies in Cycle 2. A pair of

cycles with this property will be called twin cycles.

¥ In addition to the focal point property, Cycle 1 and 2 have the special property of being cognitively easy to
construct relative to other cycles in the game. The reason is that in these cycles the strategy that defeats S is
created by a technical "shift" to the right (left) of strategy S: each tennis player moves to the position to his

right (left) and the last (first) tennis player moves to the first (last) position.



Cycles 3,4,5 and 6

Four other cycles will now be identified and the strategies ordered in a manner that will
simplify the analysis. The first strategy in each of these cycles is chosen to be a
permutation of 1234 that swaps two players at adjacent levels: x and x+1. Let Sy(3)=1324,
So(4)=4231, Sy(5)=1243 and Sy(6)=2134.

Property 4. Cycles 3 and 4 are twin cycles, as are Cycles 5 and 6.

Property S. For 0<k <3 and 3<i<6: score(L,,S,(i))=2, score(L,,S,,,(i)=1.5,

score(L,,S,.,(1)) =2, and score(L,,S, ;@) =2.5.

We define Cycles 3, 4, 5 and 6 as being parallel to Cycle 1. This term is
appropriate since for i=3,4,5,6 L, ties with S, (i) for any k and the score obtained by L,

when played against S, (i) is close to that obtained by L, when played against L,

(|score(Lk ,L, )—score(L,,S, (i))| =0 or0.5).

Due to symmetry considerations, any Cycle i can serve as the starting point for
identifying parallel cycles (by identifying the order of strategies in four other cycles,
which makes these cycles parallel to Cycle 7). In this way, the score can be determined for

any two strategies.

2.3 Equilibrium

This subsection characterizes the population equilibrium in the tennis game. The Nash
equilibrium of a tournament with a large number of teams can be approximated using the
following concept of population equilibrium: A distribution of strategies is a population
equilibrium if the average score of a strategy in the support of the distribution is at least as
high as any other strategy when playing against this distribution.

Denote by P(S) the probability assigned by the distribution P to the strategy S.
There is no equilibrium with P(S) =1 since any strategy 7" for which score(7,S)>2 earns a

higher score than S. Thus, the support contains at least two pure strategies.

10



Claim 1. A4 probability distribution P is a population equilibrium if and only if the
average score for all 24 strategies is 2 points.

Proof:

-> First, all strategies in the support yield the same average score only if the average is 2
points. Second, the score of any strategy outside the support must be at most 2; however,
if some strategy Sk receives strictly less than 2 points, property 2 implies that Sy, receives
more than 2 points.

< If all the strategies in the game earn 2 points, then by definition P is an equilibrium. m

Before moving on to a complete characterization of equilibrium, I present several
claims concerning simple forms of equilibrium that will clarify the intuition behind the

characterization.

Claim 2. A probability distribution P, whose support is contained in a single
cycle[S,,S,,S,,S;] , is an equilibrium if and only if P(So)=P(S,) and P(S;)=P(S3).

Proof:

< By property 2, each strategy in the game receives 2 points and thus P is an equilibrium.

- If for some S €[S5,,5,,S,,5;] , P(D*(S))>P(S), then D*(S) earns more than 2 points.

To see this, recall that D*(S) earns 2 points, on average, when played against D(S) and
D*(S) and more than 2 points, on average, when played against S and D*(S). m

Note that the only thing that matters in this class of equilibria is that P(Dz(S))-
P(S)=0 for any S. It does not matter what P(S) is per se. In fact, this understanding leads to
a large class of equilibria that can be described compactly by the notion of differences

between the probabilities of two non-sequential strategies, S and D*(S).

Claim 3. [f P satisfies P(S) =P(D*(S)) for any strategy S, then P is an equilibrium.

Proof:

Each strategy 7 in the game receives an average score of 2 points when played against a
pair of non-sequential strategies. Since for all S, P(S)=P(D’(S)), the expected score for

any 7'is 2 points. m

11



The analysis of equilibrium remains unchanged if 2 points are subtracted from any
possible score in the score matrix. Such a transformation implies that in equilibrium there
is no strategy with an average score different from zero. For convenience, what follows is

analyzed accordingly.

Claim 4. Any equilibrium P with a support contained in two cycles satisfies
P(S)-P(D*(S))=0 for all S.

Proof:

Assume the contrary. Consider S € Cycle i for which P(S)-P(D’(S))=A is maximal. Since
D(S) earns a positive score A when played against strategies in Cycle i, it must earn a
negative payoff (-4) when played against strategies in Cycle j in order to reach the
equilibrium score (0 points). This can occur only if P(D’(T))-P(T)=2A4 for the strategy
T € Cycle j, for which score(D(S),T)=0.5 (score(D(S),T)=2.5 in the original score
function). However, A is the maximal difference between the probabilities of non-

sequential strategies in a cycle, a contradiction. m

Claim 2 implies that a minimum of two pure strategies is used in equilibrium.
Claim 4 adds that these two strategies must be non-sequential in the same cycle. In other
words, the simplest mixed strategy equilibrium involves the use of two strategies, with the

property that each is the "best response" to the "best response" of the other strategy.

We now consider the full characterization of the game's equilibrium. Define:

X = (2,25, ,x,) = (p(Ly) = p(Ly), p(Ly) = (L)), p(S,(2) = p(Sy(2))-++, p(S5(6)) - p(5,(6)))

Proposition 1. 4 probability distribution P is an equilibrium if and only if:

X, — (X, + 25 +x5)

Xg — (2, +x, + X)

Xo | [ 0:5-(=x, —x4 =2x5 + x5 —x;)
Y10 0.5-(x; +x; +2x5 +x, —x,)
X 0.5-(x, +x, +2x, +x; — X))
X1z 0.5-(=x, —x; —2x5, +x, — ;)

Outline of the proof: In equilibrium, the score earned by any strategy must be zero.

Using Property 2, it is sufficient to verify that in any cycle, two arbitrary adjacent

12



strategies both earn 0 points (which implies that each of the other two adjacent strategies
also earns 0 points). The next step is to understand that the points earned by a strategy S
are determined only by differences between the probabilities of two non-sequential
strategies that do not tie with S. Solving the system of 12 linear equations (see the

appendix) yields the solution given in the proposition. m

Comments

(I) The only equilibria with a support contained in three cycles belong to the class
suggested in Claim 3. This is because there are 6 degrees of freedom in the system.
Therefore, if we substitute zero for the 6 variables, we obtain a single solution: X=0. This
claim does not hold for equilibria with a support contained in four cycles. By Proposition

1, the following distributions are equilibria for which the condition in Claim 3 is not

satisfied:
1 1 1 1

P:(0,0,—,O, 0505_905 _5090905 _5050505 05050905 0905050)
4 4 4 4

and P=(-=,04,0, 05,0, 0,00, ~,05,0, 0000 0000).
12 6 126 12 4 6

Note that these two  examples induce  different vectors of the
type X =(a,b,a,b,—a,—b,—a,—b,0,0,0,0), which reflects the structure of equilibria with a
support contained in the first four cycles.

(IT) The analysis in this sub-section is equivalent to that of a symmetric mixed-strategy
Nash equilibrium in a two-player game, in which the payoff matrix is the score matrix of
the tennis game. In other words, the analysis also captures scenarios in which each of the
two players aims at maximizing his objective score and not just to obtain a higher score
than his opponent. In fact, P is a population equilibrium if and only if it is an equilibrium
mixed strategy (possibly asymmetric) in this two-player game.

(IIT) Consider the two-player tournament, in which the players' payoffs are 1 for winning
the tournament, 0 for a draw and -1 for losing. It is straightforward to show that in this
game, a probability distribution G is a Nash equilibrium mixed strategy if and only if

G(S)=G(D*(S)) for any S.

2.4 Best Response Function

This sub-section focuses on finding the best responses to some interesting distributions of

choices. In particular, I identify the best responses for distributions that I consider to be

13



natural beliefs and which may be those actually held by coaches. Examples of natural
beliefs include: "All other coaches will choose S", "Most of the coaches will choose S"
and "The most frequent choice will be S".

As intuition suggests, the best response to the belief that "almost all other coaches
will choose Sy(1)" is D(Si(1)). However, given the belief that all other coaches will choose
Si(1), any D(Si(j)) for a parallel Cycle j is also a best response (a coach who chooses
D(Si(j)) earns an average score of 2.5 points but wins the tournament since it is the highest
score among the coaches). The next proposition refers to the natural belief that "most of
the coaches will choose S". The adapted level-k model that will be constructed in Section

2.6 relies on this proposition.

Proposition 2. If I>P(S)>0.5 for some S, then D(S) is the unique best response to P.
Outline of the proof: Assume without loss of generality that 1>P(Ly)>0.5. We need to

show that no strategy earns as much as L;. It is enough to show that for any X # L,
if score(X,L))=(3—1t), then score(X,Y)—score(L,,Y)<t for any Y. In other words, X

cannot compensate for its inferiority to L; when played against L by its superiority when
played against some other strategies. The proof covers all the possible strategies X and

confirms that the condition on the score is satisfied (see the appendix). m

Now consider the belief that "all choices will be in Cycle i and the most frequent
choice will be §". For such a belief, the optimal choice is not necessarily D(S). For
example, if P(Sp)=0, P(S;)=0.4, P(S,)=0.3 and P(S;)=0.3, then the optimal choice is S;,
and not S,. The reason is that the optimal choice, when choices are in a single cycle, is
determined by the differences between two non-sequential strategies. The optimal choice
in this case is Sy, for k& that maximize P(Sy)-P(Sk+2).

This last example also demonstrates why D(S) is not necessarily the optimal
strategy given the belief that "the most frequent strategy is S". However, it is easy to see,
as an implication of Property 2, that D(S) is the optimal strategy for the belief that the
most popular choice is S and that the rest of the chosen strategies are uniformly
distributed. Essentially, this claim states that D(S) is the best response to a belief that

attributes high probability to the strategy S and takes into account some level of noise.
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2.5 A Variant of the Game

In the experimental part of the paper, a second version of the game is discussed, which is
denoted as Version 2. It differs from the first version only in the method of scoring. Thus,
in Version 2, a team receives one point only if it wins three matches out of four against
another team. At any other case, it does not receive any points.

In this version of the game, and given a probability distribution P, it is always
optimal to choose D(S"), where S is the strategy for which P(S) is maximal. Therefore,
Proposition 2 becomes trivial in this context and can be extended to the following
proposition: If none of the strategies are chosen more often than S, then D(S) is a best
response. If, in addition, none of the strategies are chosen as often as S, D(S) is the only
optimal strategy. Equilibrium analysis also becomes simpler in this version. Thus, the

probability distribution P constitutes an equilibrium if and only if, for any S and T in the

support, P(S)=P(T) and in any Cycle i, P(Sy(i))= P(S;(i))= P(S2(i))= P(S3(i)).

2.6 The Adapted Level-k Model

In this sub-section, the equilibrium solution concept is abandoned and an alternative
approach is considered in an attempt to account for the experimental behavior in the tennis
game. The game's structure and its psychological properties call for applying the concept
of level-k thinking, which is based on iterative reasoning.

Level-k non-equilibrium models assume that the population consists of several
different types of decision makers and that each type uses a different level of iterated
reasoning. L0 is a non-strategic type who chooses his action naively. L/ best responds to
the belief that all other players are L0; L2 best responds to the belief that all other players
are L1; and so on.” In each game, the specification of L0 determines the definition of the
other Lk types in that particular context. Type L0 is often assumed to choose a strategy by
performing a uniform randomization over the strategy space, but there are cases in which
L0 is specified differently. A relevant example is presented by Crawford and Iriberri
(2007a) who construct an adapted level-k model to explain behavior in hide-and-seek
games with non-neutral framing. Their L0 type instinctively recognizes focal points'® and
his typical decision rule is taken to be a mixed strategy which puts greater weight on focal

points. Their specification of the naive L0 type accurately captures a psychological effect

® In some cases, Lk is assumed to best respond to a combination of lower types. See, for example, Camerer
et al. (2004).

1% Bacharach and Stahl (1997) propose a general framework that captures this idea.
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that is also relevant in the tennis game. Another related specification is that used by
Crawford and Iriberri (2007b) in the context of auctions, in which the truthful L0 bids the
value that his own private signal suggests.

Note that any distribution of choices can be explained trivially by specifying L0 as
a decision maker who chooses according to that particular distribution. A level-k model
attempts to explain the data primarily through the behavior of L7, L2 or higher types and
by considering only a small number of natural non-strategic types. In other words, the

explanatory power of level-k models is based on the typical behavior of the strategic types.

Specification of L0 in the tennis game

The main assumption I make in this subsection is that the natural starting point for iterated
reasoning in the tennis game is the focal strategy 1234 (L), which is associated with the
non-strategic type L0. Since this naive strategy is a natural choice, a sophisticated coach
might choose to best respond to such a strategy by choosing 4123 (L;). Forming a belief
concerning the opponent's strategy and best responding to it is the first step of iterated
reasoning and thus the type who chooses this strategy is denoted as L/. An iteration of this
process involves best responding to the belief that other coaches will choose L;. Therefore,
L2 will typically choose the strategy 3412 (L,) which reflects the second step of iterated
reasoning. The highest level of iterated reasoning that this model takes into account is the
third iteration'' which leads to type L3 choosing 2341 (Ls).

Note that if a coach simply wants to win the tournament and believes that all other
coaches will choose L, then he actually has five possible best responses: L, S1(3), S1(4),
S1(5) and S;(6), though the score for S;(i) against Ly is less than that for L; against L,. The
justification for my definition of types is Proposition 2, which states that if "the majority
of the coaches choose 7" (rather than all the coaches), then the only optimal strategy is
D(T). This kind of belief reflects a rough estimation of the opponents' choices and is likely
to be more common than the belief that all other coaches will choose a specific strategy.

Therefore, the assumption made here concerning coaches' beliefs is more plausible than

' This is because the fourth level of iterated reasoning and the choice of L0 cannot be distinguished. Tennis
teams were defined as consisting of 4 rather than 3 players because in previous experimental studies of other
games, the fourth level of iterated reasoning was rarely observed, whereas the third level was more

commonly observed. This finding justifies the assumption that L3 is the highest type.
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those made in other level-k models.'” In fact, the typical choices of types defined in the
model can be sustained even under a weaker assumption, according to which type Lk best
responds to the belief that the most frequent choice is L, ; and that the rest of the choices
are uniformly distributed.

Another strategy to be considered as an anchor for iterated reasoning is 4321
(So0(2)). Allocating the players in the reverse order can be viewed as a focal strategy,
though a weaker one than 1234. It is likely that non-strategic types would choose this
strategy while strategic types might treat it as an anchor for iterative reasoning. Thus, the
choice of Si(2) is considered as a possible outcome of another level-k decision rule, based
on a different anchor. Clearly, allowing for another kind of level-0 type can only improve
the fit of the level-k model.

The experimental results will be analyzed in light of the above specification, thus
allowing for two possible anchors and two possible types that use each level of reasoning.
In other words, all the strategies in Cycle 1 and Cycle 2 are associated with level-k

reasoning.

Comment: The notion of level-k reasoning does not necessarily contradict the concept of
Nash equilibrium, although it may lead to outcomes that are essentially different from
equilibrium outcomes. In this game, a subset of equilibria can be achieved if the
population consists of various level-k types using different levels of iterated reasoning. For
example, if the proportion of each Lk type is 0.125, then the resulting distribution of

strategies will constitute an equilibrium.

Alternative specifications of L0

There are other intuitively appealing specifications of level-0 types. For example, consider
a non-strategic type who chooses each strategy in the game randomly and equally often,
excluding the strategy 1234 which he chooses more frequently. Given this alternative
specification, L/, who best responds to L0, would choose 4123 as before and hence higher
types would also behave as before. Note that from L/'s point of view, the interpretation of
this L0 is the same as in the original model, under the assumption that type Lk best

responds to the belief that the most frequent choice is L;.; and that the rest of the choices

"2 In many other games appearing in the literature (for example, Costa-Gomes et al. 2001), the definition of

level-k types would be affected dramatically by a transition to this assumption.
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are uniformly distributed. The non-strategic type could be specified in a similar manner
under the assumption that the strategy 4321 is chosen more frequently than the rest or
under the assumption that both 1234 and 4321 are chosen more frequently than other
strategies. In this last case, as long as 1234 receives more weight than 4321, the best
response to this type would be 4123. Allowing the existence of two non-strategic types,
one who gives more weight to 1234 and another who gives more weight to 4321, implies
that the two types who use the first step of iterated reasoning (based on the two possible
anchors) choose L; and S;(2), respectively. Note that the alternative specifications of L0
above would not change the typical behavior of higher types and hence should not affect
the explanatory power of the model. The only possible change that could result is an
increase or decrease in the proportion of behavior that can be explained by the level-0
types.

Taking L0 to be a type who chooses a strategy randomly and uniformly is also
intuitively appealing; however, it does not produce any constraint on the k-level types for
any £>0. In fact, all 24 strategies are best responses to this strategy and thus, for any
strategy and for any k, one can say that the strategy is the choice of a level-k type (see
Crawford and Iriberri (2007a) for an explanation of why they avoid specifying L0 as a
type who practices uniform randomization). In addition, the best response to this L0 type
guarantees a tie and thus differs fundamentally from best responses that guarantee winning
the tournament (such as the best responses to the L0 types discussed above). Therefore, I

do not treat the uniform randomization decision rule as an outcome of level-k thinking.

3. Experimental Design

Three experiments were designed with the following goals in mind: to test whether the
adapted level-k model can explain behavior in the game, to ascertain the depth of iterated
reasoning in this context and to explore the triggers of this kind of reasoning. The

experiments were conducted through the website: http://gametheory.tau.ac.il, which was

created by Ariel Rubinstein and provides tools for conducting choice and game theoretic
experiments. The original text used for the questions in the experiments appears in the
appendix. All the experiments are based on the Tennis Coach problem introduced in
Section 1. Each experiment was carried out in the form of a tournament in which subjects

choose a strategy and then automatically play against their classmates (using that
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strategy). A total of 1,624 students participated in the experiments, most of them

undergraduates in game theory and other economics courses.

3.1 Experiments 1 and 2

The subjects in Experiment 1 consisted of 641 students in 14 different courses, originating
from 7 countries.”” Subjects in Experiment 2 consisted of 704 students in 22 different
courses, originating from 14 countries."* The lecturers in these courses assigned the
Tennis Coach problem as a compulsory homework problem. The website's server recorded
the time each subject spent on making the decision (response time) together with the
strategy that he chose."” Following the decision, subjects were asked to explain why they
had chosen the strategy they did. The subjects did not know in advance that they would be
asked to explain their choice or that their response time would be recorded. Lecturers were
not able to observe the individual decisions made by their students. However, they did
have access to the distribution of choices made, the three winning strategies and the
identities of the three winning students. The winners in the tournament did not receive a
monetary prize. Nevertheless, they had an incentive to treat the tournament seriously in
order to have the honor of being announced in class as one of the winners.

The game played in Experiment 1 was the original version of the game, which is
presented in Section 1 and denoted by Version 1. In Experiment 2 subjects played a
variant of the game denoted by Version 2, which is presented in Section 2.4. Recall that
the only difference between the two versions is in the system of scoring. In Version 2, a
team scores 1 point only if it wins three matches out of four against another team.

According to the adapted level-k model presented in Section 2.5, the process of
iterated reasoning in the tennis game is based on two ordered components:
(I) Forming a concrete belief of the type "Most subjects will choose strategy S" and (II)
Best responding to that belief by choosing D(S). Since in Version 2, D(S) is the only best

response to the belief that S is the most frequent choice, the adapted level-k model is

B The US, the UK, Colombia, the Slovak Republic, Argentina, Canada and Brazil.

' The US, Mexico, Brazil, Chile, India, Switzerland, Moldova, Ecuador, France, Brunei Darussalam,
Germany, Portugal, Spain and Israel.

13 Strategies were not presented in a list in order to avoid order effects. Subjects faced a matrix with four
columns representing players' levels and four rows representing the different positions. They allocated the

tennis players on their team by marking one box in each row.
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even more appropriate in Version 2 than it is in Version 1. In a sense, the scoring system
in Version 2 provides some guidance in the second component of the process and perhaps
triggers the first component. By comparing behavior in the two versions, it is possible to
determine whether the changes in the score function and the resulting guidance increase

the use of iterated reasoning.

3.2 Experiment 3

This experiment responds to the concern that subjects in Experiment 1 and 2 were not
motivated by monetary incentives. In addition, it further investigates the subjects'
understanding of the best response function by testing whether they optimally respond to a
concrete belief.

Students from three undergraduate economics courses in Israel (at Tel Aviv
University, Haifa University and Ben-Gurion University, respectively) were invited by
email to take part in the online experiment. 279 subjects who decided to participate were
randomly assigned to play either Version 1 or Version 2. The winner of the tournament in
each class won NIS 200 (around $60). After explaining their choices, subjects answered
three questions that tested their understanding of the best response function. They were
asked to provide an optimal response to each of the following beliefs: "All other subjects
will choose (A, B, A+, B+)", "All other subjects will choose (B+, B, A+, A)" and "Most of
the subjects will choose (B, A+, A, B+)". Subjects who played Version 1 were told that
there is at least one correct answer to each question while subjects in Version 2 were told
that there is only one correct answer to each question. They were told that those who
answered the questions correctly would win some CD’s.

Recall that in Experiment 1 and 2, lecturers asked their students to participate and
hence subjects treated it as a compulsory exercise. In this experiment, lecturers were not
involved and did not have access to any of their students’ answers. Since the number of
students who entered the website and only then decided not to participate was negligible, I
conclude that a subject’s decision to participate in the experiment was no different in
character than the decision to participate in a laboratory experiment. Therefore, there is no
reason to think that the recruiting method used here attracted a subject pool different from

that of any other experiment.
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3.3 Response Time and Explanations

As the analysis in Costa-Gomes et al. (2001) suggests, it is possible to draw incorrect
conclusions concerning the frequencies of types based on observed choice alone. They
used subjects' patterns of information search to interpret their choices in normal-form
games. The approach in this paper is to use subjects' response time and explanations to
interpret their observed choices.

A subject’s explanation of his choice may reveal the decision rule he used and in
particular whether it was based on an iterated reasoning process. Recall that subjects were
asked to explain their choices only after making the decision and therefore their choices
could not have been affected.

Response time is defined as the number of seconds from the moment that the
server receives the request for the problem until the moment that an answer is returned to
the server. This additional information is used to classify strategies in the game as intuitive
choices or as an outcome of cognitive deliberation. This method is discussed in Rubinstein
(2007), whose main claim is that the response time of choices made using cognitive
reasoning is longer than that of choices made instinctively, i.e. on the basis of emotional
response.'® This is in line with dual-system theories, such as that in Kahneman and

Frederick (2002).

4. Experimental Results

4.1 Experiment 1 (Version 1)

Table 1 presents the aggregate data for all 641 subjects. I focus on analyzing the aggregate

data and comment only briefly on the distribution of choices for each of the classes.

Main results
Each of the 24 strategies was chosen by at least 1.25% of the subjects. About 57% of
subjects' choices were strategies in the first two cycles (see the table below), where 41%

of the subjects chose one of the following three strategies: Lo (22%), L; (10.1%) or Sy(2)

' Of particular relevance are Rubinstein's findings concerning the 2/3-beauty contest, which has been

intensively studied in the level-k literature. He found that the median response time of the second step of
iterative reasoning in this game was much longer than that of choices representing the first step of reasoning,

which in turn was much longer than the response time of other (perhaps less strategic) choices.
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(8.7%). Strategies in other cycles were chosen far less frequently — almost always by less
than 4% of the subjects. The main features of the distribution of choices are preserved in
the four large classes (77, 80, 92 and 115 students) and even in the small classes L is

relatively common and L is rarely absent.

Strategies | Lo Ly L, L So(2) | S1(2) | S$2(2) | S3(2) | Other
Percentage | 22% | 10.1% | 3.3% | 3.6% | 8.7% | 3.6% | 2.8% | 2.7% | 43%

Following are the main findings concerning level-k thinking, taking into account subjects’
response time and explanations:'’

1. 22% of the subjects chose the naive strategy Lo, which confirms its focality and its role
as a potential anchor for iterated reasoning. Its significantly lower response time
(median=125s) relative to other strategies suggests that it is typically an instinctive choice
or an outcome of a low level of sophistication.

2. 10.1% of the subjects chose L;. Their explanations and significantly higher response
time (median=194s) suggest that most of them actually used the first level of iterated
reasoning with L, as an anchor.

3. 3.3% of the subjects chose L, while 3.6% chose Ls, strategies that are supposed to
reflect the second and third steps of iterated reasoning, respectively. Subjects’
explanations suggest that many (though not all) of those who chose this category used
alternative decision rules rather than high levels of iterated reasoning.

4. 8.7% of the subjects chose Sy(2), the reverse order strategy. The response time of this
strategy (median=158.5s) was significantly higher than L’s, suggesting that subjects who
chose it were not confused and had not intended to choose Lj.

5. §1(2) was chosen by 3.6%. Subjects' explanations suggest that only a small fraction of
the choices were the result of an iterated reasoning process with Sy(2) as the anchor. S>(2)
and S3(2) were chosen even less often and, according to subjects' explanations, do not

seem to have been the result of such a process.

17 See the appendix for a detailed discussion of subjects' response times and explanations.
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Equilibrium

The distribution of strategies is not consistent with any equilibrium prediction. One way to
see this is by examining the expected score of the strategies presented in Table 1. The
strategy L; is the clear leader and the only strategy that comes close to it is S;(3). These
strategies were chosen by only 14% of the subjects. Thus, the vast majority of the subjects
could have significantly improved their chances of winning by deviating to ;.

It is possible that small changes in the distribution of strategies would significantly
affect the strategies' score. In such a case, the previous argument would not be convincing.
Thus, a different method is used to show that the distribution is far from being an
equilibrium. An equal number of subjects was subtracted from each pair of non-sequential
strategies in a cycle — the choices of 283 subjects remained. A consequence of Property 2
is that subtracting an equal number of coaches who choose S and D*(S) does not change
the best response. Hence, the resulting distribution is an equilibrium if and only if the
original distribution is as well. In the resulting distribution, P(L)=0.42 and P(L,)=0 (see
the distribution after normalization in Table 1). This implies that L; would earn more than
the equilibrium score even if all other choices were concentrated around S,(i), for
i=3,4,5,6 since the weight on these strategies in equilibrium needs to be at least twice as
much as the weight on Ly The argument is strengthened by the fact that P(S,(1))=0, for
i=3,4,5,6.

Explanations

70% of the subjects (out of 526 who were asked) provided an explanation of their choices.
Each of the explanations is classified according to one of the following categories and the
proportion of each category is estimated:

1. Intuitive choice (18%)

This category includes explanations such as: "It was a guess"; "I don't know why"; "It felt
right" and "Intuition". 45% of subjects who provided intuitive explanations chose Ly

2. Random choice (18%)

This category includes explanations that mentioned the word "random". Some of them
explained the randomization as an attempt to choose a different strategy from that of other
players or to surprise their opponent. The category also includes explanations such as: "It
does not matter what I choose because the distribution of choices is practically uniform if I

don't know it". Among subjects in this category, 10% chose L and explained that it did
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not matter what they chose. The other 90% said that they randomized and 19 strategies
were chosen by them.'®

3. First step of iterated reasoning (10%)

This category includes explanations that describe best responding to the belief that most of
the choices will be X (primarily Ly or So(2)). 80% of the subjects in this category chose L,
and 8% chose S1(2).

4. Second step of iterated reasoning (three subjects, less than 1%)

This category includes explanations that describe best responding to the belief that most of
the choices will be L;.

5. Other strategic decision rules (53%)

This category includes explanations such as: "I was trying to be original", "I am mixing
good and bad players", "I am sacrificing the weak player in order to win in other
positions", "My choice was based on my life experience", "The best players of my
opponent were likely to be in the middle positions and therefore I put mine on the edges"
and "The player in the first position should be the best one since my opponent will put A
in the first position" (or something similar based on some other partial belief). It also
includes explanations based on incorrect reasoning (such as “I am trying to achieve a tie”)
or irrelevant considerations (such as taking into account order effects). Each of the 24

strategies was chosen by subjects in this category.

Comment: Only four subjects mentioned the concept of Nash equilibrium in their

explanation, although many of the subjects had studied game theory.

Discussion of Experiment 1
As stated by Crawford and Iriberri (2007b): "The estimated distribution tends to be stable
across games, with most of the weight on L/ and L2. Thus, the anchoring L0 type exists
mainly in the minds of higher types." The results of Experiment 1 reflect a low level of
sophistication in terms of level-k reasoning. Moreover, many choices do not reflect level-&
reasoning at all and are the result of other types of considerations.

The frequency of non-strategic types (level-0) is higher and the frequency of level-

1 types relatively lower than in other studies; higher types are in fact almost totally absent.

'8 Unchosen strategies: 4231, 2143, 1243, 1432 and 1342. Most frequently chosen strategies: 1234 (24%),
2413 (14%), 4321 (13%) and 1324 (6%)).
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The proportion of subjects that actually use a high level of iterated reasoning might be
even smaller than that indicated by observed choice since subjects who chose randomly or
use decision rules other than iterated reasoning may also have chosen L, L3, $>(2) or S3(2).
I do not consider the choice of L) to be an outcome of four steps of iterated reasoning
since in previous studies this level of reasoning was not evident. This approach is also
supported by Ly's low response time and the fact that no one who made this choice
explained it as being a best response to Ls.

Response times and explanations provide support not only for the interpretation
that the observed choices reflect a low level of iterated reasoning, but also for the
specification of level-k reasoning in this context. The subjects' explanations indicate that
the only common starting point for iterated reasoning in players' minds was Lo. A
secondary and less common anchor for iterated reasoning was Sy(2). Furthermore,
strategies not in Cycle 1 or Cycle 2 have shorter response times than L;, suggesting that
there are no other pure strategies with the same role as L.

The distribution of strategies in the experiment was far from being an equilibrium.
However, if subjects were to play the game repeatedly and in each round would internalize
the distribution of strategies in the previous round, they might converge to one of the
equilibria of the one-shot game. Since subjects may notice the patterns based on iterated
reasoning in earlier rounds, they might modify their choices in later rounds accordingly. In
particular, I conjecture that in later rounds subjects’ choices would be concentrated in the
first cycle. Thus, level-k reasoning may turn out to influence not only outcomes of one-

shot games, but also the selection of equilibrium in the long run.

4.2 Experiment 2 (Version 2)

Table 2 presents the aggregate data for all 704 subjects.

Main Results

The aggregate data show that each of the 24 strategies was chosen by at least 1.14 % of
the subjects. About 55% of subjects' choices were strategies in the first two cycles, where
37% were one of the following three strategies: Ly (18.6%), L; (12.9%) or Sy(2) (5.8%).
Strategies in other cycles were chosen less frequently, with most of them chosen by only
1-4% of the subjects. The main features of the distribution are preserved in the two large
classes (99 and 209 students) and even in the smaller classes L is relatively common and

L, is rarely absent.

25



The following table presents the frequencies of strategies that may reflect iterated

reasoning and compares them to those in Experiment 1.

L() L] L2 L3 S()(z) S1(2) 52(2) S3(2) Other
Version 2 | 18.6% | 12.9% | 5.3% | 2.8% | 5.8% | 5.4% | 2.4% | 1.7% | 45%
Version 1 | 22% | 10.2% | 3.5% | 3.6% | 8.6% | 3.6% | 2.8% | 2.6% | 43%

The distributions of strategies in the two versions are similar though not identical. In
Version 2, fewer subjects chose Sy(2) and Ly, while more chose Si(2) , L; and L,. These
differences suggest that Version 2 leads to less intuitive choices and somewhat more
choices based on iterated reasoning. Applying the chi-square test with respect to nine
categories (one for each strategy in the first two cycles and another for the rest), it was
found that the difference between the frequencies of categories in the two versions is
significant at the 5% level (chi-square=16; df=8; p=0.04)."" It is also of interest that the

response time of choices in Version 2 was significantly longer than in Version 1.7

Equilibrium

The distribution of chosen strategies is not consistent with any equilibrium prediction.
Only 13% chose the winning strategy L; while the score earned by other strategies is far
below that of ;. Thus, the vast majority of the subjects could have significantly improved
their chances of winning by deviating to L; and therefore the distribution of the results is
far from an equilibrium.

To see this in a different way, note that the necessary conditions for equilibrium
discussed in Section 2.4 are violated. We have P(L()=0.185, P(L,)=0.129, P(L,)=0.053
and P(L3)=0.028, while in equilibrium the probability of each strategy in a cycle must be
equal. Moreover, the weight on Cycle 1 is more than twice that on any other cycle,

whereas in equilibrium the weight on each cycle in the support must be equal.

" If we treat each strategy in the game as a category, the distributions of choices in the two versions are not
significantly different according to a chi-square test (chi-square=25.85 df=23 p=0.31). However, we are
primarily interested in the differences between choices in the first two cycles and hence the partition into
nine categories is more appropriate here.

2 The median RT is 147 in Version 2 and 140 in Version 1.The average RT of observations under 600s is

170 in Version 2 and 156 in Version 1.
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Explanations

70% of the subjects provided an explanation of their choice. The explanations are
classified into the same categories as in Version 1.

1. Intuitive choice (15%)

30% of the subjects chose 1234.

2. Random choice (20%)

16% of the subjects in this category explained that it did not matter what they chose (only
half of them chose 1234). The rest (84%) said that they had tried to randomize. Each of
the 24 strategies was chosen by these subjects.’

3. First step of iterated reasoning (15%)

84% of the subjects chose L; and 12% chose S1(2).

4. Second or third step of iterated reasoning (3%)

Twelve explanations were based on level-2 reasoning. Nine best responded to L; and three
best responded to S;. Two explanations were based on level-3 reasoning.

5. Other strategic decision rules (47%)

Each of the 24 strategies was chosen. Subjects used the same decision rules as in Version

1.

The proportions of the various categories were similar in the two experiments, with
somewhat more weight on the categories that support the use of iterated reasoning in
Version 2 and less weight on intuitive explanations and other strategic rules. Although
equilibrium is simpler in this case, only two subjects mentioned this concept in their

explanations.

Discussion of Experiment 1 and 2

The data from the two experiments confirms that the specification of level-k types was
appropriate in this setting. However, iterated reasoning was not triggered as often in the
tennis game as in other games studied in the literature. In both versions, iterated reasoning
was observed only in Cycles 1 and 2, with most of the weight on level-0 and level-1.
Version 2 induces slightly more choices and explanations that involve iterated reasoning.
The increased use of iterated reasoning might be a result of the "guidance" provided by the

scoring system (which requires winning three out of four matches in order to earn a point).

2! Most frequent choices: 1234 (12%), 2314 (10%) and 3214 (7%).
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It may also indicate that the assumptions of the adapted level-k model in Version 2 are
more plausible than those in Version 1. In particular, the assumption that Lk best responds
to the belief that the most frequent choice is Li.; has greater plausibility.

The conventional definition of strategic thinking requires forming a belief on the
opponent's strategy and best responding to it. The choices and explanations of subjects in
the two experiments suggest that this kind of thinking is not prevalent. However, the
results do reveal partial strategic thinking. Many of the decisions are apparently based on a
partial belief over the opponents' choices and thus exhibit an attempt to forecast features

of other players’ choices.

4.3 Experiment 3 (Version 1 and 2)

Table 3 presents the observed frequencies of strategies in Version 1 and 2. The total
number of subjects is 279, where 131 subjects received Version 1 of the game and 148

received Version 2.

Main results

Each of the 24 strategies was chosen. In both versions, 12% of the choices were in Cycle 2
and 44% in Cycle 1. The main features of the distributions of strategies were similar in all
three classes. The following table presents the frequencies of strategies in the first two

cycles for Version 1 and 2.

Lo L, L, L S0(2) S1(2) S2(2) S3(2) Others
Version 1 | 10.7% | 19.1% | 4.6% | 2.3% | 7.6% | 5.3% | 6.1% | 0.8% | 43.5%
Version 2 | 10.1% | 18.9% | 6.8% | 2.0% | 4.1% | 10.8% | 2.7% | 1.4% | 43.2%

There are no significant differences between the distributions of choices in the two
versions, whether we treat each strategy as a category (chi-square=31.75; df=23; p=0.11)
or treat all strategies in Cycles 3,4,5 and 6 as a single category (chi-square=6.79 df=8
p=0.56).

In both versions, the first step of iterated reasoning was reflected more often in
choices and explanations (i.e. L; and §;(2) were more frequent) than in Experiment 1 and
2 while the naive choice of L, was less frequent than in Experiment 1 and 2. The

distribution of choices in Version 1 (in this experiment) differs significantly from Version
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1 in Experiment 1 (chi-square=45.1; df=23; p=0.004) and the distribution of choices in
Version 2 differs significantly from that in Experiment 2 (chi-square=43.1; df=23;
p=0.007).

Equilibrium

As in the previous experiments, it is straightforward to confirm that the distribution of
strategies in each of the versions is far from being an equilibrium. The best response to the
distribution in both versions is clearly L, which was chosen by less than 7% of the

subjects.

Best responding to a concrete belief

In the second part of the experiment, subjects were asked to provide an optimal response
to each of the following beliefs: 1. All other subjects will choose (A, B, A+, B+) 2. All
other subjects will choose (B+, B, A+, A) and 3. Most of the subjects will choose (B, A+,

A, B+). 125 out of 131 subjects in Version 1 and 143 out of 148 subjects in Version 2

participated in this part of the experiment. The following table summarizes the results:

% that answered correctly: 1 2 3 1 &2 & 3 | At least two out of three
Version 1 93% | 90% | 89% 81% 93%
Version 2 91% | 94% | 93% 89% 93%

Comment: Among those who chose 1234 or 4321 in both versions, only 12% (5 students
out of 41) did not answer the three best response questions correctly. In other words, their
possibly naive choice does not indicate that they did not understand the game or did not

know how to best respond to a concrete belief.

Discussion of Experiment 3

The finding that naive choices were less frequent in Experiment 3 than in Experiment 1
and 2 and that the first level of reasoning was more common, can be explained by three
factors: (1) Subjects in Experiment 3 were asked to respond to only one problem whereas
in Experiment 1 and 2 subjects were asked to respond to additional (unrelated) problems
as a part of their homework (2) In Experiment 3, the subjects had monetary incentives and
(3) Participation in Experiment 1 and 2 was mandatory and it is likely that some subjects

were not motivated to invest effort in the task. The greater seriousness of subjects in
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Experiment 3 was reflected in longer response times, as well as in the proportion of
subjects that provided explanations (80% in Experiment 3 vs. 70% in Experiment 1 and
2).

However, note that the use of higher levels of iterated reasoning is not
dramatically higher than in Experiment 1 and 2 and not as frequent as in other games
studied in the literature.

In the second part of the experiment, at least 81% of the subjects answered all
three questions correctly in both versions. This indicates that subjects understood the game
and are cognitively able to best respond to a concrete belief, such as the belief that all
other choices will be S. The high percentage of correct answers to Question 3 implies that
subjects also have the correct intuition regarding the optimal response to the belief that
most of the subjects (rather than all) will choose S. This result is important since the belief
that most of the subjects will choose § sounds more plausible than the belief that all of
them will choose S.

In answering Question 1 and 2, almost all subjects in Version 1 chose the best
response that defeats the strategy (i.e. wins 3 out of 4 matches) assumed to be chosen by
other coaches. Only a few chose one of the four pure strategies that earn 2.5 points. These
findings provide support for the definition of iterated reasoning used in this game (i.e. that
the typical choice of Lk defeats the strategy chosen by Lk-1). It also suggests that the first
component of the process of iterated reasoning is lacking in this context. In other words,
most of the subjects do not hold a concrete belief, such as the belief that most of the

subjects will choose L.

5. Concluding Remarks

The tennis game captures various strategic real-life interactions. Examples include:
allocating troops among a number of battlefields, choosing the order of R&D projects to
be undertaken, promises in election campaigns, assigning workers to projects in a
competitive environment and, of course, assigning players in sports games. The paper's
theoretical analysis provides a complete characterization of equilibria in the tennis game.
In an attempt to explain the experimental behavior in the game, the equilibrium solution
concept is replaced by an adapted level-k model, which is based on a natural specification

of iterated reasoning in this setting.
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Although level-k thinking seems to be highly appropriate in the tennis game, the
adapted model explains only part of the experimental results and many of the choices
seem to be the result of other decision rules not based on level-k thinking. Perhaps the
most striking result is the low frequency of types that use high levels of iterated reasoning.
Even the first step of iterated reasoning is not very common in the two versions of the
game and higher steps of reasoning are almost totally absent. These findings are supported
by the subjects' explanations. Furthermore, their explanations hint that many of them do
not hold a concrete belief over other subjects' choices and certainly do not best respond to
the belief that most of the subjects are level-£ types.

The results in this paper differ from those obtained in previous studies, which
found high frequencies of level-k reasoning among subjects in various games. I suggest
two reasons for this: First, the pure strategies attributed to level-k reasoning in the tennis
game are only a small fraction of the possible choices in the game. Second, there is a
natural tendency in the tennis game to form partial beliefs over the opponents' strategies.
In other words, the rich structure of the game triggers other kinds of strategic thinking.
Further research is needed in order to more clearly identify the circumstances in which the

level-k approach is successful at explaining the data.
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7. Appendix:

The score matrix

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Strategies | 1 | 4 | 3 (2| 4|3 2|11 |4|3[2]|43|2]|1|1]4|3|2]|]2|1]4]3
bycycles | 2 | 1 |4 |33 2|14 |3 |21 |4a]|2|1|a4|3[2|1]|4]|3]|1]|4]3]2
(f}‘l’;’rrzv‘:]f a2 lal21|al3|21|al3]|3|2|1|alal3|2|1]|3]2]|1]34
player) 4 |32 |11 4]3 (2432|1143 [2]|3|2|1]4[4]|3[2]1
1234 2 1 2 3 2 2 2 212 15 2 252 15 2 25]2 15 2 252 15 2 25
4123 3 2 1 2 | 2 2 2 2|25 2 15 2|25 2 15 2|25 2 15 2|25 2 15 2
3412 2 3 2 1 2 2 2 212 25 2 152 25 2 15]2 25 2 152 25 2 15
2341 1 2 3 2 | 2 2 2 2|15 2 25 2|15 2 25 2|15 2 25 2|15 2 25 2
4321 2 2 2 212 1 2 3 2 15 2 25|12 15 2 25|02 25 2 15|12 25 2 15
3214 2 2 2 213 2 1 2 25 2 15 2|25 2 15 2|15 2 25 2|15 2 25 2
2143 2 2 2 2 | 2 3 2 1 2 25 2 15|12 25 2 15|12 15 2 25|02 15 2 25
1432 2 2 2 2 1 2 3 2 15 2 25 2|15 2 25 2|25 2 15 2|25 2 15 2
1324 2 15 2 25|12 15 2 25| 2 1 2 3 2 2 2 2 115 2 25 2|25 2 15 2
4213 25 2 15 2|25 2 15 2 3 2 1 212 2 2 2|2 15 2 252 25 2 15
3142 2 25 2 152 25 2 15] 2 3 2 1 2 2 2 2 125 2 15 2|15 2 25 2
2431 15 2 25 2|15 2 25 2 1 23 2 2 2 2 2 12 25 2 15|12 15 2 25
4231 2 15 2 25|12 15 2 252 2 2 212 1 2 3 (25 2 15 2|15 2 25 2
3124 25 2 15 2|25 2 15 2 2 2 2 2 3 2 1 2 12 25 2 15|12 15 2 25
2413 2 25 2 15|12 25 2 15(2 2 2 212 3 2 1|15 2 25 2|25 2 15 2
1342 15 2 25 2|15 2 25 2 2 2 2 2 1 2 3 2 12 15 2 2512 25 2 15
1243 2 15 2 25|12 25 2 15|25 2 15 2|15 2 25 2|2 1 2 3 2 2 2 2
4132 25 2 15 2|15 2 25 2|2 25 2 1512 15 2 25/(3 2 1 22 2 2 2
3421 2 25 2 152 15 2 25|15 2 25 2|25 2 15 2|2 3 2 1 2 22 2
2314 15 2 25 2|25 2 15 2|2 15 2 25|12 25 2 15|11 2 3 22 2 2 2
2134 2 15 2 25| 2 25 2 15|15 2 25 2|25 2 15 2|2 2 22 2 1 2 3
1423 25 2 15 2|15 2 25 2|2 15 2 2512 25 2 152 2 2 2 3 2 1 2
4312 2 25 2 152 15 2 25|25 2 15 2|15 2 25 2|2 2 22 2 3 2 1
3241 15 2 25 2|25 2 15 2 2 25 2 15|12 15 2 25| 2 2 22 1 2 3 2
Proofs

Proposition 1: 4 probability distribution P constitutes an equilibrium if and only if:

X, — (¥ + x5 +x5)

Xg — (¥, +x, + x¢)

Xo | | (=X =Xy —2x5 + x5 —x;)-0.5
X0 (x, +x3 +2x, +x, —x,)-0.5
X (x, +x, +2x, +x;,—x,)-0.5
X1z (=x, —x; —2x,4+x,—x,)-0.5
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Proof: The following system of 12 linear equations characterizes the game’s set of
equilibria:

Xi+X, +X,+X,,+2X, =0
X+ X+ X, +X,+2X,=0
Xi+X,-X,-X,,+2X,=0
Xe+Xg—X,y—-X), +2X,=0
X+ X, - X, +X,+2X,=0
X, + X, +X,-X,,+2X,=0
X+ X+ X, - X, +2X,=0
X, +X,-X,+X,,+2X,=0
X —X;+ XX +2X,=0
X,-X, - X +X,+2X,=0
X, -X,-X,+X,+2X,, =0
X, - X, +X,-X,+2X,=0

and its solution is the 6-dimension space that appears in the proposition. m

Proposition 2. If I>P(S)>0.5 for some S, then D(S) is the best response to P.

Proof:

Assume without loss of generality that 1>P(Ly)>0.5. We need to show that no strategy
earns as high a score as L; It is sufficient to show that for
any X # L, ,score(X,L,)=(3—1t) implies thatscore(X,Y)—score(L,,Y)<t for any Y. In
other words, X cannot compensate for its inferiority to L; against L, by its superiority
when playing against some other strategies. The proof continues by considering all the
possible strategies X and confirms that the condition on the payoffs is satisfied for all of
them:

(D The case of X=L; is straightforward: score(L,,L,) =1,
and score(L,,Y)—score(L,,Y) <2 since the lowest possible score is 1 point and the
highest is 3 points.

(II) Ifscore(X,L,)=2, assume to the contrary that score(X,Y)—score(L,,Y)>1. This
implies thatscore(L,,Y)=1or 1.5 and thus Y can only be L, or S(i), for i=3,4,5,6.
However, the only strategies that score 2.5 or 3 points against L, or S»(i) are S3(i) and L3,
which do not tie with L, a contradiction.

(IIT) In the case of X=S,(i), for i=3,4,5,6, score(X,L,) =2.5. Since S,(1) is parallel to L,,
it scores at most half a point more than L, againstY € Cycle i or Cycle 1. S,(i) can score at
most 2.5 points against Y ¢ cyclei or cyclel, while L; scores at least 1.5 points.
Score(L,,Y)=1.5 only if Y=S(j) for j=3,4,5,6, and score(S,(i),S,(j)) <2.5.

(IV) In the case of X=S3(1), for i=3,4,5,6, score(X,L,)=1.5. S3(1) cannot score 2 points
more than L; against some other strategy Y: score(S,(i),Y)=3 only for Y=S,(i), and
score(L,,S,(i))=1.5 andnot 1. m
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Experimental results

Table 1 and 2 below present the aggregate quantitative data for Version 1 and 2. The
columns from left to right are: row number; all 24 possible strategies in the game; median
response time (RT) of each strategy; the number and then proportion of subjects who
chose the strategy; the average score of that strategy in the general tournament; the
notation used for each strategy; and in Table 1 an additional column presents the

distribution following the normalization discussed on page 23.

Table 1
Version 1
N=641
Strategies RT # % Score | Notation | Normalization
1 1234 1255 | 141 | 22% 1.94 Ly 42.40%
2 4123 194s | 65 | 10.14% | 2.22 L 14.84%
3 3412 165s | 21 | 3.28% | 2.06 L, 0%
4 2341 196s | 23 | 3.59% | 1.78 Ly 0%
5 4321 158.5s | 56 | 8.74% | 1.96 So(2) 13.43%
6 3214 172s | 23 | 3.59% | 2.06 S1(2) 2.12%
7 2143 167s | 18 | 2.81% | 2.04 $,(2) 0%
8 1432 221s | 17 | 2.65% | 1.94 S3(2) 0%
9 1324 80s 33 | 5.15% | 1.94 So(3) 7.77%
10 4213 l46s | 25 3.9% | 2.16 $1(3) 5.30%
11 3142 109s | 11 | 1.72% | 2.06 $5(3) 0%
12 2431 165s 10 | 1.56% | 1.84 S$3(3) 0%
13 4231 96s 23 | 3.59% | 1.95 So(4) 0%
14 3124 181.5s | 18 | 2.81% | 2.12 S1(4) 1.41%
15 2413 102s | 23 | 3.59% | 2.05 S$2(4) 0%
16 1342 120s | 14 | 2.18% | 1.88 S3(4) 0%
19 1243 106s | 15 | 2.34% | 2.01 So(5) 2.47%
20 4132 140s 13 | 2.03% | 2.08 S$1(5) 0%
17 3421 126.5s | 8 1.25% | 1.99 S$x(5) 0%
18 2314 128s | 27 | 421% | 1.92 S3(5) 4.95%
21 2134 96s 19 | 296% | 1.96 So(6) 3.18%
22 1423 101s | 11 | 1.72% | 2.07 S1(6) 0%
23 4312 112.5s | 10 | 1.56% | 2.04 $,(6) 0%
24 3241 141s | 17 | 2.65% | 1.93 S3(6) 2.12%
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Table 2

N=704

36

Version 2
Strategies | RT # % Score | Notation

1 1234 116s 131 | 18.61% | 0.03 Lo

2 4123 194s 91 12.93% | 0.19 L

3 3412 170s 37 5.26% | 0.13 L,

4 2341 157s 20 2.84% | 0.05 Ly

5 4321 161s 41 5.82% | 0.02 So(2)
6 3214 187s 38 5.40% | 0.06 $1(2)
7 2143 179s 17 2.41% | 0.05 52(2)
8 1432 158s 12 1.70% | 0.02 $3(2)
9 1324 90.5s 24 3.41% | 0.02 So(3)
10 4213 173s 33 4.69% | 0.03 $13)
11 3142 128s 15 2.13% | 0.05 $2(3)
12 2431 106s 11 1.56% | 0.02 $5(3)
13 4231 124s 30 4.26% | 0.01 So(4)
14 3124 130s 17 2.41% | 0.04 S1(4)
15 2413 193.5s | 22 3.12% | 0.02 $2(4)
16 1342 141.5s 8 1.14% | 0.03 S3(4)
19 1243 136s 18 2.56% | 0.05 So(5)
20 4132 171s 17 2.41% | 0.03 Si(5)
17 3421 122s 8 1.14% | 0.02 $2(5)
18 2314 115s 33 4.69% | 0.01 $5(5)
21 2134 136s 28 3.98% | 0.03 S0(6)
22 1423 208s 21 2.98% | 0.04 S51(6)
23 4312 139s 11 1.56% | 0.03 52(6)
24 3241 128s 21 2.98% | 0.02 53(6)




Table 3

N=279, 131 in Version 1 and 148 in Version 2.

Comparison of the two versions in Experiment 3

Strategies | Version 1 (%) | Version 2 (%) | Score in Version1 | Score in Version 2
1234 -, 10.7% 10.1% 1.87 0.02
4123 - L, 19.1% 18.9% 2.1 0.1
3412 - L, 4.6% 6.8% 2.23 0.19
2341 - I, 2.3% 2.0% 2 0.07
4321 - Sy(2) 7.6% 4.1% 2.02 0.01
3214 - 5,(2) 5.3% 10.8% 2.06 0.04
2143 - 5,(2) 6.1% 2.7% 2.07 0.11
1432 - 552) 0.8% 1.4% 2.04 0.03
1324 1.5% 1.4% 1.98 0.03
4213 1.5% 6.8% 2.06 0.01
3142 3.1% 2.0% 212 0.07
2431 3.8% 2.7% 2.04 0.02
4231 2.3% 3.4% 1.91 0.02
3124 3.1% 5.4% 2.1 0.03
2413 2.3% 8.1% 2.18 0.05
1342 3.1% 2.0% 2 0.08
1243 0% 0.7% -—-- 0.03
4132 3.8% 0.7% 2.04 0.01
3421 2.3% 0% 214 -——-
2314 1.5% 2.7% 2.06 0
2134 5.3% 3.4% 1.99 0.02
1423 3.1% 0% 2.1 -——-
4312 3.8% 2.0% 2.1 0
3241 3.1% 2.0% 2 0.02
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Details on response time and explanations in Experiment 1

Subjects’ explanations and response times are used to support the interpretation of the
main strategy choices in Experiment 1 (Version 1).

The response time of L, suggests that it is typically an instinctive choice. Its
response time is lower than that of each of the strategies in cycle 1 and lower than that of
the rest of the strategies taken as a whole, even when L; is excluded. Furthermore, its
response time is lower in comparison to all strategies that are not in the first cycle taken as
a whole.” 28% of those who chose L, did not explain their choice. Of those who did (83):
39% belong to the intuitive category, 26% belong to the random choice category and 35%
belong to the category of other strategic rules.

The choice of L; is clearly an outcome of cognitive reasoning: It has higher
response time than the rest of the strategies taken as a whole, even when L, is excluded.
Only 11% of those who chose this strategy did not provide an explanation. Among those
who did provide an explanation (41), 75% of the explanations belong to the category of
iterated reasoning.

The response time of L, is not significantly different from those of L, or L3 or the
class that includes both. Among the subjects who chose L3, none of their explanations
included a process of iterated reasoning. Only three explanations (out of 15) for the choice
of L, explicitly described the use of two levels of iterated reasoning. No one chose a
strategy other than L, and L, while explaining that he had used two levels of iterated
reasoning or higher. Considering the low frequencies of L,, L3, $»(2) and S3(2), and taking
into account that various decision rules can lead to these choices, I conclude that level-2
and level-3 types are negligible in this game.

The response time of Sy(2) is higher than that of L, and not significantly lower
than that of L, or the response time of all other strategies taken as a whole. This finding
suggests that the strategy Sy(2) is not as instinctive as L, and does not play the same role
as Lo. 27% of the subjects who chose it did not explain their choice. Among those who did
provide an explanation (32), 25% of the explanations belong to the random choice

category, around 60% are based on other strategic rules and around 15% are intuitive.

22 The Mann-Whitney U test, also known as the Wilcoxon Two-Sample Test, was used to test the

differences in response time. The significance level for all the results was at least 5%. 52 observations with
response times higher than 600 seconds were omitted (the RT was higher than 1000 in 50% of these
observations). It is likely that these observations do not reflect real response times and omitting them

reduces the noise.
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Version 1 and 2 as they appear on the didactic website

Games and Behavior - The Problems

You are a tennis team coach, planning to send your team to a tournament. Each
team in the tournament has four players: one of level A+ (the highest level), one of
level A, one of level B+, and one of level B (the lowest level).

The coach's task is to assign his players to "position 1", "position 2", "position
3" and "position 4" (one player in each position).

Each team will play against each of the other teams in the tournament. A game
between two teams includes four matches: a player that was assigned by his coach
to "position X" will play once against the player in "position X" of the other team. You
don't know how the other coaches assign their players.

In any match between two players of different levels, the one with the higher level
wins. When two players with the same level play, the outcome is a tie.

[In version 1 - A winner in @ match brings his team 1 point, and a player who ends
the match with a tie brings his team %2 a point. A loss yields 0 points.]

[In version 2 - At the end of any game between two teams, a team gets 1
point only if it won three matches out of four. In such a case, the other team
gets 0 points. In case of any other result, none of the teams gets points.]

The team's score at the end of the tournament is the number of points it gained in all
the games against other teams.

The winning team is the one with the highest score, and the prize is $10,000. [In
case of several winning teams, the prize is divided between them.]

The only goal of players and coaches (including you) is to have their team getting the
highest score among the teams.

How will you allocate your players in order to achieve this goal?**
** Note that other students in your class play the role of other coaches in the

tournament, so your total score in this game will be your team's total score, after
playing against each of the other students' teams.

pos 1 e e e C
pos 2 e C C e
pos 3 e C C e
pos4 [C e e C
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