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Summary

The purpose of this paper is twofold: First, within the framework of Savage
(1954), we suggest axiomatic foundations for the representation of event—dependent
preference relations over acts. This representation has the form of expectation of
event-dependent utility with respect to non-unique subjective probabilities on the
set of states. Second, we give an economic-theoretic motivation for selecting a
unique probability distribution as an appropriate concept of “subjective probabil-
ities.” However, unlike in Savage’s theory, this notion of subjective probabilities
does not necessarily represent the decision-maker’s belief regarding the likelihood of
events. :

Our approach involves a departure from Savage’s postulate P4, which guaran-
tees the completeness of Savage’s likelihood relation on the set of all events. Instead,
we assume the existence of a finite partition of the set of states, {Si,...,S.}, such
that, for events within each element of this partition P4 is satisfied. This weakening
of Savage’s axioms suffices for the existence of an expected event-dependent utility
representation, but not for the uniqueness of the subjective probabilities.

In many economic problems involving decision-making under uncertainty the
existence of a unique probability is presumed and, in fact, is essential for the state-
ment of the result. An example is Arrow’s (1965) finding that all risk averse decision-
makers will invest in a risky asset provided its expected rate of return exceeds that
of an alternative risk-free asset. We show that a unique probability distribution can
be chosen so as to render such results meaningful. Namely, any risk averse decision-
maker will hold a positive position in the risky asset if and only if its expected rate
of return with respect to the chosen probability exceeds that of the riskless asset.

1 Part of the research described here was carried out at the Santa Fe Institute,

Santa Fe, NM, - U.S.A.




1. Introduction

The uniqueness of subjective probabilities in decisions under uncer-
tainty is implied by Savage’s tlléory. This theory postulates preference
relations over acts that are representable as mathematical expectation of
a utility on consequences with respect to a unique, nonatomic, subjective
probability measure on states of nature. The interest in this representation
stems from several reasons: First, this specification proved to be convenient
for the analysis of problems such as portfolio selection, insurance contracts,
and other topics in economics of uncertainty. Second, the existence of a
unique (prior) subjective probability measure permitted the application of
Bayesiah statistics methods for incorporating new information.

There are situations of decision-making under uncertainty, in which
Savage’s postulates, requiring that preferences over consequences are inde-
pendent of the state in which they are obtained are not satisfied. In such cir-
cumstances, i.e., when the decision-maker’s preferences are state-dependent,
the existence of unique subjective probabilities is not implied by Savage’s
theorem. (See for example Arrow (1974)). Indeed, consider a set of states,
S, a set of consequences C, (both non-empty) and a preference relation, >,
on the set of acts A := {a: S — C}. To grasp the problem let {S1,...,Sn}
be a partition of S and restrict attention to acts that are constant on each

event in the partition. Suppose that the preference relation is representated

by a functional @ — S, ajui(a;), where Y, o = 1, a; > 0, a; is the

consequence that the act, a, assigns to all states in S, i = 1,...,n, and

for each i, u; : C — R is a state-dependent (or event-dependent) utility

function. The representation of preferences by this functional means that
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forall a, b € A4, a = b <=> S0, aui(a(Si)) > Yim; @iui(b(Si)). The

same preference relation > is also represented by a — Y i, ﬁ,-v,-(a(S,-))

where for i = 1,...,n, v; = yu; + 6;, i > 0, B = (ai/q/i)/z?=1(ai/’yj).
By the term state (or event)-dependent preferences we mean that for some
i and j (for simplicity imagine that for all ¢ # j) u; is not a positive linear
transformation of u;, i.e., there are no p > 0 and 7 such that u; = pu; 4 7.
Because the utility functions for different states are essentially different
and each is unique up to positive linear transformations, there is no obvi-
ous way of deciding which utility, say u; or v;, is the appropriate one to
be used in the representation. Consequently, there is no obvious way of
deciding whether the distribution {a3,...,a,} or {B1,...,Bn} is the more
appropriate concept of subjective probabilities. In other words, it is not
clear which of the two distributions, if any, represent the decision-maker’s
subjective beliefs regarding the likely realization of the alternative states of

nature.

The purpose of this paper is twofold: First, within the framework of
Savage (1954), we suggest axiomatic foundations for the representation of
event-dependent preference relations over acts. This representation has the
form of expectation of event-dependent utility with respect to non-unique
subjective probabilities on the set of states. Second, we give an economic-
theoretic motivation for selecting a unique probability distribution as an
appropriate concept of “subjective probabilities.” However, unlike in Sav-
age’s theory, this notion of subjective probabilities does not necessarily

represent the decision-maker’s belief regarding the likelihood of events.

Our approach involves a departure from Savage’s postulate P4, which
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guarantees the completeness of Savage’s likelihood relation on the set of
all events. Instead, we assume the existence of a finite partition of the set
of states, {Sl,...,Sn}A, such that, for events within each element of this
partition P4 is satisfied. This weakening of Savage’s axioms suffices for the
existence of an expected event-dependent utility representation, but not for
the uniqueness of the subjective probabilities.

In many eéonomic problems involving decision-making under uncer-
tainty the existence of a unique probability is presumed and, in fact, is
essential for the statement of the result. An example is Arrow’s (1965)
finding that all risk averse decision-makers will invest in a risky asset pro-
vided its expected rate of return exceeds that of an alternative risk-free
asset. We show that a unique probability distribution can be chosen so as
to render such results meaningful. Namely, any risk averse decision-maker
will hold a positive position in the risky asset if and only if its expected rate
of return with respect to the chosen probability exceeds that of the riskless

asset.

2. Event-Dependent Preferences and a Weakening

of Savage’s Postulate P4

Let S and C be non-empty sets of states and consequences, respectively,
and let A := {a : S — C} be the set of Savage’s acts. Consider a binary
relation > C A x A, satisfying all of Savage’s postulates except P4. Since

P1, namely, transitivity and completeness of >, is satisfied, we refer to >

as a preference relation. Recall that 12 is the sure thing principle, P3 is
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the (ordinal) state-independence, P4 guarantees that the relation “more
likely to obtain” on events is complete. P5 requires the nondegeneracy of
>. P6 is nonatomicity or continuity axiom, and P7 is a technical uniformity
assumption.

We weaken postulate P4 by assuming the existence of a finite partition
of the set of states such that within each event of this partition Savage’s P4
applies, i.e., the comparison of any two events by the relation “more likely
to obtain” is possible if both are subsets of the same event of the partition.
To illustrate and motivate this axiomatization we consider the example of
life insurance in which the state-dependence of the preference relation is
natural. For simplicity we consider two events: in one event the insured
person is alive and in the other complementary event he is dead. In both
cases the individual’s utility as a function of his wealth is strictly monotonic
increasing, but we assume that the decision-maker displays greater risk
aversion in the second event. This may reflect, for instance, the perception
that when alive the decision-maker is better able to cope with random
financial losses. For concreteness, let C' = [0,A] C R and S = [0, 1], and
let A be a nonatomic purely finitely additive probability measure on the
set of all subsets of the unit interval such that on intervals \([a, 8]) =
B — «. Suppose that the decision-malker’s preferences are represented by

the functional

1/2 1
a+— / a(s)dA(s) / a(s)2dA(s) a € A.
| 0 1/2

This preference relation displays risk neutrality in the event [0,1/2) and

risk aversion in the event [1/2, 1]. To show that this preference relation
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does not satisfy Savage’s postulate I’4, we recall that:

P4 For all z,y,2',y' € C,z = y,2’ =y’ and, for all events F' and G,

xonF}mon‘G’jﬂ?w’onF
y on F*° y on G¢ y on F€°

where, for each ' C S, E° is the complement of E in S.

Suppose next that C, the set of consequences, is a bounded interval of
real numbers which includes 0 and 100, representing wealth in dollars. Let
r =100,z =25, y=¢ =0, F =[0,1/20], and G = [1/2,1/2 + 1/3].
Then, the expected utility of the act [z on F, y on F€] is 100/20 which
is larger then the expected utility of the act [z on G, y on G¢|, which is
100/30. On the other hand, the expected utility of the act [z’ on F, ¥’ on
F¢], namely 25/20 is smaller than the expected utility of [z’ on G, 3’ on
G°] which equals 5/3. Thus, our interpretation of P4 is state-independence
of the utility functions.

Note that in this example Savage’s postulate P3 as well as all the other
axioms are satisfied. In general, however, state-dependent preferences do
not have to satisfy P3. Thus, for instance, when taking a stroll in the park,
it is conceivable that one may prefer carrying an umbrella to not carrying
it if it rains and he may prefer not carrying an umbrella to carrying it if it
is sunny. In this paper we deal with the case of state or event-dependence
when P3 is satisfied. This serves to simplify the exposition and highlight

the role of P4. (Alternatively, one can weaken P3 in the same way as P4
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with respect to the same partition. In this case P7 must also be similarly
modified.) In some sense, the relaxation of P4 is a minimal form of state-

dependence.

Next we introduce the weakened version of postulate P4.

P4* There exists a finite partition, say Sy, ..., Sy, such that for all z, 2/, y,
y' in C with z > y and 2’ > ' and for all events G, F', where for some

i,i=1,...,n, GCS;and F C S; the following implication holds:

xonF}monGiﬂx'onF>[x'onG
y on F¢ y on G¢ y' on F*° |y’ on G€¢

3. Expected Utility Theory with State-Dependent Preferences |

In this section we assume that > is a binary relationon A := {a: S —
C} and that this binary relation satisfies Savage’s axioms P1-P3, P5-P7,
and P4* instead of P4. Given an event E C S recall Savage’s definition
of conditional (on E) preferences on A: Forall a, b, and cin A, a > b
if and only if [a on E; ¢ on E¢] > [b on E; c on E¢]. In view of the sure
thing principle (P2) this definition makes sense, (i.e, the relation above is
independent of ¢.) Anevent E C Sisnullif p= AxA. Fori=1,...,n, we
denote by >; the preferences conditional on S;. To simplify the presentation
we introduce a strengthening of the nondegeneracy axiom P5 and assume

that it is satisfied:




"P5* Forall i =1,...,n, >; non-empty. (Equivalently, we may state that

for all 4, S; is non-null.)

Clearly, for each ¢ the preference relation -; satisfies Savage’s postu-
lates, P1 — P7. In particular, P4* implies P4 for each >;. By Savage’s
theorem, for each i, 7 = 1,...,n, there exists a unique nonatomic, finitely

additive probability measure 7; on events in S and a bounded utility func-

tion w; : C — R such that

(3.1) Foralla,beA: a>;b& /S w;(a(s))dm;(s) > /S w,-(b(s))dm‘( ).

Note that since Sf is 7;-null, integrating over S; with respect to =; is equiv-

alent to integrating over S with respect to ;.

Next we state our main representation theorem for state-dependent

preferences.

Theorem.
(i) Given a binary relation > on A the following two conditions (i.i) and
(i.ii) are equivalent:
(i.i) The relation > satisfies P1, P2, P3, P4*, P5*, PG, and P7.
(i.ii) For i = 1,...,n there exist nonatomic (finitely) additive proba-
bility measures m; on S; and utility functions u; : C' — R, such that,

(3.2)
Foralla,be A:a>b& Z/ [wi(a(s)) — ui(b(s))]dmi(s) > 0.
i=1 Y Si
(ii) If condition (i.ii) of part (i) is satisfied then for any (finitely) additive

probability measures 7} on S; and any utility functions v} : C' — R,

i=1,...,n, the following two conditions (ii.I) and (ii.ii) are cquivalent:

8




(ii.i) Foralla,b€ A,a = b Y70, o [ui(a(s)) —ui(b(s))]dni(s) = 0.

(ii.ii) Fori = 1,...,n, m; = w}, and there are § > 0 and «a; such that

uﬁ = fu; + a;.

Observation Condition (i.ii) in the Theorem states that the functional
a — Yo, fS.- u;(a(s))dm;(s) represents the preference relation > on A.
For any list of positive numbers (pi):.l:l such that "% p; = 1, a —
oy fs.- [ui(a(s))/pi| pidmi(s) is the same representation of > on A as the
preceding one. For each £ C S define n(E) = Y I, p,-7r,-(E N S,-) and for
s € S; and z € C, define v(z,s) = ui(z)/p;. Hence, 7 is a probability

measure on the algebra of all subsets of S and

Forall a,b€eAd:a>b& /Sv(a(s), s)ydm(s) > /Sv(b(s), s)dm(s)

The subjective probability = is a function of (p;); and so is the state-

dependent utility v.

The main step in the proof of the Theorem consists of the application
of Savage’s theorem, using condition (3.1). However, the conclusion (3.2)
is not an immediate implication of Savage’s theorem. The proof, which
consists of several steps is relegated to the Appendix.

Notice that, by the sure thing principle, P2, and the uniqueness of the
probability measures in Savage’s theorem and in the Theorem, the prob-
ability measures m; of condition (3.1) equals those of condition (3.2) for
t = 1,...,n. Moreover, for each 7, u; is a positive linear transformation of

w;.




4. A Definition of Subjective Probabilities

In addition to Bayesian statistics (see Lindley (1990)) the interest in
a well defined notion of subjective probabilitiés stems from the economic
analysis of decision-making under uncertainty. In particular, numerous re-
sults in portfolio theory and insurance economics may not be meaningfully
stated without an appropriate notion of probabilities. For instance, con-
sider the classical result, due to Arrow (1965), on investment in risky assets
by risk averse decision-makers. Let there be finitely many states of nature,
say n, and suppose that consequences are real numbers representing mon-
etary gains or losses. There is a risk-free asset whose rate of return is zero

in each state and a risky asset X = (2;)ies, where z; represents the gain
(or loss) in state i. In this model a decision-maker is characterized by a
concave differentiable utility function u : R — R and by a prior probability
p = (pi)ies on S. In this normalization the asset is free and the decision-
maker must choose a € [0, 1] where a represents his position in the risky
asset. Arrow’s result is that a*, the optimal position, is positive if and only

if the assets expected value, ). ¢ pix;, is positive. Equivalently,

(4.1) Zp,-a;,- >0« da>0,a <1 such that Zp,-u(aa:,-) > 0.
1€S 1€S

The surprising aspect of this result is, of course, that all risk averse decision-

makers are diversifiers.

To cast the present discussion in terms of the framework of the pre-
ceding section we regard the clements of the partition {S;}; of P4* as

elementary events, and we restrict attention to acts that are constant on

10




each S;. Thus, following the conventions of the section, we refer to the ele-

mentary event S; as state ¢,1=1,...,n. In this notation a decision-maker
with state-dependent preferences may be represented by a list of probabil-
ities (p;)ies and state-dependent utilities (u;)ies. Here each u; is a differ-
entiable real-valued function on R. To further simplify the presentation we

assume that all the elementary events are nonnull and, hence, p; > 0 for
| all 5. Clearly, the representation of the decision-maker is nonunique. The
list of probabilities (p;)ies may be replaced by any other list (¢i)ies such
that 5°;c5qi = 1 and ¢; > 0 for all 7, and the utilities rescaled accordingly.
Hence, the condition Y ;. piz; > 0 in (4.1) is meaningless. On the other
hand, the right hand side of condition (4.1) is independent of the choice of

p. Specifically,

(4.2) Zp;u,-(a'a:i) >0& Z Xipi [ui(axi)/Ai] > 0.
i€S ies
We seek a definition of subjective probabilities (i.e., a specific choice of
state-dependent utilities on C' and probabilities on S) that would render
Arrow’s theorem meaningful.
The proposed definition of subjective probabilities involves a normal-

ization of the utility functions such that the normalized utilities (v;)ies

satisfy 52—';(0) =1 and v;(0) =0 for all 7 € S.

Proposition. Suppose that state-dependent preferences on acts are rep-
resented by probabilities (p;);es and concave differentiable utilities (u;)ies

such that fori € S %’;‘f(()) =1 and w;(0) = 0. Let (z;)ies be a risky asset.
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Then

(4.3) Zp,-:z:,- >0 Ja>0,a<1such that Z])iui(ax,-) > 0.
1€S 1€S
The proof is as simple as that of Arrow’s theorem. A function U :
[0, 1] — R is constructed: U(«a) = S ies Pitti(a;). U is concave differen-

tiable and its deriative at zero is Y ;g piwi. Further details are omitted.

Remark: The definition of subjective probabilities in the proposition
hinges on the definition of the utility function on gains and losses. Im-
plicit in this definition is the decision-maker’s initial wealth, w, and state-
dependent utility functions (vi)ies, where vi(w+ ;) = ui(z;) for all i € S.
A change in w, say to w’, (stochastically independent of the risky asset) in-
volves a change in the utilities of gains and losses, uj(zi) = v;(w'+2;),1 € S.
In general, following such a change in the initial wealth, the position held
in the risky asset X = (%;);es may change, even to become zero. How-
ever, the proposition still holds with (u});es instead of (u;)ies and (p})ies
instead of (p;)ies is obtained by the joint normalization of (u;)ies so that
u4(0) = 0 and —%uQ(O) = 1,i € S. In other words, unlike the case of state-
independent preferences, the proposed definition of subjective probabilities

is not invariant with respect to changes in the decision-maker’s wealth.

5. Concluding Remarks

A qualitative probability is a binary relation on events which satisfies

certain standard properties, including transitivity and completeness. Un-

der additional assumptions this relation has a unique representation by a
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probability measure. Interpreting this rclation as a decision-maker’s beliefs

regarding the likely realization of the events, the representation has the

interpretation of subjective probability beliefs.

In Savage’s theory the qualitative probability relation is derived from
the primitive notion of preference relation on acts. Savage’s axioms im-
ply that the derived qualitative probabilities satisfy all the requirements
guaranteeing the existence of unique subjective probability representation.
Furthermore, these axioms imply the existence of an expected utility rep-
resentation of the preference between acts with respect to this probability

measure.

In this paper we have shown that there exists expected utility represen-
tation even when such qualitative probabilities cannot be derived. Although
the probability that appears in the Observation (Section 3) is nonunique it
suffices for the application of Bayesian updating. In other words, if we start
from two distinct representations involving two different choices of proba-
bility distributions, i.e., two different choices of (p;)i; and (p})i,, and
a nonnull event F' is observed then, updating using Bayesian formula, we
get two distinct posteriors. Nevertheless, they induce the same preference
relation over acts conditioned on this event. For a more detailed discussion

sce Karni, Schmeidler, and Vind (1983).

As was made clear in the Observation, every choice of the numbers
(pi), implies a distinct prior, m, and at the same time it implies a distinct
state-dependent utility function v;(-) = v(-;s) = w;i(:)/p; for all s € S;.
For each 7 the uniqueness of the representation of the utilities for the given

(pi)™; is “up to” additive constants. One approach to the selection of a
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unique prior, followed up in Section 4, is to choose an appropriate nor-

malization of each of the utilities (v;)?_ ;. This, in turn, defines a unique
vector (p;)™;. An alternative normalization of the utilities u; exploits the
fact that these are bounded functions. In particular, fix Inf ec v(z; s) =0
and Sup, .o v(z; s) =1 for all s € S to define unique subjective probabili-
ties. This normalization is implied by recent works of Karni (1991a, 1991b),

where an additional assumption on preferences is imposed.

APPENDIX: Proof of the Theorem

We prove that (i.i) implies (i.ii). The opposite direction as well as
part (ii) of the Theorem are almost obvious or very easy to prove (when
taking into account Savage’s theorem, both directions, and our proof here).
The general approach to the proof is first to show the result for the special
case where there is a most preferred consequence and a least preferred
consequence in C (Lemma 2). For the general case, the set C' is extended
by adding a most preferred and a least preferred consequence. The set of
acts and the preference relation are correspondingly extended. The ‘in-
between’ case where one of the two, a most preferred consequence or a least
preferred consequence does exist is not discussed explicitly.

The proof is carried out in several steps, a few of which are stated as
lemmas. We freely make use of Savage’s theorem and the representations

(3.1). Our first step is an implication of P2 and P1.

Lemma 1. Ifa~;bfori=1,...,n, then a ~ ).
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Proof of Lemma 1 Fori=0,...,n define the acts,

a; =

[@ on S;U---US;, b 011,‘Si+1U---US'n].

a and a, = b. By P2 and the definition of conditional

O

Clearly, ag =
preferences: a ~; b implies a;—; ~ a;. Hence, (by transitivity), a ~ b.

Notations For z,y € C, z > y let:

A{z,y} :={a€ Ala(s)=z or a(s)=y}

Alz,yl:={a € Alz = a(s) = y}

Remark When 2 > y, the preferences > restricted to A{z,y} satisfy

all Savage’s axioms. Hence there is a unique nonatomic probability 7, (de-

pending on z and y), such that for any two acts a and b in A{z,y}:
ar b n({s €S |a(s)=2}) > 7({s € S/b(s) = v})
On the other hand, for i =1,...,n and a,b € A{z,y}:
ar;bem({se€Si|a(s)=2}) > m({s €S,|b(s) =2}).

Since the preferences > restricted to A{z,y} and then conditioned

on S; coincide with »; restricted to A{z,y}, the uniqueness of Savage’s

probability implies that:

m(E) = mi(E)n(S;) forall ECS;i=1,...,n.




Conclusion For all a and b in A{z,y}: a > biff

n n

Zw(Si)m({s € S/a(s) =a}) > Z?T(Si)ﬂ’i({s € S/b(s) = a}) .

=1 1=1
Our next step is to show that (i.ii) of the Theorem holds for the special

case where there is a most preferred consequence, say 7, and a least pre-

ferred consequence, say 7, in C. We will utilize the conclusion above where
Savage’s probability = has been constructed for T and 3. Note also that by
P5*, w(S;)>0fori=1,...,n.

To simplify presentation, first, we assume, without loss of generality,
that the utility functions w; in 3.1 satisfy w;(T) = 1 and w;(y) = 0. Next,

we introduce the following notation for alld € A and ¢ =1,...,n.

Wi(d) = / w;(d(s))dn;(s)

Lemma 2. For all a,b € A = A[z,y]: a > b iff Y., 7:(Si)Wi(a) >
2z mi( S Wi (D).
Before proving the lemma, we point out that by defining w;(z) :

w;i(z)/m(S;) for ¢ =1,...,n, Lemma 2 implies (3.2).

Proof of Lemma 2 Since 0. < W;(a) < 1 there is a; € A{z,y} such
that W',-('a) = Wi(a;). (By nonatomicity of m; there is E; C S; such that
mi(E;) = Wi(a). Define a; := [T on E;,§ on Ef]). Define a’ := [a; on
S; for 1 = 1,...,n]. By Lemma 1, a’ ~ a. Similarly, we construct b; €
A{z,y} with F; = {s € S; | bi(s) = T}, and V' with ' ~ b. Soa = b
i o’ b T, 7(S)mi(E) > T, w(S)mi(F) it S, w(S)Wila) 2

Y on, w(Si)Wi(b) where the middle implication uses the Conclusion. O
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We now deal with the case where a most preferred Cohsequence and a
least preferred consequence do not exist. We still use the normalizations
for w; such that sup{w;(z)/z € C} = 1 and inf{w;(z) | z € C} = 0. Hence,
there exist two sequences (z(k))$2, and (y(k))g2, in C such that when
k 1 oo, wi(z(k)) T 1 and w;i(y(k)) | 0. Our next result is of interest on its

own within Savage’s framework.

Lemma 3. Fori=1,...,n, there exists a most (least) preferred act in A

with respect to the preférences > 1.

Proof of Lemma 3 For all i; n; is additive, atomless, bounded and
defined on all subsets of S;. Hence 7; is purely finitely additive, i.e., there
is a countable partition (H;(k))§2, of S; such that m;(H;(k)) = 0 for all k.
(This classical result assumes the continuum hypothesis.)

Define @; := [z(k) on H;(k) for k = 1,2,...] (bi := [y(k) on H;i(k)
for k = 1,2,..]). Clearly, Wi(a@;) > wi(z(k)) for all k. So, Wi(a;) = 1
(Similarly, W;(b;) = 0). O

In the proof of Lemma 3, the acts @; and b; were not defined on S\.S;
since m;(S\S;) = 0 and any definition may do. As an immediate implication

of Lemmas 1 and 3 we get:

Corollary. The act @ := [@; on S; for 1 = 1,...,n] (b := [b; on S; for

i=1,...,n]) is a most (least) preferred consequence in the relation > in A.

We now extend the set of consequences, C, to include a most and a

least preferred consequence (in the preferences over consequences, i.e., over

constant acts). Formally, let C := CU{z,y} where Ig C and § ¢ C. Next
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let A:={a:85 — C}. Finally, we extend > to complete preferences on A
CGivena € A, let E:={s € S|a(s) =7} and F := {s € S | a(s) = 7}
Define now an act d € A corresponding to d as follows: d := [@ on E,b on
F and d otherwise], i.e., for s € EN H;(k), d(s) = z(k), ... Given @ and bin
A, wedefined = biffa=b

To state the next Lemma, we first define (for ¢ = 1,...,n) the éxtention
of w; to C in the obvious way: @;(T) = 1 and @;(7) = 0. The definitions of

W; and &; are equally obvious.

Lemma 4. (i) & satisfies P1 and P2, (ii) @b iff Wi(@) > W;(b), for
i=1,...,n, (iii) & satisfies P3, P4*, P5*, PG and P7.

Proof of Lemma 4 Part (i) is an immediate implication of the definition
(and of fhe fact that > satisfies P1 and P2).

Part (i) of the Lemma essentially states (for all ¢), that the preferences
S, are represented by the expected utility functional Wi, (which extends
W;), which, in turn, by Savage’s theorem implies that > satisfies P1 — PT.
This, together with part (i), i.c., P1 and P2 satisfied by >, imply part (iii),
i.e., &= satisfies also P3, P4*, P5*, PG and P7.

So we are left with the proof of part (ii) of the Lemma. Consider the

~

following list of (two-sided) implications for all @ and bin A: FL\E,’I; iffa>; b

iff Wi(a) 2 Wi(b) iff Wi@) > T7:(). Only the last implication requires

proof, and it follows from:

Claim Fori=1,...,n ahd d € A: W((T) = W-(c?).
Fix an i. We have to prove that [ ;( (d(s))dmi(s) = [g, wil (d(s))dmi(s).
Let E := {sv €5;|d(s)=7)and F:={s € S; | d(s) = 75j}. By definition
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of d for s € S\(EUF), d(s) = d(s) € C. So @;(d(s)) = wi(d(s)) and
Joncmom BENAT(5) = [ wild(s))dmi(s).

For s € E, s € H;(k) for some k and d(s) = z(k). So w;(d(s)) =1 >
w;(d(s)) in this case. Hence, 7;(E) = [, w;(d(s))dmi(s) > [ w;(d(s))dm;(s).

On the other hand, w,(a:(k)) 7 1 with k T co. Thus, for any £ > 0,
there is an m such that for k > m, w;(2(k)) > 1-£€. So [ wi(d(s))dm;(s) =
Jonqur=r may 0id)dmi(s) + [onuse ey wi(d(s))smi(s) > 0+ (1 —
)i (F).

The last inequality follows from the fact that m;(Up;' Hi(k)) = 0 and
mi(U2, H;(k)) = mi(S;) (and E C S;). Since this inequality holds for any
£ >0, we get that [, wi(d(s))dm;(s) = m;(E) as required.

An analogue proof shows that [pwi(d(s))dmi(s) =0 (= [p @;(d(s))dmi(s)),
which concludes the prbof of the Claim and with it that of Lemma 4. [

To conclude the proof of (3.2) note that iﬁ view of Lemma 4, we have

A= 2[?1:‘, 7], and so Lemma 2 applies in the general case too.
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