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ABSTRACT

The neobayesian decision models (X51?.) considered, with X set of

consequences, S set of states of the world and a binary relation on acts

in X , are seen as models (X kJX, ?..) with on XSIJX satisfying the

identification axiom: x x NexeX, where x (s)=x VERES and 25 denotes

indifference. It is contended that this identification characterizes the

objectivity of the models, i.e. their being models of a 'grand decision', as

Savage puts it. This identification axiom is replaced by two axioms, one of

* *
agreement: x 2:y iff x,yeX, and one of revealed limited intelligence:

x
*

and y x 9 y

where > denotes strict preference. The resulting models are then interpreted

as subjective.

By coupling these axioms with existing theories (i.e. sets of axioms)

on the restriction of to X5, theories on (XSIJX, ?) are obtained which,

besides separating beliefs about the events in S from preferences over

cosequences in X, enable to identify an element of pessimism/optimism and an

element of 'trust' in one's model.

A stroger form of axioms and results is given for preferences extended

to A(X), the set of simple probability measures on X.



.1*

1. Introduction

After the classical work of Savage (1952,1954), neo-bayesian analysis

of decision making has concentrated more on decision Theories (i.e. sets of

axioms of choice) than on the underlying decision Model itself. The present

elaborates upon the latter, and it is hopefully a contribution to the

analysis of the problems of realism and applicability that the model

presents.

To be more specific, a decision model will be a pair 
(XS, ?..), where

and X are sets and is a binary relation on X . A decision theory is a set

of axiomatic restrictions on a: . Elements of S represent states of the

world, and elements of X consequences; the elements of 
X, maps from S to X,

are interpreted as courses of action - acts; and the d.m. being represented

assesses preferences on acts in order to direct choice.

For an introduction to the problems under discussion we may read Savage

himself. On the basic elements S and X, he writes:

"A state of the world is a description of the world, leaving no

relevant aspect undescribed" (The Foundations of Statistics 1972, FS, p.9).

And: "Consequences might involve [...] anything at all about which the

person could possibly be concerned. Consequences might appropriately be

called states of the person, as opposed to states of the world" (F$, p.14).

With this extra-mathematical specification the resulting model becomes,

as we shall say, an Objective model. Savage is well aware of the fact that

real-life decision making is not based on objective models. In the section

of FS devoted to the problem, 'Small worlds', he writes:

"Making an extreme idealization, which has in principle guided the

whole argument of this book thus far, a person has only one decis
ion to make

in his whole life. He must, namely, decide how to live, and thi
s he might in
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principle do once and for all. Though many, like myself, have found the

concept of overall decision stimulating, it is certainly highly unrealistic

and in many contexts unwieldy." (FS, p.83)

And this is his view:

"Any claim to realism made by this book-or indeed by almost any theory

of personal decision of which I know-is predicated on the idea that some of

the individual decision situations into which actual people tend to

subdivide the single grand decision do recapitulate in microcosm the

mechanism of the idealized grand decision.[...] The problem of this section

is to say as clearly as possible what constitutes a satisfactory isolated

decision situation. The general method of attack I propose to follow, for

want of a better one, is to talk in terms of the grand decision-tongue in

cheek-and in those terms to analyse and discuss isolated decision

situations. I hope you will be able to agree, as the discussion proceeds,

that I do not lean too heavily on the concept of the grand decision

situation." (FS, p.83)

However, he finds his own solution

"[...] unsatisfactory in that it seems incapable of verification

without taking the grand world much too seriously." (FS, p.90)

The point of view of the present work is different from that of Savage.

It is argued that individual decision situations do not quite 'recapitul
ate'

the grand one, so Savage's problem of characterizing 'satisfactory' 
isolated

decision situations in terms of the grand decision does not arise.

Individual decision situations are simply what they are and, it is

contended, they constitute the proper object of analysis. So we shall study

what we interpret as Subjective decision models -those used in decisions

other than the grand one-, with no formal reference to any objective model.

In order to expand on this, let us first say that the analysis will be

confined to what we call Separating models and theories. Separating models

are those in which consequences in X are described with no reference to the

space S and interpreted as states of the d.m. -as in Savage. In these
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models, 'umbrella in the rain' is not an appropriate (component of a)

consequence. Nor is 'umbrella', for it is not a state of the d.m. An example

of Savage is in the FS, p.25. Another one could be 'getting pleasantly wet',

which may result from an act of having a cold shower in a state of hot

weather or a hot one in cold weather.

Separating models are tied up with separating theories, i.e. those

which enable to identify separately subjective beliefs about the events is S

and 'state-independent' preferences on the consequences in X (again, like

that of Savage). The separating theories on (X5,?_) considered here

characterize preferences on X for which there exist a utility function u:X

4 DR and a (possibly non-additive) probability measure pi on S such that

each f e X is ranked according to the value of the (Lebesgue or Choquet)

integral of u.f with respect to pi

Actually, the extra-mathematical specification of a separating model

almost forces state-indspendence axioms (hence separating theories) on the

preference relation (see FS p.25 up to P3); and conversely, separating

theories appropriately apply only to such models. As blurred as it is, the

distinction between models and theories will continue to be invoked in the

sequel?

To proceed we start with Savage again:

"a smaller world is derived from a larger by neglecting BOMO

distinctions between states." (FS, p.9)

In our interpretation, the d.m. refines his state space (i.e. enlarges

his world) by including 'relevant aspects' he is aware of, and at some point

he stops, conscious of ending up in a small world in the above sense (it is
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instructive to see to what extent this description reflects the way in which

Savage and Aumann actually proceeded in the context of concrete examples in

a private exchange of letters now available (Dreze 1987, appendix A to ch.

2)). The d.m. 'a subjective state space will not be a set of subsets of a

larger ('finer') space, as it is in FS (p.84). For, from our point of view,

there are no distinctions between states which are 'neglected', but only

distinctions of which the d.m. is not aware. The subjective states are those

which he can distinguish on the basis of the relevant aspects (facts,

propositions) of which he is aware, and are perceived and represented an

singletons. However, our d.m. suspects he may have left some

aspects undescribed'. In fact, the d.m. who assumes that his state space is

the objective space is essentially covered by existing theory (if he does so

wrongly, he will just be surprised of being wrong %Alan unexpected events

materialize). At any rate the point is important for the present approach.

To illustrate it, we quote Savage once more. On the consequences he had

described to Aumann in the aforementioned letter he writes:

'relevant

"Of course, they are not ultimate. [...] An ultimate analysis might

seem desirable, but probably it does not exist and certainly threatens to be
ciambersome."

Our shifting attention to consequences was on purpose. Indeed, the

above quotation also brings out an essential symmetry between the space S of

states of the world and the space X of states of the person (d.m.): as far

as 'refinement' is concerned, the d.m. is in the same position with respect

to both, and what was said before on subjective state space also applies to

subjective consequence space.

Now we turn to the domain of the d.m.'s preference relation. Although
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existing separating theories are intended to separate bel
iefs about S from

intrinsic preferences on X, in the model (X ,1) the domain of > is

originally just XS, a set which formally does not inclu
de X. X contains the

subset X of constant acts, with elements x assigning to each BES the same

consequence xEX (i.e. x (s)=x, DES); and preferences on X aro usually

superimposed on the model by a definitory condition of agreement with

* *
preferences on X : x?.'y iff x 2::y , x,yEX (we have kept 

the same notation

as customary). This does not specify a model (X
s
uX, with a: defined on

X UX, for there are many transitive extensions to X UX of the original

preference relation on X which satisfy the above agreement condition. And

on the other hand, the formal conclusions of the theories are about the

model (X
s
, _>_.) which they study, as they should be (in particu

lar, they do

not contain assertions about preferences on X). Howe
ver, interpreting these

as theories which enable to single out an element of preference over

consequences in X is tantamount to imposing the stron
ger condition:

1.1 Identification. x := x , xEX ,

where al denotes indifference. And this does deter
mine a unique transitive

extension of to X UX. Therefore, existing separating theories on (X ,

are effectively theories on (X UX, I") which include the above

identification axiom. We stress in passing that explicit assessment of

preferences on X (objective or subjective) is part of th
e definition of the

model (X UX, ?). Indeed, X representing the set of st
ates of the d.m. in the

decision situation represented by the model, we might sa
y that preferences

on X transform the machine with state space X -an objec
t- into a subject of
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decision.

After this lenghty preamble, we can now state the idea w
hich generates

the analysis of the following sections, namely that it is precisely the

identification axiom 1.1 above that confers to the space S its objective

character and reflects it. In other words, we contend 
that interpretation of

the model as objective is appropriate f and only if that axiom is imposed.

We shall then introduce separating theories on (X
s
UX, ?.) which do not

include the identification axiom, and interpret the resulting models as

subjective (regardless of the objective or sub
jective character of X).

To motivate this, we recall that in the pr
esent interpretation of an

isolated 'small world' decision situaion th
e d.m. refines his spaces S and

X, and stops being conscious of their subjecti
ve character. He then assesses

his preferences on what he has, namely X UX.
 Maps from S to X represent

different courses of action as the d.m. per
ceives them, and he knows this.

Therefore, we argue, the d.m. will not rega
rd an act which 'looks like'

and x itself as the same ob:iect. In par
ticular, then, x x may hold for

some xeX.

How we replace the identification axiom (while maintaining the

* *
agreement condition x ?:y iff xy, x,yeX) is described and discussed in the

next section and stated in the abstract; here 
we complete the description of

the model (X
s
UX, ?..). Under the interpretation of X as set of states of the

d.m., the actual objects of choice in a decision situation are different

courses of action in X
, as in (X5, LP). And as far as comparisons between

elements of X are concerned, existing theories apply equally to subjective

and objective models. So we embed existing theories on the restriction of
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to X
s 

into the model (X
s
UX, ?_.), the bridge between X

s 
and X being given

by the axioms replacing identification of X and X. The result of this is

summarised in the abstract.

In the subsequent section 3 model, axioms and results are otrenghtened.

We leave the presentation of the latter two for that section, and pass to

the former. The extra requirement on the d.m. is that his preferences be

defined on all 41(X), the set of simple probability measures on X, the latter

being identified with the set of degenerate measures 6x 
, x€Y. in A(X) by

the axiom: 6
x 

25 x, xeX. So we have a model (X
s
UXUA(X), ?..) which is

effectively a model (X
s
UA(X), ?...) in which the elements of A(X) may be

interpreted as being generated by some objective device. In the latter

form, the identification axiom characterizing objectivity of the model

is: x 256
x 
, xeX. We again replace this, with strenghtened counterparts of

the axioms on (X LJX, ?..) which lead to a stronger type of results.

2. Theories on (X
s
UX,

In the model of this section the d.m.'o preferences are defined on

X UK. hr two axioms replacing identification 1.1 of X
* 

and X will reflect

subjectivity of the model. By adjoining to these axioms a theory on the

restriction of to X one then obtains representation theorems for on

X
s
UX. Here this is done with a theory of Wakker (1989a), which includes as a

special case expected (continuous) utility theory.

The continuity aspect should be emphasized. The axioms bridging X and

X below are designed for a model in which X is 'rich' enough, as will be
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clear. In the topological approach of Wakker X is a connected space.

First, a basic representability condition on :a. must be imposed.

2.1 Representable Weak Order (RWO). There exists a function V: XSUX 4 R

such that (i) )?..V(() iff Z,CE XSUX, i.e. V represents ?...; and

(ii) counterimages of al %.?.•C} and {i'ff C?grl under V are closed in OR.

The technical condition equivalent to RWO, that X UX be separable in

the order topology generated by the simple order on indifference classes

associated with may be found in Debreu (1954) or Krantz, Luce, Suppes and

Tversky (1971, p.40).

Our two 'small world' axioms, as anticipated, are:

2.2 Agreement. x y iff x y , x,yeX .

2.3 Revealed Limited Intelligence (RLI).

end y x > y y , x,yeX.

Under the present interpretation, x is constant only up to subjective

approximation; one might think of it as x plus unperceived 'suspected'

variability. The former axiom says that at least the corresponding rankings

on X and X agree. The latter says that if x is good enough to be better

than x , and y is even better than x, then y will be surely better than y

and that if x is so bad that x is better, and y is even worse, then y will

surely be worse than y .

Notice that under RLI 2.3: x x and y y x y. There can be
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at most one indifference class of consequences indifferent to their

corresponding constant acts. Therefore no non-trivial relation on X LA

satisfying 2.3 can satisfy the 'grand world' objectivity axiom 1.1, and vice

versa. It is because of this incompatibility that from the present point of

view individual decision situations characterized by agreement 2.2 and RLI

2.3 do 'not quite' recapitulate the grand one (cfr. section 1): in our

subjective models the identification axiom 1.1 of the objective model is

never satisfied.

As for the name 'Revealed Limited Intelligence', intelligence is in the

sense of Modica and Schmeidler (1991), who briefly discuss its aspects of

ability to reason, computational power, information, and understanding of

interactions. In the present interpretation, construction of an objective

model requires unlimited intelligence. By conforming to RLI 2.3 the d.m.

reveals not to have an objective model, hence limited intelligence.

We turn to the continuity aspect mentioned before. RLI 2.3 implies that

there is at most one indifference class of consequences indifferent to their

constant-act counterparts, but it does not imply that there is one at all.

First, RLI 2.3 (together with RWO 2.1 and agreement 2.2) may be satisfied by

prefererrm relations such that x>x VmEX, or x<x VxeX, in which in a sense

all the consequences the d.m. thinks of are good, or all are bad. These

cases exist formally, but seem void of interest. More interesting is when

there exist good and bad enough consequences x 
g 
>x

g 
and x

b
x (by 

‹— b

non-triviality of 2: -which we always assume- and RLI 2.3, one must be

strict). It is in this case that the topological assumption of connectodneoo

of X plays its role: 'richness' of X is needed to ensure existence of an
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- -*
xeX such that x x .

It is convenient to have some notation at this point. We let F:=X , th
e

set of acts. With subscript 'o' for 'ordinary',

X := { xeX I x 25 f for some fell' }

F
o 
:= feF I f(a)€Xo for all seS .

Notice that under identification 1.1, Xo
=X (and F

o
=F). If lp:A4B and

A'SA, the restriction of w to A' is denoted by yi
A' 

as usual.

2.4 Lemma. Let V: FUX ER represent ?.:, v:= V x , V F and u: X4R

be defined by u(x)=91(x ). Let V' be another representation of and v',

u' analogously defined. If 24, = 002l for some Ø:(R-[R, then v'
1 o

Proof. Letting x€X0 and fIceF such that fx-1.-x, one has

v'(x) = 22' (fx) cA(7.1(fx)) = 0(v(x)) .

A simple consequence of axioms 2.1-2.3 is this:

2.5 Lemma. Assume RWO 2.1, Agreement 2.2 and RLI 2.3. Let
 V, v, 21, u be

-*

as in Lemma 2.4, and suppose that there exis
ts xeX such that Tc 25 x. Then

there exists a function a v) : X 4 (0,1) such that

u(x) - u(x) ot
(U,v

x) ( v(x) - v(x) ) .

If, furthermore, 2.1 is cardinal -that is, unique up to positive linear

transformations-, then is independent of (21,v).
X
o

Proof. For the first assertion: by RLI 2.3,
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SO

.14 xs- iff X =▪ ▪ X

V(x) = V(x) iff V(x) = V(x )

v(x) = v(247) iff v(x) = u(x)

-*
Also, x 25 x means u(x) = v(x) so the last relation holdo iff

v(x) - v(x = u(x) - u(x).

The assertion now follows from the fact that, by agreement 2.2, one has

(v(x)-v6-0)(u(x)-u(2-0)?0, with equality iff both factors are zero.

The second assertion follows from the first and Lemma 2.4 (with

affine).

2.6 Remarks. (i) the function ot depend° only on indifference clam:leo,

i.e. a
,v)

(x)= a
0,v)

(y) iff x.1".4y, by agreement 2.2.

(it) a
0,v)

(x) may be defined arbitrarily.

-*
Given xx , the function a of Lemma 2.5 -or rather (1-01)- in a meaoure

of the difference the d.m. perceives between x (better or worse than x) and

x : the larger this difference, the smaller the value of tx(x). In thio

sense, the function ot includes an element of 'trust' in one's model, for th
e

more accurate the d.m. thinks his model is, the smaller is the perceived
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difference between x and x , hence the closer to 1 is the function a.

With a close to 1, subjective models approach objectivity. Indeed, with

the identification 1.1 of objective models in place of agreement 2.1 and RLI

2.2, V = u, so a would be identically 1.
X

After comparisons between elements of F with elements of X, it is left

to consider the restriction of 2: to F -denoted by i.e• preferences

among acts. By adding a set of axioms on ?:F to 2.1-2.3, one then obtains

theory on We shall illustrate this with a theory of Wakker (1989a), as

anticipated. The structural assumption is the following:

2.7 Structure. S (is finite and) contains at least two 'essential'

states. X is a connected topological space.

Finiteness of S is in parenthesis because it is assumed here for ease

of exposition. Wakker (1989b) has extended the theory to infinite S, by

relaxing the assumption that the set of acts F is all of XS and impos
ing on

F
, loosely speaking, the restriction that exceptionally good or bad

consequences do not matter too much. 'Essential' roughly means not deemed

impossible, and the presence of at least two essential states rules out

docisior situations in which there is effectively no uncertainty (for

details see Wakker 1989b). Technically, existence of two essential states

makes it possible to dispense with the assumption of separability of X which

is needed otherwise (see Wakker 1989a, sec.10 and 1989b, rem.48). From our

point of view, it is important because it ensures cardinality of the

representation of ?..11, (Wakker 1989a, (5.1)), which will imply uniqueness of

the function a in the theorem of this section. Connectednees of X, as
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already mentioned, is essential. Under structure 2.7, Wakker's th
eory on

is equivalent to the following:

2.8 Continuous Choquet Expected Utility (CCEU). There exist a unique

capacity p on S and a cardinal, continuous function u: X 4 
DR such that 2:15, is

represented by the function 22: F 4 UR given by

21(f) .1 u(x) d(A.10
-1,,

JOE) fEF .

A capacity on S is a real-valued set function on the subs
ets of S such

that A./(0)=0, p(S)=1 and AB -0p(A):Sp(B). The integral is
 Choquet integral.

In particular, if p is additive (Ara3=0 -op(AUB)= p(A)+
 p(B)), the integral

reduces to Lebesgue integral and the theory to (continuou
s) expected utility

theory. Details are of course in Wakker.

As anticipated, under RLI 2.3 the following is a regu
larity condition:

2.9 Regularity. There exist x
g
, x 

b 
EX such that x x

* 
and x x.g g b b

We will comment on dropping it later. Using RWO 2.1
(ii) and the fact

that the range of u (as continuous image of a connected 
set) is an interval,

it is routine to show that Regularity 2.9 implies existe
nce of an xeX such

- -*
that x x .

One more piece of notation is that brackets will always enclose

indifference classes, so for xEX, [x] := yeX y-lx 1. Then the result of

joining CCEU 2.8 with our subjectivity axioms 2.2 a
nd 2.3 is the following:

2.10 Theorem. Let be a non-trivial binary relation on FUX XSUX,

with structure 2.7.
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a

Assume that satisfies Representable Weak Order 2.1, Agreement 2.2,

Revealed Limited Intelligence 2.3 and Regularity 2.9; and that ?_F
 satisfies

Continuous Choquet Expected Utility 2.8.

Then there exist, unique, a capacity pi on S, a function c4: X0 (0,1)

and an indifference class [TO; and a cardinal function v: X 4 OR, such that

any function V: FUX 4 UR representing is with

V

11 

v(x) , xeX

_
v(x) + Jrx ot(x) (v(x) - v(x)) d(po

-1„
Mc) feF

o

This theorem is a direct consequence of CCEU 2.8 and Lemma 
2.5: write

u(x) = u(x) + (u(x)-u(x)) in 2.8 (with u as in Lemma 2.4) and apply 2.5 to

the second term, recalling that by construction u(x)=v(x). Details are

straightforward, and are omitted. On the other hand, some comments on the

result are in order.

First of all, notice that the integral expression for V in the above

theorem holds on Fo
, not on all of F. The reason is that only on X0

uniqueness of the function ot is guaranteed (see Lemma 2.5). Under the

continuity assumptions imposed in this section, outside of X0 are only those

consequences x such that 'x > f for all feF, or x < f for all feF.

As we have seen before, increased accuracy of the subjective model

reduces the perceived difference between any xeX and its corresponding

constant act x eF, so that loosely speaking X0 'approaches
' X with ot getting

close to 1. This is reflected in the representation in the
 theorem: with the

subjective model approaching objectivity, this represen
tation approaches the
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objective-model CCEU representation, to which it reduces if we set ceEl and

F
o
=F (as it is under identification 1.1).

Something about the function a was said after remarks 2.6, and more

will be said in the next section. The other 'new' element in the theorem is

- -*
the consequence x such that x 25 x . The utility of x may be interpreted as

the utility of the unperceived residual variability of the consequences of

the various courses of action. For, thinking of x* as x plus residual

variability, it follows from RLI 2.3 that this variability leaves the

ranking of x unchanged if and only if x 25 X. Thus we might say that the

_*
higher (resp. lower) the ranking of the x fltx in the preference relation >

the more optimistic (reap. pessimistic) is the d.m.'s attitude towards 'the

unknown'.

Lastly, we come to regularity 2.9. If it does not hold, (by non

triviality) either x >x V x€X or x< x V xeX, so the set F
o 
may be empty

_*
in the first place. On the other hand, there can be no x x , so as far as

RLI 2.3 is concerned, richness of X is not needed. As we said, it is felt

that these cases lack interest. We just mention that taking the case x > x ,

xeX for example, the analogous of Lemma 2.5 and Theorem 2.10 hold with u(x)

and v(g) replaced by

u := inf { u(x) I x€X } ,

if the right hand side is finite (but bearing in mind that the function 
u is

cardinal, u = -a) and x>x all xeX together do not seem to make much sense).

Analogous statements hold for the case x< x xeX.
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3. Theories on (X LJA(X),

In this section, as in the original model of Savage, no richness

assumptions on X are made. On the other hand, as mentioned in the

introduction, the extra requirement is imposed that the d.m. have

preferences defined also on the set A(X) of simple lotteries on X, supposed

to be generated by some 'objective' device, like an urn. This objectivity

induces identification of X with the set of degenerate distributions

6
x
E.A,(X), x€X, so it is assumed:

3.1. xeX.

In this way we obtain a model (FUXUA,(X), ?..) with on FUXU/1(X)

satisfying 3.1, so effectively a model (FUA(X), ?...) with on IRJ06.(X). This,

in the latter form, is the model of the present section. F, the set of acts,

will not always stand for all of X
, as is specified in the sequel.

In the model (FUZi(X), ?:), objectivity of the state space S is

characterized by identif:.cation of X and the set of degenerate

distributions on X, i.e. by the axiom:

3.2 Identification. x 4:11 ex 
xeX.

This plays the role of identification 1.1 in the present context. Wo

again will replace this (in another version), and interpret the resulting

models as subjective.

First representability, as in the previous section.

3.3 Representable Weak Order (RWO). There exists a function V: Fthl(X)4OR

such that (i) V(Z)V(C) iff Z?.C, Z,(€ FL)b,(X), i.e. V represents IP; and
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(ii) counterimages of {Z1 ZIP,C} and { I C-?-*Z} under V are closed in DR.

In the context of this section, agreement 2.2 and RLI 2.3 would be

written with 6 ,6 triA(X) in place of x,y€X, respectively as:
x y

and

* *
3.4 x y iff 6 6 , x,yeX

x y

3.5 For all x,yeX

x
and 6 .06

x

But stronger versions will be used in this setting. With no richness

conditions on X, there need not exist an xeX such that 6x 
;tx*. So 3.5 must

be strenghtened to ensure existence of something analogous to the

consequence x x of section 2 (it will be a lottery pEA(X)). As for the

agreement condition 3.4, it could be left as it is. By extending it in a

'natural' way, we will prcsent a result which is much sharper than theorem

2.10 of the previous section (no restriction to Fo and the
 function ot equal

to a constant).

As in section 2, we shall embed in (FLJA(X), ?. 
>.) a theory on _F (Sarin

and Wakker 1990) which includes the theory of Savage as a special case.

However, doing this directly would require some notation and definitions

which are not needed in order to present the central feat
ures of the result

and of the subjectivity axioms which lead to it. We choose 
to do the latter

first by dealing, in the main body of the section, with the special case

where the theory on F 
is exactly the theory of Savage. Axioms and result
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for the more general case, with the necessary measure-theoretic

preliminaries, will be stated at the end of the sec
tion. The extension will

be completely straightforward.

Some notation is still needed. First, F=X
s 

if X is finite. If not, F

denotes the subset of X consisting of all finite-outcome acts. This

restriction, to which a measurability condition 
is added in the more general

case, is maintained throughout. Let A be a Bet and lp: A 4 IR a bounded

function on Al let P(A) be the set of capac
ities on the (measurable where

appropriate) subsets of A. Then IT) : P(A) .+ DR will denote the Choquet-

integral of yi with respect to ve.7)(A
), the latter taken as variable:

:= -TA 
w d , ve.P(A) .

We recall that the additive probabi
lity measures are special capacities. If

is additive, IP(p) is simply the expectat
ion of vi with respect to v.

To begin theory, we start this time with 
F'

on which we assume,

neglecting redundancies wi*"..h RWO 3.3, Savage Pl
-P6 (dealing with step acts

P7 is not needed). In the notation just intr
oduced, this is equivalent to:

3.6 Savage Theory. There exist a unique additive, convex-ranged

probability measure pi on S and a cardinal, bounde
d function u : X UZ such

that
F 
is represented by the function tt : F 4 R given by

-1
21(f) = u (pof ) , feF.

Notice that with our definition of F, pof /eLl(X) for all feF. We

mention in passing that in Wakker (1989b) this is e
xtended to unbounded -but

integrable- u.

18



We turn to comparisons between elements of F and elements of d(X). As

we have seen, according to the present interpretation in subjective models

(RJA(X), ?) the d.m. does not regard x and 6
x 
as the same object. With p as

in 3.6, he will more generally not regard an act fell' and the lottery

-
pof

1 
‹al(X) which it generates as the same object -in analogy to section 2,

we might think of f as p.f-/ plus residual variability. So under 3.6 the

objectivity of the model is characterized by the identification:

3.7 With p from 3.6, f Iltpcf-/ , feF,

which extends 3.2 above. This we have to replace. Since p is convex-ranged,

one has

-
(3.8) { pof

1
 EA(X) I feF}= 11(X) ,

so Savage theory reduces ?F to a preference relation on A(X), which will be

denoted by n. Therefore to replace identification 3.7 and obtain what we

interpret as subjective models, we shall have to specify the relationship

between the n induced on 4. (X) by ?.F and the restriction of to L(X),

Paralleling section 2, this will be done by means of two axioms, one of

agreement and one of revealed limited intelligence, which will be stated in

turn.

So, with u and p as in 3.6, define n to be the von Neumann-Morgensten

preference relation on A(X) induced by u (more precisely by the family

a + bu, adR, b>0), that is,

p n q iff ILi(p) 1(q) , p,qed(X).

From 3.6 and this definition one then has

19



-
(3.9) f g iff pof

1 fl pog
-1 

, f,geF.

Coming to our first small world axiom, suppose that agreement condition

3.4 above were to hold. Then (3.9) would imply

* *
6 n 6 iff x y iff 6 6 , x,yeX,
x y x y

so that n and would agree on degenerate distributions. We shall

assume the following extended version of 3.4:

3.10 Agreement. With pi from Savage Theory 3.6 and f,geF:

- -1
f g iff f

1
 g .

This imples that n and 2tA(X) agree on all 
of A(X) (from (3.8) and

(3.9)). Therefore, by cardinality, they are represented by the same family

a + b U.

We remark that this implication of agreement 3.10 is what yields a

constant function ot in tie theorems of this section. By sticking to 3.4 one

would obtain a non-constant ot, as in section 2.

3.11 Note. The technical problem in dealing with non-simple probability

measures on infinite X is that the analogous of (3.8) may not hold with (X)

replaced by a larger set. This is due to a problem of finite versus

countable additivity of the measures involved (cfr. Sarin and Wakker 1990

p.25 for an example). Therefore (3.9) and agreement 3.10 would not

necessarily imply that the extensions of n and ?.:4,00 to a superset of A(X)

agree on the latter. So our conclusions would not hold without further

restrictions on S. Obviously the previous remark on 3.4 and non-constant
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still applies.

• To sum up, what we have so far on (FUA(X),
 ?...) is the following:

3.12 Lemma. Assume Savage Theory 3.6 on ?..F, and RWO 3.3 and Agreement

3.10 on Then, with u and p from 3.6, ?_is repre
sented by the family

a + b So let V: FU A(X) 4 IR represent with V(p) = ';‘?(p), peA(X)

representing 2:A(x). Then for some aeOR , b>
0 one has

V(f) = a + b 1)(pof-1) , feF.

Next we state our axiom of revealed limi
ted intelligence, which extends

condition 3.5. The extension is in the same spirit as that of 3.4 to

agreement 3.10:

3.13 Revealed Limited Intelligence (RLI).
 With p from Savage Theory 3.6

and f,geF:

g and f g 4 Pcif 
-1 •

This has the same interpretation as RLI
 2.3. In the model (FULi(X),

-
geF is plrceived as pog

1 
eA(X) with subjective approximation. The actual

-
lottery pog

1
 is something different which, being free from residual

- -

variability, if good enough is better t
han g. So if pof

1 
> pog

1
 -which by

-

agreement 3.10 is equivalent to f > g-, 
then 'a fortiori' pof

1
 > f.

At this point, as in section 2, we wa
nt to isolate pathological cases.

In the present context, these take the 
form: 6

x
 >x VmEX, or 6x

<x NemEX. By

non-triviality again, neither of them 
occurs if and only if the following
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•

analogue of regularity 2.9 holds:

3.14 Regularity. There exist x,xEX such that 6 x and 6
xb 

x
gb x b 

.

With X being 'enriched' to 41(X), the above axiom will imply existence

- - -
of a FEL(X) such that f 25 Ado f

1 
if and only if Ad f

1
 25 p, fEF, which is the

- -*
counterpart of the consequence x -1".1 x of the previous section. Again,

something can be said about pathological cases. We discuss them in the

Appendix for the sake of completeness. Under regularity, the result of

embedding Savage Theory 3.6 in the model (FUA(X), with satisfying

agreement 3.10 and RLI 3.13 is the following:

3.15 Theorem. The following statements are equivalent for the non-

trivial relation on FLIA(X):

(i)
F 

satisfies Savage Theory 3.6, and satisfies Representable Weak

Order 3.3, Agreement 1.10, Revealed Limited Intelligence 3.13, and

Regularity 3.14.

(ii) there exist, unique, an additive, convex-ranged probability

_

measure p on S, a number cmE(0,1) and an indifference class
 fp], peA(X); and

a cardilial, bounded function v: X 4 OR, such that 2: is represented by the

function V: FUA(X) 4 ER given by:

V 1 i (p) peA(x)

/4(-i°f-.1) (1-0() fEF .

Proof. Given that the representation in 3.15(ii) holds on all of
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FUL.(X), isuffficiency' (ii)4(i) is routine verification. We prove (i)4(ii).

From Lemma 3.12 we already have the unique pi, additive and convex-ranged,

and the cardinal, bounded v: X4 ER such that any V: FUL1(X) 41R representing ?:

is of the form

V

I '‘)(P) , PEA(X)

A -1
a + b v (pc f ) , fEF
v v

for some a
v
EIR, b

v
>O. We shall show that b€(0,1) and is independent of v;

and that a=(1-b
v
)V(p) for the p defined below. Then the assertion follows

by setting 004117.

First we show existence of an iEF such that
7-1
or . By RLI 3.13,

- -
inf { V(f) pof

1 
f } 2: sup { V(f) f 1.2 f

1
 }.

The range of VI F being an interval, if strict inequality were true there

would be an fEF not comparable to plof
-1
EA(X), violating completeness of

So equality holds. Let fe7 be such that V(f) is equal to this number. Then

by order continuity RWO V(porl) = V(f), i.e. f 40E-1.

Define p := porlE11,(X).

We now show that av = (1-bv)c)(p-) with bvE(0,1). From V(i)=V(i), which

by defin'tion means a + b 1;)(i) = (-1;) , we get a
v 
= (1-b

v
)/4(p-). Also, for

v v

any f

V(f) V(i) bv( 17(1-1°f"..1)"-r(i)

V(k.i ) - V(i) C)(1-4. f -1) - '‘)(i)

and the leftmost term above is in (0,1) by RLI 3.13.

It is left to show that for any positive linear transformation v' of v
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and representation V' obtained as above from v', it is by, = by. Take a geF

ouch that g>f (- if there is no such g, by regularity 3.14 there must be one

such that g<f,- and we may work analogously with that). Recalling that both

V' (A(X)) and V'(F) are non-degenerate intervals, we can take g such tha
t

-
251.4of

1
 for come feF (by RLI 3.13 and agreement 3.10, this f will be such

that g > f > i). Therefore

b
v'

V' (f) - V'(i)

-
V' (pof

1 
) - V'(i)

-1v(pof ) - e-N?(i)

/.71 0.10g--1) - 1‘.7(P)

V'(f) - V'(i) (P © f-1) 1/1(i.:;)

V' (g) - Ir(i)

V(f) - V(i)

V(g) - V(i)

-1 A -
v' (pog ) - v'(p)

V(f) V(i)
b •

V(pcf
-1
) - V(f)

The interpretation of this result is analogous to that of theorem 2.10
.

Here feF is seen as 1of
-1

eil(X) plus unperceived variability. Then the

indifference class [p] plays the role that [Tc] had in the previous section,

reflecting pessimism/opt. mism. The number 4N, on the other hand,

characterizes trust in one's model in a more clear-cut way than the function

(N(.) of theorem 2.10, being independent of xeX. About approaching

objectivity, with a tending to 1, the same comments following 2.10 aplly

here. Lastly, unlike in theorem 2.10, the function V representing 
has here

the same form on all F. This is what allows to state also the 'sufficiency'

implication (ii).+(i) in theorem 3.15.

We now extend this theorem by relaxing Savage theory 3.6 to a more

general theory on (Sarin and Wakker 1990) including 3.6 as a special

case. To do this we have to introduce what will be referred to as
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'measurability structure'.

The space S is to be endowed with a a-field E with respect to wh
ich all

acts in F are measurable. So E is a family of subsets of S, closed under

complements and countable unions, which includes S itself;
 and F will denote

-
the sat of (finite-outcome) feX

s 
such that f 

1 
(C)EE for all C.f.i. Thea-field

E is assumed to contain a ('rich enough') sub a-field eaSE of the so called

unambiguous events. The set of unambiguous acts Fua_GF is the
 set of acts in

F which are measurable with respect to Eua.

The theory of Sarin and Wakker imposes the axioms of Sava
ge on the set

F
ua

of unambiguous acts, and an axiom of 'cumulative dominance' on

preferences over ambiguous acts which extends Savage P4 
to acts with more

than two consequences. Savage theory results when Eua=
E. In the more general

case of Eua5,722, the theory (without, again, P7) is equivalent to the

following:

3.16 Sarin-Wakker (S-Th There exist a unique capacity
 p on E, additive

and convex-ranged on Eua; and a cardinal, bounded fun
ction u: X 4 OR, such

that > is represented by the function ?I: F 4 ER given by_F

91(f) = lit%(1.40f-1i ) , feF.

To embed this in the model (FULI(X), ?), the subjec
tivity axioms 3.10

and 3.13 have to be slightly modified. For the domain
 of ?. includes the set

A(X) of lotteries on X, but not the larger set of (non
-necessarily additive)

-1
capacities on X. And pof ed(X) if feF

ua
, but not otherwise. Therefore,

under S-W 3.16, the preference comparisons appearing in 3.10 
and 3.13 are

not well defined on all F, but only on Fua. The necessary and sufficient

25



modification of 3.10 and 3.13 in this context turns out to be just to

restrict them to hold on F
ua
. So the first is:

3.10
ua 

Agreement. With pi from S-W 3.16 and f,ge
F
ua
:

f g iff
-1 

?: pog
-1 
.

Notice that with n exactly as before, (3.9) restricted to
 Fua and (3.8)

still hold. Hence it is still true tha
t n 

and.11(X) 
are represented by the

same family a+b't'z' on A(X). On the other hand, the
 same family represents —F

on all F, by S-W 3.16. So, mutat
is mutandis, the conclusion of Lemma 3.12

still holds as it is. Formally:

3.17 Lemma. The conclusion of Lem
ma 3.12 holds with S-W 3.16 replacing

Savage Theory 3.6 and Agreement 
3.10'a replacing Agreement 3.10.

Finally, the RLI axiom 3.16 in the prese
nt context becomes:

3.13
ua 

Revealed Limi ed Intelligence (RLI). With pi fro
m S-W 3.16

and f,geF
ua
:

-1 — -1
g g and f g 4 p f f.

Then the extended version of theorem 3.15
 is with 3.6 and pi from 3.6

replaced by 3.16 and pi from 3.16; and 3.10, 3.13 replaced by 3.
10, 3.13u :

a

3.18 Theorem. Let ?: be a non-trivial relation on FLA(X), with

measurability structure. Then the followin
g statements are equivalent:

(i)
F 
satisfies S-W 3.16, and satisfies Representable Weak Order
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3.3, Agreement 3.10ua, Revealed Limited Intelligen
ce 3.13ua, and Regularity

3.14.

(ii) there exist, unique, a capacity m on E, .additive and convex

ranged on E
ua
, a number cms(0,1) and an indifference class [p],

 pEA(X); and a

cardinal, bounded function v: X 4 OR, such that i

function V: FUL/(X) 4 OR given by:

V 1 11(10) PEA(X)

represented by the

ot v(pof ) + (1-a) v(p) feF .

With the aid of Lemma 3.17, the proof of thi
s theorem follows the same

lines of the proof of theorem 3.15 (working
 on Fua instead of F), and will

be omitted. A result for the cases in which 
regularity 3.14 fails in this

context is contained in the Appendix.

APPENDIX (From section 3, when regularity 3.14 
fails)

The pathological cases 6x 
> x V xEX and 6

x 
< x V xeX in the model

(FUL1(X), ?..) are not quite the same as in 
the model (FUX, ?..) of section 2. We

shall add the assumption that the model is a restriction of a non-

pathological model with a larger consequen
ce space:

B.1 Extension. Suppose x 
> x all xEX (reap. <). Then there exists a

set X' with XSX' and an extension of the
 model (?... plus axioms) to one with
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4

X' replacing X, ouch that there exists zeX' with 6z5..z* (reap.

3.2 Remark. By agreement 3.10 and RLI 3.13 one has z<x all xeX

(reap.›).

Under 31 the following holds:

3.3 Theorem. In theorem 3.15, replace regularity 3.14 with Extonoion

3.1. Then the conclusions of the theorem remain valid, except existence of

[p) and with v(p) replaced by some number v such that

v < inf { V(f) I feF } if ox > x
* 
V xeX,

v > sup { V(f) I fell' } if 6x 
< x V xeX.

Proof sketch. I consider the case of 6x 
> x V xeX. Start as in the

proof of theorem 3.15 to get V as it is there, fix '4 and drop subscripts.

Since 6x
 >x for some (in fact for all) x€X, it cannot be b=1, a=0. Moreover,

by 3.1 it cannot be b=1, a0 either, for 13.) and a+b1; have to cross each other

for some ;:r.; so either fig.1 or 2 below must apply.
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(1> ••••••

But the latter is excluded by RLI 3.13 (on X') and remark B.2.

- _

Conclusion: b<1, and ; < inf 1 V(f) feF 1. Since vsica+bv, a (1-b);, so

-reinstating subscripts- if this by is indepen
dent of v we can set bylina and

have, as wanted,

V(f) a C?(A.zof-1) + (1-a) v ,

It is left to show that bv 
is independent of v. This follows as before,

because v v(p' ) for some p Eul(X') in the extended mode
l.

We mention, without itating it, that the p
arallel analogous of theorem

3.18 also holds.
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