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ABSTRACT

The paper is concerned with market behavior when firms have limited
ability to handle effectively the complexity of changing market
conditions and strategic interaction. Modelling the managerial bounded
rationality by using the concept of strategic complexity as measured by

finite automaton, we show that market behavior can be considerably

altered once there is a limit on the complexity of strategies. In

particular the paper demonstrates that when an incumbent firm operates
in several markets an entry to one market may induce the incumbent to
exit from another market (divestiture) in order to "concentrate" on the
~competition it faces. For different parameters the incumbent may react
to such an entry by exit from the same market creating specialization.
The paper also demonstrates that bounded complexity can serve as an

entry barrier giving an advantage to the established incumbent firm.




INTRODUCTION

Managing corporations is a complex and time-consuming task.
Managers need to evaluate changing market conditions, contemplating
cbmpetitive‘ strategies, deciding on new products, production
technologies, new markets, etc. The ability to handle such complex
situations effectively is clearly a key ingredient of a successful
managemeﬁt. As corporations are run by managers; one cannot ignore the
human factor and the unavoidable boundedness of the ability and
rationality of human beings (see Simon, 1972 and 1978 for the original
introduction of bounded rationality into the ecomomic literature). In
analyzing the behavior of firms, the economic literature usually assumes
that there is no limit to the ability of management to calculate, to
remember, to foresee, or to plan. Thus, in evaluating the contributions
of this literature one should remember that it relies heavily on the
existence of "super-managers."

A casual observation of the modern business world indicates that,

indeed, firms are aware of their inability to handle effectively and

costlessly complex situations. As an example consider the recent sale

of Fisher-Price by Quaker Oats. The main motive for this sale was
stated by The Vall Street Journal (Wednesday April 25, 1990) as "Quaker
0ats Co. decided to spin off its troubled Fisher Price toy business to
stockholders allowing management to concemtrate on other difficulties at
vhat, for the first “time in two decades, is a "pure" food company."
Another example is the recent sale by Zenith Electronics of its computer

operations such that "In focusing on consumer goods, Zenith returns to




its core business and could strengthen its ability to complete."t The

above statements indicate the advantage that management might have when
they concentrate on one main business particularly when this business is
difficult to manage.? It is the explanation and ramifcations of these
business strategies which are the main concern of this paper.

The general belief of the existence of managerial diseconomies of
scale is the main driving force of the literature that claim that "small
is beautiful." The claim that a larger firm is harder to manager can be
traced back to Kaldor (1934). In his seminal paper Coase (1937) argued
that the optimal size of a firm is determined by the comparative cost of
internal transaction versus the cost of market transaction and more
importantly that at some point internal transaction becomes more
expensive. There are several sources of such organization diseconomies.
Calvo and Wellisz (1978), Mirrlees (1976), and Rosen (1982) discuss the
cost of monitoring and its effect on effort; Williamson (1967),
Geanakoplos and Milgrom (1985), and Guenerie and Oddon (1988) consider
the 1limit capacity of managers to process information. McAfee and
McMillan (1990) discuss the suboptimal activities of firms as a result

of distorted incentives given by principals which implies that when

1See the statement of Zenith’s president in the Washington Post, October
3, 1990.

25ee also Lichtenberg’s (1990) empirical work in which it is pointed out
that "the 1960’s conglomerate boom may have contributed to the slowdown
in U.S. productivity growth that began at or slightly after that time."
Lichtenberg pointed out that the slowdown was partly due to the
existence of "unmanageable empires."




there are more layers of hierarchy it results in lérger distortions.

- This type of inefficiencies can also be regarded as a special case of

the "influence cost" identified by Milgrom (1988) and Milgrom and

Roberts (1988, 1989) as one of the main costs of centralization. Such a
cost describes the workers’ incentives to influence their superiors’
decisions and the inefficiencies associated with the need to impose
mechanisms that offset such a behavior.

The main purpose of this work is to study the behavior of a firm
when it has bounded capacity to handle complex situations. We are
interested in examining the rela%ionship between having bounded ability
to handle complexity,‘the scope of businesses in which the firm operates
and in particular the effects of competition on the optimal scope of the
businesses. We consider two aspects of market complexity: The
complexity of operating simultaneously in different markets when the
market conditions are uncertain and the complexity of competing with
other firms. These two sources of complexity compete on the firm’s
limited ability to handle complex situations. Thus when the firm
becomes more responsive to changing market conditions it can use less
complex strategies in the games with its competitors. Using this
setting the paper demonstrates the importance of incorporating bounded
rationality into the study of industrial organization and a formal way
of doing so.

In order to illustrate the problem consider the following example:

a player plays a simultaneous chess game with several players. Every




game has a different weight and final payoffs are the sum of the weights
of the games he wins. The player needs to decide which of the games he

wishes to play. Clearly one can always devise an optimal strategy for

(a chess) game as there is a finite set of feasible positions. Note

that, in 1912, Zeremelo proved that for rational players chess is a
trivial game. In reality, however, there are diffiéulties in
implementing such a strategy. As the number of games in which the
player participates affects his performance in each particular game,
there is a tradeoff between the number of games and the probability of
success in each one of them. The optimal number of games depends on the
player’s skill, speed and practice (level of complexity). Let us
imagine now the same simultaneous chess game but with one of the
opponents being replaced by a more skilful player. Intuition suggests
that two possible scenarios might happen. Either the incumbent will
leave the game with the new opponent and continue to play the other
games (and possibly enter a new game) or he will leave some of the other
games in order to "concentrate" more on the now more complex game with
the new opponent. It is this intuitive behavior which we try to capture
and model in this paper.

We will follow the Iliterature (e.g., Abreu-Rubinstein (1988),
Aumann (1981), Ben Porath (1986), Kalai-Stanford (1988), Neyman (1985),
Rubinstein (1986), and the surveys by Kalai (1990)) and formalize the
measure of strategic complexity using the framework of finite automata.

While most of this literature was concerned with repeated games, in




discussing the market behavior of firms we do not wish to concentrate

only on the strategic interaction excluding the complexity of reacting
to changing market conditions.? We thus define a model in which the
firm faces different demand conditions in every period and needs to
react to such exogenous changes while at the same time it faces
competition. We define the complexity of strategy as the minimal number
of states in an automaton implementing it. We will then limit the
complexity of the firm’s strategies and discuss the implication of such
a limit on the scope of the firm’s activities and on the pattern of
competition. In particular we demonstrate the following possible
effects: (i) in the face of competition in one market the firm might
divest from other markets in order to concentrate on the competition in
its ‘main business; (ii) complexity considerations might lead to market
segmentation such that facing a new competition in one of its markets a
firm might decide to exit from this market leaving its competition as a
single producer; and (iii) bounded complexity might serve as an entry
barrier because the incumbent’s bounded complexity might make the threat
of aggressive response to entry credible.

Ve would 1like to note, however, that there are inherent
difficulties in modeling and discussing the bounded rationality of
managers. It is not yet clear why certain decisions are "difficult" to
make within a limited time framework and why other strategic decisions

are simple to make. This study, however, is beyond the scope of this

3Formally the game we consider is a stochastic game.




paper. 0One can also argue that putting an upper bound on the complexity
of strategies that the firm can use ignores the ability of fifms to hire
more managers, decentralizing decisions and thus overcoming the problem
of having bounded complexities. Such a view implies that there is no
limit to the ability of organization to handle complex- situations.
Indeed our results do not hold in situations in which a complete
decentralization of decision is feasible. It is our basic assumption,
however, that even when it is possible to hire more decision makers

there is a limited ability to handle complex situations.

2. THE MODEL
2.1. Market Conditionms

Let I={1,...,m} be a set of m ihdependent markets. At each
market there is a linear demand function P; = a; - q;, vhere p; and
q; are the price and quantity in market i, respectively. a. is

i
assumed to be stochastic such that with probability 1/2 there is a high

demand and p; = hi - q andiwith probability 1/2 there is a low demand

and p; = £i -4 vhere Ei < hi for all i e I. The cost of
producing one unit of product i is assumed to be ¢; < h;. Ve divide

the set I into two subsets as follows:

{i€eTIfc; < ¢}
I\G.




At every period there is a signal ¢ of an m tuple of 0 (low)
and 1 (high) that specifies the demand condition in each market. Ve let
Y be the set of all possible signals and o5 be the i’th component of
the signal ¢ we let ° be the initial market condition given prior to
the start of the game.

Consider now a single firm that faces the above market conditions.
Let ( = Rf be the set of all possible output combinations. A strategy
for the monopolist is a function A: ¥ -+ ( that specifies an output
combination for every possible signal. We further let ’i(qi) and

';(qi) be the monopolistic profit function from market i. The

monopolist’s optimal strategy is:

(1) For i € G to produce (h; - c;)/2 if o; =1 and (& -
Ci)/2 if ‘Ti = 0-
(it) For i € to produce (h; - ¢;)/2if ¢, =1 and 0

othervise.

Such a strategy, however, suggests that the firm adjusts its output
vector for every different signal ¢ and is fully responsive to market
conditions. This strategy is optimal as long as being responsive to
market conditions does not incur any additional costs.  When changing
the output 1level or monitoring market conditions is costly the above

strategy may not be optimal. We let . denote the monopolist’s




expected profit in market i when he plays the above optimal strategy.

2.2. Finite automaton

Most of the recent literature using the concept of finite automaton

discuss the strategic bounded complexity in repeated games setting (see

Kalai (1989)). Our model differs as it assumes, besides the strategic
interaction, the possibility of having changing market conditions. Thus
the definition of automaton needs to acount for complexities induced by
nature as well as with those induced by strategic interactions.

We define an automaton as a triple ((M,mo),A,T) with the following
interpretation. M is the set of states of the automaton with m, € M
being the initial state. A: ¥ - Q is a behavioral function that
prescribes for each state an output combination q € . The transition
function T: Mx¥x0-M governs the transition of the automaton
from one state to another. Thus the input that the  automaton receives
at every period consists of a signal that describes the new market
conditions and the output that was produced at the previous period.+4

In the single firm case an efficient automaton corresponds to a
partition of the signal space ) such that every subset in the
partition can be viewed as a state of the automaton and the transition

function is degenerate, i.e. does not depend on the current state of the

‘We have chosen the more general notion of automation, the one allowing
for mistakes (the intput to the automation can be actions not consistent
with the automaton’s earlier prescriptions). In addition to the greater

generality this would enable us to discuss subgame perfection when we
switch to the multiplayer model. :




automaton or on the last period production vector. We choose however
the more general formulation, described above, as it can be easily

extended to the multi firm case in which there is strategic interaction.

OBSERVATION 1: Every strategy of the firm can be described by such an

automaton.

PrOOF: (Ve use a generalized version of the construction in

Kalai- Stanford (1988).) Given a game with an initial condition O we

define the set of histories of length zero K - {e} with e denoting

1

the empty history. The set of histories of length £, H™, consists of

all vectors qlal,...,qeae with o €Y and qt € 0 for t =

0,1,...,£. Ve let H= Ut‘z”OHt denote the set of all (finite length)

histories. Now we formally define a strategy to be a function £f:H - (.

Given a history h € H it is useful to discuss entities defined on

the subgame induced by h. h is of the form h = qial,...,qeve and we

define the game induced by h, Gh, to be the one with the initial

condition of. The set of induced histories is H) = {e}, and K is

be the set of all vectors ﬁla'l,...,ﬁr}r. _Starting‘with a strategy f

and a history h € H we define the strategy induced by f and h on the
game Gh to be the function fh:Hh -+ (] such that for every t and

every h € B, f, (h) = £(hh) with hh denoting the concatenation of

the two histories, i.e., hh = q1

01,...,qeae,ﬁlﬁl,...,ﬁt}t (ve make the

convention that eh =he =h). Weuse fy = {f;: h € i} to denote the




set of all strategies induced by f. Notice that even if Gh # G- (when
h

ot # at) the set of strategies of the two games coincide. Thus the set
fH induces all the induced strategies from all different induced games
and it thus may be small even if the number of induced games is larger.
Suppose, for example, that a constant strategy is used with qt = q*
for all . Then  fy  includes only one element (the constant
strategy).

Now for a given strategy we will exhibit an automaton implementing
it. Its states will correspond to the different strategies it induced,
i.e., M = fy, with the initial state corresponding to f itself, i.e.,
m, = f. The behavior function assigns to each state the initial action
taken by the corresponding induced strategy, i.e., A(m) = f,(e). The

transition function is defined by

T(fh,a,q) =f with h = qlal,...,qeaeqa.

h

It is easy to check that the automaton just describes is well defined
and that it implements f.

It is worth noting that the above construction used number of
states equals the cardinality of the set of strategies induced by f.
This shows that the number of states needed to implement f does not
exceed the number of strategies induced by f. It is easy to see that

the converse is also true, i.e., the number of states needed to




implement a strategy equals at least the number of different strategies
it induces. Thus, we can conclude that the number of states needed to
implement a strategy equals the numbef of strategies it produces.
o

We now define the complexity of a strategy to be the number of
states of the smallest (in the number of states) automaton describing
it, or, equivalently, as was discussed in the last proof, the number of
different strategies it induced. We will model bounded rationality by
assuming that firms will use strategies not exceeding a certain finite
complexity.S5 Ve will denote by k the bound on the complexity.of
strategies.

The automaton measure of complexity, and Observation 1 can be

applied to all extensive form games. For example, later we replace the

monopoly game described above by an oligopoly. Then we assume that the
automaton was modified by replacing the number q of the input to be the
vector consisting of all firms’ production levels in all markets. If
the game was played with imperfect monitoring one would require that the
inpﬁt is the information revealed to the player prior to his making a

decision. For example, in the Abreu-Pearce-Stachetti (1986) (APS) game,

5An alternative formulation will be to assign a certain cost associated
with the number of states in the automation (see Abreu-Rubinstein
(1988)). We choose our formulation for simplicity sake. We believe,
however, that our main results can be obtained with a model of costly
states as long as this cost function is convex with the number of
states. In this case our formulation is a special case as we assume
zero cost until k states and infinite cost for every state beyond k.




the input to the automaton at every stage will be the firm’s own
previous production level and the resulting market price. Indeed, the
claim of APS that their strategies are "simple" is verified using the
formal definition of complexity by the fact that they can be implemented
by automata of complexity two. See Figure 1 for a diagram of the
strategy for player 1.
Figure 1 to be inserted here

In this diagram, circles represent states. Entries in the circle
represent production levels (low or high). Arrows represent transitions
as functions of states and inputs (self production levels and observed
market prices). In this simple strategy one may think of the initial
state as the cooperative one where the player keeps his production level
low. The other state is for the punishment mode where production level
is high. Notice that the player moves into the cooperative state from a
cooperative state provided that the market as a whole was cooperative,
i.e., the price is higher than the threshold level p, or from a

noncooperative state provided that the market as a whole punishes, i.e.,

market price is below the threshold level 7.

Before proceeding it is important to note that the existence of
multi markets does not imply immediately that the strategy used is
complex. One can, for example, adopt a strategy in which constant
quantities (possibly zero) are produced in all markets. The complexity
of such a strategy is 1. In general, however, the complexity of a

strategy must equal at least the number of different actions it may




prescribe among the play of the game which implies the following:

OBSERVATI OX 2: The optimal strategy of the monopoly facing the

multi-market problem studied here has the complexity of o™,

Observation 2 implies that the complexity required to implement the
monopolist optimal strategy is potentially huge due to the many possible
production combinations. In particular, note that we restrict thg
demand function to take one of two values. If we change this assumption
and the demand function can take many possible valués, it will increase
the complexity of the monopolist’s optimal stratégy dramatically.é The
main question is, of course: What happens if the firm is restricted to

use strategies of complexity not exceeding k < 2™.

2.3. The optimal Automaton for m = 2

Consider a monopolist operating in two markets. Let qﬁ(q;) be

the optimal quantities for the i’th market for a high (low) demand.
Further, let z; be the optimal constant level of production in market

i vhen the firm does not distinguish between a high and a low signal,

6Indeed, ome reasonable way that firms deal with this problem is by
decentralizing into divisions dealing with submarkets. Such a
decentralized process could be modeled by a central automaton
coordinating the actions of several automata, each dealing with few
products. Complexity decentralization is an important issue left for
future research.




i.e., z; maximizes (1/2)(h; - C; - z;)z; + (1/2)(¢; - c; - %4)%;-

Let

1= (12)[ni(a)) + rp(ap) - mi(zy) - ri(z5)].

7; 1s thus the gain from being fully responsive to demand conditions in
market i versus producing the optimal constant quantity. Without loss
of generality let 71 > 79- Ve now describe the optimal automata for

this case:

Coarm 1: For a monopolist who operates in two markets, the optimal
automaton is as follows:

(i) For k =1, there is one state of the automaton. Output is
(zl,zz) regardless of the signal.

(ii) For k = 2 the optimal automaton moves to state 1 whenever
the market conditions input is either (1,1) or (1,0). In this
state production is (qi, z2). The automaton moves to the
second state if the market condition is either (0,0) or (0,1)
and in this case production is (q%, z2).

(iii)for  k =3 the optimal automaton moves to state 1 when the
market condition is (1,1) in this state it produces (qi, qﬁ).
It moves to state 2 when the market condition is (1,0) and it
produces (qi, q%). It moves to state 3.whenever the market

condition is either (0,1) or (0,0). In this state it produces

(ag> 7).




(iv) For k = 4 the automaton implements the optimal monopoly

strategy as discussed in the previous section.

PRooF: k = 1 is trivial. For k = 2 let us consider all possible

partitions. Since 1> 1y it is evident that having the partition
{(1,1), (0,1)}, {(1,0), (0,0)} is not optimal. For the partition
{(1,1), (0,0)}, {(1,0), (0,1)}  the optimal production levels are
(z1,z9)  for all states of the automaton and thus the monopolist does
not exploit his ability to be partially responsive to market conditionms.
Consider now the partition %, = {(1,1)} and 3%, = {(1,0), (0,0),
(0,1)}. For such a partition the optimal

Market 1




Market 2

1 2
h qh’ qh
Market 1

1
Q£s Z9

Figure 2c

production 1levels are described in Figure 2A, where fi is the optimal
output when the probability of having a low demand is 2/3 . Now observe
that transforming the quantities produced at 2A to the ones depicted in
Figure 2C yields higher profits for the firm. The quantities described
in Figure 2C, however, cannot be implemented by a strategy of
~complexity 2. It remains to be shown that the automaton suggested in
the claim (which are given by Figure 2B) yields even higher payoffs than
those in Figure 2C. Changing from 2C to 2B yields the following changes
in payoffs:

(1) [-r(az) + Th(zg) + my(ay) - 7i(zy) - 72(c2)

+ 7g(zg) + 1y(ap) - 7y(z,)]/4

which after rearranging and using our assumption that 1> T yields

that (1) is positive and thus the firm has higher payoffs with 2B than




with 2A. The other partitions can be analyzed similarly.
For k = 3 the only other partition is the onme that perfectly uses

the information regarding market 2 and only partially uses the

information regarding market 1. Using our assumption that 71 > 1o and

following the above procedure would indicate that such a partition

yields lower payoffs. The case of k =4 is trivial.

3. MARKET SCOPE WITHOUT COMPETITION

When a monopolist can use strategies of unlimited complexity, it
would operate in all m markets. But when k < 2" operating in all
markets is not necessarily optimal. To illustrate the problem consider
a firm operating in m markets with a strategy of complexity k.
Assume that there is an opportunity to enter another market. Given the
bound on the complexity, k, the firm has three ﬁptions that illustrate
the tradeoff it faces: (i) the firm can choose a strategy which is
(partially) responsive to demand conditions in the new market and by so
doing the firm reduces its responsiveness to demand conditions in the
previous m markets; (ii) to enter the new market by producing a
constant quantity; (iii) not to enter the new market.

Since . for every i e G, c; < £i it is clear that there is a
constant quantity that yields positive expected profits. Thus the firm
viil always enter‘ to markets of type G. One cannot extend the above

argument to markets of type B.




Let

MB = {i € B | [rﬁ(zi) + r%(zi)] 2 O}f
VB = B\MB.

The monopolist enters mafkets in MB (moderately bad) as, by
definition, }producing a constant quantity, Zss yields positive
profits. The entry decisions to a market of type VB (very bad) is more
complicated. Markets of type VB ‘are markets in which in order to make
profits one needs to react to changing market conditions. On the other
hand, there are indirect costs associated with being responsive to
market conditions. Since the firm can use strategies of bounded
complexity, being responsive (even partially) to demand conditions
implies that the strategy is less responsive to demand conditions in the

other m markets which reduces profits from these markets.

CLAIM 2 (Market Scope): When m =2, k = 2, 71 > 79, and the second

market is of type VB then the firm will not enter the second market.

PROOF : When the firm enters both markets the optimal automaton is
specified by Claim 1. For such an automaton the output in the second
market is constant and not responsive to demand conditions. Since
market 2 is of type VB the firm loses money in this market ‘and

therefore it is better off not ‘entering it.




Claim 2 illustrates that bounded complexity considerations can
determine the scope of activities of firms even in situations in which
the only relationship between the different activities is that they are

managed by the same firm.

4. BOUNDED COMPLEXITY AND MARKET COMPETITION

Strategic interaction adds another source of complexity to the
firm’s decision problem. Facing one type of complexity diminishes the
firm’s ability to handle the other type. This tradeoff between the two
types of complexities plays an important role in determining the firm’s
behavior in oligopolistic markets.

There is a fundamental difficulty in the use of finite automaton
framework to model market behavior with bounded complexity. The main
question is the ability of players to change the automaton they are
using. If there is no limit to such ability then we are back in the
world of unbounded complexity as any strategy of any complexity can be
implemented. But to assume that players never change the automaton is
too restrictive. Moreover, under such an assumption the use of finite

automaton as a modeling tool will capture more of the ability of players

to commit themselves rather than modeling their bounded rationality. In

this work we assume that once a competitor enters a market it is
possible for the incumbent firm to react by changing the automaton.
Thus only when a "majbr" event such as entry occurs, is it possible to

change the automaton. Without this assumption it would be possible




for the incumbent to commit himself to a certain automaton and the use
of this automaton will prevent entry or will give the incumbent some

advantages in the post entry game.

4.1. Competition in a Single Market

Consider a single duopolistic market in which demand is as
specified in section 2 and both firms have the same cost function. Let
X and X, be the Cournot equilibrium output for the high and low
demand respectively, and 7 be the Cournot equilibrium payoffs.  Qur

symmetry assumption implies that both firms realize the same profits.

OBSERVATIOR 3: The Cournot equilibrium can be implemented with
strategies of complexity 2 (for each firm).
ProOF: Consider the following simple automaton: There are two states,
M, and H2 with the initial state M, if the market is high initially
and M, otherwise. The behavioral function is A(H)) = x, and  A(M,)
= X The transition function is T(Mi,l,ql,qz) = Ml and
T(Mi,O,ql,qz) = My for every 44> 95 and M.. Clearly if for both
firms k = 2 and one firm uses the above automaton the best response of
the other firm is to use the same automatons.
o
Consider now other equilibria of the repeated play of the above

duopolistic game and let the two firms maximize discounted profits. Let

ry “and r, be the collusive output level for the high and low demand




respectively and ;i be the expected collusive payoffs from market i.?
As it is well-documented in the literature, when the discount factor is
sufficiently close to one, the collusive outcome can be supported as a
noncooperative (subgame perfect) Nash equilibrium. For example, one can
use the well-known grim trigger strategies such that firms cooperate
until one defect and then they both switch to the Cournot-Nash

equilibrium forever.

OBSERVATION 4: The grim trigger strategy equilibrium can be implemented

as an equilibrium with strategies of complexity 4.

PROOF: Can be proven by a straightforward construction.
1]
One can also verify that it is possible sometimes to economize on
‘the punishment phase of the grim trigger strategies and obtain the
collusive outcome by using strategies of complexity 3. The need to have
states assigned to the punishment phase leads to the following

observation:

OBSERVATION 5: (Collusion is Complex): 1In a single market duopoly
supporting the collusive outcome requires the use of strategy of

complexity k > 2, i.e., above the complexity of the Cournot-Nash

7Although there might be several collusive levels let us choose the one
yielding the highest possible profits among the symmetric outcome.




equilibrium strategies.

PROOF: VWhen an automaton of only two states is used to support the
collusive outcome it must be that A(M;) =1, and A(H,) = r,. Clearly

a pair of such strategies is not an equilibrium.

4.2. Multi-Market Competition
Let ‘us move to a multi-market setup. Although we assume that

markets are independent with respect to demand and cost conditionms,

complexity considerations may introduce interdependence among markets as

we have already seen in the monopoly case. In particular the
introduction of competition in one market may lead to a different
behavior in the other. In order to demonstrate this consider the
following example: An incumbent firm operates in two markets, k = 2
and 1> Ty As claim 1 suggests the optimal automaton is to be fully
responsive in market one and produce a constant quantity in market two.
Assune mnow that a new firm enters market one. As a response to such an
entry the incumbent may decide to exit from one of the markets. If he
deecides to stay in both he needs to determine whether to continue being
responsive in the first market and producing a constant quantity in the
second market is still its optimal strategy. It is possible that as a
result of an entry to market one it becomes optimal for the firm to‘ be
responsive to market conditions in the second market, in which there is

no competition and to produce a constant quantity in market one.




4.2.1. Competition and Divestiture Policy of Firms

Consider now a firm that operates in two markets. Letting k = 4

implies that the firm operates in both markets and is fully responsive

to demand conditions. We further assume that IR and that the
second market is of type VB.

Assume now that a new firm enters the first market. The two firms
can now compete and produce the Cournot equilibrium quantities or
collude. Note, however, that as indicated by Observation 5 collusion is
complex, i.e., in order to support a collusive outcome the firms need to
use strategies of complexity exceeding the complexity of the

Cournot-Nash equilibrium.

CLAIM 3: Consider an entry to the first market. (i) When RN S

2  and ¥ >0 the incumbent’s optimal response is to exit from the

second market. (ii) When ;1 <0 and o< 12, the incumbent’s

optimal response is to exit from the first market.®

PRoOF:  Facing competition in market 1 the incumbent has three options:

He can exit from market one and remain in market 2, he can exit from

80ne of the conditions of (ii) is that the expected Cournot equilibrium

profits, ?1, is negative. This can happen for example when there are
sufficiently large fixed costs.




market 2 and cooperate in market one, or he can stay in both markets and
play the Cournot strategies in market ome. Given that k = 4 and that
collusion is complex the option of staying in both markets, being
responsive to market conditions in market two and yet supporting the
collusive outcome in market one is not available to him as it requires
strategies of complexity exceeding 4. The conditions ;1 > ?1 + 12 and
50 imply that supporting the collusive outcome in the first market
is the incumbent’s best strategy. In such a case the incumbent cannot
be responsive to demand conditions in market two and since this market
is of type VB, getting out of this market is part of the optimal
strategy. This completes the proof of (i).

Vhen 1 < 72 and 3 < 0, supporting the collusive outcome in

market one is not optimal as it requires getting out from market two and

losing . Staying in market 2 while colluding in one implies that the

firm produces a constént quantity in market 2 and since this market is
of type VB the firm will realize losses from such a policy.
o

Claim 3 demonstrates two possible scenarios. Part (i) demonstrates

that limited complexity may lead to divestiture while part (ii)

demonstrates that it can result in specialization. Divestiture occurs

when the competitor enters the market which contributes significantly to

the firm’s total profits. In such a case the firm decides to exit from

markets which are not their main business and to "concentrate" on their

main business when by concentrating we mean using a strategy with higher




complexity. Specialization occurs when, as a result of entry into one
of the markets, the firm decides to leave this market as the strategic
interaction is too complicated and thus costly. The outcome of this
behavior is a complete specialization such that in both markets there is
a monopoly.

Note also the importance of the independence assumption in claim 3.

If markets one and two are related such that the conditional probability

p (the demand is high in market 2 | the demand is high in market 1) > %,

the optimal behavior might be different. The firm can use the
correlation to reduce the complexity of its stratégy. For example, when
the above conditional probability is 1 such that the two markets are
perfectly correlated one can produce the optimal quantity with
strategies of complexity 2. Thus our result of divestiture will not
hold when the markets are sufficiently correlated. The firm can collude
(use a strategy of higher complexity) in the first market and still
produce the optimal quantities in the second market. This claim
supporfs our intuition that the divestiture will occur in a conglomerate
firm when the businesses are not related and not in a firm producing in

related markets.

4.2.2. Bounded Complexity and Entry Deterrence
Intuitively one may think that having bounded complexity is always
disadvantageous for the firm as it limits its ability to wuse complex

strategy. But as often happens in strategic interaction one can




sometimes benefit from a handicap (see also Gilbda and Samet (1989)),
i.e. it is possible that having bounded complexity will enhance profits.

Consider a firm, I, operating in two markets such that 7 > 1o
There is a firm E that considers entering the second market. In the
post-entry game the incumbent may choose to cooperate and to get the

profits 121 or to use strategies of lower complexity and to get the

Cournot- Nash equilibrium profits ?% < 1%. The entrant equilibrium

profits are ?% < 0 if the incumbent chooses not to cooperate and 1% >

0 if the incumbent cooperates. Thus entry is attractive only when the
incumbent cooperates. Ve assume that the entrant does not have any
complexity constraints and thus it is the incumbent who decides upon the
type of the post entry game, i.e. cooperation or fighting. Note,
however, that since ?]23 < 0 an entrant with a complexity constraint
will not enter the market without the ability to support the collusive
outcome.

The above setup can be regarded as the last period problem in the
chain store paradox (Selten (1978).) Indeed, without a 1limit on the
complexity of strategies, subgame perfection arguments imply that once
entry occurs the incumbent will cooperate and thus entry is profitable.
This result holds since supporting cooperation is not costly. This
well-known result does not hold, however, if there is a bound on the

complexity of strategies of the incumbent firm.




CLAIM 4: (i) Vhen k is sufficiently large the incumbent will react
cooperatively and the entrant will enter. (ii) When k ¢ 4 and ;% -
?% <™ the incumbent will react aggressively to an entry and thus the
entrant will not enter.
ProoF: VWhen k is sufficiently large the bounded complexity is not a
binding constraint and subgame perfection implies (i). When k = 4 the
incumbent has two options: The first is to cooperate in the second
market and to produce a constant quantity in the first market. The
‘second is not to react codperatively and to be responsive to market
conditions in the first market. Note that the option of reacting
cooperatively in the second market and still be responsive to market
conditions in the first market is not available as it requires
strategies of complexity exceeding 4. Since ;% - ?% <™ thg second
possibility yields higher payoffs, the incumbent will not react
cooperatively and thus the entrant will not enter.
8]

The bounded complexity serves here as a credibility device to the
threat of noncooperation with an entrant. Given the bound on complexity
a cooperative behavior becomes costly. If the incumbent reacts

cooperatively to an entry it will have to be less responsive to mérket

conditions in the first market which reduces its profits by 74~




5. CONCLUDING REMARKS

The transaction cost economics literature emphasizes the need to
revise the analysis of markets taking into account that engaging in a
contract, changing production level, or generally changing strategies is
not without cost. The major claim of this paper is that the economic
analysis of markets needs also to account for the limited ability of
management to handle effectively the complexity of changing market
conditions and strategic interaction with competitors. Modeling the
managerial limited rationality by using the concept of strategic
complexity as measured by automata we show that the outcome of market
behavior and conduct can be considerably altered once there is a limit

on the complexity of strategies. We believe that such an analysis can

explain different market behavior that the classical industrial

organization literature cannot explain. In this paper we discussed only
two aspects of market complexities. There are, however, many other
aspects of complex market situations unaccounted for in this paper. For
example, entry and exit decisions, R&D decisions, contracting
complexities, and so on. We believe that positive approach to
industrial organization ought to account for the effects of such

complexities on the managerial decision and market behavior.
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