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A ABSTRACT

The paper is concerned with market behavior when firms have limited

ability to handle effectively the complexity of changing market

conditions and strategic interaction. Modelling the managerial bounded

rationality by using the concept of strategic complexity as measured by

finite automaton, we

altered once there

show that market behavior can be considerably

is a limit on the complexity of strategies. In

particular the paper demonstrates that when an incumbent firm operates

in several markets an entry to one market may induce the incumbent to

exit from another market (divestiture) in order to "concentrate" on the

competition it faces. For different parameters the incumbent may react

to such an entry by exit from the same market creating specialization.

The paper also demonstrates that bounded complexity can serve as an

entry barrier giving an advantage to the established incumbent firm.



1. INTRODUCTION

Managing corporations is a complex and time-consuming task.

Managers need to evaluate changing market conditions, contemplating

competitive strategies, deciding on new products, production

technologies, new markets, etc. The ability to handle such complex

situations effectively is clearly a key ingredient of a successful

management. As corporations are run by managers, one cannot ignore the

human factor and the unavoidable boundedness of the ability and

rationality of human beings (see Simon, 1972 and 1978 for the original

introduction of bounded rationality into the economic literature). In

analyzing the behavior of firms, the economic literature usually assumes

that there is no limit to the ability of management to calculate, to

remember, to foresee, or to plan. Thus, in evaluating the contributions

of this literature one should remember that it relies heavily on the

existence of "super-managers."

A casual observation of the modern business world indicates that,

indeed, firms are aware of their inability to handle effectively and

costlessly complex situations. As an example consider the recent sale

of Fisher-Price by Quaker Oats. The main motive for this sale was

stated by The Wall Street Journal (Wednesday April 25, 1990) as "Quaker

Oats Co. decided to spin off its troubled Fisher Price toy business to

stockholders allowing management to concentrate on other difficulties at

what, for the first time in two decades, is a "pure" food company."

Another example is the recent sale by Zenith Electronics of its computer

operations such that "In focusing on consumer goods, Zenith returns to
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its core business and could strengthen its ability to complete." The

above statements indicate the advantage that management might have when

they concentrate on one main business particularly when this business is

difficult to manage.2 It is the explanation and ramifcations of these

business strategies which are the main concern of this paper.

The general belief of the existence of managerial diseconomies of

scale is the main driving force of the literature that claim that "small

is beautiful." The claim that a larger firm is harder to manager can be

traced back to Kaldor (1934). In his seminal paper Coase (1937) argued

that the optimal size of a firm is determined by the comparative cost of

internal transaction versus the cost of market transaction and more

importantly that at some point internal transaction becomes more

expensive. There are several sources of such organization diseconomies.

Calvo and Wellisz (1978), Mirrlees (1976), and Rosen (1982) discuss the

cost of monitoring and its effect on effort; Williamson (1967),

Geanakoplos and Milgrom (1985), and Guenerie and Oddon (1988) consider

the limit capacity of managers to process information. McAfee and

McMillan (1990) discuss the suboptimal activities of firms as a result

of distorted incentives given by principals which implies that when

'See the statement of Zenith's president in the Washington Post, October
3, 1990.

2See also Lichtenberg's (1990) empirical work in which it is pointed out
that "the 1960's conglomerate boom may have contributed to the slowdown
in U.S. productivity growth that began at or slightly after that time."
Lichtenberg pointed out that the slowdown was partly due to the
existence of "unmanageable empires."
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there are more layers of hierarchy it results in larger distortions.

This type of inefficiencies can also be regarded as a special case of

the "influence cost" identified by Milgrom (1988) and Milgrom and

Roberts (1988, 1989) as one of the main costs of centralization. Such a

cost describes the workers' incentives to influence their superiors'

decisions and the inefficiencies associated with the need to impose

mechanisms that offset such a behavior.

The main purpose of this work is to study the behavior of a firm

when it has bounded capacity to handle complex situations. Ve are

interested in examining the relationship between having bounded ability

to handle complexity, the scope of businesses in which the firm operates

and in particular the effects of competition on the optimal scope of the

businesses. We consider two aspects of market complexity: The

complexity of operating simultaneously in different markets when the

market conditions are uncertain and the complexity of competing with

other firms. These two sources of complexity compete on the firm's

limited ability to handle complex situations. Thus when the firm

becomes more responsive to changing market conditions it can use less

complex strategies in the games with its competitors. Using this

setting the paper demonstrates the importance of incorporating bounded

rationality into the study of industrial organization and a formal way

of doing so.

In order to illustrate the problem consider the following example:

a player plays a simultaneous chess game with several players. Every
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game has a different weight and final payoffs are the sum of the weights

of the games he wins. The player needs to decide which of the games he

wishes to play. Clearly one can always devise an optimal strategy for

(a chess) game as there is a finite set of feasible positions. Note

that, in 1912, Zeremelo proved that for rational players chess is a

trivial game. In reality, however, there are difficulties in

implementing such a strategy. As the number of games in which the

player participates affects his performance in each particular game,

there is a tradeoff between the number of games and the probability of

success in each one of them. The optimal number of games depends on the

player's skill, speed and practice (level of complexity). Let us

imagine now the same simultaneous chess game but with one of the

opponents being replaced by a more skilful player. Intuition suggests

that two possible scenarios might happen. Either the incumbent will

leave the game with the new opponent and continue to play the other

games (and possibly enter a new game) or he will leave some of the other

games in order to "concentrate" more on the now more complex game with

the new opponent. It is this intuitive behavior which we try to capture

and model in this paper.

We will follow the literature (e.g., Abreu-Rubinstein (1988),

Aumann (1981), Ben Porath (1986), Kalai-Stanford (1988), Neyman (1985),

Rubinstein (1986), and the surveys by Kalai (1990)) and formalize the

measure of strategic complexity using the framework of finite automata.

While most of this literature was concerned with repeated games, in
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discussing the market behavior of firms we do not wish to concentrate

only on the strategic interaction excluding the complexity of reacting

to changing market conditions.3 We thus define a model in which the

firm faces different demand conditions in every period and needs to

react to such exogenous changes while at the same time it faces

competition. We define the complexity of strategy as the minimal number

of states in an automaton implementing it. We will then limit the

complexity of the firm's strategies and discuss the implication of such

a limit on the scope of the firm's activities and on the pattern of

competition. In particular we demonstrate the following possible

effects: (i) in the face of competition in one market the firm might

divest from other markets in order to concentrate on the competition in

its main business, (ii) complexity considerations might lead to market

segmentation such that facing a new competition in one of its markets a

firm might decide to exit from this market leaving its competition as a

single producer; and (iii) bounded complexity might serve as an entry

barrier because the incumbent's bounded complexity might make the threat

of aggressive response to entry credible.

We would like to note, however, that there are inherent

difficulties in modeling and discussing the bounded rationality of

managers. It is not yet clear why certain decisions are "difficult' to

make within a limited time framework and why other strategic decisions

are simple to make. This study, however, is beyond the scope of this

3Formally the game we consider is a stochastic game.
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paper. One can also argue that putting an upper bound on the complexity

of strategies that the firm can use ignores the ability of firms to hire

more managers, decentralizing decisions and thus overcoming the problem

of having bounded complexities. Such a view implies that there is no

limit to the ability of organization to handle complex. situations.

Indeed our results do not hold in situations in which a complete

decentralization of decision is feasible. It is our basic assumption,

however, that even when it is possible to hire more decision makers

there is a limited ability to handle complex situations.

2. THE MODEL

2.1. Market Conditions

Let I = {1,...,14 be a set of m independent markets. At each

marketthereisalineardelimidfinctionerepiand

qi are the price and quantity in market i, respectively, ai is

assumed to be stochastic such that with probability 1/2 there is a high

demand and pi = hi - qi and with probability 1/2 there is a low demand

and pi = L- where Li < h. for all i E I. The cost of

producing one unit of product i is assumed to be c. < h1.. We divide

the set I into two subsets as follows:

G = fi E IIc < til

B = AG.



At every period there is a signal a of an m tuple of 0 (low)

and 1 (high) that specifies the demand condition in each market. Ve let

E be the set of all possible signals and ai be the i'th component of

the signal a we let a° be the initial market condition given prior to

the start of the game.

Consider now a single firm that faces the above market conditions.

Let Q E Rm be the set of all possible output combinations. A strategy

for the monopolist is a function A: E Q that specifies an output

combination for every possible signal. We further let T1(q) and

• be the monopolistic profit function from market i. The

monopolist's optimal strategy is:

(i) For i E G to produce - ci)/2 if ai = 1 and (ii -

c.)/2 if ai = 0.

(ii) For i E B to produce (hi - ci)/2 if ai = 1 and 0

otherwise.

Such a strategy, however, suggests that the firm adjusts its output

vector for every different signal 6 and is fully responsive to market

conditions. This strategy is optimal as long as being responsive to

market conditions does not incur any additional costs.' When changing

the output level or monitoring market conditions is costly the above

strategy may not be optimal. We let r1 denote the monopolist's
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expected profit in market i when he plays the above optimal strategy.

2.2. Finite automaton

Most of the recent literature using the concept of finite automaton

discuss the strategic bounded complexity in repeated games setting (see

Kalai (1989)). Our model differs as it assumes, besides the strategic

interaction, the possibility of having changing market conditions. Thus

the definition of automaton needs to acount for complexities induced by

nature as well as with those induced by strategic interactions.

We define an automaton as a triple ((M,m0),A,T) with the following

interpretation. M is the set of states of the automaton with mo E M

being the initial state. A: M Q is a behavioral function that

prescribes for each state an output combination q E Q. The transition

function T: MxExt)--)M governs the transition of the automaton

from one state to another. Thus the input that the . automaton receives

at every period consists of a signal that describes the new market

conditions and the output that was produced at the previous period.4

In the single firm case an efficient automaton corresponds to a

partition of the signal space E such that every subset in the

partition can be viewed as a state of the automaton and the transition

function is degenerate, i.e. does not depend on the current state of the

4We have chosen the more general notion of automation, the one allowing
for mistakes (the intput to the automation can be actions not consistent
with the automaton's earlier prescriptions): In addition to the greater
generality this would enable us to discuss subgame perfection when we
switch to the multiplayer model.



automaton or on the last period production vector. We choose however

the more general formulation, described above, as it can be easily

extended to the multi firm case in which there is strategic interaction.

OBSERVATION 1: Every strategy of the firm can be described by such an

automaton.

PROOF: (We use a generalized version of the construction in

Kalai-Stanford (1988).) Given a game with an initial condition ff° we

define the set of histories of length zero HO = fej with e denoting

the empty history. The set of histories of length 1, IIt, consists of

all vectors with crt E E and qt E Q for t

w 0,1,...,i. We let H Ut.0Ht
 denote the set of all (finite length)

histories. Now we formally define a strategy to be a function f:H Q.

Given a history h E H it is useful to discuss entities defined on

the subgame induced by h. h is of the form h = q1g"
1,...,q 1 and we

define the game induced by h, Gh, to be the one with the initial

0condition o-. The set of induced histories is Hh = fel, and Hh is

-1 -1 -r -be the set of all vectors q ,...,qcfr. Starting with a strategy f

and 6, history h E H we define the strategy induced by f and h on the

game Gh to be the function fh:Hh Q such that for every t and

every h E Hth' fh (h) = f(hh) with hh denoting the concatenation of

- 1 1the two histories, i.e., hh q t
,...) (we make the

convention that eh = he = h). We use fu E {fh: h E II} to denote the
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set of all strategies induced by f. Notice that even if h G- (when

ai ) the set of strategies of the two games coincide. Thus the set

f induces all the induced strategies from all different induced games

and it thus may be small even if the number of induced games is larger.

Suppose, for example, that a constant strategy is used with qt q

for all t. Then f includes only one element (the constant

strategy).

Now for a given strategy we will exhibit an automaton implementing

it. Its states will correspond to the different strategies it induced,

i.e. M with the initial state corresponding to f itself, i.e.,

m= f. The behavior function assigns to each state the initial action0

taken by the corresponding induced strategy, i.e., A(m) =fh(e). The

transition function is defined by

T(fh,ff,q) = f_ with h = q1cr1

It is easy to check that the automaton just describes is well defined

and that it implements f.

It is worth noting that the above construction used number of

states equals the cardinality of the set of strategies induced by f.

This shows that the number of states needed to implement f does not

exceed the number of strategies induced by f. It is easy to see that

the converse is also true, i.e., the number of states needed to
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implement a strategy equals at least the number of different strategies

it induces. Thus, we can conclude that the number of states needed to

implement a strategy equals the number of strategies it produces.

We now define the complexity of a strategy to be the number of

states of the smallest (in the number of states) automaton describing

it, or, equivalently, as was discussed in the last proof, the number of

different strategies it induced. We will model bounded rationality by

assuming that firms will use strategies not exceeding a certain finite

complexity.5 We will denote by k the bound on the complexity of

strategies.

The automaton measure of complexity, and Observation 1 can be

applied to all extensive form games. For example, later we replace the

monopoly game described above by an oligopoly. Then we assume that the

automaton was modified by replacing the number q of the input to be the

vector consisting of all firms' production levels in all markets. If

the game was played with imperfect monitoring one would require that the

input is the information revealed to the player prior to his making a

decision. For example, in the Abreu-Pearce-Stachetti (1986) (APS) game,

5An alternative formulation will be to assign a certain cost associated
with the number of states in the automation (see Abreu-Rubinstein
(1988)). We choose our formulation for simplicity sake. We believe,
however, that our main results can be obtained with a model of costly
states as long as this cost function is convex with the number of
states. In this case our formulation is a special case as we assume
zero cost until k states and infinite cost for every state beyond k.
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the input to the automaton at every stage will be the firm's own

previous production level and the resulting market price. Indeed, the

claim of APS that their strategies are "simple" is verified using the

formal definition of complexity by the fact that they can be implemented

by automata of complexity two. See Figure 1 for a diagram of the

strategy for player 1.

Figure 1 to be inserted here

In this diagram, circles represent states. Entries in the circle

represent production levels (low or high). Arrows represent transitions

as functions of states and inputs (self production levels and observed

market prices). In this simple strategy one may think of the initial

state as the cooperative one where the player keeps his production level

low. The other state is for the punishment mode where production level

is high. Notice that the player moves into the cooperative state from a

cooperative state provided that the market as a whole was cooperative,

i.e., the price is higher than the threshold level or from a

noncooperative state provided that the market as a whole punishes, i.e.,

market price is below the threshold level j.

Before proceeding it is important to note that the existence of

multi markets does not imply immediately that the strategy used is

complex. One can, for example, adopt a strategy in which constant

quantities (possibly zero) are produced in all markets. The complexity

of such a.strategy is 1. In general, however, the complexity of a

strategy must equal at least the number of different actions it may
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prescribe among the play of the game which implies the following:

OBSERVATION 2: The optimal strategy of the monopoly facing the

multi-market problem studied here has the complexity of 2m.

Observation 2 implies that the complexity required to implement the

monopolist optimal strategy is potentially huge due to the many possible

production combinations. In particular, note that we restrict the

demand function to take one of two values. If we change this assumption

and the demand function can take many possible values, it will increase

the complexity of the monopolist's optimal strategy dramatically.6 The

main question is, of course: What happens if the firm is restricted to

use strategies of complexity not exceeding k < 2m.

2.3. The optimal Automaton for in = 2

Consider a monopolist operating in two markets., Let 41(4) be

the optimal quantities for the i'th market for a high (low) demand.

Further, let zi be the optimal constant level of production in market

i when the firm does not distinguish between a high and a low signal,

()Indeed, one reasonable way that firms deal with this problem is by
decentralizing into divisions dealing with submarkets. Such a
decentralized process could be modeled by a central automaton
coordinating the actions of several automata, each dealing with few
products. Complexity decentralization is an important issue left for
future research.
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i.e., zi maximizes (1/2)(hi - ci - zi)zi + (1/2)(1i - ci - z) z1.

Let

- (1/2) [x.,(41) + C1Tii(1 - rh(zi) -

7i is thus the gain from being fully responsive to demand conditions in

market i versus producing the optimal constant quantity. Without loss

of generality let 71 > 72. We now describe the optimal automata for

this case:

CLAIM 1: For a monopolist who operates in two markets, the optimal

automaton is as follows:

(1) For k = 1, there is one state of the automaton. Output is

(z1,z2) regardless of the signal.

(ii) For k = 2 the optimal automaton moves to state 1 whenever

the market conditions input is either (1,1) or (1,0). In this
1state production is (qh, z2). The automaton moves to the

second state if the market condition is either (0,0) or (0,1)

1and in this case production is (qt, z2).

(iii)For k = 3 the optimal automaton moves to state 1 when the

1 2market condition is (1,1) in this state it produces (qh, qh).

It moves to state 2 when the market condition is (1,0) and it

produces (041, 4). It moves to state 3 whenever the market

condition is either (0,1) or (0,0). In this state it produces

(ql, z2).
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(iv) For k = 4 the automaton implements the optimal monopoly

strategy as discussed in the previous section.

PROOF: k = 1 is trivial. For k = 2 let us consider all possible

partitions. Since 71 > 72 it is evident that having the partition

1(1,1), (0,1)1, 1(1,0), (0,0)1 is not optimal. For the partition

{(1,1), (0,0)1, 1(1,0), (0,1)j the optimal production levels are

(zz2) for all states of the automaton and thus the monopolist does

not exploit his ability to be partially responsive to market conditions.

Consider now the partition El= {(M} and E2 = 1(1,0), (0,0),

(0,1)1. For such a partition the optimal

Market 1

Market 2 Market 2

1

ff2

ff2

E2

Market 1

El

1 1
qh' z2 q1'z2

1 1
qi'z2

E2

Figure 2A Figure 2B
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Market 1

Narket 2

2

Figure 2c

production levels are described in Figure 2A, where fi is the optimal

output when the probability of having a low demand is 2/3 . Now observe

that transforming the quantities produced at 2A to the ones depicted in

Figure 2C yields higher profits for the firm. The quantities described

in Figure 2C, however, cannot be implemented by a strategy of

complexity 2. It remains to be shown that the automaton suggested in

the claim (which are given by Figure 2B) yields even higher payoffs than

those in Figure 2C. Changing from 2C to 2B yields the following changes

in payoffs:

(1) 41.(z2)11 1 
7- T(z ) - 21(q21)

72t(z2) + T1(q1+ ) -

which after rearranging and using our assumption that 71 > 72 yields

that (1) is positive and thus the firm has higher payoffs with 2B than
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with 2A. The other partitions can be analyzed similarly.

For k = 3 the only other partition is the one that perfectly uses

the information regarding market 2 and only partially uses the

information regarding market 1. Using our assumption that 71 > 72 and

following the above procedure would indicate that such a partition

yields lower payoffs. The case of k = 4 is trivial.

3. MARKET SCOPE WITHOUT COMPETITION

When a monopolist can use strategies of unlimited complexity, it

would operate in all m markets. But when k < 2m operating in all

markets is not necessarily optimal. To illustrate the problem consider

a firm operating in m markets with a strategy of complexity k.

Assume that there is an opportunity to enter another market. Given the

bound on the complexity, k, the firm has three options that illustrate

the tradeoff it faces: (i) the firm can choose a strategy which is

(partially) responsive to demand conditions in the new market and by so

doing the firm reduces its responsiveness to demand conditions in the

previous m markets; (ii) to enter the new market by producing a

constant quantity; (iii) not to enter the new market.

is clear that there is ati

constant quantity that yields positive expected profits. Thus the firm

will always enter to markets of type G. One cannot extend the above

argument to markets of type B.
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Let

MB = fi E B I + T1(zi)] > 01;

VB = B\MB.

The monopolist enters markets in MB (moderately bad) as, by

definition, producing a constant quantity, z,. yields positive1 
profits. The entry decisions to a market of type VB (very bad) is more

complicated. Markets of type VB are markets in which in order to make

profits one needs to react to changing market conditions. On the other

hand, there are indirect costs associated with being responsive to

market conditions. Since the firm can use strategies of bounded

complexity, being responsive (even partially) to demand conditions

implies that the strategy is less responsive to demand conditions in the

other m markets which reduces profits from these markets.

CLAIM 2 (Market Scope): When m = 2, k = 2, 71 > 72, and the second

market is of type VB then the firm will not enter the second market.

PROOF: When the firm enters both markets the optimal automaton is

specified by Claim 1. For such an automaton the output in the second

market is constant and not responsive to demand conditions. Since

market 2 is of type VB the firm loses money in this market and

therefore it is better off not 'entering it.
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Claim 2 illustrates that bounded complexity considerations can

determine the scope of activities of firms even in situations in which

the only relationship between the different activities is that they are

managed by the same firm.

4. BOUNDED COMPLEXITY AND MARKET COMPETITION

Strategic interaction adds another source of complexity to the

firm's decision problem. Facing one type of complexity diminishes the

firm's ability to handle the other type. This tradeoff between the two

types of complexities plays an important role in determining the firm's

behavior in oligopolistic markets.

There is a fundamental difficulty in the use of finite automaton

framework to model market behavior with bounded complexity. The main

question is the ability of players to change the automaton they are

using. If there is no limit to such ability then we are back in the

world of unbounded complexity as any strategy of any complexity can be

implemented. But to assume that players never change the automaton is

too restrictive. Moreover, under such an assumption the use of finite

automaton as a modeling tool will capture more of the ability of players

to commit themselves rather than modeling their bounded rationality. In

this work we assume that once a competitor enters a market it is

possible for the incumbent firm to react by changing the automaton.

Thus only when a "major" event such as entry occurs, is it possible to

change the automaton. Without this assumption it would be possible
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for the incumbent to commit himself to a certain automaton and the use

of this automaton will prevent entry or will give the incumbent some

advantages in the post entry game.

4.1. Competition in a Single Narket

Consider a single duopolistic market in which demand is as

specified in section 2 and both firms have the same cost function. Let

xh and xi be the Cournot equilibrium output for the high and low

demand respectively, and ; be the Cournot equilibrium payoffs. Our

symmetry assumption implies that both firms realize the same profits.

OBSERVATION 3: The Cournot equilibrium can be implemented with

strategies of complexity 2 (for each firm).

PRooF: Consider the following simple automaton: There are two states,

M1 and M2 with the initial state M1 if the market is high initially

and M2 otherwise. The behavioral function is A(M1) = xh and A(M2)

=x1.  The transition function is T(Mi,1,q1,q2) = and

T(M1,0,(11,q2) = M2 for every ch, q2 and Mi. Clearly if for both

firms k = 2 and one firm uses the above automaton the best response of

the other firm is to use the same automatons.

Consider now other equilibria of the repeated play of the above

duopolistic game and let the two firms maximize discounted profits. Let

h and rt be the collusive output level for the high and low demand
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respectively and rl be the expected collusive payoffs from market 1.7

As it is well-documented in the literature, when the discount factor is

sufficiently close to one, the collusive outcome can be supported as a

noncooperative (subgame perfect) Nash equilibrium. For example, one can

use the well-known grim trigger strategies such that firms cooperate

until one defect and then they both switch to the Cournot- Nash

equilibrium forever.

OBSERVATION 4: The grim trigger strategy equilibrium can be implemented

as an equilibrium with strategies of complexity 4.

PROOF: Can be proven by a straightforward construction.

One can also verify that it is possible sometimes to economize on

the punishment phase of the grim trigger strategies and obtain the

collusive outcome by using strategies of complexity 3. The need to have

states . assigned to the punishment phase leads to the following

observation:

OBSERVATION 5: (Collusion is Complex): In a single market duopoly

supporting the collusive outcome requires the use of strategy of

complexity k > 2, i.e., above the complexity of the Cournot-Nash

7Although there might be several collusive levels let us choose the one
yielding the highest possible profits among the symmetric outcome.
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equilibrium strategies.

PROOF: When an automaton of only two states is used to support the

collusive outcome it must be that A(M1) =rh and A(M2) =rt. Clearly

a pair of such strategies is not an equilibrium.

4.2. Nulti-Narket Competition

Let us move to a multi-market setup. Although we assume that

markets are independent with respect to demand and cost conditions,

complexity considerations may introduce interdependence among markets as

we have already seen in the monopoly case. In particular the •

introduction of competition in one market may lead to a different

behavior in the other. In order to demonstrate this consider the

following example: An incumbent firm operates in two markets, k = 2

and 71 > 72. As claim 1 suggests the optimal automaton is to be fully

responsive in market one and produce a constant quantity in market two.

Assume now that a new firm enters market one. As a response to such an

entry the incumbent may decide to exit from one of the markets. If he

deeides to stay in both he needs to determine whether to continue being

responsive in the first market and producing a constant quantity in the

second market is still its optimal strategy. It is possible that as a

result of an entry to market one it becomes optimal for the firm to be

responsive to market conditions in the second market, in which there is

no competition and to produce a constant quantity in market one.
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4.2.1. Competition and Divestiture Policy of Firms

Consider now a firm that operates in two markets. Letting k = 4

implies that the firm operates in both markets and is fully responsive

to demand conditions. We further assume that 71 > 72 and that the

second market is of type VB.

Assume now that a new firm enters the first market. The two firms

can now compete and produce the Cournot equilibrium quantities or

collude. Note, however, that as indicated by Observation 5 collusion is

complex, i.e., in order to support a collusive outcome the firms need to

use strategies of complexity exceeding the complexity of the

Cournot-Nash equilibrium.

^1 N1CLAIM 3: Consider an entry to the first market. (i) When r > r +
.1T2 and r > 0 the incumbent's optimal response is to exit from the

second market. i) When ;1 < 0 and r̂1 < r2, the incumbent's

optimal response is to exit from the first market.8

PROOF: Facing competition in market 1 the incumbent has three options:

He can exit from market one and remain in market 2, he can exit from

80ne of the conditions of (ii) is that the expected Cournot equilibrium
.1profits, T ) is negative. This can happen for example when there are

sufficiently large fixed costs.
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market 2 and cooperate in market one, or he can stay in both markets and

play the Cournot strategies in market one. Given that k = 4 and that

collusion is complex the option of staying in both markets, being

responsive to market conditions in market two and yet supporting the

collusive outcome in market one is not available to him as it requires

1 .1 2strategies of complexity exceeding 4. The conditions r > r + r and
.1r > 0 imply that supporting the collusive outcome in the first market

is the incumbent's best strategy. In such a case the incumbent cannot

be responsive to demand conditions in market two and since this market

is of type VB, getting out of this market is part of the optimal

strategy. This completes the proof of (i).
^1 .1When T < r2 and r < 0, supporting the collusive outcome in

market one is not optimal as it requires getting out from market two and

losing 72• Staying in market 2 while colluding in one implies that the

firm produces a constant quantity in market 2 and since this market is

of type VB the firm will realize losses from such a policy.

Claim 3 demonstrates two possible scenarios. Part (i) demonstrates

that limited complexity may lead to divestiture while part (ii)

demonstrates that it can result in specialization. Divestiture occurs

when the competitor enters the market which contributes significantly to

the firm's total profits. In such a case the firm decides to exit from

markets which are not their main business and to "concentrate" on their

main business when by concentrating we mean using a strategy with higher
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complexity. Specialization occurs when, as a result of entry into one

of the markets, the firm decides to leave this market as the strategic

interaction is too complicated and thus costly. The outcome of this

behavior is a complete specialization such that in both markets there is

a monopoly.

Note also the importance of the independence assumption in claim 3.

If markets one and two are related such that the conditional probability

p (the demand is high in market 2 I the demand is high in market 1) >

the optimal behavior might be different. The firm can use the

correlation to reduce the complexity of its strategy. For example, when

the above conditional probability is 1 such that the two markets are

perfectly correlated one can produce the optimal quantity with

strategies of complexity 2. Thus our result of divestiture will not

hold when the markets are sufficiently correlated. The firm can collude

(use a strategy of higher complexity) in the first market and still

produce the optimal quantities in the second market. This claim

supports our intuition that the divestiture will occur in a conglomerate

firm when the businesses are not related and not in a firm producing in

related markets.

4.2.2. Bounded Complexity and Entry Deterrence

Intuitively one may think that having bounded complexity is always

disadvantageous for the firm as it limits its ability to use complex

strategy. But as often happens in strategic interaction one can
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sometimes benefit from a handicap (see also Gilboa and Samet (1989)),

i.e. it is possible that having bounded complexity will enhance profits.

Consider a firm, I, operating in two markets such that 71 > 72.

There is a firm E that considers entering the second market. In the

post-entry game the incumbent may choose to cooperate and to get the

profits r2I or to use strategies of lower complexity and to get the

Cournot-Nash equilibrium profits ;2 < r' The entrant equilibrium
N2 ^2profits are rE < 0 if the incumbent chooses not to cooperate and rE >

0 if the incumbent cooperates. Thus entry is attractive only when the

incumbent cooperates. We assume that the entrant does not have any

complexity constraints and thus it is the incumbent who decides upon the

type of the post entry game; i.e. cooperation or fighting. Note,
.2however, that since rE < 0 an entrant with a complexity constraint

will not enter the market without the ability to support the collusive

outcome.

The above setup can be regarded as the last period problem in the

chain store paradox (Selten (1978).) Indeed, without a limit on the

complexity of strategies, subgame perfection arguments imply that once

entry occurs the incumbent will cooperate and thus entry is profitable.

This result holds since supporting cooperation is not costly. This

well-known result does not hold, however, if there is a bound on the

complexity of strategies of the incumbent firm.
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CLAIM 4: (i) When k is sufficiently large the incumbent will react

2cooperatively and the entrant will enter. (ii) When k < 4 and TI -
.2T1 < 71 the incumbent will react aggressively to an entry and thus the

entrant will not enter.

PROOF: When k is sufficiently large the bounded complexity is not a

binding constraint and subgame perfection implies (i). When k = 4 the

incumbent has two options: The first is to cooperate in the second

market and to produce a constant quantity in the first market. The

'second is not to react cooperatively and to be responsive to market

conditions in the first market. Note that the option of reacting

cooperatively in the second market and still be responsive to market

conditions in the first market is not available as it requires

^2 .2strategies of complexity exceeding 4. Since TI - T1 < 71 the second

possibility yields higher payoffs, the incumbent will not react

cooperatively and thus the entrant will not enter.

The bounded complexity serves here as a credibility device to the

threat of noncooperation with an entrant. Given the bound on complexity

a cooperative behavior becomes costly. If the incumbent reacts

cooperatively to an entry it will have to be less responsive to market

conditions in the first market which reduces its profits by 71.



5. CONCLUDING

The transaction cost economics literature emphasizes the need to

revise the analysis of markets taking into account that engaging in a

contract, changing production level, or generally changing strategies is

not without cost. The major claim of this paper is that the economic

analysis of markets needs also to account for the limited ability of

management to handle effectively the complexity of changing market

conditions and strategic interaction with competitors. Modeling the

managerial limited rationality by using the concept of strategic

complexity as measured by automata we show that the outcome of market

behavior and conduct can be considerably altered once there is a limit

on the complexity of strategies. Ve believe that such an analysis can

explain different market behavior that the classical industrial

organization literature cannot explain. In this paper we discussed only

two aspects of market complexities. There are, however, many other

aspects of complex market situations unaccounted for in this paper. For

example, entry and exit decisions, R&D decisions, contracting

complexities, and so on. We believe that positive approach to

industrial organization ought to account for the effects of such

complexities on the managerial decision and market behavior.
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