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Abstract. A joint derivation of utility and value for two-person
zero-sum games is obtained using a decision theoretic approach. Acts
map states to consequences. The latter are lotteries over prizes,
and the set of states is a product of two finite sets (m rows and
n columns). Preferences over acts are complete, transitive, contin-
uous, monotonic and certainty-independent (Gilboa and Schmeidler
(1989)), and satisfy a new axiom of strategic flexibility which we intro-
duce. These axioms are shown to characterize preferences such that
(i) the induced preferences on consequences are represented by a von

Neumann-Morgenstern utility function, and (ii) each act is ranked

according to the maxmin value of the corresponding m x n utility

matrix (a two-person zero-sum game). An alternative statement of
the result deals simultaneously with all finite two-person zero-sum

games in the framework of conditional acts and preferences.

* A first draft, comments welcome. Acknowledgements not included.
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1. Introduction.

In their “Theory of Games and Economic Behavior”, von Neumann and
Morgenstern (1944) present the theory of two-person zero-sum games as an
extension of the axiomatic theory of decision under risk, which from their
point of view is a theory of rational behavior in one-person games. |

Although von Neumann and Morgenstern (1944) do not deﬁne preferences
on games, they ‘suggest’ a ranking of two-person zero-sum games by their
(maxmin) value by asserting (in section 17.8) that the ‘good’ way of playing
such games is to choose, from among the alternative feasible strategies, the
ones which ensure for each game the attainment of its value. However, as
already noted by McClennen (1976), validity of this assertion is not implied
by the von Neumann-Morgenstern axioms. Thus there is a gap between the
axioms characterizing expected utility maximization in individual decision
under risk and the presumption that expected utility maximizers evaluate
two-person zero-sum games by their value,

The purpose of this paper is to fill this gap by means of a unified decision
theoretic analysis resulting in a simultaneous derivation of utility and value.

Ellsberg (1956) and Aumann and Maschler (1972) also criticize the com-
pleteness of the von Neumann-Morgenstern argument justifying the use of
maxmin strategies, but they do not discuss the relation - or lack of it - be-
tween utility theory and behaviors in two-person games. Roth (1982) refers
to the above mentioned gap, but his work is more in the direction of Vilkas
(1963) and Tijs (1981) who characterize the ‘value’ as a functional on matri-
ces.

The basic decision model we use is Anscombe and Aumann’s (1963) sim-

plified version of Savage (1954) model, consisting of a set of acts and a pref-

erence relation = over it, where acts are mappings from a space S of states
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into a space C of consequences, and the latter are ‘roulette lotteries’, i.e.
probability distributions with finite supports over a fixed set of outcomes. A
state is here interpreted as a state of the world and not as a state of nature.
The distinction was first introduced by Mertens and Zamir (1985): a state of
nature is chosen by a neutral nature according to some (additive) probability
distribution which may be unknown to the decision-maker(s), and nature is
thought of as beyond the decision maker(s)’ control. The world may include
in addition to neutral nature several decision makers each having his own
goal, and a state of the world is a consequence of a joint selection by all the

world, so that in this case occurrence of events may be partially under the

control of the decision maker(s). Moral hazard is an example of such a sit-

uation, special in that, in addition to nature, only the single decision maker
under study has influence on events. In the general case different decision

makers, possibly with conflicting interests, may partially influence events.

In the next section, after describing the model, we posit a set of basic
axioms of (individual) choice, borrowed from Gilboa and Schmeidler (1989).
These axioms imply in particular (i) (Lemma 2.6 below) existence of a von
Neumann-Morgenstern utility « : C — R on consequences, and (ii) (Lemma
2.7) existence of a real valued mapping I : RS — R such that for any acts
f,g: S8 — C onehas fzgiff I(uo f) > I(uog).

Then (section 3) we make the structural assumption that S is a product
space, S = S! x 52, and also assume that it is finite, so that an act f can be
viewed as a game form with outcomes f(s',s?), S and S? being interpreted
as (pure) strategy sets and the decision maker being identified with player
1 (the row player). In this case, the set {(uo f)(s',5%) | (s',5?) € S} is an
#51 by #S5? real matrix, and act f corresponds to the matrix game with

payoffs u(f(s!,s?)), for (s!,s) € S* x S?. Within this structure we present
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an axiom which, as we show, together with the basic axioms of section 2
characterizes preferences ranking game forms (with fixed S) by the value of
the corresponding two-person zero-sum games. Formally the result is that
the map I above, now defined on the space of #S* by #S? real matrices,
is the ‘value’ map assigning to each such matrix its maxmin value. Notice
however that justifying evaluation of games by value does not automatically

imply rationalization of maxmin strategies.

In section 4 we recast the model with the purpose of simultaneously

considering all finite two-person zero-sum games, i.e. S is no longer fixed.
We consider all finite rectangular subsets S = S! x S? of a ‘universal’ state
space, and define conditional acts as pairs (f, S) where f is the map as before
and S its domain. We do not assume that all pairs of acts (f,S),(g,T) are
comparable (i.e. we do not assume completeness), and show that the basic
axioms of section 2 for each S separately plus the appropriate version of the
axiom of section 3 characterize, as before, preference relations represented by

the ‘value’ function, defined in this case on the set of all finite real matrices.

A few words on terminology. The term neobayesian was used by Savage
to describe his and related work which based statistical inference on subjec-
tive or personal probability. The neo® (i.e. neoneo) term is used here to
denote the last decade’s departure from Savage’s sure thing principle and
- from the independence axiom of von Neumann—Morgenstern utility theory.
(We imitate her Stanley Reiter’s “New? Welfare Economics”). The term
act dependent subjective probability describes many Neo’Bayesian axioma-
tizations including non-additive and non-unique priors (Surveyed by Karni
and Schmeidler (1990)) as well as the present paper. This terminology is
consistent with the term bayesian used in game theory where the primitive

is existence of prior probability as opposed to the primitive being preferences
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on acts in neobayesian theory.

2. Decision Theoretic Framework.

Let X be a non-empty set and let A(X) be the set of probability distri-
butions over X with finite supports

A(X) ={y: X —[0,1] | y(z) # 0 for only finitely many
z’s in X and Z y(z) =1} .
: 2€X

For notational simplicity we identify X with the subset {y € A(X) | y(z) =1
for some z in X} of A(X).

Let S be a finite non-empty set, and denote by L = A(X)S the set of all
functions from S to A(X) and by L. the constant functions in L. Note that
A(X) can be viewed as a subset of a linear space, so A(X)® = L can also

be considered a subset of a linear space. It should be stressed that convex

combinations in A(X)® are performed pointwise, i.e. for f and g in A(X)S
and o in [0,1], h = af + (1 — a)g where h(s) = af(s)+ (1 —a)g(s), for s € S.

In the neobayesian nomenclature elements of X are (deterministic) out-

comes, elements of A(X) are random outcomes or consequences and elements

of L are acts. Elements of S are states (of the world) and subsets of S are

events.
The primitive of a neobayesian decision model is a binary (preference)

- relation on L to be denoted by >=. On = we shall impose the following axioms.

2.1 Weak order. (i) Completeness. Forall fandgin L: fx gorgx f.
(1) Transitivity. For all f,g and hin L: If f = g and g = h then f x h.
As usual, > and ~ denote the asymmetric and symmetric parts, respec-

tively of =. The relation x on L induces a relation on A(X) also denoted by
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> : y = z iff y* = 2* where z*(s) = z for all z € A(X) and s € S. When no

confusion is likely to arise, we shall not distinguish between y* and y.

2.2 Certainty-Independence (C-independence for short). For all f,g in L
and hin L, and for all @ in |0,1[: f > g iff af + (1 — a)h > ag+ (1 — a)h.

2.3 Continuity. For all f,g and hin L: if f > g and g > h then there are
a and B in ]0,1[ such that af + (1 — @)k > g and g = Bf + (1. — B)A.

2.4 Monotonicity. For all f and g in L: if f(s) = g(s) for all s € S then
fzg

2.5 Non-degeneracy. Not for all f and gin L, f = g.

All these assumptions except C-independence, introduced and discussed
in Gilboa-Schmeidler (1989) (but see also Dréze (1987) who in effect used it
in a slightly different context), are common and essentially define the setup.

We have included non-degeneracy for ease of exposition. C-independence is

a (quite) weak version of the standard independence axiom which allows h

to be any act in L rather than restricting it to be a constant act in L¢.
We shall now state some implications of the above assumptions which

will be useful in the presentation of the main result as well as in its proof.

2.6 LEMMA. Assumptions 2.1, 2.2 and 2.3 imply that there exists an affine
u : A(X) — R such that for all y, z € A(X) : y = z iff u(y) > u(z).

Furthermore, u is unique up to positive linear transformations.

This is (an immediate consequence of) the von Neumann-Morgenstern
theorem, since the independence assumption for L. is implied by C-

independence.




We shall henceforth choose a specific u : A(X) — R. We denote by B
the space of all real valued functions on S, i.e. B=RS. Fory € R, v* € B

denotes the constant function on S the value of which is .

2.7 LEMMA. Under assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, there exists a

function I : B — R such that:

(i) Forall f,g€ L, f = giff I(uo f) > I(uo g).

(ii) For all y € R, I(v*) = 7.
(i) I is monotonic (i.e. for a,b € B :a > b= I(a) > I(b)).

This follows easily from Gilboa-Schmeidler (1989), section 3.

3. Game Theoretical Setting.
In section 2 the state space S was arbitrary. We now introduce the

structural assumption that S is a product space:
3.1 S=S8"x5%.

For any state of the world s = (s!,s%?) € S, s* € S! will be the component
influenced - in fact determined — by the decision maker, and s? € S? the
component beyond his control.

Notice that under assumption 3.1, act f € L may be viewed as an #S!
by #S5? rectangular array of outcomes (consequences) f(s!,s?), (s!,s?) € S,
and uo f € B as an #S! by #52 real matrix.

We are going to characterize the decision maker who perceives act f as a
game form and v o f as a two-person zero-sum game in which he is player 1
(the row player), and evaluates this game according to its maxmin value. In

other words, we will characterize preferences on L whose representing map I
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(of Lemma 2.7) is the ‘value function’ V' : B — R defined as

V(b) = max min sHb(st, s%)q(s?)
©) peA(sl)qu(Sz)(slgesp( ol )a(s")

where b € B and A’s are simplexes. For this purpose, we shall need the

axioms of section 2 plus the following:

3.2 Attitude Toward Substitution of Risk for Uncertainty — Special Case (SR-
uncertainty for short).!.
(i) For all r',¢t' € S', @ € [0,1], f € L:
if g € L is defined by
o(sh,5%) = { f(st,s?) if st £ 71, ¢
- (! if st =11, ¢,
then f = g.
(ii) For all r2,t* € 5%, a € [0,1], f € L: if g € L is defined by

f(st,s%) if s £ 72, ¢
af(st,r?) + (1 — a)f(s',t?) if s? =1%,12,

then g = f.

This axiom says that the decision-maker (row player) is (i) indifferent or
worse off if any two rows are both substituted with their (arbitrary) weighted
average, and (ii) indifferent or better off if any two columns are both substi-

tuted with their weighted average. The idea is that control on strategies is

1 Another special case of axioms expressing attitude toward substitution of risk for
uncertainty in a neozbayesian version of Anscombe-Aumann model are the axioms of un-
certainty aversion and uncertainty appeal introduced in Schmeidler (1989): fxg=
af+(1-a)g=g and fzg=fraf+(1-a)g (respectively). (Dréze (1987) introduced the axiom
of uncertainty appeal, in a slightly different context.) Axiom 3.2(i) has the flavour of un-
certainty appeal and 3.2.(ii) has the flavour of uncertainty aversion (see Proposition (x) in
Schmeidler (1998).)




less effective the less strongly outcomes depend on them: in 3.2(i) dependence

on S! is ‘averaged out’ in g , and the decision maker (row player) is (weakly)
worse off; and the opposite is the case in 3.2(ii), where weaker dependence of

outcomes on S? makes the decision maker (weakly) better off.

3.2.1 Remark. Notice the special cases of axiom 3.2 where « =0 or a = 1.
In such cases act g of 3.2(i) is obtained from act f by eliminating a row and
putting in its place a duplication of another row. The analogous goes for

3.2(i1) with columns.

3.2.2 Remark. This is the only axiom that links, in this context, the decision
theoretic model with two-person zero-sum games. It will imply (together with
the axioms of section 2) that the decision maker behaves ‘as if’ he were playing
two-person zero-sum games against an opponent (Theorem 3.3 below). It is
implicit in the result that the decision maker believes that such an opponent

exists, but such existence is not dealt with explicitly in the model.

9.2.8 Remark. It is obvious that by interchanging the roles of S and S2 in
the above axiom we would get ‘player 2’s viewpoint’.

The result of this section can now be stated:

3.3 THEOREM. Let a binary relation = on L be given and S satisfy the

structural assumption 3.1. Then the following two statements are equivalent.

(i) The binary relation x satisfies transitivity and completeness 2.1,
certainty-independence 2.2, continuity 2.3, monotonicity 2.4, nondegen-
eracy 2.5, and SR-uncertainty 3.2.

(ii) There exists an affine, non-constant function u : A(X) — R, unique up
to positive linear transformations such that the functional f — V(uo f)
represents = on L (i.e. f = g iff V(uo f) > V(uog)), where V is defined
in 3.1.1.




To prove the theorem, we need a lemma which follows by induction from

the SR-uncertainty axiom 3.2.

3.4 LEMMA. Given f € L and p € A(S?) (respectively ¢ € A(S?)) define
g € L: g(s1,s%) =3 e p(3N) F (5, 87), (respective]y‘g(sl,sz) =
> w2 4(32)f(s1,5?%)), for all (s',s*) € S. Then f x g (respectively g = f.)

Proof: Let m = #S* and denote the elements of S? as s},s},..., s} where
p(s}) > 0. Define fo, € L by: fa(s},s?) = fa(s3,5%) = [p(s1)f(s],s?) +
p(s3) £ (51 571/ (p(s]) + p(sh) and fofsh,s?) = Flshs?) if b # 1,2 We
proceed by induction. Suppose that f;, for 2 < j < m, has been de-
fined. Now define fj41 € L as follows: fi1(s1,5%) = fir1(sj41,8%) =
(5L, p(sh)) S (Db 88) + [p(skn)) S22 p(sD)fs(sky %) and

fix1(sh,s?) = fi(sk,s?) if k # 1,5 + 1. By axiom 3.2(i), f = f2 and f; = fin

for 2 < 7 < m. Hence, f = f,,. Note also that for j as above, f,—(s}+1,s2) =

f(s}41,5%). So by our definition fm(s1,s%) = D01, p(si)f(si,s?) for all

s2 € 82, i.e. the first row of f,, coincides with the rows of g, which are

all identical.

We now apply consecutively the special case of axiom 3.2.(i) with a =1
(see remark 3.2.1). Specifically, we replace all rows of f,, with its first row,
thus obtaining act g and f,, = g. By transitivity, f = g. The proof for S? is

analogous and omitted. O

Proof of Theorem 8.8. The direction (i)=>(ii). Lemma 2.6 guarantees the
existence of the required utility v : A(X) — R. By Lemma 2.7 it suffices
to prove that for all f € L : I(uo f) = V(uo f). Let ¢ € A(S?) be a
minmax strategy of player 2 in the game uo f. Define g € L as follows:
9(s1,8%) = Yoacs q(57)f(s1,5%), for all (s',s%) € S, thus g has constant

rows, i.e. identical columns. By Lemma 3.4, g = f so by Lemma 2.7(i)
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I(wo g) > I(uo f). From the von Neumann (1928) minmax theorem

(uwog)(stys?) < V(uo ) for all (s!,s?) € S. By Lemma 2.7(ii) and (i),
I(uog) < V(uo f). Hence I(uo f) < V(uo f).

To prove the other inequality, I(uo f) > V(uo f), let p € A(S?) be
a maxmin strategy of player 1 in the same game u o f. This time define
9(s1,5%) = Y1 P(3)f(3',5%) for all (s?,5°) € S and apply Lemma 3.4.
The same arguments as previously, except the use of the minimax theorem,
complete the proof of the other inequality. (The lack of symmetry in the use
of the minmax theorem reflects the lack of symmetry in our definition of V
in 3.1.1.) So (i)=>(ii).

The proof of the direction (ii)=>(i) is straightforward, hence omitted. (It
uses elementary properties of the value and the trivial direction of the von

Neumann-Morgenstern expected utility theorem.) O

4. Conditional Acts and Matrix Games.

In the previous section all games or game forms considered were of fixed
dimension, i.e. with fixed number of strategies for each player. In this section
we recast the theory to deal simultaneously with all finite game (forms) in
the framework of conditional acts.

Let ©!, 02 be two infinite sets and let A={S=5'xS§?| S C O, i=
1,2 and 0 < #S < oo} be the set of events or conditions. Conditional acts
are elements of the set ' = {(f,S) | S € Aand f:S — A(X)}, and our

primitive in this context is a binary relation = on I

Let I's denote all acts in I" conditioned on a given S € A, and xg the
restriction of = on I's. For each S € A, we shall impose on =g the axioms of

section 2. On = we do not impose completeness, which is a very restrictive
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axiom when applied to comparisons of acts conditioned on different events.
We shall impose transitivity, and an axiom which allows comparisons between
different but not too different conditions. In a sense to be made precise in
Proposition 4.3, this axiom is the counterpart of axiom 3.2, SR-uncertainty,
in the framework of conditional acts. It says that eliminating a column is
(weakly) advantageous for the decision maker, whereas eliminating a row is
(weakly) disadvantageous for him; and that furthermore, the decision maker
is indifferent to addition of a row (or a column) which is a convex combination
of two existing rows (or columns).

To state formally the new axiom we impose on x, we need to consider the
restriction of an act (f,S) toan event T' C S. With slight abuse of notation,
the resulting conditional act will be denoted by (f,T).

4.1 Conditional SR-Uncertainty.
(i) Let (f,S) € T and T = (S"\{r'}) x S? for some r! € S'. Then (f,S) =
(5,7,

(i) Let (f,S) €T and T = S* x (S*\{r*}) for some r?2 € S%. Then (f,T) =
(£,5) -

(iii) Let (f,S) € T, a € [0,1] and r',t* € S, w' € ©F, w' ¢ S for i = 1,2.
Define (f;,T;) € T,i=1,2by: Tf = S'U{w'}, IT = %, fi=f on S and
Fu(w!, s?) = af(rl,s?) + (1 — o) f(t',s*) for s* € S, Similarly T = S1,
T2 = S2U{w?}, f2 = f on S and fy(s',w?) = af(st,r?)+(1—a)f(s,t?)
for s! € S1. Then (f,S) ~ (fi,T3) for i =1,2.

Notice the special case of 4.1(iii) with a = 0 or 1, by which if two con-

ditional acts are such that one is obtained from the other by eliminating one

of two identical rows or columns, then they are indifferent. We will use this

special case later, so we state it separately for future reference.
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4.1.1 Irrelevance of Dﬂplicatz’ons. Let (f,S) € T, and 7,1 € St i=1,2. If
F(r,s?) = f(,s?) for all s? € S? and 7! # ¢!, then (£, S) =~ (f, (S"\{r'}) x
52). Analogously, if F(st,7?) = f(s',t?) for all s' € S* and r? # t?, then
(£,8) = (f,8* x (S2\{r*})).

The central result of this section is the following:

4.2 THEOREM. Let a binary relation x on I' be given. Then the following

two statements are equivalent:

(i) The binary relation = on I' is transitive and satisfies conditional SR-
uncertainty 4.1, and for each S € A the induced binary relation zs on I's

satisfies completeness 2.1(i), C-independence 2.2, continuity 2.3, mono-

tonicity 2.4 and non-degeneracy 2.5. (Transitivity 2(ii) of x5 is implied

by that of ).
There exists an affine non-constant function u : A(X) — R, unique up to
positive linear transformations, such that (f,S) — V(uo f, S) represents

>=on .

Remark. (a) The notation (u o f,S) is self-explanatory. (b) Implicit in the
theorem (4.2(ii)) is the fact that the preference relation x between conditional

acts in I' is complete. L.e., completeness is implied by other conditions of
4.2(i).

Proof of Theorem 4.2. The direction (ii) = (i) is trivial (as in Theorem 3.3)
and its proof is omitted.

We prove the direction (i) = (ii). Forany S € A and y € A(X), denote by
(y*,S) the constant conditional act with y*(s) = y for all s € S. The relation
=g induces a relation on A(X), also denoted by xs, defined by y =5 z iff
(v*,S) =s (2*,5), where y,z € A(X). It is easy to see that to this relation

13




we can apply Lemma 2.6, obtaining an affine non-constant ug : A(X) — R
such that y =g z iff us(y) > us(z).

We also have

4.2.1 CLAMM. Forally € A(X) and R,T € A, (v*,R) ~ (y*,T).

To prove this claim, apply repeatedly transitivity of = and irrelevance of
duplications 4.1.1 (adding one row or column at a time) to show that both
(v*,R) and (y*,T) are indifferent to (y*, (R' UT") x (R?UT?)).

Claim 4.2.1 implies, by transitivity again, that for any y,z € A(X) and
R,T € A, (¥, R) = (2%, R) iff (y*,T) = (2*,T). Hence by uniqueness of von
Neumann-Morgenstern utility, uz is a positive linear transformation of ur.
So we can choose an element from {us | S € A}, say u : A(X) — R, such
that for v,z € A(X), u(y) > u(z) iff (v*,S) zs (2*,S) for all S € A.

To complete the proof, notice that by affinity of u and convexity of A(X),
for any conditional act (f,S) there is y € A(X) such that u(y) = V(uo f, S).
We will show that this in turn implies (y*,5) ~ (f, S).

Let ¢ € A(S?) be a minmax strategy of player 2 in the game (u o
f,S). Let n = #5S2, denote the elements of S? as s,s3,...,s2 and as-
sume, without loss of generality, q(s?) > 0. Let T? = {t%,¢%,...,82} C
©? be such that T2 N S? = (. Define a conditional act (g,S* x (S? U
T?)) as follows: g(s) = f(s) for s € S. For all s' € S* : g(s',t}) =
£ty s2), os", ) = la(s3)/ Ty a(Dlals', )+ la(s3)/ T2y a(DNF(S", ),

o6, 2) = [ 52, a(2)/ Sy a(s2la(s", B)Ha(s2)/ S0 a(sDIF (), -
g(s',t2) = [23_1 q(s%)]g(s*,t2_;) +q(s%)f (s, s2). By adding a column at a
time and using 4.1(iii) and transitivity one gets (f,S) = (g,S* x (S2UT?)).
Eliminating the columns in S! x (S%UT?) one at a time except the last one,
£2 and applying 4.1(ii) and transitivity one has (g,S* x {t2}) = (f,S5). On
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the other hand, since for s' € S, g(s',12) = 3 ,2cq2 9(s?) f(s?,s?), by the
minimax theorem u(g(s!,t2)) < V(uo f,S) = u(y) for s! € S, whence
by monotonicity 2.4 (y*,S' x {t2}) = (g,S* x {t3}). By transitivity and
claim 4.2.1 we then have (y*,S) = (f,S). The parallel argument for rows,
except again use of the minimax theorem, gives the reverse weak preference
(£,5) = ", ).

Given arbitrary conditional acts (g, R),(h,T) € T, let w,z € A(X) be
such that u(w) = V(uog,R) and u(z) =V (uoh,T).

Now suppose V(uog, R) > V(uoh,T). We will show that (g, R) = (k,T).

The inequality and the definitions just given imply: V(u o w*,R) =
w(w) =V(uog,R) 2 V(uoh,T)=u(z) =V(uoz*T). In turn this, claim
4.2.1 and the indifferences just proven imply: (g,R) ~ (w*, R) ~ (w*,T) =
(2*,T) ~ (h,T).

On the other hand, weak inequalities and weak preferences can be re-
placed in the above arguments by their strict counterparts. Hence it is also

true that if (g9, R) = (h,T') then V(uo g,R) > V(uo h,T). This concludes
the proof. O

We presented the axiom of conditional SR-uncertainty 4.1 as a counter-
part of axiom 3.2, SR-uncertainty, in the framework of conditional acts. In

the following proposition we make explicit the formal relationship between

the two axioms.

4.8 PROPOSITION. Let a transitive binary relation > on I' be given. Then

the two following statements are equivalent:
(i) The binary relation x on I' satisfies conditional SR-uncertainty 4.1.
(ii) The binary relation > on I' satisfies irrelevance of duplications 4.1.1, and

for each S € A the induced binary relation =g on I's satisfies 3.2 SR-
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uncertainty.

Proof: (We omit some details which are conceptually easy but notationally

heavy to add.) “If’: suppose x satisfies irrelevance of duplications and within
each S SR-uncertainty. By the special case of the latter with o = 1 (see
Remark 3.2.1), replacing a row with another existing row makes the decision
maker weakly worse off. By irrelevance of duplications we can eliminate one
of the now two identical rows, obtaining 4.1(i). The same goes for columns
(4.1(ii) from 3.2(ii) with & = 1 and 4.1.1). To derive 4.1(iii), say for rows, i.e.
for i =1, let (f,5), a, ! and t! be given. Apply irrelevance of duplications
twice to duplicate rows 7! and #!, obtaining an indifferent act. Then apply
3.2(i) for the given o and the added rows, obtaining a conditional act with
two equal (new) rows which is weakly inferior to the original one. Eliminate
one of the two new rows, obtaining the conditional act (f1,77) of 4.1(ii), and
observe that by irrelevance of duplications (f,S) is weakly preferred to it.
Finally, apply 4.1(i) to obtain the weak preference in the opposite direction.
This gives 4.1(iii) for rows, and again the parallel argument yields 4.1(iii) for
columns.

“Only if’: given conditional SR-uncertainty 4.1, we have already noticed
that irrelevance of duplication is a special case of 4.1(iii) for a =0 or 1. We
now prove SR-uncertainty for rows (3.2(i)). For any two rows and «, apply
twice 4.1(iii) to add two identical rows each of which is the required convex
combination. Then eliminate the two original rows, obtaining a weakly in-
ferior conditional act, by 4.1(i). We now ‘almost’ have 3.2(i), in the sense
that in the conditional act obtained the two original rows are ‘empty’ and the
required convex combinations are in the newly created places. We then use
4.1.1 (already proved) to duplicate the new rows and put them in the ‘empty’

places, where they should be. Now we have two rows too many, which we
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just eliminate by 4.1.1 again, and this is 3.2(i). Once more, the analogous

argument for columns gives 3.2(iii). | O

Notice that in terms of the equivalent statements of Theorem 4.2 we have

proved the following, which we state separately for the sake of completeness:

4.4 COROLLARY. Condition (i) in Theorem 4.2 can be replaced by the fol-

lowing: |

(i') The binary relation = on T’ is transitive and satisfies irrelevance of du-
plication 4.1.1, and for each S € A the induced binary relation xs on
I's satisfies the conditions in statement (i) of Theorem 3.3 (i.e. com-

pleteness 2.1(i), C-independence 2.2, continuity 2.3, monotonicity 2.4,

non-degeneracy 2.5 and SR-uncertainty 3.2).
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