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Staggered and Synchronized Price Policies Under Inflation:

The Multiproduct Monopoly Case

1. Introduction

The microeconomic background of an inflationary process is characterized
by discrete jumps in individual prices. This observation has led to several
studies on the aggregation of discrete priqing policies into a smooth time
path for the aggregate price level. The feasibility of such aggregation is

necessary for the overall consistency of individual pricing policies (Caplin

and Spulber (1987]). A crucial issue for such an analysis is the interaction

among individual price policies. If all firms follow identical real price
cycles which are uniformly spread over time, then consistent aggregation is
feasible (Sheshinski and Weiss (1977]). There may, however, be important
reasons why such uniformity may not emerge as an equilibrium outcome. In
oligopolistic markets, where each firm takes into account the actions of its
rivals, pricing policies will be interdependent. In multiproduct monopolies,
there is a further source for interdependence, namely, increasing returns in
the cost of price adjustment. Even under competitive conditions, bunching
over time may be caused by aggregate shocks, while idiosyncratic shocks are
needed to maintain the spread.

Apart from the issue of consistent aggregation, the time pattern of
individual price policies has important implications for the real costs of
inflation. If individual price paths are staggered, then temporary shocks may

be propagated over long periods. Synchronized price policies, on the other

hand, may accelerate the adjustment process (see Blanchard [1983], Blanchard

and Fischer (1989, Ch. 8], and Taylor [1980}). 1In addition, non-synchronized




price policies lead to price variations across products and thereby to search

costs incurred by consumers (Benabou [1987]), Fishman [1987]}).

In this paper we analyse the optimal price policy of a single profit
maximizing decision maker, i.e., a multiproduct monopoly. This policy may be
interpreted as the cooperative outcome of a duopoly game. Indeed, we view this
analysis as a first step in the investigation of various non-cooperative
equilibria of dynamic Bertrand duopoly games with differentiated products.

The main object of our paper is the determination of the conditions
which lead to staggered or synchronized pricing policies, when the timing of
price changes is endogenous.? Two aspects of the multiproduct monopoly
decision problem influence this choice. First, the interaction in the profit
function between the prices of the two goods. Generally, positive interactions
enhance synchronization while negative interactions lead to staggering.
Second, the form of the price adjustment costs. Here one may distinguish

between 'menu costs' and 'decision costs'. Under menu costs, costs are

independent of the number of items in the price list. This extreme form of
increasing returns to scale ('economies of scope') leads to synchronization.
Under decision costs, we consider a constant returns to scale technology,
whereby each price change requires an adjustment cost. This provides an
incentive for staggering, namely, the saving on the additional adjustment
costs associated with joint price changes.

In this paper we devote our attention to the case of positive
interactions and constant returns to scale in the costs of price adjustment.
This choice is motivated by our interest in the duopoly problem, where these
assumptions are likely to hold. A longer version (Sheshinski and Weiss [1989])

treats menu costs and negative or zero interactions.




Special consideration is given to steady-state (repetitive) pricing
policies where the same real price is chosen at each adjustment. 1In staggered
steady-states, price adjustments alternate. In a synchronized steady state,
prices are adjusted simultaneously.

Our main results can be summarized as follows:

(1) The synchronized steady state and the symmetric staggered steady-
state are unique.

(2) A positive rate of interest is required to sustain both types of
equilibria under positive interactions. In particular, for the class of
quadratic profit functions, when the rate of interest approaches zero, a
staggered steady state is optimal if, and only if, the two prices are strategic
substitutes, while a syncrhonized steady state is optimal if, and only if,
prices are strategic complements.

(3) The synchronized steady state is locally stable. Specifically, if
initial real prices are sufficiently close to each other, then a synchronized
steady state is attained after the first price change. In addition, there is
a broad class of initial conditions which lead to an immediate change in both
prices, followed by a synchronized steady state.

(4) We provide a necessary and sufficient condition for the local
stability of the staggered steady-state. For the class of quadratic profit
functions, we show that the staggered steady-state is locally unstable.
Moreover, under no circumstance will a joint price change be followed by a
staggered steady state. That is, a staggered steady state can only be reached

asymptotically (Sheshinski and Weiss [1989]).

(5) We derive explicit solutions for the case of quadratic profit

functions when the rate of interest approaches zero. As in the single good




case, we find that an increase in the costs of adjustment or a reduction in

the rate ©of inflation reduce the frequency of price changes: A stronger
positive price interaction reduces the frequency of price changes in the
synchronized steady-state.

The analysis in this paper applies beyond the price adjustment problem
to other multiproduct inventory models. From this point of view, we extend
the work by Bensoussan and Proth [1982] and Sulem [1986] who analysed an
optimal reordering policy in a multiproduct case. Our work differs from
theirs by allowing for interactions in demands. However, Sulem discusses a

more general cost of adjustment structure.

2. The Model

Consider an economy subject to an inflationary trend where the aggregate
price level grows at a cénstant rate, g (g > 0) . We analyse a monopoly who
sells two related products whose demands depend on the current real prices of
the two goods. The monopoly controls the nominal price of each good and there

is a fixed real cost of nominal price adjustments.

Let zi(t) denote the log of the real price of good i at time ¢t ,

t € [0,») . The real profit function of the monopoly, denoted by F(zl,zz) R
is assumed to be time invariant and symmetric in its arguments,

F(a,b) = F(b,a) . 1In addition,it is assumed to be strictly quasi-concave and
twice differentiable for all (21’22) for which F(zl,zz) > 0 . Naturally,

we assume that F(zl,zz) > 0 for some (21’22) . However, there exist 2z

and =z (z> z ), such that F(zl,zz) ¢ 0 for all (zl,zz) not satisfying

z z, ¢ z s 1 =1,2 . These assumptions imply the existence of a unique




maximum for F(zl,zz) » Which, by symmetry, satisfies zy =z, = s

F(5,5) > 0 . The assumption that positive profits are attained on a compact
set of real prices is intended to ensure the existence of a well-defined
pricing policy. The set of prices for which profits are non-positive need
not be compact if the firm has the option of non-production at prices below
variable costs. The class of functions satisfying all of these conditions is
denoted ?}.

The problem facing the monopoly is a choice of price paths,
(zI(t),z;(t)) » Which maximize the present value of real profits over an
infinite horizon, given some initial condition (21(0),22(0)) .

The salient feature of our model is the discontinuous pattern of nominal
price adjustments. This widely observable phenomenon is generated in our model
by the presence of non-convex costs of price adjustment: any nominal price
change, no matter how small, requires non-negligible costs of adjustment.
Specifically, the real cost of any nominal price change is assumed to be a
constant denoted by g (g8 > 0 ).

The main question which the paper addresses is the following: will the

monopoly adopt a synchronized policy of price ad justments, whereby both prices

are changed simultaneously, or a stagpgered policy whereby the two nominal

prices are changed at different points in time.

Any pricing policy can be described by two pairs of sequences,

1.6 iu.)
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i
y 1 =1,2 , where ST is the real price of good i

=0
i
set at time tT by adjusting the nominal price of good i , keeping it

i i
unchanged during the interval [t

T,t_‘_+1) - Special attention will be given to

ripetitive price paths satisfying




T =0,1,2,...

where €1 (gl >0) , 1i=1,2 , are constants denoting the time intervals
between subsequent price changes. Thus, on such paths, the real prices chosen
at the beginning of each interval and the duration until the next price change

remain constant. We shall refer to such paths as steady-states. A symmetric

steady-state is defined by the additional restriction

T =0,1,2,...

where S5 (S5 > 0) and € (g > 0) are constants. Along such a path, the real
price of each good follows the same cycle. Among the symmetric steady-states

we can identify a synchronized steady-state by the added requirement that

(3)

that is, the prices of both goods are always changed at the same time.

Finally, a (symmetric) stagpered steady-state is defined by

1 2 e
(4) Itg - tol =3 »

that is, the prices of the two goods are changed alternately and the time
distance between any two price changes is equal.

The time pattern of the monopolist's optimal price policy, in particular,
whether price changgs will be synchronized, depends crucially on two features
of the model. The first relates to the technology of price adjustments, and
the second to the form of the profit function. One issue of concern is the
degree of returns to scale when both prices are changed simultaneously. Under
constant returns to scale in the costs of price adjustment the monopoly incurs

a cost of 2B whenever prices are changed jointly. Under increasing returns




to scale these costs will be less than 28 , possibly as low as B . The
degree of returns to scale depends on the distinction between 'menu costs' and

'decision costs' of price adjustment. By menu costs we refer to costs such as

advertizing and updating of price lists. By decision costs we refer to costs
of acquiring information on the production and demand of different products

and to costs related to the organization and computation of coordinated price
changes in multiproduct firms. If the costs of price adjustment are interpreted
as menu costs, one would expgct these costs to be B » independently of the

number of items in the menu. If, however, these costs are interpreted as

decision costs, one would expect that the complexity of the choice, and thus

the costs, will depend on the number of items involved, suggesting that
constant returns to scale is the more appropriate assumption. Indeed, a
typical organizational solution to this problem is decentralization, whereby
separate divisions are allowed to follow separate pricing policies, maximizing
objective functions set by the center. The overall outcome of this process is
that adjustment costs for the monopoly are the sum of the costs incurred by
the separate 'price centers'. A similar distinction in the inventory

adjustment context was made by Sulem [1986}.3

The other issue of concern is the interaction in demand and possibly
in the production of the two goods. 1In general, an increase in one price may
increase or decrease the marginal profitability of an increase in the other
price. For instance, in the absence of costs, a positive (negative)
interaction arises when an increase in one price raises (reduces) both the
quantity demanded and the slope of the demand curve for the other good. One

would expect that if the goods are strategic complements, i.e., raising =z

i
increases the marginal profits of zj j# 1, then synchronization is more

likely, and viceée versa.




The focus of this paper is on the case of constant returns to scale in
the costs of adjustment and positive price interactions. These assumptions
and symmetry appear to be more appropriate for the duopoly case. We retain
them in the analysis of the multiproduct monopoly ‘to support the interpretation

of this model as a cooperative duopoly equilibrium. Specifically, we assume

Al. Complementarity

For any (zl,zz) ,

Fij(zl’z.i) >0 >

An additional assumption which will be used in subsequent analysis is:

A2. Non-Reversibility

For any (21,22) and x (x > 0) ,

Fi(zl,zz) >0 = Fi(zl-x,zz-x) >0,

Assumption A2 imposes the natural requirement that if a price increase

is profitable at (21,22) s then it is also profitable after these real prices

are eroded by inflation to (zl-x, zz—x) .

In some cases we will need a stronger version of A2:

A3. Monotonicity

For any (z,,z,) ,

Fii(zl’ZZ) + Fij(zl’z2) <0,




A3 in conjunction with Al, ensure that over any time interval with fixed
nominal prices, the profitability of a price increase rises with time. Observe

also that Al and A3 imply that F(zl,zz) is strictly concave. On the other

hand, A2 and Al do not imply concavity.

3. Characterization of the Optimal Policy and the Associated Value Function

Let V(zl,zz) be the value function associated with an optimal policy

startipg at real prices (zl,zz) at time O . The existence of such a
function is guaranteed by our assumption that F(zl,zz) has a well-defined
maximum and by assuming that the real interest rate, r , 1is positive. The
value function is defined recursively:*

V(z ) = M

y Z ax

t o—rx
{J € F(zl-gx, zz-gx)dx +
0

+ e "“Max[ Max V(S.,s.) - 2B, Max V(S,,z,-gt) - B,
1°52 1°%2
515, S,

ng V(zl-gt,sz) - Bl} -
2

where t 1is the time of the subsequent price change and (Sl,sz) are the real
prices chosen at that time (i.e., nominal prices are set so as to attain these
real prices). If the optimal t is t = 0 , then a price change occurs
immediately; otherwise the current nominal prices will be kept unchanged, with
real prices decreasing at the rate of inflation, g , over the interval [0,t) .
For any initial (zl,zz) , a well-defined price change is optimal after a finite
lapse of time. That is, the R.H.S. of (8) actually achieves the maximum (see

Appendix A) .




We begin our analysis by stating some properties of the value function

which will be used subséquently:

1 (Z-2)/8 _rx
e

(i) F(Z-gx, Z-gx)dx - 2B] ¢ V(zl,zz) < E(S,S) .

| - e-r(z=2)/8 0 -

(ii) V(zl,zz) is symmetric,
(iii) V(Zl’ZZ) is continuous,

(iv) V(zl,zz) is differentiable, except possibly at some boundary points.

The upper and lower bounds on V(zl,zz) can be easily demonstrated.
The upper bound is the présent dicounted value of the flow of maximum
profits, F(§,§) , which would be attained in the absence of adjustment
costs, B = 0 . The lower bound is the present discounted value of a
feasible repetitive policy where real prices vary between Z and 2z .
(Recall that. outside these bounds profits are negative.) We assume

throughout that costs of price adjustment are relatively small, specifically,
(Z-2)/8 _rx =
that f e F(Z-gx, Z-gx)dx - 28 > 0 . This ensures that for any
0]
initial condition, V(zl,zz) >0 .

Symmetry of V(zl,zz) follows directly from the assumed symmetry of

the profit function, F(zl,zz) . Starting from z, = a and z, = b or

z, = b and z, - a , the monopoly can obtain the same present value of future

profits simply by exchanging the optimal price sequences of the two products.
Continuity of V(zl,zz) can be established by noting that (8) is a

fixed point of a contraction mapping which maps continuous functions into

continuous functions (see Stokey and Lucas [1989], ch. 3, pp.49-55).
Differentiability of V(zl,zz) can be established whenever the choice

of the controls in (8) is unique and thus continuous in (21’22) . In

Appendix A we show that after the first price change, the time of the




subsequent price increase and the value of the real prices chosen at that time
are uniquely determined.

Let

(9) M(Zl,zz) = Max{V* - 28, ng V(Sl,zz) - B, ng v(zl,sz) - B}
1

where V* = Max V(Sl,S ) .
5,55, 2

Since it is always feasible to change prices immediately, that is, to
t =0 in (8), we have

v(21’22) > M(zl,zz) .

Similarly, since it is always feasible not to change any price in the

interval [0,t) , we must have

-rXx -rt
V(zl,zz) P g e F(zl-gx,zz—gx)dx + e V(zl-gt, z,-gt) .

Equation (11) must hold for all t 2 0 . Expanding the R.H.S. by a

Taylor expansion, we can rearrange (11), divide by gt , and take the limit

as t + 0, to obtain

(12) F(zl,zz) (’gvv(zl,zz) + rV(zl,zz)

where VYV , the directional derivative of V , is defined

V(zl,zz) - V(zl—gt, zz—gt)

(13) VV(zl,zz) = 1lim
t+0 gt

Clearly, when V(zl,zz) is differentiable, then VV(zl,zz) =
= Vl(zl,zz) + Vz(zl,zz) - It can be shown (see Sulem [1986] and Bensoussan,

Crouhy and Proth (1983]) that inequalitites (10) and (12) are related by the




complementary slackness condition

(14) [V(z;,2,) - M(z),2,)] [8VV(z,,2z,) + rV(z,),2,) - F(z;,2z,)] =0 .

The solution of the monopoly's problem is now described with the aid

of four distinct sets:
= {21,22 | V(zl,zz) > M(zl,zz)}
= = = *
{zl,z2 V(zl,zz) M(zl,zz) \Y 28}

= {21,22 | V(zl,zz) = M(zl,zz) = ng V(Sl,zz) - B}
: 1

= {21,22 V(zl,zz) = M(zl,zz) = ng V(zl,Sz) - B}

The set C 1is the continuation set, where no price change occurs.

The set TO trippers a change in both prices, while Ti , 1 =1,2 , 1is the

set which triggers a change in the pricé of good i only.

Condition (14) implies that for (zl,zz) € C, we have
rV(zl,zz) = F(zl,zz) - gVV(zl,zz) .

Equation (16) can be interpreted as an asset pricing formula. The
imputed value of a state which does not generate a price change, rV(zl,zz) .
is given by the current flow of profits, F(zl,zz) » less the depreciation
caused by the inflationary erosion in real prices, gVV(zl,zz) « In

subsequent analysis we shall refer to equation (16) as the 'valuation formula'.

With each point in the trigger sets T0 s T1 and T2 is associated

a choice of an optimal pair of new real prices. Specifically, for any

(zl,zz) € Ti » 1 =1,2, there is a unique real price chosen for good i ,




S: , whose value depends on zj s, J# 1 . We write S; = S(zj) s J#A i,

i,j = 1,2 . These 'reaction functions' are symmetric and stationary (see

Appendix A). In contrast, for (zl,zz) T0 » in view of the symmetry imposed
by our assumptions, if (S{,Sg) is an optimal choice, so is (S¥,s%*) . Hence,

1

in general, uniqueness cannot be expected. It is, however, easy to show that

with positive interactions, F12 >0 , any point (21’22) < T0 triggers a
unique action Sf = a To see this, observe that for a symmetric profit

function with positive interactions

1 1
(17) F(zy,2,) ¢ 5 Flz),2)) + 5 Flzy,2,) = £(z,) + f(z

2)
for all (z,,z,) where f(z.) = L F(z,,z.) i=1,2 .5 That is, a
1727 » i 2 12227 » ’ ’

mixture of the profits at the extremes exceeds profits at any midpoint. Hence,
the value of the optimal program associated with an additive profit function
of the form f(zl) + f(zz) provides an upper bound for the optimal value of
the program associated with F(zl,zz) - An optimum for an additive profit
function is attained when an (S,s) policy is followed for each of the two
goods (see Sheshinski and Weiss [1989]). When the initial conditions are
subject to choice the firm can attain this upper bound by selecting at time 0O
the same real price, S; s for both goods, followed by a synchronized (S,s)
policy for both goods thereafter.

The chosen pair of real prices triggered by (zl,zz) 3 T0 , must be in
the interior of C . Clearly, an immediate subsequent price change cannot be
optimal since the same outcome can be obtained without incurring the additional

adjustment cost. For the same reason, with (zl,zz) € Ti y 1 =1,2 ,

chosen prices cannot be in Ti - Nor can the chosen prices be in Tj R

j#1i , unless (21,22) is also in T0 » in which case a joint change




into C 1is triggered. Moreover, at the chosen point, V(zl,zz) is

differentiable. This follows from the fact that the subsequent optimal date

of price adjustment, t*(zl,zz) » and the real prices chosen at that time are

uniquely determined (sce Appendix A). Accordingly, setting Vl(Sg,S;) =
= VZ(S;,S;) 0 in the 'valuation fomula', (16), we obtain the following

ecquation:

(18) rV(S*,s*) = F(S*,s*) .
a a a a

At the time of a joint price change, current profits reflect the full imputed
value of the new state, since depreciation is locally negligible.
However, when only one price is chosen optimally, the depreciation of

the other price has to be taken into account. Specifically, we have

(19) rV(S;,zz) = F(S{,zz) - sz(S;,zz) ,

*) = *y _ *
rV(zl,Sz) F(zl,Sz) gvl(zl,sz) .

Equations (19) and (20) are obtained from (16) by setting
* = * = 1 .
Vl(Sl,zz) 0 and v2(21’52) 0 , respectively
Recall that points in the trigger sets are related to the corresponding
chosen points via the relationship V(ZI’ZZ) = M(zl,zz) . Thus, if (21,22)
is in the interior of, say, T1 » we have V(zl,zz) = V(S(zz),zz) -B .
Since this relationship holds for all (21,22) in the interior of Tl’

we can differentiate to obtain

(21)




Vz(zl,zz) = Vz(s(zz),zz) .
Thus, using equations (12) and (19), we obtain

F(zl,zz) < F(S(zz),zz) - g, for (zl,zz) 3 T1 .

By a similar argument:

F(zl,zz) < F(zl,S(zl)) -rg , (;1,22) & T2

* k) _
F(zl,zz) < F(Sq,Sq) 2rg , for (21,22) e T0 .

The economic interpretation of equations (23)-(25) is clear. The
R.H.S. of each equation is the cost of a delay in a price change, consisting
of foregone profits at the new real prices net of adjustment costs, while the
L.H.S. is the benefit of such delay, consisting of profits at the old prices.

To trigger an immediate price change it is necessary (though not sufficient)

for a short delay to be unprofitable.

FIGURE 1

Figure 1 describes the continuation and trigger sets and the

corresponding choice (reaction) functions, S(z) . Observe, first, that TO

++
consists of four distinct subsets: For all (21,22) € T0 » @ price-increase

of both goods to (S;,S;) is triggered. For all (21’22) 3 TO » a reduction

-t +—

of both prices is triggered, while for (zl,zz) < T0 (or € TO

price is increased and the other decreased. Similarly, each Ti ,

+
consists of two regions, one, denoted by Ti » calls for a price increase in

good i, while Ti calls for an immediate price reduction.




Generally, a joint price change is triggered whenever both real prices
are distant from the level, (§,§) » which yields maximum profits. A single
price change is triggered whenever one price is distant from S while the
other is close. Continuation occurs when both prices are close to (g,g) .

Having assumed a positive inflation, g > 0 , price reductions can
4+
occur only once, at the outset (t = 0) . 1In contrast, the regions Ty

+
and Ti y 1 =1,2 , are reachable from C after some delay and revisited

+ ++

periodically. At any point on the boundaries of Ti and TO , which are
reachable from the reaction curves S(zl) and 5(22) . V(zl,zz) is
differentiable. As shown in Appendix A, following a price increase, the timing
and the prices chosen for the subsequent change are uniquely determined, which
implies that V 1is differentiable along a path starting at any point on
S(zl) or S(zz) . Using the 'valuation formula', (16), which holds in C ,
it follows that (23)-(25) hold with equality at points where such paths reach
the boundaries between C and the trigger sets. This observation helps to
determine the boundaries between the continuation and the trigger sets. For

+
instance, at the boundary between C and Ty » where an increase in the
price of good one is triggered, the firm is indifferent between holding
nominal prices unchanged, obtaining the current level of profits, F(zl,zz) .

and raising the price of good one to S(zz) , obtaining F(S(ZZ)‘ZZ) -rg .

The term rB 1is the imputed interest on adjustment costs. We denote by

+ 3
s(zi) the boundary points between C and Tj , 1i.e. points which trigger

and immediate increase in zj s, J#1i, i,j =1,2 (see Figure 1).

Somewhat different considerations apply to price reductions. For

instance, at the boundary between T, and C , point k in Figure 1, the

firm is indifferent between an immediate price reduction to (s;,s;) and




holding both prices unchanged until their real values erode to point f on
++

the boundary between C and Ty - This discontinuity in the action leads to

non-differentiability of V(zl,zz) at point k . On the diagonal above

point k Vl(z,z) = Vz(z,z) = 0 . However, on the diagonal below this point,

the gradient must be strictly negative.® Let S(zi) denote the boundary

points between C and Tj s 1i.e. points which trigger an immediate decrease

in 2z, , j#1i, 1i,j =1,2 . Generally, V(zl,zz) is not differentiable

J

along this boundary.

We now turn to a description of the boundary between C and T0 . This

boundary is determined by the condition F(zl,zz) = F(S;,S:) - 2rf . That is
the firm is just indifferent between raising both prices to (S;,S;) and

holding them unchanged instantly. In particular, consider point h in

Figure 1, whose coordinates are (zl,s(zl)) - This point is on the boundary of
++ + )

c, T, and T, . At such a point, changing only z, to S(zl) is

equivalent to changing both prices to (S:,S;). Consistency requires that

s(zy) = Sg and,in addition, following the change in z, , the firm should

be willing to change 2z, immediately. That is, the best response to

(zl,s(zl)) is (zl,S;) » which in turn has to be a point in T, -

+
Furthermore, (zl,S;) must be on the boundary of C and T, » for otherwise

-+
points in the interior of 'I‘2 would also lead to a joint price increase.

Thus,

(26) F(zl,s(zl)) = F(Zl,sg) - rg ,

F(zl,s(zl)) = F(S;,Sz) - 2r8 ,

which implies that




* = * * —
F(z),S%) = F(S%,8%) - xp .

Under the assumption of positive interactions, FIZ > 0 , and using the

quasi-concavity of F(zl,zz) » conditions (26) and (28) imply that zy > s(zl) .
That is, point h must be strictly to the right of the diagonal. Consequently,
there is a non-degenerate segment (gh) on the boundary between C and T;+,
where a joint price increase is strictly preferable to a single price increase.
This feature is special to the case of positive interactions. The segment gh
degenerates to a single point when F12 = 0 and disappears when F12 <0
(see Sheshinski and Weiss [1989]). Intuitively, under positive interactions,
when the two prices are not too far from their maximum profit position, an
anticipated change in the price of good j at some future date, t*(zl,zz) ,
creates an incentive to postpone the change in the price of good i y 1 #3,
to that same date.

It can be shown that with positive interaction in the profit function,

the reaction curves must have a positive slope in the neighborhood of

(S;,Sg) . That is, an increase in z; leads to a higher chosen real price

for good j, i.e., S'(S;) >0 .7 Finally, it can be shown that S'(z) < 1

for all =z , and that whenever V(zl,z is differentiable at the boundary,

2)
s(z), then s'(z) <1 .8 The former is the local stability condition in the
static Bertrand model. The latter is consistent with the requirement that any
path emanating from S(z) intersects a trigger set once.

Any path satisfying the first-order conditions can be portrayed by a
trajectory which moves smoothly inside the continuation set where both real

prices erode at the same rate, g , and then jumps to the reaction curves

whenever the corresponding trigger sets are met. In Figure 2 we present three




such paths. Consider first the repetitive paths, indicated by (e,f) and
(a,b,c,d) . The first represents a synchronized steady-state and the latter

a (symmetric) staggered steady-state.

FIGURE 1

The conditions determining these repetitive paths are as follows. A
synchronized steady state is characterized by a pair, (S;,e) , satisfying:

€ —rx -re
(30) F(S;,S;) = rV(S;,S;) = 1—-? [{) e F(S;—gx, S;—gx)dx - 2Be ]

and

(31) F(S%-ge, SX-ge) - F(S%,8%) + 2rg = 0,

where S; is the initial level of real prices at the beginning of a cycle and
€ 1is the duration of each cycle.

The first equality in condition (30) follows, using the 'valuation
formula', (16), from the maximization of V w.r.t. the chosen initial
prices. The second equality is derived from the definition of V » (7)),
under a stationary policy. Condition (31) is necessary for the optimality of
the timing of a price change.

Similarly, a symmetric staggered steady state is characterized by a

pair (Sg,t) satisfying

(32) F(S*, sg~gt) = rV(S*, sg—gt) + sz(S*, Sg—gt) =

£ _ -
[f e er(S;—gx, S;-gt-gx)dx - Be rt] +
0

-rt
- €

t
+ gf e
0

-rx . *oe
F2(5b gx, S¥-gt-gx)dx ,




F * *__ — * x_ =
(Sb 2gt, Sb gt) F(Sb, Sb gt) + rg o,

where S; is the level of the real price chosen when only one price is raised
and .t 1is the time interval between successive price changes (i.e. the
duration between subsequent price changes of the same good is 2t ).

Using integration by parts, (30) and (31) imply

€ -rx % *
[ e Fl(sa—gx, Sa—gx)dx =0 .
0]

Similarly, (32) and (33) imply

t —rx 2t _yx
f e Fl(sg—gx, Sg—gt—gx)dx + [ e Fl(S;-gx, Sg+gt-gx)dx =0 .
0 t

The above conditions can be easily interpreted: in steady-state, the
discounted value of marginal profits over a typical cycle is zero. In addition,
at a point of price change, marginal benefits and losses from postponing the
price adjustment are equal.

‘Under assumptions Al and A2, it follows from equations (34) and (35),
that marginal profits, Fi (i = 1,2) , are negative at the beginning and
positive at the end of each price interval. Thus, a typical price cycle
starts at a price which exceeds the level which maximizes profits and
terminates at a price below that level. Such oscillations strike a balance
between the loss in profits and the costs of price adjustment. It can be
shown that the same pattern also obtains outside steady-state (Sheshinski and

Weiss [1989], Lemma 2).




Not every repetitive path that satisfies conditions (30) and (31) or
(32) and (33) is optimal. It is easy to find examples which satisfy equations
(32)-(33) and are sub-optimal (see Section 6). In terms of Figure 2, a non-
optimality of the staggered steady-state will be indicated by tangency of this
path with the boundaries of C and Ti » 1 =1,2 . Such tangency implies
that continuation towards the boundary of C with TO also satisfies the
first-order conditions. The choice between these alternative policies cannot
be determined from the figure alone.

It is easy to check that both paths (e,f) and (a,b,c,d) satisfy the

first order conditions at all times, provided that the initial state is on one

of these paths. That is, the staggered and synchronized steady states,
defined in Section 2, provide a solution of the first order conditions for

some S , g and t In Appendix B we prove the following:

Proposition 1. There is a unique optimal synchronized steady-state. Under Al

and A2, there is a unique optimal symmetric staggered steady-state.

The proof of uniqueness of the two steady states relies on the

assumption that these are optimal. Thus, in addition to (30)-(33), we assume

that the appropriate second-order conditions hold.

4. Stability Analysis

We have identified two repetitive paths which satisfy the necessary
conditions for an optimum, provided the initial conditions are on one of these
paths. For other initial conditions, the optimal path is, in general, non-

repetitive. That is, different real prices are chosen at successive points of




price change and the time intervals between such changes. This dynamic

ad justment reflects history-dependence. That is, the optimal level for the new

price of good i depends on the real price of good j , j# i . of course,
history does not matter if it is optimal to change both prices.

It is thus natural to inquire whether such dynamic paths converge
asymptotically to a steady-state. We restrict our inquiry to paths that
initiate in the neighborhood of one or the other steady-state and provide two

local-stability results.

Proposition 2. The synchronized steady-state is locally stable.

Proof: Starting in the neighborhood of the synchronized steady-state path,
it is seen in Figure 1 that the trajectory reaches a point on the boundary of

4
T

o ©n the nondegenerate segment gh . This triggers a joint price increase

to the synchronized steady-state at point e . i

In Appendix B we provide a necessary and sufficient condition for local
stability of the staggered steady-state. This condition depends, in general,
on the values of (Sg,t) which solve equations (32)-(33). For specific profit
functions, however, these conditions can be verified a-priori. 1In particular,

consider the class of (symmetric) quadratic profit functions:

2 2
(36) F(zl,zz) = a(zl+22) - b(zl+22) + €z z, ,

where, to guarantee strict quasi-concavity, we set b > 0 and

For this important class of functions we prove the following:

Proposition 3. If F(zl,zz) €E¢ is quadratic, given by (36), then the

staggered steady-state is locally unstable.




Proof: Appendix C.

The path a'b'c'd' in Figure 2 illustrates the local instability of
the staggered steady-state. Starting at an initial point near the staggered

steady-state path, a' , the optimal trajectory converges to the synchronized
steady-state.

- Propositions 2 and 3 present a sharp contrast between the two types of

steady-state. For positive interactions, FIZ > 0, the staggered path is

followed only if the initial Price configuration is on this path. On the
other hand, the synchronized steady-state is attained from a wide range of
initial conditions, i.e., an immediate jump to the synchronized steady-state
path occurs whenever the two pPrices are far away from their maximum profits
level. 1If prices are not too far from that point and from each ofher, then it
is optimal to postpone the jump to the synchronized steady-state. In contrast,
if only one price is far away from its profit maximizing level, then this
price will be changed immediately, but a steady-state does not follow.
Instead, the firm will adopt a non-repetitive path. We have seen that with
quadratic profits, this path does not converge to a staggered steady-state.
Thus, it remains to be determined whether it converges to the synchronized

steady-state. This is a question of global stability.

The analysis of global stability requires a complete solution for the
value function. An approximate solution can be obtained from the knowledge of

zl,zz) around the staggered and synchronized steady-states (see Sheshinski

and Weiss [1989]).




5. An Example

In this section we derive, for certain cases of our model, explicit
solutions to the steady-state values in terms of the underlying parameters of
the model and prqvide some comparative statics. For this purpose we use two
simplifying assumptions common in the related literature on optimal inventory
policy (e.g. Costantinides and Richard [1978) and Sulem [1986]).

The first assumption is a quadratic instantaneous profit function, of
the form (36). The second assumption is the maximization of average profits
per price cycle, which is equivalent to the limit of discounted real profits
in steady-state when the rate of interest approaches zero.

Consider a synchronized steady-state path satisfying equations (30)-(31).
These necessary conditions implicitly define S; and ¢ as functions of the

rate of interest, r . The limit of these values as r » 0 must satisfy

€
(37) a - (2b—c)(S;—g 3 )

and

1
(38) e = [__12_L]3 .

g2(2b—c)

These equations are obtained by taking the limits of (30)-(31) as r = O

The limit of rV(S;,S;) as r » 0 , denoted Uy is

1 €
no=E [é F(S;—gx, Sz~gx)dx - 281 ,

where F(z],zz) is given by (36). The R.H.S. of (39) is seen to be the
average profits associated with the limit price cycle.
Similarly, consider a staggered steady-state path satisfying equations

(32)-(33). As r.+- 0, the solution (sf,t) approaches a limit satisfying




a - (2b—c)(S;-gt) =0 ,

1
t = [—L]3 .

gz(éb-c)

The corresponding limit of rV(S*, Sg—gt) as r » 0

t
= *_ * ot -
u, = [é F(Sb gx, Sb gt—gx)dx B8] .,

where F(ZI’ZZ) is given by (36).
As we have already indicated in Section 3, conditions (30)-(31) and
(32)-(33) are necessary but, in general, not sufficient for optimality. To

determine the optimality of (S;.e) and (Sg,t) » We shall refer to:

Proposition 4. If F(zl,zz) € :; is a quadratic function given by (36), then

(43) "1'“2%0<=>F12-c%

Proof: Appendix D.

profits associated with a staggered policy. It follows that in this case,
whenever a price change is contemplated, a move to the synchronized steady-
state which costs 2B , will dominate a move to the staggered steady-state,
which costs only B - The reason is that the undiscounted difference between

the value of the two programs exceeds any finite B - We therefore conclude:




Corollary 1: For a quadratic profit function, (36), with positive interaction,

F12 = ¢ >0, the staggered steady-state is never optimal whenever r - 0 .

Corollary 1 is not true if r > 0 , since in this case the gain from
moving to the synchronized steady-state may be outweighed by the additional

costs of adjustment.

<

Expressions (37)-(38) and (40)-(41) provide a convenient framework for
comparative statics. It is seen that in both steady-states, an increase in
the costs of adjustment, B » or a reduction in the rate of inflation, g ,
increase the duration between successive price changes. For the synchronized
steady-state, an increase in the concavity of the profit function, i.e. an
increase in 2b-c , decreases the duration of fixed nominal price intervals.
The reason is that as profits decline faster around the maximum it becomes
more costly to keep the nominal price unchanged. It is seen from (38) that a
stronger positive interaction, i.e. higher ¢ , reduces tbe frequency of
price changes in the synchronized steady-state. Similarly, as seen from (41),

a stronger negative interaction, i.e. a decrease in ¢ , reduces the frequency

of price changes in the staggered steady~state. The effects on the initial

real Price, S; and Sg » are generally in the same direction as the effect
on duration, as seen in equations (37) and (40). This is also true with
regard to the effect of an increase in & on initial prices. This is because
the elasticities determined by (38) and (41) are less than unity. The terminal

prices, S; - ge and S; - 2gt in the synchronized and staggered steady-

states, respectively, change in oppposite direction to g or t .

For additive profits, ¢ = 0 y (38) and (41) imply that g = 2t and,
using (37) and (40), that S; = Sg - Thus, the synchronized and the symmetric

staggered steady-states have the same upper and lower bounds on real prices.




Along the staggered path, price adjustments occur alternatingly at a frequency

twice as high as that of joint price adjustment in the synchronized steady-

state.

6. Conclusions and Their Robustness to Alternative Assumptions

The main finding of this paper is that, with positive interactions, a
staggered price policy is unlikely. Since such a policy has been assumed in
support of consistent aggregation (i.e., a continuous path for the aggregate
price level associated with discrete price changes by individual fifms) this
negative result is worrisome. It is therefore important to examine its
sensitivity to our assumptions concerning the costs of price adjustment and
the interactions of the two prices in the monopolist's profit function.

Increasing returns to scale in the costs of pPrice adjustment, e.g. menu
costs, would further strengthen the tendency for synchronization of price
changes. In fact, as shown in Sheshinski and Weiss [1989], in the menu costs
case, the monopolist's optimum pricing strategy is fully synchronized
following the first price change. In this case, the optimum policy for two
goods reduces to the one-good case analysed in Sheshinski and Weiss (1977).

In the absence of positive price interactions in the profit function,
the likelihood of a staggered policy increases substantially. In the case of
additive profits (zero interactions) there is a continuum of non-synchronized
steady-states, all with the same (S,s) values for both goods, which differ in
the timing of the price change of the goods. The value of each steady-state
increases as the difference between the time of price adjustment of the

different goods decreases (see Sheshinski and Weiss [1989])). Thus, the




synchronized steady state is the best. Nevertheless, for a wide range of
initial conditions, it is preferable to change only one of the two prices,
thereby saving on tﬂe costs of price adjustment.

Negative price interactions in the profit function fully exclude a
synchronized price policy (Sheshinski and Weiss [1989)). This has been
illustrated in the example discussed in Section S. For a positive interest
the interactions are non-negative. However, for the special case of quadratic
profits, we have shown that in the limit, when the.tate of interest approaches
zero, a sharp classification exists: positive ihteractions eliminate
staggering while negative interactions eliminate synchronization.

The important role of the interactions in determinining the timing of
price changes, can be explained intuitively. Recall that the gain from
postponing a price change is the sum of current flow of profits F(zl,zz) and
the interest gained on the delay in adjustment cost, rB . The loss from
postponing a price change is the flow of profits evaluated at the new real

price, S: - Hence, the difference F(zl,zz) + rf - F(Sf,zz) is the net gain

from postponing a price change of good 1. If the price of good 2 is to be

raised now, then, with positive interactions, F12 > 0, the gains from
postponing the price increase of good 1 diminish. This creates an incentive
for synchronization. Conversely, if FlZ <0, then staggering is enhanced.

To further explore the role of different assumptions on the nature of
the optimal program we use some numerical analysis. We restrict our attention
to synchronized and staggered steady states which can be solved using
equations (30)-(31) or (32)-(33).

In Table 1 we present such solutions for the case of a quadratic

profit function. The Table highlights the following points.
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The synchronized steady state provides a higher value than the staggered

steady state whenever ¢ > 0 . This pattern is reversed for negative

interactions. Although not presented in the Table, the synchronized

steady state still dominates at zero and small negative interactions.

The staggered steady state may be optimal even if it is dominated by the
synchronized steady state since it costs B to move from one steady state
to the other. The asterisks in Table 1 indicate cases where such a move
is profitable. It is seen that optimality of the staggered steady state
is enhanced by high costs of price adjustment in conjunction with high

rates of inflation.

Although the staggered steady state appears to be optimal under mild
positive interactions, it is not locally stable (as stated in
Proposition 3). For all the simulations in Table 1 we have verified that

the stability test fails if ¢ > 0O and passes if ¢ < 0 .

With positive interactions the staggergd steady state involves more
‘frequent price changes and smaller price increases for each of the two
gbods. This is in addition to the fact that one of the goods is changed
every half period. With negative interactions, price changes for each

product are less frequent in the staggered steady state.

As noted in our previous work, small costs of price adjustment are

sufficient to generate time intervals with fixed nominal prices whose
duration seems plausible. In‘the uppér panel of Table 1 we use co;ts of
adjustment which are one permill of the current flow of profits,

B = 0.001 . Ve see_tﬁat at an inflation rate of 20 percent a year, prices

are raised jointly every 8 months in a synchronized steady state and, in




the staggered steady state (with ¢ =1 ), each price is raised every 6

months.

The loss of potential profits due to adjustment costs increases with the
rate of inflation. There is a magnification effect where even minute

ad justment costs translate into a non-negligible loss of profits. This
is due to the accumulation of two effects: as the rate of inflation
increases, price adjustments occur more frequently and the firm is away

from the maximal profits point for a longer period. For instance, with

g = .50 s ¢©=1, we see, in the upper panel of Table 1, that at a

staggered steady state an adjustment cost of .00l translates into a loss
of profits of .01l. 1In the lower panel of Table 1, the numbers are .1

and .237, respectively.

In all the cases presented in Table 1, an increase in the inflation rate

causes more frequent price adjustments and a larger variation in real
prices. These patterns are consistent with the analysis discussed in

Section 5.

We conclude with a brief remark on the duopoly case. If price changes
are controlled by different firms, the likelihood of a staggered price policy
increases. This is a cénsequence of two considerations. First, in fhe
absence of cooperation, returns to scale in the costs of price adjustment
cannot be exploited. Second, the monopoly, who internalizes all interactions,
would change both prices even if this is not optimal for each duopolist
separately. If the number of firms increases to the point where interactions
become negligible, then idiosyncratic shocks are required'té sustain a

staggered steady-state (Ball and Romer [1989)).




'Aggendix A

The purpose of this appendix is to establish some basic featurgs of the
optimal pricing policy and its associated value function. First, we show that
there exists an optimal program where V(zl,zz) , defined in (7), attains a
maximum. Second, following the first price change, the timing of subsequent
price increases and the associated real prices are uniquely determined.
Finally, we note that uniqueness implies that V(zl,zz) is differentiable at
all (21‘22) reachable after a price increase.

The optimal policy is a member of a class of policies which can be
described as sequences of nominal prices for each of the two goods and
time-intervals over which each nominal price prevails. This characterization
follows from the existence of positive costs of adjustment for nominal price
changes.

Let us define

© ©

(A.1) {uT)T""‘l = (tT'vSl\‘l"SZT)

T=1

where tT are the dates of of nominal price changés (for at least one good)

and SjT , j =1,2 , are the logs of the real prices chosen at these dates.

+
Clearly, SjTe IR and tT,e R tT+1 2 tT and ty ) 0 . Without loss of

generality, we can assume tT+l > tT . Due to the fixed costs of adjustment,

the price of the same good will not be raised twice within a short interval.
If two different prices are raised within a short interval, we can treat that
as a simultancous raise of two prices. We denote the set of all sequences

satisfying the above restrictions by U .

«©
To each sequence {HT}T=1 € U , we can associate the present

discounted value of real profits




® t —rxg -rty s
(A.2) J(Zl’z2’(ur)r=l) = z)-8X, zz—gx)dx + Be 5 16 jl—zj+gt1) +

F(S., - - - -
( 1T g(x tT), SZT g(x tT))dx +

2
-rt

P - -
j=1 jr+17S gt By~ )}
if y=20

if y # 0.

By definition (A.3), costs of adjustment are avoided if there is no
nominal price change. That is, if the real price chosen at time tT coincides

with the real price induced by the nominal price chosen at time tr—l .

The value function is defined as

v(zl’ZZ) = Sgp J(zl’ZZ’(ur)T=l) .
udioy U

-
Observe that J(zl’z2’{ur)r=l) 1s upper semi-continuous.

Recall that under our assumptions, profits are positive only within a
finite box, 2z ( z; < ; , 1 =1,2 . Charging at some tT an initial price
for good j , jt which exceeds z » yields non-positive profits for a

period of - e The value of the program associated with this choice

is at most ———— . On the other hand, the firm can obtain immediately

1 [I(E'E)/ge—rx

— F(Z-gx, Z-gx)dx - 28) . By assumption, this
- o r(z-2)/g U




value is positive. Hence, for a sufficiently large 'SjT (and ts ), the

policy of repetitive adjustments from z to z dominates. Setting sz

below z or postponing the nominal price changes until some real price
erodes below 2z 1is also suboptimal. Any such path can be replaced by a path
which differs only in the initial phase but yields positive profits via
continuous price adjustments. It follows that, without loss of generality,
we can select the optimal policy from a compact subset of U .

We can now apply Weierstrass' Theorem that an upper semi-continuous

function defined on a compact subset (of a normed linear space) achieves its

maximum. We conclude:

Proposition I. There exists an optimal policy, (p?):=1 € U, for which

V(zl,zz) » defined in (A.4), attains its maximum.

Any path which maximizes V(zl,zz) must satisfy a sequence of
necessary first-order conditions. For example, consider a pair (21,22)
where the optimal sequence is such that prices are raised alternatingly, first

good 1, then good 2, then good 1 again, and so on. In this case the value

function becomes

* *
t - -rt
(A.6) V(zl,zz) = f 1 e rxF(zl—gx, z,-gx)dx - Be 1

*
-rt
-rx x _ - _ _ 2
e F(S11 8 (x tl), X,-gx)dx -Be

-rxX
F(S* -g(x-t*), S* _g(x-t*
e ( 1 g(x ]), 22 g( 2))

-rx
S* - _t* S* - __t*
e "F( 13 g(x 3), 29 g(x 2))

s eecccscccscoe
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where superscripts indicate an optimal choice of the controls. The

corresponding first-order conditions are

ot ¥ —ot* * —ot*) —
(aA.7) F(z1 8tYs 2, gtl) < F(Sll, z, gtl) 1 44}

F(ST -e(e3-t])s zp-gt3) = F(S},-g(t3-t}),53,) - xp

FST)meCEfED), 53,78 CE5ED) = F(ST,,55,-e(t-eD) - vB

-
.

and

(A.8)

* *
-rX t -rX
*2 e TF (S¥ ~a(x-t}), z,-gx)dx + y*3 e " F) (5} -8(x-t), S} -g(x-t3))dx = 0
t t
1 2

t
4 e—rx
*

-rx
F * % * _ %
e 2(S11 g(x tl), S g(x t2))dx + f

F * - —-t* * —t*
2(513 g(x t3), S*_-g(x tA))dx

22 22

t3

Multiplying both sides of (A.6) by r ,. integrating by parts each integral in

the sequence, and using the first-order conditions (A.7) and (A.8), one obtains

*

%

(A.9) -rV(zl,zz) = F(zl,zz) -g é e-erl(zl-gx. zz—gx)dx -

t -
-8 2 &T%¥p (S* —-g(x-t*), z,-gx)dx .
2" 177 72

*
t1




Equation (A.9) corresponds to the 'valuation formula', (16), in the text.

It states that the imputed value of a given state equals the current flow of
profits, F(zl,zz) » minus the reduction in profits which is caused by
keeping the nominal price of good 1 fixed until the date t; and the
reduction in profits caused by keeping the nominal price of good 2 unchanged

until t; - All future information is incorporated in the choice of t; .

t; and S:l - Similar 'valuation formulas' can be generated for any optimal

pattern of price changes. It is important to note that no differentiability
assumptions on V(zl,zz) are required to derive this result. Similarly,
equations (30) and (34) in the text, which identify the staggered steady-state,
can be derived directly from equations (A.7)-(A.9), without the assumption

that V(zl,zz) is differentiable.

Differentiability of the value function is closely associated with the

uniqueness of the optimal controls, {p:):=1 , for a given initial condition,
(21’22)' We cannot establish such uniqueness for all possible pairs of
initial conditions. However, we can show that following the first price
change, all subsequent choices of dates and real prices are uniquely

determined.

To establish this fact, we first need to narrow down the possible
patterns which constitute a solution to the optimization problem. This is

done in the following two Lemmata.

Lemma 1. It is not optimal to delay a price reduction, i.e., if a price

reduction occurs it must occur once, at time t = 0 .

Lemma 2. If only one price is raised, it must be the price of the good with

the lower real price.




Proof of Lemma 1. Suppose that for some (zl;zz) . t; > 0 and

< z, - gt¥ , i.e. a reduction in z, occurs after a delay. The value

*
S 1

of such policy can be written as
* *
jtl e "*F(z -px, z.- x)dx + e-rtllv(s* z,-gt¥*) - gl
5 178X, 278 1122 8 1 .

Now consider a feasible alternative program where the price of good 1 is

reduced at time O to S{l + gtf and kept unchanged up to t{ . The value of

this alternative path is

* *
t - -rt
—B + I 1 e er(Si‘l“'gtI—gx, ‘Zz—gx)dx + e 1 V(S;I, Zz—gtz) .

0

We want to show that it exceeds the value of the original program. That is,

*
-rt

*
t
1 7rx * *o - - - - 1y |
e (F(511+gt1 8%, z,-gx)dx F(z,-gx, z5gx)]dx > B(l-e )

By the assumption that S{l + gt{ < z, » we have under monotonicity,

(7), that the integral in (A.10) is strictly monotone decreasing in x .

Since t{ is a maximizer, we have by (A.7) that

F(S},, z,-8t}) - F(zl-gt;; z,-8t}) ) rp .

F(S;1+gt{‘8x) ZZ-EX) - F(zl"gx: zz-gx) > rg .

for all x < [O,t;) , which establishes (A.10)




Proof of Lemma 2. Suppose that z, > z, ,i and z, is raised at

That is, Sk

31 > z, and S* = zZy -

11
By (A.7),

(A.11) F(z),5%)) - rB ) F(z),z,) ,

because otherwise the firm would postpone the increase in z, - By

: * :
concavity and 521> z, , it follows that FZ(ZI’ZZ) > 0 . Suppose

tg » the price of zy is raised to 5;2 . Write the value of the

program:

- %
-rt

t 2
- vV(s* S* —gt*) - .
gx)dx + e [(v( 21 g 2) Bl

*
[ 2 e (2, -gx,
0

*
S21 12°

quasi-
that at

proposed

Consider now an alternative feasible program in which zy 1is raised at time O

to S*

31 » and at time tg » the price of z, 1is raised to S?z s

* *
t -rt
2 JTEXp S* - + 2 V(S* —pt*x g* - .
é e ( 21 X, 22 gx)dx e (v( 21 g 2° 12) B]

* X _orX) = X otk *
By symmetry, V(Slz’ 521 gtz) V(S21 gtk, 812) .

We want to show that

*
t - Y

f 2 o rx[F(Ssl-gx. Z,-gx) - F(3,-gx, S;l-gx)]dx =

0

*

2 _-rx x _ _
e [-‘2(521 gx, ¥-gx)dx > O

J't
(z,-z.)
2 71 0

yielding




i
where zy ¥« z, - By complementarity, (5),

* ; * ;
Fz(zl,zz) >0 = Fz(Szl,zz) >0, since S21 > > z; - By monotonicity,

(7), (and thus concavity of F(zl’ZZ) )N

Fz(Sgl,zz) >0 = FZ(SEI,;) >0 = FZ(Sglfgx, t-gx) > 0, for all x ¢ [0,t§] .

Hence (A.12) holds, which implies that the altermative program is superior .

We are now ready to establish the following proposition:

Proposition II: Following the first price change, the date of subsequent

pPrice changes is unique.

Proof: Assume that at time 0, the price of good‘l has changed and set at
SII and suppose that there are two dates, t; and t;* (> t; which are
both optimal dates for subsequent price changes. With each of these dates
there is an associated future sequence of prices. Clearly, both sequences must
satisfy the necessary conditions for a local maximum, (A.7)-(A.8), and must
yield the same value of V . Ve do not need to specify these sequences, since
one can use the 'valuation formula', (A.9), to evaluate each alternative, based
only on actions taken in the next round.

There are several cases to consider depending on the pattern of price
changes. 1In the first case, the price of good 2 is raised both at t* and

2

at tg* . Setting t? =0 in (A.9), we have

*
t

rV(Sfl,zz) = F(S{l,zz) -8 2 e-erz(Sil-gx, zz-gx)dx =
0

2(Sil—gx, 22~gx)dx .




It follows that

* %k
*x _ - = 2 orx * _ -
F2(S11 8%,y 2, gx)dx é e Fz(S11 8X, 2z, gx)dx .

*
£,
(A.14) f2e™*
0

Under the F.0.C. (A.7), we have

F(S{l—gt*, 532) - F(Sfl-gt*, zz—gtg) -rg 20,

* 4 ; * * ot X
where 822 is the choice of z, at t5 . By Lemma 1, 822 > z, -8t3 and
therefore (A.15) and quasi-concavity imply that F2(S;l~gt*, 22~gt3) >0,
i.e. marginal profits from raising the price of good 2 are positive just prior

to the price increase. Under the irreversibility assumption, it follows that

F,(S},-8%, z,~gx) > 0 for all x ¢ (£%,t5*] .! Hence, the two integrals in

(A.14) can be equal only if t; = tg* » which establishes uniqueness for this
case.

A similar proof applies to the cases in which the price of good 1 is
raised together with the price of good 2 and to the case in which the price of
good 1 is raised at both t; and tg* . The cases in which two different
prices are raised at t; and t;* are excluded by Lemma 1. Thus, the date
of the subsequent price change is unique |.

It remains to be shown that at the time of price change a unique action
is taken.

Proposition III. Following the first price change, subsequent chosen real
&

prices are unique.

Proof: Consider first the case where only the price of good 1 is raised at

t; + Assume, contrary to the Proposition, that there are two choices, say,

* * %
812 and S12 .




By the F.0.C., (A.7), setting t; = 0, we must have

(A.16) F(S;l-gt*, S;l—gtg) = F(S* —gt ) - rB = F(S** s* —gt;) - g .

12' 12721

Hence,

(A.17) F( S3,-8t3) = F(S}%,5% -gt3) .

512’ 12°721

* *k § - i %k ok *
Let S12 > 512 - Then, by quasi-concavity, F (812,521 gtz) >0,

which under irreversibility, (A.l), contradicts the F.0.C. (A.7).
Finally, consider the case in which both Prices are raised at t; R
As explained in the text, under positive interaction, the best choice,

starting from (21‘22) €~To is to select a Qynchronized steady state. In

Appendix B we shall prove that the synchronized steady state is unique |.

Having established uniqueness, differentiability of the value function

follows. First we note that uniqueness implies continuity of the optimal

@«
choice with respect to variations in the initial state. Now, let (yp_}

T'T=1
) . h « . .
be an optimal choice for (zl,zz) and {uT}T=1 be an optimal choice for

(zl, zz+h) » where h > 0 . By definition

© ’ h «
(A.18) J(zl,zz,{uT)T=l) ) J(zl,zz.(uT)T=1)

(A.19) J(zl,z +h, (u ) =1) > J(zl,z +h, {n )r=l)

(A.20)

h = h » ©
J(zl’22+h'{uT)T=l - J(zl’zz’(u )T=1) } J(zl’22+h’(uT)T=l = J(ZI’ZZ'(ur)rnl) }

® ®
> J(zl’22+h‘(ur)r=1) - J(zl'zz’{uT}T=l)




Consider a point (zl,zz) in the interior of C where, in (A.2),
- ot . - 2 = . . i . R . «© .
G(SJl zJ 8 J) 0, j 1,2 In this neighborhood, I(?l,zz(uT)T=1) is

differentiable w.r.t =z and =z

1 Dividing both sides of (A.20) by h

’

2 *
letting h approach zero and usirg the continuity of {p) in 2z , we obtain

the usual envelope relationship:

aV(zl,zz)
qz

9
2 9z,

J(zl'ZZ'(uT}T=1) .

A similax proof applies to the other partial derivative.




Proof of Proposition 1:

We first prove that the synchronized steady state is unique. Any
ﬁéxamizer of V must be in the interior of C . Otherwise an additional cost
of B would be incurred to obtain the same value, V* . Observe that for any
point in the interior of C , equation (10) applies with strict inequality

and V 1is differentiable. Combining these facts, we obtain
(B.1) rV(Sl,S2) = F(Sl,Sz)

where (51,52) € argZMa: V(ZI’ZZ) .
»
1°72
Now suppose that Sl # S, - Then, by symmetry, the points (51’52)
and (52,51) are both maximizers of V(zl,zz) » Yyielding the same value V* .

¥

For any 0 < y <1 , define (Sl’

S;) as:
= yS; + (1—y)52 s

= YSZ + (l-y)S1 .

Using recursive equation (7), the value associated with V(Sl,Sz) is
L*

(B.3) V(Sl,sz) = e—er(Sl—gx,Sz-gx)dx + e
0

—rt*[v*—2B]

where t* = t*(Sl,Sz) is the optimal time for the subsequent price change

and V* is the maximum value of V realized at t* . Starting at (SY,Sg)

]

the same choices are still feasible. Hence,

*

t
Y Y -rX ~-rt
v(s),S3) 3 é e F(S\{—gx,s;_‘—gx)dx + e

*ve-2g] .




By strict quasi-concavity, F(Sl-gx,sz—gx) < F(S}-gx,sg~gx) for all x ,

t* > x 3 0 . Thus, equations (B.3) and (B.4) imply that V(SY,S;) > V(Sl,Sz) ,

which contradicts the assumption that (SI’SZ) maximizes V . This proves

that S1 = 82 = 5 . To save on notation we shall omit here the superscript and

subscript, writing S = S; . To prove that S 1is unique we use again the

quasi-concavity of F together with the 'valuation formula', (16).

Suppose there are two values, (Sa,Sa) and (Sb,Sb) , s2 # b

maximize V . Let S% = 9s® + (1-6)s® , 0 <@ <1 . Then,

F(s?,s%) > F(s?,s?) b evx y ev(s®,s®y .

Inequality (B.5) and the 'valuation formula', (16), imply that for any

(SB,Se) €E C, we must have

ng(Se,Se) + sz(SB,Se) >0 .

Letting y + 0 or y -1, (B.6) implies that V can be increased in

the neighborhood of (Sa,Sa) “or (Sb,sb) , contrary to the assumption that

these are local maxima.
We shall now prove the uniqueness of the symmetric staggered steady-
state, (Sg,t) . For brevity, we write Sg = S . Consider the point
(S,%) € C , where the price of the first good has just been changed, and let
t be the timing of the subsequent price change. The F.0.C. satisfied at that

2

point are:

(B.7)

and




F(S-atz, z-gt,) - r(V(S—gtz, $,)-B) - gvl(s-gtz, S,) =0 .

At a symmetric steady state, 52 =S , t2 and z = S - gt

.

Evaluating the¢ second-order conditions at this point, we have the requirement

that the matrix A

*

~

sz(s—gt, S) -gvlz(s-gt, S)

-ngz(S—gt, S) -g(Fl(S—gt, S-2gt) + F2(5~gt, S-2pt) +

+ er(S-gt, S) + ng(S-gt, S))

be negative definite. Now consider the system

(B.10) Vé(S-gt, S) = 0

and

(B.11) F(S-gt, S-2gt) - r(v(s-gt, S)-g) - ng(S—gt, Sy =0

4s two equations in the unknowns § and t

To prove uniqueness, we shall show that the Jacobian, B ,
Vi (8-gt, s) + -gV,,(5-gt, S)

*+ V,,(5-gt, S)

FI(S—gt, S-2gt)+ —g[Fl(S-gt, S-2gt) + 2F2(S-gt, S-2gt) +H
+ Fz(S—gt, S-2gt) - + er(S-gt, S) + ngl(S-gt, S-2gt)}

- rV,(s-gt, S)

- 8V11(5‘8t, S)




is negative definite. The first diagonal term is, under Al and A2,

: 1
(B.13) byy = Vi, +Vy, = g Fa(s-gt, 8) < 0.

The other diagonal term, b22 is equal to the lower diagonal term in

(8.9), a5, minus ng(S—gt, S-2gt) By a2, Fz just prior to a price

change has to be positive. Thus, the whole term is negative. The determinant

condition can be written in the form

(B.14) bll(—ng(S—gt, S-2gt)) + a5, V22 >0




Appendix C

The purpose of this appendix is to analyse the stability of the

stagpered steady-state.

We begin by calculating the slope of the reaction curves S; = S(zj) ,

. . PR X = Q% = G% _ *
i#£3, , evaluated at Si Sb and zj Sb gt , where Sb

and t are determined by equations (32) and (33). To save on notation we

shall omit again the superscript and subscript, writing S instead of Sg .

Suppose that zy has just been raised to S and that z, = S - gt .

At this point we have
(c.1) Vi(8,z,) =0,

(C.2) ngl(S,zz) + ngl(S’ZZ) = Fl(S,zz) ,

and

t _rx
(C.3) VZ(S’ZZ) = é e F2(S—gx, zz-gx)dx .

where (C.2) follows from the valuation formula (16) and (C.1). Differentiating
(C.1) we obtain

V12(8,25)

(C.4) S'(z,) = - ——=_
2 V11(8,2)

Using (C.2) to eliminate V11 ,

S'(zz)Fl(S,zz)
S'(zz) -1

8V12(S.22) =

Differentiating (C.3) we have

t

-rx
(C.6) V21(S,22) = é e

-rt ot
F, (s-gx, z,-gx)dx + e F,(s-gt, z,-gt) 32.°




. t
To find é;— » We note that in steady-state,

1

£ —rx -rt,
(C.7) (s,t) = argmax{f ‘e F(S-gx, z,-gx)dx + e [V(S-gtz, S,) - Bl} -
S,,t .
2°72 0

Differentiating the F.0.C. for the maximization in (C.7), we obtain

—g[Fl(S—gt, zz—gt) + Fz(S-gt, zz-gt) —gvlz(s—gt, S)

—er(S—gt, s) - ngl(S*gt. S)]

-8V,, (5-gt, S) V,,(S-gt, S)

zz—gt) + er(S—gt, S) + ngl(S—gt,

Vzl(S—gt,

The second-order conditions for maximization require that the matrix in

(C.6) be negative-definite. Using the valuation formula, we have

(C.9)  rv,(S-gt, S) + gV, ,(S-gt, S) = F (S-gt, S) - gV ,(S-gt, S) .

Also,

Vlz(s_gt: S)
(C.lO) sz(s-gt, S) = - S'(S"gt)

Substituting (C.9)-(C.10) into (B.8), we can solve for g&- in terms
1

of S'(S-gt) , to obtain:




St Fl(S-gt, z2—gt) - Fl(S—gt, S) - FZ(S—gt, S)S'(S-gt)

az, F, (s-gt, zz—gt) + F2(S-gt, zz—gt) - Fl(S—gt, s) - Fz(S~gt, S)S'(s-gt)

The denominator on the R.H.S of (C.1ll) is positive by second-order

conditions. Combining (C.5), (C.6) and (C.11) and using symmetry, we obtain

s'(z,) .
2 = C+ D A - S'(S-gt)

5'(z,) - 1 B - S'(S-gt)

Fl(S—gt, zz—gt) - Fl(S-gt, S)

F,(S-gt, S)

F,(S-gt,z, -gt)
A + 2 2

F,(S-gt, S)

t _rx
gg e F12(S—gx, zz—gx)dx

FZ(S-gt, S)

-t FZ(S—gt, zz—gt)

Fz(S-gt, S)

Equation (C.12) determines the slope of the reaction curve for the first
good in terms of the slope of the second good's reaction curve evaluated at the

subsequent price change. Setting z, =5 - gt , S' at this point is unknown,

satisfying the non-linear difference equation:

A - X
(C.14) = Cc+p—"n¥l
B - xn




The optimality of the staggered path requires convergence of the
sequence defined by (C.14) when solved forwards.

To analyse the behavior of the solutions to (C.14), we rewrite it as

CB +DA - (C+D)xn_‘_1

CB + DA - B + (l-C-D)xn

f(xn+l) °

+1

Note first that the condition X, = x x defines a quadratic
equation which has at most two roots. In general, one root is characterized
by f'(x) <1 and the other by f'(x) > 1 . The second, being unstable,
cannot be obtained by iterations of the value function and therefore cannot
represent the value of an optimal policy (Stokey and Lucas [1989, Ch. 41).
Henceforth, we shall consider only the root satisfying f'(x) <1 .

To find the roots of equation (C.15) it is convenient to rewrite (B.14):

CB + AD - (C+D)x = 55555% = g(x) .

Under assumptions Al and A2 in the text, A>0, C<0, D<O and
B - A <O . Second-order conditions (i.e., negative definiteness of the matrix
in (C.8)) imply that B < x < 1 . It follows from these restrictions that
g(x) 1is strictly convex. Furthermore, g(0) = g(B) =0, g'(0) = -B and
B
' =
g'(B) BT C

Associated with the value of S' which solves (B.16) there is a

corresponding value s' which is the slope of the boundary curve between the

trigger sets Ti’ i 1,2 , and C . This relation is obtained by

differentiating (33) in the text, yielding

S' - A
C. - .
(C.17) s B




Note that since B < S§' , by second-order conditions, s' <1 .

Consider a small perturbation around this path (a'b'c'd' in Figure 2).
Let S' denote the slope of the reaction curve evaluated at the staggered
steady-state (i.e. at (S, S-gt) ). Similarly, let s' denote the slope of
the boundary of the trigger sets Ti , 1 =1,2, and C , evaluated at the
staggered steady-state (i.e., at (S-gt, S-2gt) ). For sufficiently small
perturbations these slopes can be taken as constant. Let § be the difference
between the two paths along the reaction curve for the first good, measured in

units of z, - It can be seen in Figure 1, and rigorously proved, that the

s' -1 )
1= or )6 along the trigger

initial § translates into a difference ( 1

)
boundary for the second good and a difference of ( %————% )26 along the

trigger boundary for the first good. Thus, if and only if

will the perturbed path return to the first good's curve, closer to the original
point a . We therefore conclude that the necessary and sufficient condition
for local stability of the staggered steady-state is condition (C.18).

It follows from (C.17) that if S' < 0, then s' > 0 and hence

1 . .
o | >1, 1i.e., the staggered steady-state is unstable. It remains to

examine the case in which S' > 0 . This can only occur if AB + CD > 0 and

s

B <0 . It can be shown that

A A (C+D)A
vy D ey g — A + ap - L&A
S 1 - B + 4 8 7" 55 ) <P 1 -8B + A




It remains to discuss the case of negative interactions, where
F12 € 0 . In this case C 20, ACO0O and B <O . In contrast to the case

VIR F12 50, (C.17) does not imply that if S' < 0 then &' 5 o .

Therefore, we need to consider the case CB + AD < 0 associated with negative
S' . For this case too, it can be shown that (C.19) has to be satified. The

condition in (C.19) can be simplified to

(C.20) A+ C<CB + AD ,

which is the necessary and sufficient condition for local stability.




Appendix D

In this Appendix we prove Proposition 3 in the text.
Consider a quadratic profit function given by (36). The necessary

conditions for a staggered steady-state, (32)-(33), are now:

(D.1) —2gt(a-(2b-c)(s—gt)) +rg =0,

(D.2)

2t _ t _
e " Xdx - [ e rxdx] =0

2t _ 2t _
(a-(2b-c)s) [ e "Xdx + g(2b-c) [ e "Fxdx + cgt [f
0 0 0

0
where S = S; in the text. Equations (D.1) and (D.2) uniquely determine the
steady-state values for t and S . Given these values, one can calculate

all the elements of the stability condition (D.20). In particular:

Fl(S—gt, S-2gt) A + (2b-c)gt
FZ(S-gt, S-2gt) A + (4b-c)gt
Fz(S—gt, S) A cgt

Fl(S—gt, S) A 2bgt

4 = a - (2b-c)S . Using the definitions (C.13) in Appendix C

’

FZ(S—gt, -2cgt

F2(S—gt, A + (4b-3c)gt
t
F2(S-gt, = gc g e

F,(S-gt, e "5 (A + (4b-c)gt)

-rx
dx

The stability condition (C.20), CB + AD > A + C is thus equivalent to:

t _ - t _
(D.5) (a+(4b-3c)gt) [ e “dx - 2te TF(p+(4b-c)gt) > (-2t+f e "¥dx)(A-cgt) .
0 0




Substituting for A from (D.2) into (D.4) we obtain, after some

manipulations, that (D.5) is equivalent to

(D.6) c(2b+c) < 0 .

The concavity requirements b > 0 and 4b2 - %> 0 imply that

2b + ¢ >0 for all c . Hence, (D.6) always holds when c < 0 and never

holds when ¢ > 0 . This proves Proposition 3.




Appendix E
The purpose of this Appendix is to prove Proposition 4 in the text and
its corollary.
Consider the staggered steady-state path starting at point b in
Figure 2. At this point the staggered policy calls for a move to ¢ . The

value of the staggered steady-state path starting at c¢ is given by
t oorx -rt
e F(S;—gt—gx, S;—gx)dx - Be ]

If, instead, the monopolist would move to point e and follow thereafter the
synchronized steady-state path, the value associated with this alternative path
is

€ _ -
[ e er(S*—gx, S*-gx)dx - 2Be re]
e~ TE g a a

where (Sg,t) and (S;,e) are the solutions of (32)-(33) and (30)-(31),
respectively. By our assumptions, a move from b to ¢ costs B while a

move to e costs 28 . Therefore, a necessary condition for the optimality

of the staggered program is that
(E.3) Vb -B > va - 28 .

Multiplying (E.3) by r , and taking the limit as r + O » the requirement is

t €
[é F(S;—gt-gx, S;-gx)dx - Bg] > % [s F(S;—gx, S;-gx)dx - 28] .
0

Using (31) and (33) in the text, (E.4) can be written




t
F(S*- * F * oot *__ + * gk) |
( 58t Sb) > gé 1(Sa gt-gx, Sa gx)dx F(Sa’sa)

Substituting the quadratic formula (36) in the text into (E.5) and

using (38)-(42) in the text, condition (E.5) is seen to be equivalent to

This inequality holds if, and only if,
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closed-loop equilibrium in an oligopolistic market for a homogeneous good.
The homogeneity assumption eliminates price variation across products. Ball
and Romer [1989] extend a model of Blanchard (Blanchard-Fischer (1989}]),
allowing each firm to choose whether to change prices at odd or even periods.
This formulation permits both staggered and synchronized equilibria. The
duration of the fixed price period is assumed to be determined exogeneously.

In contrast, we treat the timing and the chosen real prices as endogeneous.
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z
LA = 2
F(zl,uz) F(zl,zl) + f Fz(zl,x)dx
. zy

z z
ngl,zz) = 2 Fl(x,zz)dx = F(zz,zz) - 2 Fz(zz,x)dx

1




Adding up the above equalities we get

z
. ~ 2
ZF(zl.zz) = }(zl,zl) + F(zz,zz) + f [Fz(zl,x) —Fz(zz,x)]dx
z
1

Assuming Flz > 0, the integral of the difference in marginal profits must

be negative, which establishes the claim.

The derivatives of V at point (z,z) on the diagonal just below k are

t*(z,z) —rx .
Vi(z,z) = f e F;(z-gx, z-gx)dx , i = 1,2 . Note that by symmetry,

0
v,(z,z) = V,(z,2) . By the optimality of S; , we have
* g% t*(sz’s;) -rx P
vi(sa,sa) = g e Fi(S;—gx, S;—gx)dx =0, i=1,2 . But,

x %
t*¥(z,z) > t*(Sa,Sa) and F(zl,zz) is strictly quasi-concave. Hence,

Vi(S;,S;) =0 Vi(z,2,) <0, for i= 1,2 . To locate the boundary
points between C and T; , 1 1,2 , we cannot use equations (23)-(25),

since these do not hold with equality. Instead of marginal conditions we

require that the firm be indifferent between holding prices constant for a

non-negligible length of time, and changing prices instantly. For instance,

on the diagonal,

t*(z, -
V(z,z) = | (z z)e “XF(z-gx, z-gx)dx - ert*(z'Z)(v*-zs) = Vx - 28 .
0

The solution to this equation is point k in Figure 1.

Consider z, in the neighborhood of S; » Wwhich triggers a change to 5(22) .
Observe that 5(22) is also in the neighborhood of S; . From the

4+
properties of T0 » it follows that the subsequent price change at

L*(S(zz).zz) will be a joint price increase. Hence,
t

: ‘ - -rt
(t*.S(zz)) = argmax [ e rF(S—gx, zz—gx)dx +e © (v*-28) .
t,S 0O




Differentiating the F.0.C. w.r.t. zZ, evaluating the derivatives at

(SQ,S;) , Wwe obtain

etk
* e e (S*—gt*, S*—gt*)
S (%) = ([ e T¥F (S*-gx, S*-gx)dx + L a = ] +
( a’ = [é 11'°578% a BX/9X 2g

-rt*
* e F.(S*-gt* s*-gt*)
EY _rx % x 1'7a a
+ é e Flz(Sa-gx, Sa—gx)dx +

2g

By second-order conditions, the term in square brackets is negative. The

F.0.C. imply that Fl(S:—gt*,S;—gt*) > 0 . Hence, with Fi1,2>0

»

S'(S*) > 0 .
a
® Differentiating the 'valuation formula', (16), we obtain
Fl(S(zz),zz) = gV,,(5(z,),2,) + gvlz(s(zz),zz) .

Since, FI(S(ZZ)’ZZ) <0, Vll(S(zz),zz) <0 gnd VI(S(zz),zz) =0 for
all z, , we obtain
V1(5€2,5),2,)

S'(ZZ) = - > 1 .
Vll(s(zz))zz)

Similarly, whenever V 1is differentiable at the boundary, the 'valuation

formula' implies

Fl(s(zz))zz) = gvl(s(zz))zz) + gvlz(s(zz))zz) .

Since Fl(s(ZZ)’ZZ) >0 , Vll(s(zz),zz) > 0 and Vl(s(zz),zz) = 0 for

all z, , we obtain

Vo (s(z,),2z,)
s'(z,) = - 2 T2
Vi1(s(zy),25)
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