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Staggered and Synchronized Price Policies Under Inflation:

The Multiproduct Monopoly Case

1. Introduction

The microeconomic background of an inflationary process is characterized

by discrete jumps in individual prices. This observation has led to several

studies on the aggregation of discrete pricing policies into a smooth time

path for the aggregate price level. The feasibility of such aggregation is

necessary for the overall consistency of individual pricing policies (Caplin

and Spulber [1987]). A crucial issue for such an analysis is the interaction

among individual price policies. If all firms follow identical real price

cycles which are uniformly spread over time, then consistent aggregation is

feasible (Sheshinski and Weiss (1977)). There may, however, be important

reasons why such uniformity may not emerge as an equilibrium outcome. In

oligopolistic markets, where each firm takes into account the actions of its

rivals, pricing policies will be interdependent. In multiproduct monopolies,

there is a further source for interdependence, namely, increasing returns in

the cost of price adjustment. Even under competitive conditions, bunching

over time may be caused by aggregate shocks, while idiosyncratic shocks are

needed to maintain the spread.

Apart from the issue of consistent aggregation, the time pattern of

individual price policies has important implications for the real costs of

inflation. If individual price paths are staggered, then temporary shocks may

be propagated over long periods. Synchronized price policies, on the other

hand, may accelerate the adjustment process (see Blanchard [1983], Blanchard

and Fischer (1989, Ch. 8), and Taylor (1980]). In addition, non-synchronized
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price policies lead to price variations across products and thereby to search

costs incurred by consumers (Benabou [1987j, Fishman [1987)).

In this paper we analyse the optimal price policy of a single profit

maximizing decision maker, i.e., a multiproduct monopoly. This policy may be

interpreted as the cooperative outcome of a duopoly game. Indeed, we view this

analysis as a first step in the investigation of various non-cooperative

equilibria of dynamic Bertrand duopoly games with differentiated products.

The main object of our paper is the determination of the conditions

which lead to staggered or synchronized pricing policies, when the timing of

price changes is endogenous.2 Two aspects of the multiproduct monopoly

decision problem influence this choice. First, the interaction in the profit

function between the prices of the two goods. Generally, positive interactions

enhance synchronization while negative interactions lead to staggering.

Second, the form of the price adjustment costs. Here one may distinguish

between 'menu costs' and 'decision costs'. Under menu costs, costs are

independent of the number of items in the price list. This extreme form of

increasing returns to scale ('economies of scope') leads to synchronization.

Under decision costs, we consider a constant returns to scale technology,

whereby each price change requires an adjustment cost. This provides an

incentive for staggering, namely, the saving on the additional adjustment

costs associated with joint price changes.

A
In this paper we devote our attention to the case of positive

interactions and constant returns to scale in the costs of price adjustment.

This choice is motivated by our interest in the duopoly problem, where these

assumptions are likely to hold. A longer version (Sheshinski and Weiss [1989))

treats menu costs and negative or zero interactions.
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Special consideration is given to steady-state (repetitive) pricing

policies where the same real price is chosen at each adjustment. In staggered

steady-states, price adjustments alternate. In a synchronized steady state,

prices are adjusted simultaneously.

Our main results can be summarized as follows:

(1) The synchronized steady state and the symmetric staggered steady-

state are unique.

(2) A positive rate of interest is required to sustain both types of

equilibria under positive interactions. In particular, for the class of

quadratic profit functions, when the rate of interest approaches zero, a

staggered steady state is optimal if, and only if, the two prices are strategic

substitutes, while a syncrhonized steady state is optimal if, and only if,

prices are strategic complements.

(3) The synchronized steady state is locally stable. Specifically, if

initial real prices are sufficiently close to each other, then a synchronized

steady state is attained after the first price change. In addition, there is

a broad class of initial conditions which lead to an immediate change in both

prices, followed by a synchronized steady state.

(4) We provide a necessary and sufficient condition for the local

stability of the staggered steady-state. For the class of quadratic profit

functions, we show that the staggered steady-state is locally unstable.

Moreover, under no circumstance will a joint price change be followed by a

staggered steady state. That is, a staggered steady state can only be reached

asymptotically (Sheshinski and Weiss [1989)).

(5) We derive explicit solutions for the case of quadratic profit

functions when the rate of interest approaches zero. As in the single good
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case, we find that an increase in the costs of adjustment or a reduction in

the rate of inflation reduce the frequency of price changes: A stronger

positive price interaction reduces the frequency of price changes in the

synchronized steady-state.

The analysis in this paper applies beyond the price adjustment problem

to other multiproduct inventory models. From this point of view, we extend

the work by Bensoussan and Proth [1982] and Sulem [19861 who analysed an

optimal reordering policy in a multiproduct case. Our work differs from

theirs by allowing for interactions in demands. However, Sulem discusses a

more general cost of adjustment structure.

2. The Model

Consider an economy subject to an inflationary trend where the aggregate

price level grows at a constant rate, g (g > 0) . We analyse a monopoly who

sells two related products whose demands depend on the current real prices of

the two goods. The monopoly controls the nominal price of each good and there

is a fixed real cost of nominal price adjustments.

Let z(t) denote the log of the real price of good i at time t
1

t [0,03) . The real profit function of the monopoly, denoted by F(z1,z2) ,

is assumed to be time invariant and symmetric in its arguments,

F(a,b) = F(b,a) . In additionjit is assumed to be strictly quasi-concave and

for which Naturally,twice differentiable for all (z1,z2) F(zi,z2) > 0 .

we assume that F(z1,z2) > 0 for some (zz
2
) . However, there exist z

and z ( z > z ), such that F(z1,z2) 4 0 for all (z1,z2) not satisfying

z z.
1

z i = 1,2 . These assumptions imply the existence of a unique
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maximum for F(z z )
l' 2 • which, by symmetry, satisfies z

1 
= z

2 
= S and

F(g,g) > 0 . The assumption that positive profits are attained on a compact

set of real prices is intended to ensure the existence of a well-defined

pricing policy. The set of prices for which profits are non-positive need

not be compact if the firm has the option of non-production at prices below

variable costs. The class of functions satisfying all of these conditions is

denoted

The problem facing the monopoly is a choice of price paths,

(z
1'

z
2
(0) , which maximize the present value of real profits over an

infinite horizon, given some initial condition (z
1
(0)
'
z
2
(0)) .

The salient feature of our model is the discontinuous pattern of nominal

price adjustments. This widely observable phenomenon is generated in our model

by the presence of non-convex costs of price adjustment: any nominal price

change, no matter how small, requires non-negligible costs of adjustment.

Specifically, the real cost of any nominal price change is assumed to be a

constant denoted by p(p > o ).

The main question which the paper addresses is the following: will the

monopoly adopt a synchronized policy of price adjustments, whereby both prices

are changed simultaneously, or a staggered policy whereby the two nominal

prices are changed at different points in time.

Any pricing policy can be described by two pairs of sequences,

i w
(t

i 
1
m 

v 
, 

i
(S }T T=0 

and
T - T= ' 

i = 1,2 , where S
T 

is the real price of good i

set at time t
i 

by adjusting the nominal price of good i , keeping itT

unchanged during the interval Et,t
i
+1) . Special attention will be given toT T 

npetitive price paths satisfying
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(1)
T+1

= S and 
T+1 

= t + c T =

where c1 (c > 0) i = 1,2 , are constants denoting the time intervals

between subsequent price changes. Thus, on such paths, the real prices chosen

at the beginning of each interval and the duration until the next price change

remain constant. We shall refer to such paths as steady-states. A symmetric 

steady-state is defined by the additional restriction

(2)
1 2

S = S = S and
T T

1 2= = T = 0,1,2,...

where S (S > 0) and c (c > 0) are constants. Along such a path, the real

price of each good follows the same cycle. Among the symmetric steady-states

we can identify a synchronized steady-state by the added requirement that

(3)
1 2
t
o 
= to ,

that is, the prices of both goods are always changed at the same time.

Finally, a (symmetric) staggered steady-state is defined by

(4)
1 2

Ito - to l =

that is, the prices of the two goods are changed alternately and the time

distance between any two price changes is equal.

The time pattern of the monopolist's optimal price policy, in particular,

whether price changes will be synchronized, depends crucially on two features

of the model. The first relates to the technology of price adjustments, and

the second to the form of the profit function. One issue of concern is the

degree of returns to scale when both prices are changed simultaneously. Under

constant returns to scale in the costs of price adjustment the monopoly incurs

a cost of 20 whenever prices are changed jointly. Under increasing returns
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to scale these costs will be less than 20 , possibly as low as 0 . The

degree of returns to scale depends on the distinction between 'menu costs' and

'decision costs' of price adjustment. By menu costs we refer to costs such as

advertizing and updating of price lists. By decision costs we refer to costs

of acquiring information on the production and demand of different products

and to costs related to the organization and computation of coordinated price

changes in multiproduct firms. If the costs of price adjustment are interpreted

as menu costs, one would expect these costs to be 0 independently of the

number of items in the menu. If, however, these costs are interpreted as

decision costs, one would expect that the complexity of the choice, and thus

the costs, will depend on the number of items involved, suggesting that

constant returns to scale is the more appropriate assumption. Indeed, a

typical organizational solution to this problem is decentralization, whereby

separate divisions are allowed to follow separate pricing policies, maximizing

objective functions set by the center. The overall outcome of this process is

that adjustment costs for the monopoly are the sum of the costs incurred by

the separate 'price centers'. A similar distinction in the inventory

adjustment context was made by Sulem (1986).3

The other issue of concern is the interaction in demand and possibly

in the production of the two goods. In general, an increase in one price may

increase or decrease the marginal profitability of an increase in the other

price. For instance, in the absence of costs, a positive (negative)

interaction arises when an increase in one price raises (reduces) both the

quantity demanded and the slope of the demand curve for the other good. One

would expect that if the goods are strategic complements, i.e., raising z.

increasesalemarginalprofitsofz.,j i then synchronization is more

likely, and vice versa.
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The focus of this paper is on the case of constant returns to scale in

the costs of adjustment and positive price interactions. These assumptions

and symmetry appear to be more appropriate for the duopoly case. We retain

them in the analysis of the multiproduct monopoly to support the interpretation

of this model as a cooperative duopoly equilibrium. Specifically, we assume

Al. Complementarity

(5)

For any (z1,z2)

> 0 , i j , i,j = 1,2 .13 l' 2

An additional assumption which will be used in subsequent analysis is:

A A2. Non-Reversibility

For any (z1,z2) and x (x > 0) ,

Fi(z1,z2) > 0 ,==.-;> F1(z1-x,z2-x) > 0 , i = 1,2 .

Assumption A2 imposes the natural requirement that if a price increase

is profitable at (z1,z2) then it is also profitable after these real prices

are eroded by inflation to (z1-x, z
2
-x)

In some cases we will need a stronger version of A2:

A3. Monotonicity

For any (z1,z2) ,

(7) Fii(z1,z2) + Fij(z1,z2) < 0 , i j , i,j = 1,2
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A3 in conjunction with Al, ensure that over any time interval with fixed

nominal prices, the profitability of a price increase rises with time. Observe

also that Al and A3 imply that F(z1,z2) is strictly concave. On the other

hand, A2 and Al do not imply concavity.

3. Characterization of the Optimal Policy and the Associated Value Function

Let V(zz
2
) be the value function associated with an optimal policy

starting at real prices (zz
2
) at time 0 . The existence of such a

function is guaranteed by our assumption that F(21,z2) has a well-defined

maximum and by assuming that the real interest rate, is positive. The

value function is defined recursively:4

t -rx
(8) V(z

1
,z
2
) = Max(f c F(z

1
-gx
' 

z
2
-gx)dx +

t)0 0

+ 
-rt
e Max[ Max V(S ,S ) - 2, Max V(S1,z2-gt) -

SS
2 

S
1

fis

Max V(z1-gt,S2) -
S
2

where t is the time of the subsequent price change and (S1,s2) are the real

prices chosen at that time (i.e., nominal prices are set so as to attain these

real prices). If the optimal t is t = 0 , then a price change occurs

immediately; otherwise the current nominal prices will be kept unchanged, with

real prices decreasing at the rate of inflation, g , over the interval [0,0 .

For any initial (z
1 ,z2 ' 
) a well-defined price change is optimal after a finite

lapse of time. That is, the R.H.S. of (8) actually achieves the maximum (see

Appendix A) .
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We begin our analysis by stating some properties of the value function

which will be used subsequently:

1
  If

1 - e-r(z-z)/g 0

(2-z)/g _ _ F6 --g)rxF(z_gx, 
2-gx)dx 20) 4 Wz1,z2) 4 r

Cii) V(zi, ) is symmetric,

(iii) V(z1,z2) is continuous,

(iv) 
V(zl' 

z
2 
) is differentiable, except possibly at some boundary points.

The upper and lower bounds on V(zz2
) can be easily demonstrated.

The upper bound is the present dicounted value of the flow of maximum

profits, F(g,g) , which would be attained in the absence of adjustment

costs, 0 = 0 . The lower bound is the present discounted value of a

feasible repetitive policy where real prices vary between E and z

(Recall that outside these bounds profits are negative.) We assume

throughout that costs of price adjustment are relatively small, specifically,

(2-z)/g -rx
that f e F(2-gx, 2-gx)dx - 20 > 0 . This ensures that for any

0

initial condition, V(zz2
) > 0 .

Symmetry of V(zz
2
) follows directly from the assumed symmetry of

the profit function, F(z1,z2) Starting from Z = a and z
2 
= b or

z
1 
= b and z

2 
= a , the monopoly can obtain the same present value of future

profits simply by exchanging the optimal price sequences of the two products.

Continuity of V(z1,z2) can be established by noting that (8) is a

fixed point of a contraction mapping which maps continuous functions into

continuous functions (see Stokey and Lucas [1989), ch. 3, pp.49-55).

Differentiability of V(z1,z2) can be established whenever the choice

of the controls in (8) is unique and thus continuous in (zz2
) In

Appendix A we show that after the first price change, the time of the
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subsequent price increase and the value of the real prices chosen at that time

are uniquely determined.

Let

(9) Wz1,z2) = Max V* - 20, Max V(S1,z2) - 0, Max V(z1,S2) - 0)
S
1 S

2

where = Max V(SS
2
)

SS
2

Since it is always feasible to change prices immediately, that is, to

set t = 0 in (8), we have

(10) V(z1,z2) M(zz
2
) . ••

Similarly, since it is always feasible not to change any price in the

time interval [0,t) , we must have

t _rx
(11) V(zi,z2) e F(zi-gx,z2-gx)dx + e

-rt
V(zi-gt, z2-gt) .4 

0

A

a

Equation (11) must hold for all t ) 0 . Expanding the R.H.S. by a

Taylor expansion, we can rearrange (11), divide by gt , and take the limit

as t 0 , to obtain

(12) F(z1,z2) gVV(z1,z2) + rV(z z )
l' 2

where VV , the directional derivative of V is defined

V(z1,z2) - V(zi-gt, z2-gt)
(13) VV(zz

2
) = lim  

t-00 gt

Clearly, when V z
2
) is differentiable, then VV(z1,z2) =

= V
1
(zz

2
) + V

2
(zz

2
) It can be shown (see Sulem [1986] and Bensoussan,

Crouhy and Proth [1983]) that inequalitites (10) and (12) are related by the
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complementary slackness condition

(14) [V(zi - M(z1,z2)] [OV(z1,z2) + rV(z1,z2) - F(z1,z2)] = 0 .

The solution of the monopoly's problem is now described with the aid

of four distinct sets:

= fzi,z2 I V(z1,z2) > M(z1,z2))

To = {z1,z2 I V(z1,z2) = M(z1,z2) = V* - 20}

(15)

= tzi,z2 ,z2) = M(z1,z2) = Max V(S1,z2) - 0)
S
1

= {Z1,Z2 V(z1,z2) = = Max V(zS
2
) 0)

2

The set C is the continuation set, where no price change occurs.

The set T
0 triggersachangeinbothprices,whileT.,i = 1,2 , is the

set which triggers a change in the price of good i only.

Condition (14) implies that for (z1,z2) e c , we have

(16) rV(z1,z2) = F(z1,z2) - gVV(z1,z2) .

Equation (16) can be interpreted as an asset pricing formula. The

imputed value of a state which does not generate a price change, rV(z1,z2)

is given by the current flow of profits, F(z1,z2) • less the depreciation

caused by the inflationary erosion in real prices, gpV(zz
2
) • In

subsequent analysis we shall refer to equation (16) as the 'valuation formula'.

With each point in the trigger sets To , T
1 

and T
2 

is associated

a choice of an optimal pair of new real prices. Specifically, for any

(zz
2
) T i = 1,2 , there is a unique real price chosen for good i
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3

i,j = 1,2 . These 'reaction functions' are symmetric and stationary (see

Appendix A). In contrast, for (z1,z2) 
T0 9 in view of the symmetry imposed

by our assumptions, if 
l 

(S* S*) ' 2 is an optimal choice, so is (S*
' 
S*)2 1 ' Hence,

in general, uniqueness cannot be expected. It is, however, easy to show that

with positive interactions, F > 0 any point (z
'
z) T triggers a12 , l 2 0

unique action S* = S* = SI( 
' 

To see this, observe that for a symmetric profit1 2 a 

function with positive interactions

1 1(17) F(z1,z2) F(zi,zi) + F(z2, f(z1) -F. "72)

1for all (z1,z2) , where f(z1) E F(z1,z2) i = 1,2 .5 That is, a

mixture of the profits at the extremes exceeds profits at any midpoint. Hence,

the value of the optimal program associated with an additive profit function

of the form f(z1) + f(z2) provides an upper bound for the optimal value of

the program associated with F(z1,z2) . An optimum for an additive profit

function is attained when an (S,$) policy is followed for each of the two

goods (see Sheshinski and Weiss [1989]). When the initial conditions are

subject to choice the firm can attain this upper bound by selecting at time 0

the same real price, S* , for both goods, followed by a synchronized (S,$)

policy for both goods thereafter.

The chosen pair of real prices triggered by (zz
2
) e T

0 '
must be in

the interior of C . Clearly, an immediate subsequent price change cannot be

optimal since the same outcome can be obtained without incurring the additional

adjustment cost. For the same reason, with (z1,z2) < Ti , i = 1,2 , the

chosen prices cannot be in T. Nor can the chosen prices be in T. ,
3

j $ i , unless (zz
2
) is also in T0 

'
in which case a joint change
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into C is triggered. Moreover, at the chosen point, V(zz
2
) is

differentiable. This follows from the fact that the subsequent optimal date

of price adjustment, t*(z1,z2) , and the real prices chosen at that time are

uniquely determined (see Appendix A). Accordingly, setting Vi(S/ac,SV =

= V
2 
(S*
' 
S*) = 0 in the 'valuation fomula', (16), we obtain the followinga a

equation:

(18) rV(S*,S*) = F(S*,S*) .
a a a a

At the time of a joint price change, current profits reflect the full imputed

value of the new state, since depreciation is locally negligible.

However, when only one price is chosen optimally, the depreciation of

the other price has to be taken into account. Specifically, we have

(19)

and

(20)

rV(S*
' 
z
2 
) = F(S*

' 
z
2 
) - gVl l 

rV(zi,S) = 
F(zl' 

S*) - 
gV1 

(z
l' 
S*) .2  2

Equations (19) and (20) are obtained from (16) by setting

V
1 
(S*
' 
z
2 
) = 0 and 

V2 
(z

l' 
S*) = 0 respectively.l  2

Recall that points in the trigger sets are related to the corresponding

chosen points via the relationship V(z1,z2) = M(z1,z2) . Thus, if (z1,z2)

= 0 •is in the interior of, say, T
1 

we have V(z ,z2) V(S(z2),z2) -

Since this relationship holds for all (z1,z2) in the interior of T
1'

we can differentiate to obtain

(21) V
1
(zz

2
) = 0
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(22)

(23)

(24)

(25)

and

V
2
(zz

2
) = V

2
(S(z2)'z2) .

Thus, using equations (12) and (19), we obtain

F(zi ) F(s(z2),z2) - rp , for (z

By a similar argument:

F(z1,z2) F(zi,s(y) ro , for (z1,z2) 4 T2

1 9z2 T
1 
.

F(z1,z2) F(s*,s*) 2rp , for ) 6 T
0 
.

The economic interpretation of equations (23)-(25) is clear. The

R.H.S. of each equation is the cost of a delay in a price change, consisting

of foregone profits at the new real prices net of adjustment costs, while the

L.H.S. is the benefit of such delay, consisting of profits at the old prices.

To trigger an immediate price change it is necessary (though not sufficient)

for a short delay to be unprofitable.

FIGURE 1

Figure 1 describes the continuation and trigger sets and the

corresponding choice (reaction) functions, S(z) . Observe, first, that T0.

consists of four distinct subsets: For all (zz
2
) T

0 a price-increase

of both goods to (S*,S*) is triggered. For all (zl'z2)t T
0 s a reductiona a 

....f. +-of both prices is triggered, while for (z
1'
z
2
) C T

0 
(or E T

0 
) , one

price is increased and the other decreased. Similarly, each T
1 
. s i = 1,2 ,

consists of two regions, one, denoted by Ti , calls for a price increase in

good i, while Ti calls for an immediate price reduction.
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Generally, a joint price change is triggered whenever both real prices

••••

are distant from the level, (S,S) , which yields maximum profits. A single

price change is triggered whenever one price is distant from S while the

_
other is close. Continuation occurs when both prices are close to (S,S) .

Having assumed a positive inflation, g > 0 , price reductions can

++
occur only once, at the outset (t = 0) . In contrast, the regions T0

+
and T. , i = 1,2 , are reachable from C after some delay and revisited1

++
periodically. At any point on the boundaries of 'F. and T

O '
which are

reachable from the reaction curves S(z
1
) and S(z

2
) V(zz

2
) is

differentiable. As shown in Appendix A, following a price increase, the timing

and the prices chosen for the subsequent change are uniquely determined, which

implies that V is differentiable along a path starting at any point on

S(z1) or S(z
2
) . Using the 'valuation formula', (16), which holds in C

it follows that (23)-(25) hold with equality at points where such paths reach

the boundaries between C and the trigger sets. This observation helps to

determine the boundaries between the continuation and the trigger sets. For

instance, at the boundary between C and T
1 

where an increase in the

price of good one is triggered, the firm is indifferent between holding

nominal prices unchanged, obtaining the current level of profits, F(z1,z2)

and raising the price of good one to S(z2) , obtaining F(S(z2),z2) - rp

The term rp is the imputed interest on adjustment costs. We denote by

s(z1) the boundary points between C and T. 9 i.e. points which trigger

and immediate increase in j 0 i,j = 1,2 (see Figure 1).

Somewhat different considerations apply to price reductions. For

••••

s

instance, at the boundary between T
0 

and C , point k in Figure 1, the

firm is indifferent between an immediate price reduction to (S,S) and
a a
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holding both prices unchanged until their real values erode to point f on

++
the boundary between C and To . This discontinuity in the action leads to

non-differentiability of V(z1,z2) at point k . On the diagonal above

point k , Vi(z,z) = V2(z,z) = 0 . However, on the diagonal below this point,

the gradient must be strictly negative.6 Let S(z) denote the boundary

pointsbetweenCandT
3 
.,i.e. points which trigger an immediate decrease

in z
i 

• jOis i,j = 1,2 . Generally, V(z1,z2) is not differentiable

along this boundary.

We now turn to a description of the boundary between C and T
0 
. This

boundary is determined by the condition F(zz
2
) = F(S*,S*) - 21-0 . That isa a

the firm is just indifferent between raising both prices to (S*,S*) and
a a

•

Figure 1, whose coordinates are (zs(z
1
)) . This point is on the boundary of

holding them unchanged instantly. In particular, consider point h in

A C , T0 
and T

2 
. At such a point, changing only z2 to S(z1) is

equivalent to changing both prices to (S*,S*). Consistency requires that
a a

S(z1) = S'' and,in addition, following the change in z
2 ' 

the firm should

be willing to change z1 immediately. That is, the best response to

(zs(z
1
)) is (z1,S*) which in turn has to be a point in T

1a

Furthermore, (z1
 
,S:) must be on the boundary of C and T

1 9 for otherwise

points in the interior of T
2 

would also lead to a joint price increase.

Thus,

(26) F(zi,s(zi)) = F(zi,S:) rp ,

(27)

•

and

which implies that

F(z s(z )) = F(S*,S*) - 2r0 ,l' 1 a a
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(28)
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'
S*) = F(S*,S*) rp .a a a

Under the assumption of positive interactions, F12 > 0 and using the

quasi-concavity of F(z1,z2) , conditions (26) and (28) imply that z1 > s(z1) .

That is, point h must be strictly to the right of the diagonal. Consequently,

++there is a non-degenerate segment (gh) on the boundary between C and T0 '

where a joint price increase is strictly preferable to a single price increase.

This feature is special to the case of positive interactions. The segment gh

degenerates to a single point when F12 = 0 and disappears when F12 < 0

(see Sheshinski and Weiss [1989]). Intuitively, under positive interactions,

when the two prices are not too far from their maximum profit position, an

anticipated change in the price of good j at some future date, t*(z1,z2) ,

creates an incentive to postpone the change in the price of good i I

to that same date.

It can be shown that with positive interaction in the profit function,

the reaction curves must have a positive slope in the neighborhood of

(S*,S*) . That is, an increase in z
i 

leads to a higher chosen real pricea a

for good j, i.e., St(SV > 0 .7 Finally, it can be shown that St(z) < 1

for all z and that whenever V(z1,z2) is differentiable at the boundary,

s(z), then si(z) < 1 .8 The former is the local stability condition in the

static Bertrand model. The latter is consistent with the requirement that any

path emanating from S(z) intersects a trigger set once.

Any path satisfying the first-order conditions can be portrayed by a

trajectory which moves smoothly inside the continuation set where both real

prices erode at the same rate, g , and then jumps to the reaction curves

whenever the corresponding trigger sets are met. In Figure 2 we present three
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such paths. Consider first the repetitive paths, indicated by (e,f) and

(a,b,c,d) . The first represents a synchronized steady-state and the latter

(symmetric) staggered steady-state.

FIGURE 1

The conditions determining these repetitive paths are as follows. A

synchronized steady state is characterized by a pair, (S*
a

satisfying:

- -re(30) F(S*,S*) = rV(S*,S*) =   [f e rxF(S*-gx, S*-gx)dx - 20e ]a a a a a a1 - e-rc 0

and

(31) F(S*-ge, S*-ge) - F(S*,S*) + 2rp = 0 ,a a a a

where S* is the initial level of real prices at the beginning of a cycle anda

is the duration of each cycle.

The first equality in condition (30) follows, using the 'valuation

formula', (16), from the maximization of V w.r.t. the chosen initial

prices. The second equality is derived from the definition of V , (7),

under a stationary policy. Condition (31) is necessary for the optimality of

the timing of a price change.

Similarly, a symmetric staggered steady state is characterized by a

pair (S*
' 
0 satisfyingb 

(32) F(Sg, Sg-gt) = rV(Sg, Sg-gt) + gV2(Sg, Sg-gt)

t r,
  [f e---F(S*-gx, S*-gt-gx)dx - pe-rt] +
1 - e

-rt b b0

t _rx
+ gf e F

2 
(S*-gx, S*-gt-gx)dx ,b b
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and

(33) F(S*-2gt, S*-gt) - F(S*
' 

S*-gt) + rp = 0 ,
b b

where S* is the level of the real price chosen when only one price is raised

and is the time interval between successive price changes (i.e. the

duration between subsequent price changes of the same good is 2t ).

Using integration by parts, (30) and (31) imply

(34)

(35)

-rxf e F
1 
(S*-gx

' 
S*-gx)dx = 0 .a  a0

Similarly, (32) and (33) imply

-rx 2t -rxF
1 
(S*-gx, S*-gt-gx)dx + f e F

1 
(S* 
'

-gx S*+gt-gx)dx = 0b b b  b0

The above conditions can be easily interpreted: in steady-state, the

discounted value of marginal profits over a typical cycle is zero. In addition,

at a point of price change, marginal benefits and losses from postponing the

price adjustment are equal.

Under assumptions Al and A2, it follows from equations (34) and (35),

that marginal profits, F. (i = 1,2) , are negative at the beginning and

positive at the end of each price interval. Thus, a typical price cycle

starts at a price which exceeds the level which maximizes profits and

terminates at a price below that level. Such oscillations strike a balance

between the loss in profits and the costs of price adjustment. It can be

shown that the same pattern also obtains outside steady-state (Sheshinski and

Weiss [1989], Lemma 2).
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Not every repetitive path that satisfies conditions (30) and 31) or

(32) and (33) is optimal. It is easy to find examples which satisfy equations

(32)-(33) and are sub-optimal (see Section 6). In terms of Figure 2, a non-

optimality of the staggered steady-state will be indicated by tangency of this

path with the boundaries of C and T. , i = 1,2 . Such tangency implies

that continuation towards the boundary of C with To also satisfies the

first-order conditions. The choice between these alternative policies cannot

be determined from the figure alone.

It is easy .to check that both paths (e,f) and (a,b,c,d) satisfy the

first order conditions at all times, provided that the initial state is on one

of these paths. That is, the staggered and synchronized steady states,

defined in Section 2, provide a solution of the first order conditions for

some S , c and t . In Appendix B we prove the following:

Proposition 1. There is a unique optimal synchronized steady-state. Under Al

and A2, there is a unique optimal symmetric staggered steady-state.

The proof of uniqueness of the two steady states relies on the

assumption that these are optimal. Thus, in addition to (30)-(33), we assume

that the appropriate second-order conditions hold.

4. Stability Analysis

We have identified two repetitive paths which satisfy the necessary

conditions for an optimum, provided the initial conditions are on one of these

paths. For other initial conditions, the optimal path is, in general, non-

repetitive. That is, different real prices are chosen at successive points of
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price change and the time intervals between such changes. This dynamic

adjustment reflects history-dependence. That is, the optimal level for the new

price of good i depends on the real price of good j , j i . Of course,

history does not matter if it is optimal to change both prices.

It is thus natural to inquire whether such dynamic paths converge

asymptotically to a steady-state. We restrict our inquiry to paths that

initiate in the neighborhood of one or the other steady-state and provide two

local-stability results.

Proposition 2. The synchronized steady-state is locally stable.

Proof: Starting in the neighborhood of the synchronized steady-state path,

it is seen in Figure 1 that the trajectory reaches a point on the boundary of
++

0 
on the nondegenerate segment gh . This triggers a joint price increase

to the synchronized steady-state at point

In Appendix B we provide a necessary and sufficient condition for local

stability of the staggered steady-state. This condition depends, in general,

on the values of (S* 0 which solve equations (32)-(33). For specific profitb

functions, however, these conditions can be verified a-priori. In particular,

consider the class of (symmetric) quadratic profit functions:

(36) 2 2F(zz
2
) = a(z

1
+z
2
) - b(z

1
+z
2
) + cz

1
z
2 '

where, to guarantee strict quasi-concavity, we set b > 0 and 4b
2 
- c

2 
> 0

For this important class of functions we prove the following:

Proposition 3. If F(z1,z2) e is quadratic, given by (36), then the

staggered steady-state is locally unstable.
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Proof: Appendix C.

The path a'b'c'd' in Figure 2 illustrates the local instability o

the staggered steady-state. Starting at an initial point near the staggered

steady-state path, a' the optimal trajectory converges to the synchronized

steady-state.

Propositions 2 and 3 present a sharp contrast between the two types of

steady-state. For positive interactions, > 012 the staggered path is

followed only if the initial price configuration is on this path. On the

other hand, the synchronized steady-state is attained from a wide range of

initial conditions, i.e., an immediate jump to the synchronized steady-state
path occurs whenever the two prices are far away from their maximum profits

level. If prices are not too far from that point and from each other, then it
is optimal to postpone the jump to the synchronized steady-state. In contrast,

if only one price is far away from its profit maximizing level, then this

price will be changed immediately, but a steady-state does not follow.

Instead, the firm will adopt a non-repetitive path. We have seen that with

quadratic profits, this path does not converge to a staggered steady-state.

Thus, it remains to be determined whether it converges to the synchronized

steady-state. This is a question of ajobal stability.

The analysis of global stability requires a complete solution for the

value function. An approximate solution can be obtained from the knowledge of

V(zz
2
) around the staggered and synchronized steady-states (see Sheshinski

and Weiss (1989)).
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5. An Example

In this section we derive, for certain cases of our model, explicit

solutions to the steady-state values in terms of the underlying parameters of

the model and provide some comparative statics. For this purpose we use two

simplifying assumptions common in the related literature on optimal inventory

policy (e.g. Costantinides and Richard [1978) and Sulem [1986]).

The first assumption is a quadratic instantaneous profit function, of

the form (36). The second assumption is the maximization of average profits

per price cycle, which is equivalent to the limit of discounted real profits

in steady-state when the rate of interest approaches zero.

Consider a synchronized steady-state path satisfying equations (30)-(31).

These necessary conditions implicitly define S: and E as functions of the

rate of interest, r . The limit of these values as r 0 must satisfy

(37)

and

(38)

a - (2b-c)(S):--g ) = 0

1
,  120  ,3

= L
g-(2b-c)

These equations are obtained by taking the limits of (30)-(31) as r 4- 0

The limit of rV(S:,SV as r 0 , denoted p
1 

is

(39) je--" HCF(S*- x, S*-gx)dx - 20] ,

0 
a a

where F(z1 ,z2) is given by (36). The R.H.S. of (39) is seen to be the

average profits associated with the limit price cycle.

Similarly, consider a staggered steady-state path satisfying equations

(32)-(33). As r 0 , the solution (S*
' 
0 approaches a limit satisfying

b 
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d (40) a - (2b-c)(n-gt) = 0 ,

, 
and

. 
1

3p  ,3(41) t = [ J •
g2(4b-c)

The corresponding limit of rV(Sg, Sg-gt) as r 4. 0 , denoted 112 ,

is

1 t(42) p2 = -E jf F(S-gx, Sik3-gt-gx)dx - 0] ,
0

where F(z1,z2) is given by (36).

As we have already indicated in Section 3, conditions (30)-(31) and.p.
(32)-(33) are necessary but, in general, not sufficient for optimality. To

4

determine the optimality of (S:,c) and (S*
b" we shall refer to:

Proposition 4. If F(z1,z2) E is a quadratic function given by (36), then

(43)

Proof: Appendix D.

- p2 0 F
12 

n 0 .

Proposition 4 implies that with positive interactions, F12 = c > 0 ,

average profits associated with a synchronized price policy exceed average

profits associated with a staggered policy. It follows that in this case,

whenever a price change is contemplated, a move to the synchronized steady-

state which costs 20 , will dominate a move to the staggered steady-state,

which costs only 0 . The reason is that the undiscounted difference between

the value of the two programs exceeds any finite f3 . We therefore conclude:
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•

Corollary 1: For a quadratic profit function, (36), with positive interaction,

F
1 

= c > 0 , the staggered steady-state is never optimal whenever r 4- 0 .

Corollary 1 is not true if r > 0 , since in this case the gain from

moving to the synchronized steady-state may be outweighed by the additional

costs of adjustment.

Expressions (37)-(38) and (40)-(41) provide a convenient framework for

comparative statics. It is seen that in both steady-states, an increase in

the costs of adjustment, or a reduction in the rate of inflation, g ,

increase the duration between successive price changes. For the synchronized

steady-state, an increase in the concavity of the profit function, i.e. an

increase in 2b-c , decreases the duration of fixed nominal price intervals.

The reason is that as profits decline faster around the maximum it becomes

. more costly to keep the nominal price unchanged. It is seen from (38) that a

stronger positive interaction, i.e. higher c , reduces the frequency of

price changes in the synchronized steady-state. Similarly, as seen from (41),

a stronger negative interaction, i.e. a decrease in reduces the frequency

of price changes in the staggered steady-state. The effects on the initial

real Price, S* and S*
a b '

are generally in the same direction as the effect

on duration, as seen in equations (37) and (40). This is also true with

regard to the effect of an increase in g on initial prices. This is because

the elasticities determined by (38) and (41) are less than unity. The terminal

prices, S; gc and SI*3 - 2gt in the synchronized and staggered steady-

states, respectively, change in oppposite direction to c or t

For additive profits, c = 0 , (38) and (41) imply that c = 2t and,

using (37) and (40), that S* = S* . Thus, the synchronized and the symmetrica

staggered steady-states have the same upper and lower bounds on real prices.
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• Along the staggered path, price adjustments occur alternatingly at a frequency

4

•

twice as high as that of joint price adjustment in the synchronized steady-

state.

6. Conclusions and Their Robustness to Alternative Assumptions

The main finding of this paper is that, with positive interactions, a

staggered price policy is unlikely. Since such a policy has been assumed in

support of consistent aggregation (i.e., a continuous path for the aggregate

price level associated with discrete price changes by individual firms) this

negative result is worrisome. It is therefore important to examine its

sensitivity to our assumptions concerning the costs of price adjustment and

the interactions of the two prices in the monopolist's profit function.

Increasing returns to scale in the costs of price adjustment, e.g. menu

costs, would further strengthen the tendency for synchronization of price

changes. In fact, as shown in Sheshinski and Weiss (1989], in the menu costs

case, the monopolist's optimum pricing strategy is fully synchronized

following the first price change. In this case, the optimum policy for two

goods reduces to the one-good case analysed in Sheshinski and Weiss (1977].

In the absence of positive price interactions in the profit function,

the likelihood of a staggered policy increases substantially. In the case of

additive profits (zero interactions) there is a continuum of non-synchronized

steady-states, all with the same (S,$) values for both goods, which differ in

the timing of the price change of the goods. The value of each steady-state

increases as the difference between the time of price adjustment of the

different goods decreases (see Sheshinski and Weiss [1989]). Thus, the
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synchronized steady state is the best. Nevertheless, for a wide range of

initial conditions, it is preferable to change only one of the two prices,

thereby saving on the costs of price adjustment.

Negative price interactions in the profit function fully exclude a

synchronized price policy (Sheshinski and Weiss [1989)). This has been

illustrated in the example discussed in Section 5. For a positive interest

the interactions are non-negative. However, for the special case of quadratic

profits, we have shown that in the limit, when the rate of interest approaches

zero, a sharp classification exists: positive interactions eliminate

staggering while negative interactions eliminate synchronization.

The important role of the interactions in determinining the timing of

price changes, can be explained intuitively. Recall that the gain from

postponing a price change is the sum of current flow of profits F(z1,z2) and

the interest gained on the delay in adjustment cost, rp . The loss from

postponing a price change is the flow of profits evaluated at the new real

price, St . Hence, the difference F(z1,z2) + rp - F(St,z2) is the net gain

from postponing a price change of good 1. If the price of good 2 is to be

raised now, then, with positive interactions, F12 > 0 the gains from

postponing the price increase of good 1 diminish. This creates an incentive

for synchronization. Conversely, if F12 < 0 9 then staggering is enhanced.

To further explore the role of different assumptions on the nature of

the optimal program we use some numerical analysis. We restrict our attention

to synchronized and staggered steady states which can be solved using

equations (30)-(31) or (32)-(33).

In Table 1 we present such solutions for the case of a quadratic

profit function. The Table highlights the following points.
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TABLE 1: COMPARISON OF STEADY STATES FOR DIFFERENT RATES OF INFLATION
'1/

DIFFERENT COSTS OF ADJUSTMENT AND DIFFERENT INTERACTIONS.

Cost of
Price

Adjustment

0

Inflation
Rate g

,
Synchronized2

Steady State -
Staggered SteadyStates 31

c = 1c = .025c. -.25

S*asacrV
a
' S

b 
4s

b
2trV

b

.T.
S -
b

s
b 

2tcV
h

S *
h

sb2CrV
b

0.051.041.9571.687.99831.029.'1671.243.9976*1.041.957 1.667.99821.048.9501.973.9985

0.101.052.9461.063.99731.038.960.783.9962*1.051.947 1.050.99871.061.9371.243.9977

.0010.201.066.32.E69.99561.048.950.493.9940*1.065.933 .661.9955*1.077.783.783.9962

0.301.076.913.511.99431.0i58.943.376.9921*1.075.924 .505.9941*1.089.909.598.9950

.0.501.093.909:363.99181.066.932.263.9888*1.089.910 .359.9917*1.106.893.425.5930

0.051.171.7787.856.97081.110.8215.782.9518',1.168.78n 7.760.96551.208.7489.193.9717

0.101.227.7334.939.94861.154.9733.637.9217*1.222.736 4.879.94301.271.6945.778.9527

0.10.201.295.6733.108.91311.207.7492.290.8735*1.291.677 3.891.90701.350.6233.637.9225

0.301.342:6302.372.88321.243.7191.747.8329:,1.337.634 2.343.87671.404.5722.774.8967

0.501.410.5661.687.83201.295.6731.143.763/11.406.571.1.666.82481.483.4971.973.8528

_

- The interest rate is set at r 0.1. The profit function is F(211Z
2
).a(21t-L

2
)-b(Z

1
fl
2
)+cZ

1
.2

2
). Throughout the Table

we set a = 1 and 2b-c = 1. The norma....zation implies that the maximal profits, 1, is attained at 
1
=Z

2=
1.

2/ Subscripts a and b 1ndicete synchronized and staggered steady states, respectively. S* is the real price of each good just

after a price increase; si is the real irice of each good just. before a price increasv; rVi is Lhe imputed flow value of the

optimal program, i = a,b. Thu time inioiyal over which the nominal price of each good is held fixed is c and 21, respectively,

is the time between price change of different goods at the staggered steady state.

* The staggered steady state is suboptimal.

NJ
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1. The synchronized steady state provides a higher value than the staggered

steady state whenever c > 0 . This pattern is reversed for negative

interactions. Although not presented in the Table, the synchronized

steady state still dominates at zero and small negative interactions.

2. The staggered steady state may be optimal even if it is dominated by the

synchronized steady state since it costs 0 to move from one steady state

to the other. The asterisks in Table I indicate cases where such a move

is profitable. It is seen that optimality of the staggered steady state

is enhanced by high costs of price adjustment in conjunction with high

rates of inflation.

3. Although the staggered steady state appears to be optimal under mild

positive interactions, it is not locally stable (as stated in

Proposition 3). For all the simulations in Table 1 we have verified that

the stability test fails if c > 0 and passes if c < 0 .

4. With positive interactions the staggered steady state involves more

frequent price changes and smaller price increases for each of the two

goods. This is in addition to the fact that one of the goods is changed

every half period. With negative interactions, price changes for each

product are less frequent in the staggered steady state.

5. As noted in our previous work, small costs of price adjustment are

sufficient to generate time intervals with fixed nominal prices whose

duration seems plausible. In the upper panel of Table 1 we use costs of

adjustment which are one permill of the current flow of profits,

= 0.001 . We see that at an inflation rate of 20 percent a year, prices

are raised jointly every 8 months in a synchronized steady state and, in
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the staggered steady state with c = , each price is raised every 6

months.

6. The loss of potential profits due to adjustment costs increases with the

rate of inflation. There is a magnification effect where even minute

adjustment costs translate into a non-negligible loss of profits. This

is due to the accumulation of two effects.: as the rate of inflation

increases, price adjustments occur more frequently and the firm is away

from the maximal profits point for a longer period. For instance, with

g = .50 , c = 1 , we see, in the upper panel of Table 1, that at a

staggered steady state an adjustment cost of .001 translates into a loss

of profits of .011. In the lower panel of Table 1, the numbers are .1

and .237, respectively.

7. In all the cases presented in Table 1, an increase in the inflation rate

causes more frequent price adjustments and a larger variation in real

prices. These patterns are consistent with the analysis discussed in

Section 5.

We conclude with a brief remark on the duopoly case. If price changes

are controlled by different firms, the likelihood of a staggered price policy

increases. This is a consequence of two considerations. First, in the

absence of cooperation, returns to scale in the costs of price adjustment

cannot be exploited. Second, the monopoly, who internalizes all interactions,

would change both prices even if this is not optimal for each duopolist

separately. If the number of firms increases to the point where interactions

become negligible, then idiosyncratic shocks are required to sustain a

staggered steady-state (Ball and Romer [1989)).



32

Appendix A

The purpose of this appendix is to establish some basic features of the

optimal pricing policy and its associated value function. First, we show that

there exists an optimal program where V(z1,z2) defined in (7), attains a

maximum. Second, following the first price change, the timing of subsequent

price increases and the associated real prices are uniquely determined.

Finally, we note that uniqueness implies that V(z z )
l' 2-

s differentiable at

all (zz
2
) reachable after a price increase.

The optimal policy is a member of a class of policies which can be

described as sequences of nominal prices for each of the two goods and

time-intervals over which each nominal price prevails. This characterization

follows from the existence of positive costs of adjustment for nominal price

changes.

Let us define

(A.1)
(IIT)T=1 = (tT 1-T'S2T)T=1 '

where t are the dates of of nominal price changes (for at least one good)

and S. 
' j = 1, 

, are the logs of the real prices chosen at these dates.
T 

Clearly, S. IR and e lit , t and t
1 

> 0 . Without loss of
JT 

+ t
T+1 T  /

generality, we can assume t 
1 

> t . Due to the fixed costs of adjustment,
T+ T

the price of the same good will not be raised twice within a short interval.

If two different prices are raised within a short interval, we can treat that

as a simultaneous raise of two prices. We denote the set of all sequences

satisfying the above restrictions by U .

To each sequence (IIT)T.1 < U , we can associate the present

discounted value of real profits
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(A.2) J(zi
co -rx

= j e F(zi-gx, z2-gx)dx + pe 1 E 6(S
1
. -z.+gt

1 
) +

O j=1 3 3 

-rt 2

t• -+ x[f e rxF(S1T-g(x-tT), S2T-g(x-tT))dx +
T=1 t

where

(A.3) 6(y) =

2-rt
pe T l E 6(s. +g(t „-t )))

JT Tj=1

0 if y = 0

-1 if y O.

By definition (A.3), costs of adjustment are avoided if there is no

nominal price change. That is, if the real price chosen at time t coincides

with the real price induced by the nominal price chosen at time t
T-1

The value function is defined as

(A.4) V(zi Sup J(z1,z2,41T)T.1)

(11je=1 U

Observe that J(z1,z2,(pT)T=1) is upper semi-continuous.

Recall that under our assumptions, profits are positive only within a

finite box, z < z. ( z , i = 1,2 . Charging at some t an initial price

for good j S. , which exceeds z , yields non-positive profits for aJT

S -z

period of t -   . The value of the program associated with this choice

-
rtS F6M eis at most . On the other hand, the firm can obtain immediately

1

1 - e-r(z-z)/g

-rx[j e F(2-gx, 2-gx)dx - 20) . By assumption, this
0
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value is positive. Hence, for a sufficiently large SiT (and 
tS ' 
) the

policy of repetitive adjustments from z to z dominates. Setting S
it

below z or postponing the nominal price changes until some real price

erodes below z is also suboptimal. Any such path can be replaced by a path

which differs only in the initial phase but yields positive profits via

continuous price adjustments. It follows that, without loss of generality,

we can select the optimal policy from a compact subset of U .

We can now apply Weierstrass' Theorem that an upper semi-continuous

function defined on a compact subset (of a normed linear space) achieves its

maximum. We conclude:

Proposition I. There exists an optimal policy, for which

V(z1,z2) defined in (A.4), attains its maximum.

Any path which maximizes V(zz
2
) must satisfy a sequence of

necessary first-order conditions. For example, consider a pair (zz
2
)

where the optimal sequence is such that prices are raised alternatingly, first

good 1, then good 2, then good 1 again, and so on. In this case the value

function becomes

(A.6) V(z1,z2) =

t*
2

t
*

-rxf e F(zi-gx, z
2
-gx)dx - pe-rt1

0

t
*

-rt
2

2 -rx *f e F(S 
1
-g(x-t*), x2-gx)dx -1 1tt

f 3 e -rxFc*
S g(x-t*), S* -g(x-t*)) -
11 1 22 2

4 -rx+ e F(S* -g(x-t*), S* -g(x-t*)) -
13 3 22 2t*

3
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where superscripts indicate an optimal choice of the controls. The

corresponding first-order conditions are

(A.7) F(zi-gtt, z2-gtt) F(Sti, z2-gtt) - rp

F(Sti-g(q-t), z2-gt) = F(St1-g(q-tt),q2) - rp

F(St -g(tl-t), q2-g(q-t)) = F(S1 -g(tli-t)) rp

and

(A.8)

t
2

t*
-rx

F *
1

3 -rx
-t*)
' 

z
2 
-gx)dx + f e 

F1 (S*11 
-g(x-t*), S22* -g(x-t*))dx = 01 1  2t*

2

t
*

-rx
- 
rx

t
2

f*3 e 
F2 (S*11 

-g(x-t*), S
22 - 
* -g(x-t))dx + t4 e 

4 
F,(S*

13 
-g(x-t*), S22* -g(x-t*))dx1 3  4t*

3

=0

•

Multiplying both sides of (A.6) by r , integrating by parts each integral in

the sequence, and using the first-order conditions (A.7) and (A.8), one obtains

-rx(A.9) rV(z1,z2) = F(z1,z2) -gf e Fi(zi-gx, z2-gx)dx -
0

_ g f e F2(z1-gx, 22-gx)dx -•

0

2 -rx
F (S* -g(x-t*), z2-gx)dx .

11 1
t*
1
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Equation (A.9) corresponds to the 'valuation formula', (16), in the text.

It states that the imputed value of a given state equals the current flow of

profits, F(z1,z2) minus the reduction in profits which is caused by

keeping the nominal price of good I fixed until the date and the

reduction in profits caused by keeping the nominal price of good 2 unchanged

until t* . All future information is incorporated in the choice of t*2 
1

t* and S* . Similar 'valuation formulas' can be generated for any optimal2 11

pattern of price changes. It is important to note that no differentiability

assumptions on V(z1,z2) are required to derive this result. Similarly,

equations (30) and (34) in the text, which identify the staggered steady-state,

can be derived directly from equations (A.7)-(A.'9), without the assumption

that V(zz
2
) is differentiable.

Differentiability of the value function is closely associated with the

uniqueness of the optimal controls, (p*) 
1 
„ for a given initial condition,T T= 

(zz
2
). We cannot establish such uniqueness for all possible pairs of

initial conditions. However, we can show that following the first price

change, all subsequent choices of dates and real prices are uniquely

determined.

To establish this fact, we first need to narrow down the possible

patterns which constitute a solution to the optimization problem. This is

done in the following two Lemmata.

Lemma 1. It is not optimal to delay a price reduction, i.e., if a price

reduction occurs it must occur once, at time t = 0 .

Lemma 2. If only one price is raised, it must be the price of the good with

the lower real price.
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Proof of Lemma 1. Suppose that for simile (z
1'
z
2
) 
' 

t* > 0 and
1

S* < z
1 '
- gt* i.e. a reduction in z

1 
occurs after a delay. The value11 1 

of such policy can be written as

1 - -rxf e F(z
1
-gx
' 

z
2-gx)dx + 

ert
1

0
V(S* z *N

2-gti) - 01

Now consider a feasible alternative program where the price of good 1 is

reduced at time 0 to S* + gt* and kept unchanged up to t* . The value of11 1 1

this alternative path is

t, -rt,_0 f A e-rxF(s*

1
t" gx, z

2 
-gx)dx + e V(S*

11 
z
2 
-gt*) .1 1 0

We want to show that it exceeds the value of the original program. That is,

(A.10)
t
*

-rx 
f e [El(s

11

+gt*

1
- x, z -gx)dx - F(zi-gx, z2gx)]dx > 0(1-e i) •

0

By the assumption that Sti + gt* < z
1 '1 we have under monotonicity,

(7), that the integral in (A.10) is strictly monotone decreasing in x

Since t* is a maximizer, we have by (A.7) that1

4 Hence,

F(Sti, z2-gtt) - F(zi-gtt, z2-gtt)') rp

F(Sti+gtt-gx, 2-gx) - F(z -gx, z2-gx) > rp .

for all x [0
' 
t*)
1 ' 

which establishes (A.10)
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Proof of Lemma 2. Suppose that z2 > z1 ,1 and z
2 

is raised at t = 0 .

That is, tt = 0 , S 1 >

By (A.7

(A.11)

and S* =
11

F(z S* ) - rp F(z1,z2)l' 21

because otherwise the firm would postpone the increase in z2 . By quasi-

concavity and S* > z
221

t*
2 '

the price of

program:

it follows that 
F2 
(z

l' 
z
2 
) > 0 . Suppose that at

is raised to S*
2 
. Write the value of the proposed1

t, „ -rt
f e---F(z

1 8 
- 
x' 

S
21
* -gx)dx + e 2[V(S* , S* -gt*)

0 12 21 2

Consider now an alternative feasible program in which zi is raised at time 0

to 
21 
S* ' ' 

and at time t* the price of z2 is raised to S*
12 ' 

yielding 2 

t
*

- 
,2 x -r

f e F(S* -gx, z2-gx)dx + e
rt
2 EX/(S*

21 
-gt*, S*

12 
) - 0] .21 2 0

symmetry, V(q2, S 1-gt) = V(S;1. *
12' •

(A.12)

We want to show that

2 -rxf e [F(S* -gx
' 

z -g )
0 21 2

- S 1-gx))dx =

t
*
2 -rx

= (z
2
-z

1
) f e 

F2 
(S21* -gx

' 
t-gx)dx > 0

0
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By complementarity, (5),

F
2
(zz

2
) > 0 F2(S 1,z2) > 0 , since S* >21

(7), (and thus concavity of F ,z2) ),

1 By monotonicity,

F2(q1,z2) > 0 tr-4. F2(q1,t) > 0 F2(S 1-gx, t-gx) > 0 , for all x E (0,q1 .

Hence (A.12) holds, which implies that the alternative program is superior U.

We are now ready to establish the following proposition:

Proposition II: Following the first price change, the date of subsequent

price changes is unique.

Proof: Assume that at time 0, the price of good 1 has changed and set at

5*11 
and suppose that there are two dates, t* and t** ( > t* ) which are2 2 2

both optimal dates for subsequent price changes. With each of these dates

there is an associated future sequence of prices. Clearly, both sequences must

satisfy the necessary conditions for a local maximum, (A.7)-(A.8), and must

yield the same value of V . We do not need to specify these sequences, since

one can use the 'valuation formula', (A.9), to evaluate each alternative, based

only on actions taken in the next round.

There are several cases to consider depending on the pattern of price

changes. In the first case, the price of good 2 is raised both at t* and
2

at t** . Setting t* = 0 in (A.9), we have2 1

(A.13) rV(S* z ) = F(S*11' 2 11
2 -rx-gf e F2(Sl1-gx, z2-gx)dx =

0

**
t2 -rx= F(St1,z2) -gf e 

F2(S*11 
-gx, z2-gx)dx .

0
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It follows that

*
t
**t

2 -rx 2 -rx(A.14) f e F2(Sl1-gx, z2-gx)dx = f e F2(S
0 0

Under the F.O.C. (A.7), we have

-gx, z2-gx)dx .

(A.15) F(Stl-gq, F(Sti-gq, z2-gt) - rp ?. 0 ,

where q2 is the choice of z2 at t . By Lemma 1, q2 > z2 -gt1 and

therefore (A.15) and quasi-concavity imply that F2(St1-gq, z2-gt) > 0 ,

i.e. marginal profits from raising the price of good 2 are positive just prior

to the price increase. Under the irreversibility assumption, it follows that

F2(St1-gx, z2-gx) > 0 for all x e[t,q,,k) .4 Hence, the two integrals in

(A.14) can be equal only if ttr 5 which establishes uniqueness for this

case.

A similar proof applies to the cases in which the price of good 1 is

raised together with the price of good 2 and to the case in which the price of

good 1 is raised at both t* and t** The cases in which two different 2 2

prices are raised at t* and t** are excluded by Lemma 1. Thus, the date2 2

of the subsequent price change is unique U.

It remains to be shown that at the time of price change a unique action

is taken.

Proposition III. Following the first price change, subsequent chosen real
a

prices are unique.

Proof: Consider first the case where only the price of good 1 is raised at

t* Assume, contrary to the Proposition, that there are two choices, say,2

S* and
12

s**
12
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By the F.O.C., (A.7), setting t* = 0 , we must have1

(A.16) F(S*
1 
-gt*, S*

21 
-gt*) = F(S*

12' S*21 
-gt* - rp = F(Sn,q1-gq - rp .1 2 2  2

Hence,

(A.17)
F(S*2' 

S
21
* -gt*) = 

F(S**' 
S*
21 
-gt )1 2 12 

Let S* > S** . Then, by quasi-concavity, F
1 
(S**,S*

21 
-gt*) > 0 ,12 12 12  2

which under irreversibility, (A.1), contradicts the F.O.C. (A.7).

Finally, consider the case in which both prices are raised at t* .
2

As explained in the text, under positive interaction, the best choice,

starting from (z1,z2) 6. To is to select a synchronized steady state. In

Appendix B we shall prove that the synchronized steady state is unique H.

Having established uniqueness, differentiability of the value function

follows. First we note that uniqueness implies continuity of the optimal

choice with respect to variations in the initial state. Now,

be an optimal choice for (z ,z2) and

(z1, z2+h)

or

(A.20)

h

(PT/T=1

where h > 0 . By definition

let (11T)T=1

be an optimal choice for

h
J(z1,z2,(111. T.1) ) J(zi,z2,(11T)T. )

h

j(z1'z2+11'(PT/T=1) j(z
1
,z2+11'(PT/T=1)

h h h

CO

J(z1,z24-h,(PT)T.1) J(zvz2.(PT)T=1) J(zi'zifh'(PT)T= ) J(z1'z20(PT)T-1) )
cc.

J(z1,z24-h,(1,T)T= -
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Consider a point (zz
2
) in the interior of C where, in (A.2),

6(Si1-zj+gtj) = 0 , j = 1,2 . In this neighborhood, J(7.1,z2(11T)T.1) is

differentiable w.r.t z
1 

and z
2 
. Dividing both sides of (A.20) by h ,

letting h approach zero and using the continuity of (11) in we obtain

the usual envelope relationship:

(A.21)

aV(zi,z2)

az
2

a
z
2

J(zl' z2' (p ) ) •a T T=1

A similar proof applies to the other partial derivative.
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A

Appendix 8

Proof of Proposition 1:

We first prove that the synchronized steady state is unique. Any

maximizer of V must be in the interior of C . Otherwise an additional cost

of 0 would be incurred to obtain the same value, V* . Observe that for any

point in the interior of equation (10) applies with strict inequality

and V is differentiable. Combining these facts, we obtain

(11.1) rV(S1,S2) F(S1,S2)

where (S1,S2) C arg Max V(z1,z2)
z ,z

21 

Now suppose that S
1 

S
2 

Then, by symmetry, the points (SS
2
)

and (S2'S ) are both maximizers of V(z
1
,z
2
) 
' 

yielding the same value V*

YFor any 0 < y < 1 , define (SS
2
) as:

SY1 = ySi + (1-1)S2 ,

SY2 = yS2 + (1.')S1 .

Using recursive equation (7), the value associated with V(S1,S2) is

t* _r
V(SS

2
) =J e xF(S

1-gxS2
-gx)dx + e

-rt*(V*-20)
0

where t* = t*(S1,S2) is the optimal time for the subsequent price change

Y Yand V* is the maximum value of V realized at t* . Starting at (SS
2
)

the same choices are still feasible. Hence,

t* -rx
V(S

y
,S > 

y
) e F(SY-gx

' 
Si-gx)dx + e

-rt*
(V*-20) .1 2 / 1  20
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By strict quasi-concavity, F(S1-gx,S2-gx) < F(Si-gx,S2-gx) for all

t* ) x ) 0 Thus, equations (B.3) and (B.4) imply that V(01,q) > V(S1,S2)

which contradicts the assumption that (51,52) maximizes V . This proves

that S
1 
= S

2 
= S To save on notation we shall omit here the superscript and

subscript, writing S = S* . To prove that S is unique we use again thea

quasi-concavity of F together with the 'valuation formula', (16).

Suppose there are two values, (S
a
,S
a
) and (S

b
S
b
)

maximize Let Se = es
a 
+ (1-6)S 0 < 0 < 1 . Then,

(B.5) F(S
0 
,S
0 
) > F(S

a
,S
a
) = F(S ,S ) = TV* rV(S ,

S
a 
0 S

b 
, that

Inequality (B.5) and the 'valuation formula', (16), imply that for any

(s,s) c , we must have

(B.6) gyS ,S + gV2(S8,Se) > 0 .

Letting y 0 or 1 , (B.6) implies that V can be increased in

the neighborhood of (Sa,S
a 

(S
b
,

b
) , Sor contrary to the assumption that

these are local maxima.

We shall now prove the uniqueness of the symmetric staggered steady-

state, (S*,t) . For brevity, we write S* = . Consider the point

(S,Z) C C , where the price of the first good has just been changed, and let

t
2 

be the timing of the subsequent price change. The F.O.C. satisfied at that

point are:

(B.7) V2(S-gt2, S2) = 0

and
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(13.8) F(S-gt2, z-gt2) r(V(S-gt2, s2)-) - 01(S-gt2, S2) = 0 .

At a symmetric steady state, S2 = S t
2 
= t and z = S gt .

Evaluating the second-order conditions at this point, we have the requirement

that the matrix A ,

(8.9) A =

V
22
(S-gt, S) -gV12(S-gt, S)

-gV
12
(S-gt, S) -g(F

1 
(S-gt, S-2gt) + F

2
(S-gt, S-2gt) +

+ rVi(S-gt, S) + 01(S-gt, S))

be negative definite. Now consider the system

V
2
(S-gt, S) = 0

F(S-gt, S-2gt) - r(V(S-gt, s)-p) 01(S-gt, S) = 0

as two equations in the unknowns S and t

To prove uniqueness, we shall show that the Jacobian, B

(B.12) B

V
12
(S-gt, S) + 

-gV12(S-
gt, s)

+ V
22
(S-gt, S)

F
1 
(S-gt, S-2g0+

+ F
2
(S-gt, S-2gt)

rV
1
(S-gt, S)

-g[Fl(S-gt, S-2gt) + 2F2(S-gt, S-2gt) +

+ rVi(S-gt, S) + gVil(S-gt, S-2gt)]
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is negative definite. The first diagonal term is, under Al and A2,

(B.13) 1
b
11 

= V
1 
+ V

22 
= — F

2 
(S-gt, S) < 0 .g 

The other diagonal term,
22 ' is equal to the lower diagonal term in

(B.9), a22 
minus gF2(S-gt, S-2gt) . By A2, F

2 
just prior to a price

change has to be positive. Thus, the whole term is negative. The determinant

condition can be written in the form

(B.14) (-gF2(S-gt, S-2gt)) + a22 V22 > 0 n
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Appendix C

The purpose of this appendix is to analyse the stability of the

staggered steady-state.

We begin by calculating the slope of the reaction

ij,i,j=1,2,evaluatedatS*=S*andz.=S* - gt , where S*1

and t are determined by equations (32) and (33). To save on notation we

shall omit again the superscript and subscript, writing S instead of S

Suppose that has just been raised to S and that z
2 
= S -1

At this point we have

(C.1) V1(S,z2) = 0 ,

(C.2) gV11(S,z2) 
gV21(S'z2) 

= F
1
(S
'
z
2
) 
'

and

-rxV2(S,z2) = f e F2(S-gx, z2-gx)dx ,
0

where (C.2) follows from the valuation formula (16) and (C.1). Differentiating

(C.1) we obtain

(C.4) S t(z2) =

Using (C.) to eliminate V11 ,

(C.5)
gV12 '

z
2
) =

Differentiating (C.3) we have

(C.6)

V
12
(S
'
z
2
)

V11(S'z2)

St(z2)F1(S,z2)

S t(z
2
) - 1

t 
--- 

„ 
-rt atv21 (S,z2) f e F21"-gx' z2-gx)dx + eF2(S-gt, z2-gt) az=

0 
1
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(C.7)

(C.8)

To find 
at
az

we note that in steady-state,

t - -rt
(S,t) = argmax{f 2e

r 
xF(S-gx, z

2-gx)dx + e 
2[V(S-gt

2' 
S
2
)

S
2
st
2 

0

Differentiating the F.O.C. for the maximization in (C.7), we obtain

[ 

-g(Fl(S-gt, z2-gt) + F2(S-gt, 2-gt)
-rV

1
(S-gt, S) - gV

11
(S-gt, S)]

-gV
12
(S-gt, S)

V
9 

S-gt, 
V22 

(S-gt,

••••••

at
azi

as

az

-Fl(S-gt, z2-gt) + rVi(S-gt, S) + gVil(S-gt, S)

V
21
(S-gt, S)

The second-order conditions for maximization require that the matrix in

(C.6) be negative-definite. Using the valuation formula, we have

TV
1 
(S-gt, S) 

gV11(S-gt' 
S) = Fl(S-gt, S) gV12(S-gt, S) .

V
22
(S-gt, S) =

V
12(S-gt, S)

S'(S-gt)

Substituting (C.9)-(C.10) into (B.8), we can solve for .E_ interms
az
1

of S'(S-gt) , to obtain:
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Fi(S-gt, 2-gt) - Fi(S-gt, S) - F2(S-gt, S)S'(S-gt)

Fi(S-gt, z2-gt) + F2(S-gt, z2-gt) Fl(S-gt, S) - F2(S-gt, S)SI(S-gt)

The denominator on the R.H.S of (C.11) is positive by second-order

conditions. Combining (C.5), (C.6) and (C.11) and using symmetry, we obtain

(C.12)

where

(C.13)

and

S' (z2)
= C + D

S'(z2) - 1 B - S'(S-gt)

A - St(S-gt)

Fl(S-gt, z2-gt) Fi(S-gt, S)

F
2
(S-gt, S)

F2(S-gt,z2-gt)
B A +  

F
2
(S-gt, S)

t _gf e rxF
12 
(S-gx
' 

z
2 
-gx)dx

0

F
2
(S-gt, S)

F2(S-gt, z
2
-gt)

D=e  
-rt

F
2
(S-gt, S)

Equation (C.12) determines the slope of the reaction curve for the first

good in terms of the slope of the second good's reaction curve evaluated at the

subsequent price change. Setting z2 = S - gt , S' at this point is unknown,

satisfying the non-linear difference equation:

(C.14)
x
n A - x

n+1
C + D  

n
-1 B - x

n+1
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The optimality of the staggered path requires convergence of the

sequence defined by (C.14) when solved forwards.

To analyse the behavior of the solutions to (C.14), we rewrite it as

(C.15)
CB +DA - (C+D)x114.1

X
n 
  a f(x)

•CB + DA - B + (1-C-D)x
n+1

Note first that the condition xn = xn+1 
= x defines a quadratic

equation which has at most two roots. In general, one root is characterized

by f'(x) < 1 and the other by f'(x) > 1 . The second, being unstable,

cannot be obtained by iterations of the value function and therefore cannot

represent the value of an optimal policy (Stokey and Lucas [1989, Ch. 4]).

Henceforth, we shall consider only the root satisfying f'(x) < 1 .

To find the roots of equation (C.15) it is convenient to rewrite B.14):

(C.16) x(B-x) CB + AD - (C+D)x = g(x) .
x - 1

Under assumptions Al and A2 in the text, A > 0 , C < 0 , D < 0 and

B A < 0 . Second-order conditions (i.e., negative definiteness of the matrix

in (C.8)) imply that B < x < 1 . It follows from these restrictions that

g(x) is strictly convex. Furthermore, g(0) = g(B) = 0 • g'(0) = -B and

g' (B)
B - 1 •

Associated with the value of which solves (8.16) there is a

corresponding value s' which is the slope of the boundary curve between the

trigger sets Ti, i = 1,2 , and C . This relation is obtained by

differentiating (33) in the text, yielding

(C.17) • - A

B - A •
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Note that since B < S' , by second-order conditions, s' < 1 .

Consider a small perturbation around this path (a'b'c'd' in Figure 2).

Let S' denote the slope of the reaction curve evaluated at the staggered

steady-state (i.e. at (S, S-gt) ). Similarly, let s' denote the slope of

the boundary of the trigger sets T.
1

i = 1,2 , and C , evaluated at the

staggered steady-state (i.e., at (S-gt, S-2gt) ). For sufficiently small

perturbations these slopes can be taken as constant. Let 6 be the difference

between the two paths along the reaction curve for the first good, measured in

units of z
2 
. It can be seen in Figure 1, and rigorously proved, that the

initial 6 translates into a difference (   )6 along the trigger

boundary for the second good and a difference of (   )
2
6 along the

trigger boundary for the first good. Thus, if and only if

(C.18)
S' - 1

1 - s'
< 1

will the perturbed path return to the first good's curve, closer to the original

point a . We therefore conclude that the necessary and sufficient condition

for local stability of the staggered steady-state is condition (C.18).

It follows from (C.17) that if S' < 0 , then s' > 0 and hence

S'

-1 - i
> 1 i.e., the staggered steady-state is unstable. It remains to

s'

examine the case in which S' > 0 . This can only occur if AB + CD > 0 and

B < 0 . It can be shown that

(C.19)
A A (C+D)A 

>   g( ) < CB + AD -
1- B + A 1- B + A 1- B + A
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It remains to discuss the case of negative interactions, where

F
12 

4 0 . In this case C 0 , A 4 0 and B < 0 . In contrast to the case

with F
12 > 0 , (C.17) does not imply that if S' < 0 then s' > 0 .

Therefore, we need to consider the case CB + AD < 0 associated with negative

For this case too, it can be shown that (C.19) has to be satified. The

condition in (C.19) can be simplified to

(C.20) A + C < CB + AD ,

which is the necessary and sufficient condition for local stability.

•
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4

Appendix D

In this Appendix we prove Proposition 3 in the text.

Consider a quadratic profit function given by (36). The necessary

conditions for a staggered steady-state, (32)-(33), are now:

(D.1) -2gt(a-(2b-c)(S-gt)) + rO = 0 ,

and

(D.2)

2t _rx 2t 
--- 

2t -rx(a-(2b-c)S) f e dx + g(2b-c) f e
„ -„ 

xdx + cgt [f e -dx - f e dx] = 0
0 0 0 0

where S = S* in the text. Equations (D.1) and (D.2) uniquely determine the

steady-state values for t and S . Given these values, one can calculate

all the elements of the stability condition (D.20). In particular:

(D.3)

F
1 
(S-gt, S-2gt) = A + (2b-c)gt

F
2
(S-gt, S-2gt) = A + (4b-c)gt

F
2
(S-gt, S) = A - cgt

F
1 
(S-gt, S) = A + 2bgt

where A = a - (2b-c)S . Using the definitions (C.13) in Appendix C ,

(D.4)

F
2
(S-gt, S)A = -2cgt

F
2
(S-gt, S)B = A + (4b-3c)gt

-rxF (S-gt, S)C = gc f e dx2 
0

F
2
(S-gt, S)D = e

-rt
(A + (4b-c)gt)

The stability condition (C.20), CB + AD > A + C is thus equivalent to:

-rx(D.5) (A+(4b-3c)gt f e-rxdx - 2te-rt(A+(4b-c)gt) > (-2t+f e dx)(A-cgt) .
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Substituting for A from (D.2) into (D.4) we obtain, after some

manipulations, that (D.5) is equivalent to

(D.6) c(2b+c) < 0

The concavity requirements b > 0 and 4b2 - c
2 

> 0 imply that

2b + c > 0 for all c . Hence, (D.6) always holds when c < 0 and never

holds when c > 0 . This proves Proposition
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Appendix E

The purpose of this Appendix is to prove Proposition 4 in the text and

its corollary.

Consider the staggered steady-state path starting at point b in

Figure 2. At this point the staggered policy calls for a move to c . The

value of the staggered steady-state path starting at c is given by

(E.1)
1

-rx -rt
-rt

V
b 
  [f e F(S*-gt-gx, S*-gx)dx - pe ]
l -e 0

If, instead, the monopolist would move to point e and follow thereafter the

synchronized steady-state path, the value associated with this alternative path

is

1 E - -rE(E.2) V =   
u e rxF( 

S*-gx, S*-gx)dx - 2e]a 
1 - e-rE 0 a a

where (Sg,t) and (S*,€) are the solutions of (32)-(33) and (30)-(31),a

respectively. By our assumptions, a move from b to c costs p while a

move to e costs 20 . Therefore, a necessary condition for the optimality

of the staggered program is that

(E.3) v — p > V
a 
- 20 .

Multiplying (E.3) by r • and taking the limit as r 0 • the requirement is

(E.4) 1 1 e[f F(S*-gt-gx, S*-gx)dx - > [f F(S*-gx, S*-gx)dx 20] .
a a0 0

Using (31) and (33) in the text, (E.4) can be written
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(E.5) F(S*- t, S*) > gf F,(S*-gt-gx, S*-gx)dx + F(S*,S*) .a a a a. 0

Substituting the quadratic formula (36) in the text into (E.5) and

using (38)-(42) in the text, condition (E.5) is seen to be equivalent to

(E.b)

C.

4.

1
2b - c

> 1 .

2b +

This inequality holds if, and only if, c < 0 .
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Footnotes

1 Sheshinski's research was partially supported by NSF grant SES-8821925 at

Stanford University. The authors wish to thank Eyal Sulganik for helpful

comments.

2 A number of recent studies have analysed the dynamic interaction of pricing

policies in oligopolistic markets (Maskin and Tirole (19881, Gertner (1986),

and Benabou and Gertner [1988)). However, these studies take the time

pattern as exogenous, and focus on the equilibrium price configuration.

The issue of staggering vs. synchronization has been taken up by Ball

and Cecchetti [1987], Ball and Romer (1989) and by McMillan and Zinde-Walsh

[1988]. The approach of Ball and Cecchetti emphasizes the informational

gains from staggered pricing policies. McMillan and Zinde-Walsh consider a

closed-loop equilibrium in an oligopolistic market for a homogeneous good.

The homogeneity assumption eliminates price variation across products. Ball

and Romer [1989) extend a model of Blanchard (Blanchard-Fischer (19891),

allowing each firm to choose whether to change prices at odd or even periods.

This formulation permits both staggered and synchronized equilibria. The

duration of the fixed price period is assumed to be determined exogeneously.

In contrast, we treat the timing and the chosen real prices as endogeneous.

3 WC would like to thank Avner Bar-Ilan for the references to Bensoussan,

Crouhy and Proth [19831, Bensoussan and Proth [19821, and Sulem [1986).

4 For a reference on the methodology, see Stokey and Lucas (19891.

F(z1,z2) = F(zi,
z,

z
1

F
2
(zx)dx

F(z1,z2) = F(z
2'
z
2
) f2 F1(x,z2)dx = F(z2,z2) f

z
2 F2(z2,x)dx

zl z
1
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Adding up the above equalities we get

2F(z1,z2) = F(zi,zi) F(z2,z2) x) -F
2
(z

2'
x)Jdx

z
1

Assuming F12 > 0 , the integral of the difference in marginal profits must

be negative, which establishes the claim.

6 The derivatives of V at point (z,z) on the diagonal just below k are

t*(z,z) -rxV.( ,z) = f e F
i
(z-gx, z-gx)dx , i = 1,2 . Note that by symmetry,1

0

V
1
(z
'
z) = V

2
(z
'
z) . By the optimality of S* 

' 
we have

a 
t*(S,SVe_ rxFits*_,,,x,V.(S*,S*) = f S*-gx)dx = 0 , i = 1,2 . But,1 a a 1‘ a 6 a
0
* *

t*(z,z) > t*(Sa,Sa) and F(zi,z ) is strictly quasi-concave. Hence,

vi(slac,s'ac) = o V.(z
' 
z
2 
) < 0 , for i = 1,2 . To locate the boundary

points between C and T. , i = 1,2 , we cannot use equations (23)-(25),

since these do not hold with equality. Instead of marginal conditions we

require that the firm be indifferent between holding prices constant for a

non-negligible length of time, and changing prices instantly. For instance,

on the diagonal,

e
-rx

F(z-gx, z-gx)dx - e
rt*(z z)V(z,z) = f ' (V*-20) = V* - 20

0

t*(z,z)

The solution to this equation is point k in Figure 1.

7 Consider z2 in the neighborhood of S.:, , which triggers a change to S(z2)
•

Observe that S(z2) is also in the neighborhood of S* . From the
a

i 4-4-
properties of T

0 , 
it follows that the subsequent price change att 

. t*(S(z2),z2) will be a joint price increase. Hence,

t _r
(t*,S(z2)) = argmax f e F(S-gx, z

2-gx)dx + e
-rt(17*-2p) .

t,s
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8

Differentiating the F.O.C. w.r.t.

(S*,S*) ,
a a

we obtain

, evaluating the derivatives at

t* -
S'(SV = [f e

rx 
F (S*-gx, S*-gx)dx +

a a0

e
-rt*

F
1 
(S*-gt*, S-gt*)

a a

2g

e
-rt*

F (S*-gt*,s*-gt*)t* -rx 1 a a 
+5 e F

12 
(S*-gx

' 
S*-gx)dx +

a  a 2g0
0

By second-order conditions, the term in square brackets is negative. The

F.O.C. imply that F1(S;1-gt*,S-gt*) > 0 . Hence, with F12 > 0 ,

S'(S*) > 0 .
a

Differentiating the 'valuation formula', (16), we obtain

F
1
(S(z

2
),z

2
) = gV

11
(S(z

2
),z

2
) + gV

12
(S(z ),z

2
) .

Since, F1(S(z2),z2) < 0 , V11(S(z2),z2) < 0 and V
1
(S(z2)'z2) =0 for

all z
2 

we obtain

Similarly, whenever

formula' implies

S' (z)= -
V
21
(S(z

2
)
'
z
2
)

> 1 .
V
11
(S(z

2
)z

2
)

V is differentiable at the boundary, the 'valuation

F1(s(z2),z2) = gys(z2),z2) + gV12(s(z2),z2) .

Since F1(s(z2),z2) > 0 , V11(s(z2),z2) > 0 and V1(s(z2),z2) = 0 for

all z
2 

we obtain

s' (z2)
V
21
(s(z

2
)

2
)

< 1 .
V
11
(s(z

2
)

2
)
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