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ABSTRACT

Stochastic dominance rules are constructed for an environment in which

the individual may sample sequentially according to a stopping rule.
The dominance criterion used requires that all sampling take place in
the dominant distribution with probability one even if the individual is
permitted to switch during the course of sampling. The principal result

is that the necessary dominance criterion is (conventional) first degree
stochastic dominance even if the individual is known to be "very" risk
averse. On the other hand, knowledge of an upper bound on risk aversion

serves to rank random variables identically in both sampling and

nonsampling environments.
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Introduction

Consider a set U of von Neumann-Morgenstern (VNM) utility functions

and a pair of random variables, X and Y such that u E U must choose

between them. The stochastic dominance literature addresses the

following question: What relationship between the random variables must

obtain so that each u e U maximizes expected utility by choosing X?

As a stochastic dominance criterion induces only a partial ordering on

the set of random variables, the focus of this literature has been to

restrict U with the intent of obtaining a more complete ordering. With

this objective in mind, several authors have imposed restrictions on the

Arrow-Pratt risk aversion measure of U's elements. Thus Hadar and

Russell (1969) and Hanoch and Levy (1969) construct dominance criteria

for U all of whose elements are risk averse, while Whitmore (1970)

focuses on utility functions with nonnegative third derivatives. Meyer

(1977) presents a more general analysis, constructing dominance criteria

for sets of utility functions whose Arrow-Pratt measure of risk aversion

is bounded from below by an arbitrary constant.

An essential premise of this literature is that the individual's

payoff is restricted to depend on a single random draw from the chosen

distribution. In many economic contexts of interest, however, the

individual may wish to sample repeatedly, rejecting unfavorable draws in

anticipation of more desirable future outcomes. For example, in a world

of imperfect job markets, a Worker's wage in any particular profession is

a random variable. She is not restricted, however, to accept the first

job offered but may choose to search until more suitable employment is

1
found.
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In this essay, therefore, I study a more general model in which up

to n samples may be sequentially taken where n is any positive

integer.
2
 Specifically, following each draw, the individual may either

terminate sampling and collect her payoff or incur a nonnegative sampling

cost and draw a new sample from either of two fully specified probability

distributions. Successive draws are i.i.d. and sampling must terminate

after n draws have occurred. The payoff depends on the sampling

"technology". If sampling is without recall, the payoff is the outcome

of the last sample taken prior to termination. Sampling with recall

describes a process in which the payoff is the maximum outcome of all

samples taken prior to termination.
3

The complexity involved in designing dominance rules for sampling

environments stems from the fact that it is in general optimal to

successively sample from both distributions as a simple example shows.

Example one: Sampling Without Recall

Suppose sampling is without recall, is costless and the sampler is

risk neutral. Let F be the distribution which yields the payoffs -10

and +10 with probability 0.5 each and let G yield -21 and +20

with probability 0.5 each. If n = 1, F is preferred since its mean

is larger. Supposes

sequentially from

expected payoff from

expectation which is

— 2. The expected payoff from sampling

only is calculated recursively as follows. The

taking a second (and last) sample is simply F's

zero. Hence a second sample is taken if and only if
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the value of the first sample is -10 < 0, which occurs with probability

1/2. Thus with probability 0.5 the value of the first sample is 10 and

no second sample is taken while with probability 0.5 the value of the

first sample is -10 and a second sample whose expectation is zero is

taken. The expected payoff from employing this optimal sequential

sampling procedure on F is therefore:

0.5 x 10 + 0.5 x 0 — 5.

Similarly, a second sample is taken from G only if the value of the

first sample is -21 < -1/2, G's expectation. Thus the value of using

the sequential sampling procedure on G is:

0.5 x 20 + 0.5 x (-1/2) — 9.75 > 5.

There exists, however, a 'mixed' sampling rule which offers a higher

payoff than either of the above procedures. Calculate the payoff from

sampling first from G and, should it prove to be necessary, sampling a

second time from F. Since a sample from F has an expectation of zero

the first sample is accepted if and only if its value is 20 which occurs

with probability 0.5. The expected payoff from this procedure is:

0.5 x 20 + 0.5 x 0 = 10 > 9.75.
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In example 1, C is certainly the riskier of the two prospects and

is appropriately rejected by a risk neutral individual if n = 1.

Nevertheless, the same individual strictly prefers to first sample from

if n 2. This example serves to identify the distinction between

underlying risk attitudes (i.e. the concavity or convexity of the utility

function) and sampling risk attitudes which describe preferences for risk

in sampling problems. Even individuals whose underlying attitude is risk

averse may display sampling attitudes which are risk loving.
4

Furthermore, while the underlying attitude is constant, sampling

attitudes are determined by both the specification and the course of the

sampling.
5
 Thus, as example 1 suggests, and as is discussed more

formally in section 3, the sampling attitude evolves towards increased

risk aversion as n decreases if sampling is without recall.

Intuitively, when a large number of samples remains available, the

sampler can "afford" to assume risks she would otherwise avoid, being

"cushioned" by the possibility of subsequently reverting to more

conservative behavior. As the remaining available number of samples is

depleted in the course of sampling, the sampling preference for risk

steadily erodes, ultimately coinciding with the underlying risk attitude

when only 1 sample remains. If sampling is with recall, however, the

sampling attitude may also evolve towards increasing preference for risk:

the individual's underlying and sampling attitude typically diverge even

at the last stage, as the next example shows.
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Example 2: Search with Recall

Suppose sampling is with recall. Let F be the distribution which

assigns a probability of 1-p to zero and a probability p > 0 to 1 +

e > 0, let G be the uniform distribution with supp[0,1], let the

sampling cost be zero and let n = 2. Every sampler whose underlying

attitude is risk averse will initially sample from F if p and e are

sufficiently small. Since sampling is costless and the outcome of the

first sample remains available, a second sample is taken with probability

one. Since a second draw from G increases the expected payoff by pe,

the last sample is optimally drawn from G if the realization of the

first sample is sufficiently close to 1, an event which occurs with

positive probability. The sampling preference for risk may therefore

dramatically increase at the last draw if sampling is with recall.

The reason for this distinction between the two sampling

environments is straightforward. Since sampling without recall is

"memoryless" the sampling attitude towards risk is affected only by the

remaining number of samples. By contrast, when sampling is with recall,

the sampling attitude is determined by both history and remaining

possibilities. The more favorable the history, the more the sampler is

disposed towards the riskier prospect.

The preceding examples stress the importance of n in determining

sampling attitudes towards risk. - These are also affected by the size of

the sampling cost as the desirability of switching to the less risky

distribution at a later stage may be diminished when this cost is large.
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To illustrate, consider example one with a sampling cost of 21.

Since the increase in utility which derives from taking a second sample

from either distribution is exceeded by the sampling cost whatever the

outcome of the first draw, only one sample is ever observed. Under

otherwise identical conditions, the same individual's sampling attitude

displays greater risk aversion when the sampling cost is higher.

• As sampling risk attitudes depend on the specifics of and location

within a sampling problem, it is felt that meaningful dominance criteria

applicable to general sampling environments should be independent of such

arbitrary specifications. Accordingly we offer the following definition:

F sample dominates G for a particular set of VNM utility functions if

and only if each utility function in the set is maximized when every

possible sample is optimally drawn from F, for every (integer) n and

every nonnegative sampling cost.

We may state our main result. The knowledge that an individual's

underlying attitude is risk averse conveys no useful information in the

sampling context. More precisely, if the sampler's utility function is

incompletely specified, knowledge of the extent to which her underlying

attitude is risk averse cannot help determine her preferences in the

sense of sampling dominance. On the other hand, knowledge of the extent

to which the underlying attitude displays preference for risk is equally

informative in both sampling and nonsampling contexts.

Our earlier discussion (of the distinction between underlying and

sampling attitudes) suggests an intuitive explanation of the preceding
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result. Depending upon the specifics of the sampling problem, even

inherently risk averse individuals may display sampling attitudes which

are risk loving. Therefore an underlying attitude which is risk averse

may be at odds with the individual's sampling attitude and barring a

precise specification of the utility function it is not possible to

determine which attitude "prevails". An underlying attitude which is

risk loving, however, is complementary to the individual's sampling

attitude and conveys useful information.

The remainder of the paper is organized as follows. In section 2,

the properties of the relevant optimal sequential sampling rule are

reviewed. These properties are used to derive sampling dominance

criteria for important sets of VNM utility functions. Section 3 presents

corroborating evidence pertaining to the relaionship between n and

sampling preference for risk. Brief concluding remarks close the paper.

Section 2

This section begins with a brief review of the optimal sequential

sampling rule when the maximum number of samples is finite and the

sampling cost is constant. Proofs and additional details may be found in

e.g. Landsberger and Peled (1977). Throughout it is assumed that

sampling is without recall. In the appendix it is shown that all the

theorems of this section apply without change if sampling is with recall.

A random variable X is generated identically and independently at

each sample by a cumulative probability distribution with bounded support
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assumed for convenience to be [0,1]. Whenever a new sample is drawn,

fixed cost c 0 is incurred and all previously observed outcomes are

forfeited. It is well known that the optimal sampling rule associates a

unique 'cutoff' value with each sample such that the outcome is accepted

if and only if it is not exceeded by this value.

Let V
n
(y) be the expected utilty from optimal sequential sampling

when y is the outcome of the preceding sample (still available) and at

most n samples remain, and let R
n 

be the expected utility from

sampling at least once more and continuing optimally when at most

samples remain. The following relationship between V
n
(.) and R

n

obtains:

(1) V(y) = max(u(y),Rn)

where u(-) is a continuous nondecreasing VNM utility function.

Since the outcome of the n
th 

from last sample is accepted if and

only if it is not less than Rn 1' 
by (1), Rn ..1 is the cutoff point

associated with n. The following recursive relationship is established:

1
(2) R

n 
)dF(x) 

R1 

+ R
n-1

F(R
n-1
) -c.

I
n-

where F • is the distribution function of X.
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It is easy to prove that for each integer n, Rn

Intuitively, as the number of remaining sampling opportunities decreases,

the individual is increasingly reluctant to reject offers which may not

be followed by more attractive ones. Let Rn(F,c) and Rn(G,c) denote

the value of R
n 

when the distribution is F and G respectively and

the sampling cost is c 0.

Definition 1:

Let U. be a set of VNM utility functions. F is said to

sampling dominate G for 'U. (F > 
SDi G) 

if for every (integer) n and

every c 0, each u G Ui maximizes expected utility by drawing every

possible sample from F with probability one.

In the sequel, attention is restricted to twice differentiable

utility functions.

Define:

U0 = (u(.)I u' 0)

U
1 

— (u(-) I u'(-) >_ 0, u"(-) — 0)

U
2 

—.(u(-) 0,u"(-) 0)

_ , u"(-) >_ 0).
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U
0 

is the set of general nondecreasing utility unctions, while U

i — 1,2,3, are the sets of (inherently) risk neutral, risk-averse and

risk loving utility functions respectively.

Theorem 1: F > 
SD1 

G iff:

1

(3) Vt E [0,1], f [G(x) - F(x)]dx >_ 0.

Proof:

Necessity: Define A
n 

as the payoff from sampling once in C(.) and

continuing any further sampling in F(-) when at most n samples

remain. Since the cutoff value at the n-th from last sample is Rn_1(F),

A
n

xdG + R
n-1

(F) • G(R
n-1

(F)) - c

By definition F > 
SD1 

G only if R
n
(F) A for each n and each c

0. Integrate R
n
(F) - A

n 
by parts to obtain the necessary condition:

(4)
fl
J [G(x) - F(x)]dx 0R

n-1(F) 

The following facts about Rn follow directly from (2):
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a)

(b)

( c )

Rn(.) is a continuous monotonic decreasing function of c for

each n.

R
n 
(c =1) < 0 for each n.

R
n 

is a nondecreasing sequence for each c 0.

(d) lim Rn(c = 0) — 1.
n-4.0

These facts establish that to each t G [0,1] there corresponds an

.... .._ ....
integer n and c > 0 such that R (c) — t. Thus (4) obtains for each.._

n

and c 0 only if (3) is satisfied.

Sufficiency: Let t be the expected utility from sampling optimally when

n - 1 samples at most remain. Thus, if the n-th from last sample is

drawn from F or G and sampling continues optimally thereafter, the

expected utilities are respectively:

and

1
z
F 

xdF + t • F(t) - c

1
z
G 

f xdG + t • G(t) - c.

1
Integrating by parts, z

F 
- z

G 
= [G(x) - F(x)]dx 0 by (3). This

proves that if (3) obtains, the nth from last sample is optimally drawn

from F. Since this argument applies to any n > 1, the proof is

complete. 0
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The significance of condition (3) is due to the fact that when it

obtains all individuals whose underlying attitude is risk loving (weakly)

prefer F when n = 1
6 

as shown by Meyer (1977, theorem 5). Theorem 1

thus establishes that an individual whose underlying attitude is risk

neutral displays a (weak) sampling preference for F for each n and c

only if the latter is (weakly) preferred in nonsampling environments by

all individuals whose underlying attitude is risk loving. The discussion

in the introduction which associates large n (and small c) with

increased sampling preference for risk provides an interpretation of this

result. Suppose to the contrary that there exists a nonempty set of

individuals, say W, whose underlying attitude is risk loving and who

strictly prefer G when n — 1. Sufficiently large n and small

could then induce an inherently risk neutral individual to display a

sampling preference for risk which "mimics" the underlying preferences of

w E W. Hence the requirement, expressed by (3), that no such set exists.

Meyer (1977) has introduced a concept of dominance with respect to a

specific utility function. For arbitrary k(.) E U
0 

define:

(u • -u"(•)/u'(-) -k"(•)/k'(.), u'(-) 0).

Here the function k(-) serves as a lower bound to underlying risk

aversion for u E U in the sense of Arrow-Pratt. Analogously define

i(.)
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the sets of utility functions which are more risk loving than arbitrary

k(x) e Uo:

Uk(.) (11( -) I -u"(.)/u'(.) -k"(- )/1‹,'(.), u'(-) 0).

In particular, if k(-) is risk neutral, U

fc(•)
and U

3 
respectively.

Theorem 2: For any k(.) G Uo, F> iff:
SDk(-)

Vt E [0,1], F(t) G(t).

and U
k(.

Proof: Apply the proof of Theorem 1 to find that F > G iff:
Sffc(-)

1
(5) Vt e [0,1], Vu e U (F-G)du 0.

fc(.)

are

For t' G [0,1] replace the lower limits of the integrals in the

statement and proof of Meyer's (1977) theorem 2 by t' to obtain the

equivalence of (5) and the condition:

(6) V y t', (F-G)dk
t'

Combining (5) and (6) proves the theorem. 0
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Theorem 2 is our main result. It establishes the irrelevance of

information about a lower bound on an individual's underlying aversion to

risk in sampling environments. In particular, the knowledge that the

individual is (inherently) risk averse is uninformative. By contrast,

the conventional stochastic dominance literature stresses the role of

risk aversion. No matter how large n is when sampling begins, there

always exists a positive probability that each possible opportunity to

sample will be exploited if c is suficiently small. The sampling

preference for risk, which may initially exceed the individual's

underlying risk posture, erodes to its underlying level by the time the

last possible sample is obtained. Therefore F is sampling dominant

only if it dominates G in the conventional (nonsampling) sense for both

the set of individuals whose underlying attitude is less risk averse than

k(-) and the set whose underlying attitude is more risk averse than

k(-). This is, of course, possible only if F is first-degree dominant

with respect to G.

Theorem 3: For any k(-) U0, 
F SDk(-)G iff

u 
1

dF(x) u(x)dG(x)
0 0 

for each u E U
k(-)*
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Proof: The proof is an application of Meyer's (1977) theorem 5 analogous

to the proof of (our) theorem 2.

0

Theorem 3 establishes the equivalence of conventional and sampling

dominance in the presence of an upper bound on underlying risk aversion.

Intuitively, corresponding to any u G U
k(.)' 

n 1 and c 0 there

=
exists u e U

k(.)
such that res underlying preference for risk is

greater or equal to that of u and such that res preferences when n = 1

are equivalent to those of a when n =n and = c. Therefore,

sampling and conventional dominance criteria coincide in this case.

Section Three

The perception offered in the preceding analysis that an increased

number of samples corresponds to an increased affinity for risk suggests

the following. Suppose F is riskier than G in the sense that every

sufficiently risk loving individual (weakly) prefers F to G when n

1. One would then expect that any individual known to (weakly) prefer F

to G (in either one of the senses presented below) for some n < 00

continues to do so if the sample size is increased. For search without

recall this is shown to be true for an important class of distributions.

This includes pairs of cumulative distribution functions F and G

which cross once at the most. We argue below that this "single crossing

property" provides a natural formalization of the notion that "F is

preferred by all sufficiently risk loving individuals".
7
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Definition 2: The distribution function F(-) said to cross the

distribution function G(-) once at the most from above if there exists

0 y* < 1 such that

F(x) G(x) <=> x y*

Lemma 1: Suppose F(x) crosses G(x) once at the most from above. For

1 1 1 1
any k(-) e U

0' 
f k(x)dF(x) ..›...- f k(x)dG(x) => f u(x)dF(x) ._?.. f u(x)dG(x)
0 0 0 0

for each u E U

k(*)

Proof: By the single crossing property and the nonnegativity of dk(

1 1 1

J
k(x)[dF(x) - dG(x)] = [G(x) - F(x)]dk(x) 0 Vt E [0,1], [G(x)
0 0

F(x)]dk(x) O. By Theorem 5 of Meyer (1977) this implies that V u(x) e

1
U , f u(x)[dF(x) -dG(x)] 0
fc( • ) 0

Note that the lemma does not obtain if F and G cross more than

once. For example consider F and G as illustrated in figure 1.

[Figure One Here]

1
Assume if (F-G)dx > 0 and define:

0
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v(x) =

if

yl 
if x yi.

1 1
Clearly f v(x)dF(x) > v(x)dG(x). It is untrue, however, that F is

0 0

preferred by al/ individuals who are more risk loving than v(x). For

example, risk neutral individuals strictly prefer G because it has the

greater mean.

The following theorem applies to an environment in which the

individual is restricted to sample from only one distribution. For any

~
u e U

0 
let R (F,

n,u
) and R (G,c) respectively represent Rn(F,c)

n,u

and Rn(G,c) for u E U
0. 

Thus R (F,c) (R (G,c)) refers to the
n,u n,u

expected value of sequentially sampling in F(G) only.

Theorem 4: Suppose F(-) and G(.) cross once at the most from above.

For any a e U
0' 

any n and any c > 0, R (F,C) R (G,c) —>_ .._ _ .._
n,u n,u

- _ -
R (F,c) >_ R (G,c) for any n > n.~ .._
n,u n,u

Proof: For any a E Uo,

1 1
Vy < 1, f (G-F)da >_0 —> J (G-F)da 0

0
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by the single crossing property. In this case F sample dominates

1
for u and the theorem follows trivially. If f (G-F)da < 0, 3Y y*

0

such that
1

J
(C-F)du 0 as

the nonnegativity of du.

by the single crossing property and

By assumption R (G,c) > R (F,C) and R (F,C)

Thus there exists 1 < m n such that:

Since

R (F,C) R (G,c)
m,u m,u

(F,c) < R (G,c)
m-1,a

R (G,c), n > 1._
n,u

1
(G-F)du > Gda - Fda

R c) R a(G,c)m_i,
m-1,u '

R (F,C) - R (G,c) 0,

it follows by the single crossing property that R

_
—> R ( , ) y, R (F,C)

m,u m,u

Vn m:

min (R (G,c), R (F,c)}
n,u n,u

Rm_i,a(F,C)
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Now

>

R (F,c) - R (G,c)
n+1,u n+1,u

S
1

Gdu - Fdu

R- ~(G,c- ) R (F,c)
n,u

n,u

1

R (F,c- )
n,u

(G-F)dii O.

By the same argument one shows that for V n + 1, R (F,c)
n-1 ,a

R (G,c) —> R (F,c) R (G,c) and the theorem is proved by_ ~
n-1,a n,u n,u

induction. 0

The next theorem observes that if sampling is not restricted to one

distribution, the number of samples drawn from the riskier distribution

increases as the sample size increases. Of course, the single crossing

property is not sufficient to ensure that all samples are taken from

since this condition is in general not sufficient for sampling dominance.

Theorem 5: Suppose F crosses G once at the most from above. Any a

E U
0 

which maximizes expected utility by drawing the first sample from

F when the sample size is n and the sampling cost is c > 0 also

maximizes utility by drawing the first k+1 samples from F when the

sample size is n+k, k 1, and the sampling cost is c.
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Proof: As the proof is similar to that of theorem 6, it is omitted.

Concluding Remarks

A concept of stochastic dominance appropriate to a sequential

sampling environment in which the maximum number of samples is finite and

sampling costs are constant has been defined and applied to important

sets of utility functions. The main observation is that knowledge of a

lower bound on risk aversion is uninformative in the sampling environment

while knowledge of an upper bound is equally informative in both sampling

and nonsampling environments. These results are a consequence of the

assumption that n is finite which allows for sampling attitudes to

evolve in the course of sampling. If n is infinite the sampling

attitude cannot evolve; whichever distribution is initially preferred

continues to be preferred for ever.

An alternative sampling environment in which sampling attitudes

evolve is one in which n is infinite but search costs are increasing.

I expect that very similar results to those presented are' obtainable in

this framework. The investigation of this conjecture is the subject of

further research.
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FOOTNOTES

1 The analysis is not related to the theory of order statistics

because, due to the assumption that sampling is sequential the

actual number of samples taken is a random variable whose

distribution is determined by the sampling rule. This distinguishes

the present essay from the literature on multivariate stochastic

dominance (Paroush and Levy (1974).

2 A finite sample size may represent a financial constraint equal to

search costs. Alternatively one can think of environments in

which the sampling must terminate prior to some deadline. An

example is the academic job market.

3 When an infinite number of samples may be observed, it is well known

4

that the two sampling environments are equivalent. This is not the

case if the maximum possible number of samples is finite. See, for

example, Landsberger and Peled (1977).

Thus Kohn and Shavell (1974) show that the effect of a mean

presserving spread on a risk averse individual's expected utility

from search is ambiguous.

5
If risk aversion is not constant, preferences may change as payments

of sampling costs decrease the individual's wealth. This effect is

ignored in the analysis.

6
Since it is assumed throughout that sampling is without recall, it

is unambiguous to identify nonsampling environments with the
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statement "n = 1". Such is not the case when sampling is with

recall, as example 2 demonstrates. In that case, n = 1 identifies

a nonsampling environment only if n = 1 before any sampling takes

place.

7
Intuitively, the argument also applies if F is a mean preserving

spread of G. Repeated efforts to prove this have been

unsuccessful.
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APPENDIX

In this appendix it is shown that all the theorems of section 2

apply to sampling with recall as well.

Let W(y) be the expected utility from optimal sequential sampling

with recall when the sample size is n and y is the highest sample

observed to date (which remains available by the definition of sampling

with recall) and let Z
n
(y) be the expected utility from sampling at

least once more and continuing optimally with n and y as defined

above. Then:

W(y) = max[u(y), Zn(y))

There is associated with each n a cutoff value x
n 

such that W(y)

Z(y) iff y < x
n 

(Landsberger and Peled (1977)). The recursive

relationship between

(A.1) Z(y)

z(y) and Z
n-1

(y) is then:

1
u(y)F(y) + f u(x)dF - c if y

n-1

x
n-1

z 1(y) • F(y) + z
n-1

(x)dF

n-1

u(x)dF - c 
if Y <
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It can be shown (Landsberger and Peled (1977)) that Z(y) is

nondecreasing in y for each n. Let Z
n
(y, F, c) and Zn(y, G, c)

denote Z(y) for the sampling cost c and the distributions F and G

respectively and similarly for x
n

(- F, c) and x
n
(G, c).

For the case of risk neutrality, Landsberger and Peled (1977) show

that V n 1, x
n 

x.- This fact is used to derive the following

claims.

Claim A.1: Suppose u(x) = x. Then

4n(y)/dy =F(y) if y X.

Proof: If y by (A.1)

1
Z(y) = yF(y) + f xdF - c

1
= 1 - Fdx - c.

Differentiation of the last expression proves the claim. 0

Claim A.2: If and y <

dZn(y)/dy = (F(y))n -4 dZn4.1(y)/dy = (F(y))
n+1
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Proof: By (A.1) if y < X,

1
Z 1(y) F(y)Z(y) + f xdF + Zn(x)dF

1

=1

f
x 
F(x)dZn(x)

• (F(x))ndx.

The second equality is derived integrating by parts and simplifying, the

third by assumption. Differentiation of*the last expression proves the

claim. 0

Claim A.3: Z
n
(y) is everywhere quasi convex.

Proof: The claim follows directly from claims A.1 and A.2 by induction.

0

Theorem A.1: Theorem 1 applies to search with recall.

Proof:
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Necessity: If c = 0 it is always optimal to sample once more if n = 1

and y < 1. The value of taking the last sample from F and G

respectively are yy, F, 0) and yy, G, 0) where yy, F, 0) --

1 1

yF(y) + xdF - c and yy, G, = yG(y) + xdG - c. Integrating by

parts,

1

Z1
(y' 

F, 0) - yy, G, 0) = (G-F)dx.

1

If there exists y' e [0,1] such that (G-F)dx < 0, the last sample

Y'

is optimally drawn from G if y' is the highest outcome available.

Thus (3) is a necessary condition.

Sufficiency: Let An(G, y) and An(F, y) denote the expected utility

from sampling once in G and F respectively and continuing optimally

afterwards when n samples remain. (The argument c is suppressed if

no ambiguity results.) Suppose for each y it is optimal to draw the

.th
n-1 from last sample from F with probability one, i = 0,1,2,...,n-1.

,
We now show that it is then optimal to draw the n+1

st from last sample

from F as well if condition (3) obtains. Define

An(y)= max(y, Zn(F, y))
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Note that

dAn(y)/dY

(F(x))n

if x >

if x <

so that dAn(y)/dy is nondecreasing. By assumption and using (A.1):

An+1 Y' F) =

Z
n+1
(y,F)

A
n+1

(y
' 

G)

1
yF(y) + xdF -

.\L Z(y)F(y) + An(x)dF - C if y < i(F)
1

Integrating by parts,

A
n+1

(y
'
F)-A

n+1
(y,G)

if y i(F)

1
yG(y) + J. xdG - c if y >_ X(F)

Y 

1
Zn(y, F)G(y) + f An(X,F)dG - c if y < X(F)

1
[G(x) - F(x)]dx if y X(F)

• 1

I [G(x)-F(x)]dAn(x) if y < F).
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Clearly A
n+1

(y
'
F) - 

An+1(Y'G) 
for y X(F) if (3) obtains. For

y < X(F) it can be shown that An+1(y, ) - An+1(y,G) 0 by (3), the

fact that dA
n
(x)/dx is nondecreasing, and using arguments analogous to

those used by Hadar and Russel (1969) and Hanoch and Levy (1969) in

deriving second degree stochastic dominance for concave functions. Thus

the n+1
th

sample is optimally drawn from F if all subsequent samples

J (G-F)dx .?_- 0, the theorem is proved by induction. 0

are drawn from F and (3) obtains. Since by (3), Ri(y,F) - Ri(y,G)

1

It is now easy to derive theorem 2 for search with recall. Clearly

first-degree stochastic dominance is a sufficient condition. Necessity

is proved analogously to the necessity proof presented in theorem A.1.

The derivation of theorem 3 for search with recall is analogous to the

proof in the text.
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