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Stochastic dominance rules are constructed for an environment in which
the individual may sample sequentially according to a stopping rule.
The dominance criterion used requires that all sampling take place in
the dominant distribution with probability one even if the individual is
permitted to switch during the course of sampling. The principal result
is that the necessary dominance criterion is (conventional) first degree
stochastic dominance even if the individual is known to be "very" risk
averse. On the other hand, knowledge of an upper bound on risk aversion
serves to rank random variables identically in both sampling and
nonsampling environments.
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Introduction

Consider a set U of von Neumann-Morgenstern (VNM) utility functions
and a pair of random variables, X and Y such that u € U must choose
between them. The stochastic dominance literature addresses the
following question: What relationship between the random variables must
obtain so that each u € U maximizes expected utility by choosing X?
As a stochastic dominance criterion induces only a partial ordering on
the set of random variables, the focus of this 1literature has been to
restrict U with the intent of obtaining a more complete ordering. With
this objective in mind, several authors have imposed restrictions on the
Arrow-Pratt risk aversion measure of U’s elements. Thus Hadar and
Russell (1969) and Hanoch and Levy (1969) construct dominance criteria
for U all of whose elements are risk averse, while Whitmore (1970)

focuses on utility functions with nonnegative third derivatives. Meyer

(1977) presents a more general analysis, constructing dominance criteria

for sets of utility functions whose Arrow-Pratt measure of risk aversion
is bounded from below by an arbitrary constant.

An essential premise of this literature is that the individual’s
payoff is restricted to depend on a single random draw from the chosen
distribution. In many economic contexts of interest, however, the
individual may wish to sample repeatedly, rejecting unfavorable draws in
anticipation of more desirable future outcomes. For example, in a world
of imperfect job markets, a worker's wage in any particular profession is
a random variable. She is not restricted, however, to accept the first
job offered but may choose to search until more suitable employment is

found.l




In this essay, therefore, I study a more general model in which wup

to n samples may be sequentially taken where n is any positive

integer.2 Specifically, following each draw, the individual may either

terminate sampling and collect her payoff or incur a nonnegative sampling
cost and draw a new sample from either of two fully specified probabiiity
distributions. _ Successive draws are i.i.d. and sampling must terminate
after n draws have occurred. The payoff depends on the sampling
"technology". If sampling is without recall, the payoff is the outcome
of the last sample taken prior to termination. Sampling with recall
describes a process in which the payoff is the maximum outcome of all
samples taken prior to termination.

The complexity involved in designing dominance rules for sampling
environments stems from the fact that it is in general optimal to

successively sample from both distributions as a simple example shows.

Example one: Sampling Without Recall

Suppose sampling is without recall, is costless and the sampler is
risk mneutral. Let F be the distribution which yields the payoffs -10
and +10 with probability 0.5 each and let G yield -21 and +20
with probability 0.5 each. If n =1, F is preferred since its mean
is larger. Supposes n = 2. The expected payoff from sampling
sequentially from F only is calculated recursively as follows. The
expected payoff from taking a second (and last) sample is simply F's

expectation which is zero. Hence a second sample is taken if and only if




the value of the first sample is -10 < 0, which occurs with probability
1/2. Thus with probability 0.5 the value of the first sample is 10 and
no second sample 1is taken while with probability 0.5 the value of the
first sample is -10 and a second sample whose expectation ;s zero 1is
taken. The expected payoff from employing this optimal sequential

sampling procedure on F 1is therefore:
0.5 x%x 10 + 0.5 x 0 =25,

Similarly, a second sample is taken from G only if the wvalue of the
first sample is -21 < -1/2, G's expectation. Thus the value of using

the sequential sampling procedure on G is:

0.5 x 20 + 0.5 x (-1/2) = 9.75 > 5.

There exists, however, a ‘'mixed’ sampling rule which offers a higher

payoff than either of the above procedures. Calculate the payoff from
sampling first from G and, should it prove to be necessary, sampling a
second time from F. Since a sample from F has an expectation of zero
the first sample is accepted if and only if its wvalue is 20 which occurs

with probability 0.5. The expected payoff from this procedure is:

0.5x 20+ 0.5x 0 =10 > 9.75.




In example 1, G 1is certainly the riskier of the two prospects and
is appropriately rejected by a risk neutral individual if n = 1.

Nevertheless, the same individual strictly prefers to first sample from

G if n = 2. This example serves to identify the distinction between

underlying risk attitudes (i.e. the concavity or convexity of the utility
function) and sampling risk attitudes which describe preferences for risk
in sampling problems. Even individuals whose underlying attitude is risk
averse may display sampling attitudes which are risk loving.4
Furthermore, while the underlying attitude 1is constant, sampling
attitudes are determined by both the specification and the course of the
sampling.5 Thus, as example 1 suggests, and as is discussed more
formally in section 3, the sampling attitude evolves towards increased
risk aversion as n decreases if sampling is without recall.
Intuitively, when a large number of samples remains available, the
sampler can "afford" to assume risks she would otherwise avoid, being
"cushioned" by the possibility of subsequently réverting to  more
conservative behavior. As the remaining available number of samples is
depleted in the course of sampling, the sampling preference for risk
steadily erodes, ultimately coinciding with the underlying risk attitude
when only i sample remains. If sampling is with recall, however, the
sampling attitude may also evolve towards increasing preference for risk:
the individual’s underlying and sampling attitude typically diverge even

at the last stage, as the next example shows.




Example 2: Search with Recall

Suppose sampling is with fecall. Let F be the distribution which
assigns a probability of 1l-p to zero and a probability p >0 to 1 +
e, € >0, let G be the uniform distribution with supp[O,l]} let the
sampling cost be =zero and let n = 2. Every sampler whose underlying
attitude is risk averse will initially sample from F if p and € are
sufficiently small. Since sampling is costless and the outcome of the
first sample remains available, a second sample is taken with probability
one. Since a second draw from G increases the expected payoff by pe,
the last sample is optimally drawn from G if the realization of the
first sample 1is sufficiently close to 1, an event which occurs with

positive probability. The sampling preference for risk may therefore

dramatically increase at the last draw if sampling is with recall.

The reason for this distinction between the two sampling
environments is straightforward. Since sampling without recall is
"memoryless" the sampling attitude towards risk is affected only by the
remaining number of samples. By contrast, when sampling is with recall,
the sampling attitude 1is determined by both history and remaining
possibilities. The more favorable the history, the more the sampler is
disposed towards the riskier prospect.

The preceding examples stress the importance of n in determining
sampling attitudes towards risk.  These are also affected by the size of

the sampling cost as the desirability of switching to the less risky

distribution at a later stage may be diminished when this cost is large.




To illustrate, consider example one with a sampling cost of 21.
Since the increase in utility which derives from taking a second sample
from either distribution is exceeded by the sampling cost whatever the
outcome of the first draw, only one sample is ever obseryed. Under
otherwise identical conditions, the same individual’s sampling attitude
displays greater risk aversion when the sampling cost is higher.

As sampling risk attitudes depend on the specifics of and location
within a sampling problem, it is felt that meaningful dominance criteria
applicable to general sampling environments should be independent of such
arbitrary specifications. Accordingly we offer the following definition:
F sample dominates G for a particular set of VNM utility functions if
and only if each wutility function in the set is maximized when every
possible sample is optimally drawn from F, for every (integer) n and
every nonnegative sampling cost.

We may state our main result. The knowledge that an individual's

underlying attitude is risk averse conveys no useful information in the

sampling context. More precisely, if the sampler’s utility function is
incompletely specified, knowledge of the extent to which her wunderlying
attitude 1is risk averse cannot help determine her preferences in the
sense of sampling dominance. On the other hand, knowledge of the extent
to which the underlying attitude displays preference for risk is equally
informative in both sampling and nonsampling contexts.

Our earlier discussion (of the distinction between wunderlying and

sampling attitudes) suggests an intuitive explanation of the preceding




result. Depending upon the specifics of the sampling problem, even
inherently risk averse individuals may display sampling attitudes which
are risk loving. Therefore an underlying attitude which is risk averse
may be at odds with the individual's sampling attitude and barring a
precise specification of the utility function it is not possible to
determine which attitude ‘"prevails". An underlying attitude which is
risk loving, however, is complementary to the individual’s sampling
attitude and conveys useful information.

The remainder of the paper is organized as follows. In section 2,
the properties of the relevant optimal sequential sampling rule are
reviewed. These properties are used to derive sampling dominance
criteria for important sets of VNM utility functions. Section 3 presents

corroborating evidence pertaining to the relaionship between n and

sampling preference for risk. Brief concluding remarks close the paper.

Section 2
This section begins with a brief review of the optimal sequential

sampling rule when the maximum number of samples is finite and the

sampling cost is constant. Proofs and additional details may be found in

e.g. Landsberger and Peled (1977). Throughout it 1is assumed that
sampling is without recall. 1In the appendix it is shown that all the
theorems of this section apply without change if sampling is with recall.

A random variable X 1is generated identically and independently at

each sample by a cumulative probability distribution with bounded support




assumed for convenience to be [0,1]. Whenever a new sample is drawn, a
fixed cost ¢ = 0 1is incurred and all previously observed outcomes are
forfeited. It is well known that the optimal sampling rule associates a
unique ‘cutoff’ value with each sample such that the outcome ig accepted
if and only if it is not exceeded by this value.

Let Vn(y) be the expected utilty from optimal sequential sampling
when y 1is the outcome of the preceding sample (still available) and at
most n samples remain, and let Rn be the expected utility from
sampling at least once more and continuing optimally when at most n
samples remain. The following relationship between Vn(-) and Rn

obtains:

Vn(y) = max{u(y),Rn}

where wu(-) 1s a continuous nondecreasing VNM utility function.
Since the outcome of the nth from last sample is accepted if and
only if it ‘is mnot less than Rn-l’ by (1), Rn-l is the cutoff point

associated with n. The following recursive relationship is established:

-lF(Rn-l) -c.

1
Rn =RI u(x)dF(x) + Rn

n-1

is the distribution function of




It 1is easy to prove that for each integer n, Rn = Rn-l'
Intuitively, as the number of remaining sampling opportunities decreases,
the individual is increasingly reluctant to reject offers which may not
be followed by more attractive ones. Let Rn(F,c) and Rn(q,c) denote

the value of Rn when the distribution is F and G respectively and

the sampling cost is c¢ = O.

Definition 1:

Let Ui be a set of VNM wutility functions. F 1is said to

sampling dominate G for Ui (F > SDi G) 1if for every (integer) n and

every c¢ = 0, each u € Ui maximizes expected utility by drawing every

possible sample from F with probability one.

In the sequel, attention is restricted to twice differentiable
utility functions.

Define:

Uy = (u()] uw () =0

Up = (u) | w () 20, u'(:) = 0)

U, =(u(:) | w() = 0,u"()= 0)

Uy =(u() |ur(-) = 0, u"(-) = 0}.




U0 is the set of general nondecreasing utility unctions, while Ui’
i =1,2,3, are the sets of (inherently) risk neutral, risk-averse and

risk loving utility functions respectively.

Theorem 1: F > SD1 G 1iff:

1
vt € [0,1], J [G(x) - F(x)]dx = 0.
t

Proof:
Necessity: Define An as the payoff from sampling once in G(-) and
continuing any further sampling in F(-) when at most n samples

remain. Since the cutoff value at the n-th from last sample is Rn-l(F)’

A = I xdG + R (F) - G(R (F)) - ¢
n n-1 n-1
Rn-l(F)

By definition F >

~

Spl G only if Rn(F) > An for each n and each c =

Integrate Rn(F) - An by parts to obtain the necessary condition:

1
[G(x) - F(x)]dx = 0

R-1(m)

The following facts about Rn follow directly from (2):




Rh(-) is a continuous monotonic decreasing fqnction
each n.

Rn (c =1) < 0 for each n;

Rn is a nondecreasing sequence for each c = 0.

lim Rn(c = Q) = 1.

n-—rco

These facts establish that to each t € [0,1] there corresponds an

integer n and ¢ = 0 such that R~(E) = t. Thus (4) obtains for each
n

n and c¢ = 0 only if (3) is satisfied.

Sufficiency: Let t be the expected utility from sampling optimally when
n - 1 samples at most remain. Thus, if the n-th from 1last sample is
drawn from F or G and sampling continues optimally thereafter, the

expected utilities are respectively:

1
I xdF + t - F(t) - c,
t

1
J xdG + t - G(t) - c.
t

1
Integrating by parts, Zp - Zg = I [G(x) - F(x)]dx = 0 by (3). This
t .

proves that if (3) obtains, the nth from last sample is optimally drawn
from F. Since this argument applies to any n = 1, the proof is

complete. a




The significance of condition (3) is due to the fact that when it
obtains all individuals whose underlying attitu&e is risk loving (weakly)
prefer F when n = 16 as shown by Meyer (1977, theorem 5). Theorem 1
thus establishes that an individual whose underlying attitude is risk
neutral displays a (weak) sampling preference for F for each n and ¢
only if the latter is (weakly) preferred in nonsampling environments by
all individuals whose underlying attitude is risk loving. The discussion
in the introduction which associates large n (and small c) with
increased sampling preference for risk provides an interpretation of this
result. Suppose to the contrary that there exists a nonempty set of
individuals, say W, whose underlying attitude is risk loving. and who
strictly prefer G when n = 1. Sufficiently large n and small c
could then induce an inherently risk mneutral individual to display a
sampling preference for risk which "mimics" the underlying preferences of
w € W. Hence the requirement, - expressed by (3), that no such set exists.

Meyer (1977) has introduced a concept of dominancé with respect to a

specific utility function. For arbitrary k(-) € U0 define:

U_ = (u(-) | -um(a) = -k /kC), uw(c) = 0).
k()

Here the function k() serves as a lower bound to underlying risk

aversion for u €U in the sense of Arrow-Pratt. Analogously define

k(-)




the sets of utility functions which are more risk loving than arbitrary

k(x) € UO:

Uy = (00 | -w(/ar() = -k () /k (), w(e) = 0).

particular, if k(-) 1is risk neutral,

U3 respectively.

F > G

Theorem 2: For any k(:) € U )
~ SDk(-)

01

vt € [0,1], F(t) < G(t).

Apply the proof of Theorem 1 to find that F § ) G
~ SDk(:)

1
vt € [0,1], Vue U ) J (F-G)du =< 0.
k() t

For t’ € [0,1] replace the lower limits of the integrals in the
statement and proof of Meyer’'s (1977) theorem 2 by t' to obtain the

equivalence of (5) and the condition:

Combining (5) and (6) proves the theorem.




Theorem 2 is our main result. It establishes the irrelevance of
information about a lower bound on an individual’s underlying aversion to
risk in sampling environments. In particular, the knowledge that the
individual is (inherently) risk averse is uninformative. By contrast,
the conventional stochastic dominance 1literature stresses the role of
risk aversioﬁ. No matter how large n 1is when sampling begins, there
always exists a positive probability that each possible opportunity to
sample will be exploited if ¢ is suficiently small. The sampling
preference for risk, which may initially exceed the individual's
underlying risk posture, erodes to its underlying level by the time the
last possible sample is obtained. Therefore F 1is sampling dominant
only if it dominates G 1in the conventional (nonsampling) sense for both
the set of individuals whose undérlying attitude is less riék averse than
k(-) and the set whose underlying attitude is more risk averse than
k(-). This 1is, of course, possible only if F is first-degree dominant

with respect to G.

Theorem 3: For any k(-) € U F

1 1
J u(x)dF(x) = I u(x)dG(x)

0 0

for each u e U

k()"




Prdof: The proof is an application of Meyer's (1977) theorem 5 analogous
to the proof of (our) theorem 2.
m}
Theorem 3 establishes the equivalence of conventional aqd sampling
dominance in the presence of an upper bound on underlying risk aversion.

Intuitively, corresponding to any u € Uk(-)’ n>1 and c =0 there

exists u € U such that u's underlying preference for risk is

k()
greater or equal to that of U and such that u's preferences when n =1
are equivalent to those of u when n=n and c = c. Therefore,

sampling and conventional dominance criteria coincide in this case.

Section Three

The perception offered in the preceding analysis that an increased

number of samples corresponds to an increased affinity for risk suggests
the following. Suppose F 1is riskier than G in the sense that every
sufficiently risk loving individual (weakly) prefers F to G when n =
1. One would then expect that any individual known to (weakly) prefer F
to G (in either one of the senses presented below) for some n < o
continues to do so if the sample size is increased. For search without
recall this is shown to be true for an important claés of distributions.
This includes pairs of cumulative distribution functions F and G
which cross once at the most. We argue below that this "single crossing

property" provides a natural formalization of the notion that "F is

preferred by all sufficiently risk loving individuals".7




Definition 2: The distribution function F(-) said to cross the

distribution function G(:) once at the most from above if there exists

0 < y*¥ <1 such that
F(x) 2 G(X) <=> x < y¥*

Lemma 1: Suppose F(x) crosses G(x) once at the most from above. For

1 1 1 1
k(x)dG(x) = I u(x)dF(x) = j u(x)dG(x)

any k(-) € UO’ I
0 0

k(x)dF(x) = I

0 0

for each u € U

k()

Proof: By the single crossing property and the nonnegativity of dk(x),

1 1 1
J k(x)[dF(x) - dG(x)] = J [6(x) - F(x)]dk(x) = 0 - Vt € [0,1], I [G(x) -
0 t

0
F(x)]dk(x) = 0. By Theorem 5 of Meyer (1977) this implies that V u(x) €

u(x)[dF(x) -dG(x)] = O. m}

Note that the 1lemma does not obtain if F and G cross more than

once. For example consider F and G as illustrated in figure 1.

[Figure One Here]

1
Assume f (F-G)dx > 0 and define:
0




Y1

1 1
v(x)dF(x) > J v(x)dG(x). It is untrue, however, that F

0 0

preferred by all individuals who are more risk loving than v(x). For

Clearly J

example, risk neutral individuals strictly prefer G because it has the
greater mean.
The following theorem applies to an environment in which the

individual is restricted to sample from only one distribution. For any

u € U0 let R ~(F,c) and R ~(G,c) respectively represent Rn(F,c)
n,u n,u

and Rn(G,c) for u e UO' Thus R ~(F,c) (R ~(G,c)) refers to the
n,u n,u

expected value of sequentially sampling in F(G) only.

Theorem 4: Suppose F(-) and G(-) cross once at the most from above.

For any u € UO’ any n and any c =0, R_ ~(F,é) = R_ ~(G,E:) =>
n,u n,u

R (F,e) = R ~(G,c-:) for any n > n.

‘n,u n,u

Proof: For any ue UO’

1 © el :
vy < 1, I (G-F)du = 0 => I (G-F)du = 0
Y y




by the single crossing property. 1In this case F sample dominates

1
for u and the theorem follows trivially. If I (G-F)du < 0, 3y < y*
0

1
such that I (G-F)du =2 0 as y >y by the single crossing property and
y (=) :

the nonnegativity of du.

By assumption R ~(G,(_:) >R ~(F,é) and R_ ~(F,c_:) < R_ (G,e), n > 1.
1,u 1,u n,u n,u

Thus there exists 1 <m < n such that:

_(F,c) <R _(G,c)
m-l,u‘ m-1,u

it follows by the single crossing

>R (Ge)zy, R (Fe)=zy
m,u m,u

min (R (G,c), R _(F,c)) =y.
n,u n,u




R _(F,e) -R_(G,e) =
n+l,u n+l,u

By the same argument one shows that for Vn>n+ 1, R (F,c) =
n-1,u

R ~(G,E:) => R ~(F,é) = R ~(G,c-:) and the theorem is proved by
n-l,u n,u n,u

induction. . O

The mnext theorem observes that if sampling is not restricted to one

distribution, the number of samples drawn from the riskier distribution
increases as the sample size increases. Of course, the single crossing
property is not sufficient to ensure that all samples are taken from F

since this condition is in general not sufficient for sampling dominance.

Theorem 5: Suppose F crosses G once at the most from above. Any u

€ U0 which maximizes expected utility by drawing the first sample from

F  when the sample size is n and the sampling cost is ¢ = 0 also

‘maximizes utility by drawing the first k+l samples from F when the

sample size is n+k, k = 1, and the sampling cost is c.




Proof: As the proof is similar to that of theorem 6, it is omitted.

Concluding Remarks

A concept of stochastic dominance appropriate to a sequential

sampling environment in which the maximum number of samples is finite and
sampling costs are constant has been defined and applied to important
sets of wutility functions. The main observation is that knowledge of a
lower bound on risk aversion is uninformative in the sampling environment
while knowledge of an upper bound is equally informative in both sampling
and nonsampling environments. These results are a consequence of the
assumption that n is finite which allows for sampling attitudes to
evolve in the course of sampling. If n is infinite the sampling
attitude cannot evolve; whichever distribution is initially preferred
continues to be preferred for ever.

An alternative sampling environment in which sampling attitudes
evolve 1is one in which n 1is infinite but search costs are increasing.
I expect that very similar results to those presented are' obtainable in
this framework. The investigation of this conjecture is the subject of

further research.




FOOTNOTES

The analysis is not related to the theory of order statistics

because, due .to the assumption that sampling is sequential the

actual number of samples taken is a random variable whose
distribution is determined by the sampling rule. This distinguishes
the present essay from the literature on multivariate stochastic
dominance (Paroush and Levy (1974).

A finite samplé size may represent a financial constraint equal to
n search costs. Alternatively one can think of environments in
which the sampling must terminate prior to some deadline. An
example is the academic job market.

When_an infinite number of samples may be observed, it is well known
that the two sampling environments are equivalent. This is not the
case if the maximum possible number of samples is finite. See, for
example, Landsberger and Peled (1977).

Thus Kohn and Shavell (1974) show that the effect of a mean
presserving spread on a risk averse individual'’s expected utility
from search is ambiguous. |

If risk aversion is not constant, preferences may change as payments
of sampling costs decrease the individual’'s wealth. This effect is
ignored in the analysis.

Since it is assumed throughout that sampling is without recall, it

is  unambiguous to identify ﬁonsampling environments with the




statement "n = 1". Such is mot the case when sampling is with

recall, as example 2 demonstrates. In that case, n =1 identifies

a nonsampling environment only if n = 1 before any sampling takes

place.
Intuitively, the argument also applies if F is a mean preserving
spread of G. Repeated efforts to prove this have been

unsuccessful.




APPENDIX

In this appendix it is shown that all the theorems of section 2
apply to sampling with recall as well.

Let Wn(y) be the expected utility from optimal sequential sampling
with recall when the sample size is n and y is the highest sample
observed to date (which remains available by the definition of sampling
with recall) and 1let Zn(y) be the expected utility from sampling at
least once more and continuing optimally with n and y as defined

above. Then:

W () = max(u(y), Z ()

There 1is associated with each n a cutoff value in such that Wn(y) -
Zn(y) iff y < in (Landsberger and Peled (1977)). The recursive

relationship between zn(y) and Zn_l(y) is then:

1
u(y)F(y) + J u(x)dfF - ¢ if y = ;{n-l
y

n-1
@D oz = { z & Fy o+ Iy z__ (x)dF

1
+ J_ u(x)dF - ¢ if y< X 1

Xn-l




It can be shown (Landsberger and Peled (1977)) that Zn(y) is
nondecreasing in y for each n. Let Zn(y, F, ¢) and Zn(y, G, c¢)
denote Zn(y) for the sampling cost ¢ and the distributions F and G
respectively and similarly for in(F, c) and in(G, c).

For the case of risk neutrality, Landsberger and Peled (1977) show
that Vn =1, in = x. This fact is used to derive the following

claims.
Claim A.1l: Suppose u(x) = x. Then
dz_(y)/dy =F(y)

If y = x, by (A.1)

1 .
Zn(y) = yF(y) + j xdF - ¢
y

1 ,
=1 - f Fdx - c.
y

Differentiation of the last expression proves the claim.
Claim A.2: If u(x) =x and y < X,

az_(y)/dy = (FEGyN™ » dz_, (y)/dy = (F(y)™




By (A.1) if y < x,

1 X
Z_ () = FZ_(y) + J‘-xdF + -[yZn(X)dF
X

X
1 - J F(x)dZn(x)
y

X
1 - I F(x) - (F(x))"dx.
y

The second equality is derived integrating by parts and simplifying, the
third by assumption. Differentiation of 'the last expression proves the

claim. O

Claim A.3: Zn(y) is everywhere quasi convex.

Proof: The claim follows directly from claims A.1 and A.2 by induction.

O

Theorem A.l: Theorem 1 applies to search with recall.




Necessity: If c¢ =0 it is always optimal to sample once more if n =1
and y < 1. The +value of taking the last sample from F and G

respectively are Zl(y, F, 0) and Zl(y, G, 0) where Zl(y, F, 0)
1 1

yF(y) + j xdF - ¢ and Zl(y. G, 0) = yG(y) + J xdG - c. Integrating by
y ‘ y

parts,

1
Z,(y, F, 0) - 2,(y, G, 0) = J (G-F)dx.
y

1 .
If there exists y' € [0,1] such that J (G-F)dx < 0, the 1last sample
yl

is optimally drawn from G if y’ is the highest outcome available.

Thus (3) is a necessary condition.

Sufficiency: Let An(G, y) apd An(F, y) denote the expected utility
from sampling once in G and F respectively and continuing optimally
afterwards when n samples remgin. (The argument c is suppressed if
no ambiguity results.) Suppose for each y it is optimal to draw the
n-ith from last sample from F with probability one, i = 0,1,2,...

. . . st
We now show that it is then optimal to draw the n+l from last

from F as well if condition (3) obtains. Define

F
An(y) = max({y, Zn(F, )




Note that

F
ax_(y)/dy =

n
(F(x))
so that dAE(y)/dy is nondecreasing. By assumption and using (A.1l):

An+1(y’ F) =

yF(y) + xdF -c

zn+1(}’,F) = {

1 )
Z (Y)F(y) + J A (x)dF if y < x(F)
y

yG(y) + xdG -c i > x(F)
An+1(y’ ) = {

1
Z_(y, F)G(y) + I A_(X,F)dG - ¢
y

Integrating by parts,

[G(x) - F(x)]dx
Bp 0 F) -8y (3:6) = |

[G(x)-F(x) Jax_(x)




Clearly | An+1(y,F) - An+1(y,G) =20 for y= x(F) if (3) obtains. For
y < x(F) it can be shovn that An+1(y, F) - An+l(y,G) =20 by (3), the
fact that dki(x)/dx is nondecreasing, and using arguments analogous to
those used by Hadar and Russel (1969) and Hanoch and Levy (1969) 1in
deriving second degree stochastic dominance for concave functions. Thus
the n+lth sample is optimally drawn from F 1if all subsequent samples

are drawn from F and (3) obtains. Since by (3), Rl(y,F) - Rl(y,G) =

1
J (G-F)dx = 0, the theorem is proved by induction. O
y

It is now easy to derive theorem 2 for search with recall. Clearly
first-degree stochastic dominance is a sufficient condition. Necessity
is proved analogously to the necessity proof presentéd in theorem A.1l.
The derivation of theorem 3 for search with recall is analogous to the

proof in the text.
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