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STAGGERED AND SYNCHRONIZED PRICE POLICIES

BY MULTIPRODUCT MONOPOLIES

by

Eytan Sheshinski and Yoram Weiss*

1. Introduction

It is now widely accepted that the microeconomic background of an

inflationary process is characterized by discrete jumps in individual prices.

This observation has led to a number of studies dealing with the aggregation

of discrete pricing policies into a smooth time path for the aggregate price

level. The feasibility of such aggregation is necessary for the overall

consistency of individual pricing policies (Caplin and Spulber [1988]). A

crucial issue for such an analysis is the interaction among individual price

policies. If all firms follow identical real price cycles which are

uniformly spread over time, then consistent aggregation is feasible

(Sheshinski and Weiss [1977]). There may, however, be important reasons why

such uniformity may not emerge as an equilibrium outcome. In oligopolistic

markets, where each firm takes into account the actions of its rivals,

pricing policies will be interdependent. In multiproduct monopolies, there

is a further source for interdependence, namely, increasing returns in the

costs of price adjustment. Even under competitive conditions, bunching over

* We would like to thank Avner Bar-Ilan for the reference to Bensoussan,
Crouhy and Proth (19831 and Sulem [1986].
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time may be caused by aggregate shocks, while idiosyncratic shocks are needed

to maintain the spread.

Apart from the issue of consistent aggregation, the time pattern of

individual price policies has important implications for the real costs of

inflation. If individual price paths are staggered, then temporary shocks

may be propagated over long periods. Synchronized price policies, on the

other hand, may accelerate the adjustment process (see Blanchard [1983],

Blanchard and Fischer [1986, Ch. 9), and Taylor (19801). In addition, non-

synchronized price policies lead to price variations across products and

thereby to search costs incurred by consumers (Benabou [1987), Fishman

(1988]).

A number of recent studies have analysed the dynamic interaction of

pricing policies in oligopolistic markets (Maskin and Tirole [1988], and

Gertner [1986)), [1987)). However, these studies take the time pattern as

exogenous, and focus on the equilibrium price configuration.

The issue of staggering vs. synchronization has been taken up by Ball

and Cecchetti [1987j and by McMillan and Zinde-Walsh [19881. The approach of

Ball and Cecchetti emphasizes the informational gains from staggered pricing

policies. McMillan and Zinde-Walsh consider a closed-loop equilibrium in an

oligopolistic market for a homogeneous good.

Our own objective is to analyse the dynamics of a Bertrand game with

diffentiated goods. In the present paper we analyse only the cooperative

outcome of a duopoly game, assuming a single profit maximizing decision

maker, i.e. a multiproduct monopoly. We view the analysis as a first step in

the investigation of various equilibria of the duopoly game.
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A.

The main objective of this paper is the determination of the

conditions which lead to staggered or s7nchronized pricing policies, when the

timing of price changes is endogenous. We emphasize two aspects of the

multiproduct monopoly decision problem. First, the interaction in the profit

function between the prices of the two goods. Second, the form of the price

adjustment costs. In particular, we distinguish between menu costs and

decision costs. Under menu costs, we consider an increasing return to scale

technology of price adjustments, whereby costs are independent of the number

of items in the price list. Under decision costs we consider a constant

returns to scale technology, whereby each price change requires an adjustment

cost. A similar distinction in the inventory adjustment context was made by

Sulem (1986].

Our main results can be summarized as follows:

(1) In the menu costs case, with strictly quasi-concave profits, a

synchronized steady-state is attained after the first price change. This

policy is essentially the optimal policy in the one-good case (Sheshinski and

Weiss [1977]). We use a counterexample to show that quasi-concavity is

essential for this result;

(2) Under decision costs, we show that a synchronized pricing policy

never occurs if goods are strategic complements;

(3) With positive interaction of real prices in the profit function

(and some additional assumptions), there exists a unique synchronized steady

state and a unique symmetric staggered steady state.

(4) Which of the above steady states is attained depends on initial

conditions. There is a set of initial conditions which triggers an immediate

switch to the synchronized steady state. However, under no circumstance..
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will a joint price change be followed by a staggered steady state. That is,
a staggered steady state can only be reached asymptotically.

(5) We provide a complete characterization of the optimal policy for
the case of additive profits. In this case, there is a multiplicity of

steady states differing only in the timing of price adjustments, which can be
fully ranked (in terms of the present value of net profits). The

synchronized steady state is the most profitable. Thus, as stated above, it

is the one to be chosen when both prices are changed simultaneously.

(6) We suggest an approximation method which can be used for stability

analysis. This method is applied to a non-additive example, which suggests

that the staggered steady state is not stable. A similar result in different

context was derived by Ball and Cecchetti [1987).

We conclude the paper with a few remarks on the non-cooperative

(duopoly) game. We intend to provide a detailed analysis of this case in a

companion paper.

2. The Model 

Consider an economy subject to an inflationary trend where the

aggregate price level grows at a constant rate, g (g > 0) . We analyse a

monopoly who sells two related products whose demands depend on the current

real prices of the two goods. The monopoly controls the nominal price of each

good and there is a fixed real cost of nominal price adjustments.

Let z1(t) denote the log of the real price of good i at time t

t e [000 The real profit function of the monopoly, denoted by F(z1,z2)
'
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is assumed to be time invariant. We assume that F(zz
2
) is symmetric,

strictly quasi-concave, twice differentiable and that it has a maximum at

some finite point, denoted (S*,S*) . Furthermore, it is assumed that the

set (z1,z2IF(z1,z2) ) 0) is compact. The class of functions satisfying all

of these conditions is denoted by 14

The problem facing the monopoly is a choice of price paths,

(4(0,4(0) , which maximize the present value of real profits over an

infinite horizon, given some initial condition (z1(0),z2(0)) .

The salient feature of our model is the discontinuous pattern of

nominal price adjustments. This widely observable phenomenon is generated in

our model by the presence of non-convex costs of price adjustment: any

nominal price change, no matter how small, requires non-negligible costs of

adjustment. Specifically, the real cost of any nominal price change is assumed

to be a constant denoted by 0 ( > 0 5.*

The main question which the paper addresses is the following: will

the monopoly adopt a synchronized policy of price adjustments, whereby both

prices are changed simultaneously, or a staggered policy whereby the two

nominal prices are changed at different points in time.

Special attention will be given to repetitive price paths. An optimal

i Torft I Tu=policy can be described by the sequences (S 1 ,
T-Vmv 

and (t Ir} ,Vmv 
i = 1,2 ,

1
where S is the real price of good i chosen at the beginning of the time

ii
interval it 

T ,tT+1 
) . A steady-state path is defined by

(1) t 1 -t 
i 
+ c

iS
T+1 

= S
T 

and
T+ T = 0,1,2,...

where c (c > 0) , I= 1,2 , are constants denoting the time intervals
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between subsequent price changes. Thus, in steady-state, the real prices
chosen at the beginning of each interval -Ind the duration until the next
price change remain constant. A symmetric steady-state is defined by the
additional restriction

(2) 1 2
S S S
T T

and
1 2E E

T 0,1,2,...

where S (S > 0) and c (c > 0) are constants. Along such a path, the
real price of each good follows the same cycle. Among the symmetric

steady-states we can identify a synchronized steady-state by the added

requirement that

(3) 1 2
to
 u t0

that is, the prices of both goods are always changed at the same time.

Finally, a (symmetric) staggered steady-state is defined by

(4) 1 2, eIto - tol =

that is, the prices of the two goods are changed alternately and the time

distance between any two price changes is equal.

The time pattern of the monopolist's optimal price policy, in

particular whether price changes will be synchronized, depends crucially on

two features of the model. The first relates to the technology of price

adjustments, and the second to the form of the profit function. One issue of
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concern is the degree of returns to scale when both prices are changed

simultaneously. Under constant returns to scale in the costs of price

adjustment the monopoly incurs a cost of 20 whenever prices are changed

jointly. Under increasing returns to scale these costs will be less than

20 , possibly as low as . The degree of returns to scale depends on the

distinction between 'menu costs' and 'decision costs' of price adjustment.

By 'menu costs' we refer to costs such as advertizing and updating of price

lists. By 'decision costs' we refer to costs of acquiring information on

the production and demand of different products and to organization and

computation costs of coordinated price changes in multiproduct firms. If the

costs of price adjustment are interpreted a! 'menu costs', one would expect

these costs to be 0 independently of the number of items in the menu. If,

however, these costs are interpreted as decision costs, one would expect that

the complexity of the choice, and thus the costs, will depend on the number

of items involved, suggesting that constant returns to scale is the more

appropriate assumption.

The other issue of concern is the interaction in demand and possibly

in the production of the two goods. One would expect that if the goods are

strategic Eamplments, i.e., raising zi increases the marginal profits of

zj , j 0 I , then synchronization is more likely, and vice versa. We shall

investigate these issues in due course.



3. Menu Costs 

In this section we analyse the extreme case of increasing returns

where the costs of nominal price adjustments are irrespective of the

number of items in the menu.

Let V(z1,z2) be the value function associated with an optimal policy

starting at real prices (z1,z2) at time 0 . The existence of such a

function is guaranteed by our assumption that F(z1,z2) has a well-defined

maximum and by assuming that the real interest rate, r , is positive. The

value function can be defined recursively:

t 
(5) V(zz

2
) = Max((f e

---r„
F(z -gx
' 

z
2
-gx)dx + e-rt[ Max V(S

1 
S
2 
) -SS

2 
' t)0 0

where t is the time of the subsequent price change and (S1,S2) are the

real prices chosen at that time (i.e., nominal prices are set so as to attain

these real prices). If the optimal t is t = 0 , then a price change

occurs immediately; otherwise the current nominal prices will be kept

unchanged, with real prices decreasing at the rate of inflation, g , over

the interval [0,0 . It is asumed that for any initial (z1,z2) , a price

change is optimal after a finite lapse of time. Our assumptions on the

profit function (specifically, that F(z1,z2) has a well defined maximum and

that it reaches zero at finite time from any initial (z1,z2) ), ensure that

V is positive for all (z1,z2) , provided that 0 is sufficiently small

relative to maximum profits.

We begin our analysis by stating some properties of the value function

which will be used subsequently:



(1) V(z1,z2) is symmetric,

(ii) V(zi,z2) is continuous,

9

(iii) V(z1,z2) is differentiable, except possibly at some boundary points

to be defined below.

Symmetry of V(z1,z2) follows directly from the assumed symmetry of

the profit function F(z1,z2) . Starting from z
1 
= a and z2 = a' or

z, a' and z
2 

u a the monopoly can obtain the same present value of

future profits simply by exchanging the optimal price sequences of the two

products.

Continuity of V(z1,z2) follows from the continuity of the integral

of profits on the R.H.S. of (5) in (z1,z2) , for any given choice of Si,

S
2 

and t . Hence the maximum over these must also be continuous.

Differentiability may be determined as follows. Note first that the

choice of
1 and S2 in (5) is independent of (z1,z2) . Only the timing

of the subsequent price change, t , depends on (z1,z2) . By

straightforward application of the envelope theorem, continuity of the

optimal t is sufficient, in view of the differentiability of F(z1,z2) ,

to establish the differentiability of V(z1,z2) . Indeed,

(6)
t* _rx

V(zz
2
) f e Fi(zi-gx, z2-gx)dx ,

0

where Vi = aV/azi , F = aF/az

Optimal choice of t

= 1,2 ,

i = 1,2 , and t* = t*(z1,z2) is the

We are now ready to characterize the optimal policy. Consider the

following subsets of :



Continuation Set (C):

(7)

Trigger Set (T
o)

(8)

Clearly, these sets are mutually exclusive and C 
T0 

R
2

(Bensoussan,

Crouhy and Proth [1983], and Sulem (1986]).

Let (zz
2
) be a point in the interior of C . Then the following

restrictions on V must be satisfied:

(9) V(z1,z2) > V*

where V* gm Max V(S1,S2)
SS

2

(10) F(z1,z2) gyz1,z2) + gV2(z1,z2) + rV(z1,z2) .

Equation (10) is derived from (5) by the following consideration.

For any t* > 0 , there exists an 0 < h < t* such that:

h 
-rh(11) V(zz

2 
) f e rxF(z 

' 1 z
2 
-gx)dx + e ..V(z

1
-gh,z

2
-gh) .0

Expanding the R.H.S. of (11) in a Taylor series for h at (zz
2
)

one obtains
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(12) V(z1,z2) F(z ,z2)h + V(z1,z7) rV(z1,z2)h -

hityz1,z2) gV2(z1,z2)jh + 0(h) .

Taking the limit as h • 0 , we obtain (10).

Equation (10) can be interpreted as an asset pricing formula. The

imputed value of a state which does not generate a price change, rV(zz
2
)

is given by the current flow of profits, F(z1,z2) less the depreciation

caused by the inflationary erosion in real prices, gyz11z2) + gV2(211z2)

In subsequent analysis we shall refer to equation (10) as the 'valuation 

formula'.

Next consider a point in the interior of To . In this case, V(z1,z2)

must satisfy the restriction

(13)

and

(14)

v(z1,z2) 1.7* -

F(z11z2) < gyz11z2) + gV2(z1 ) + rV(z11z2) = rV(z11z2)

since, by (13), 1(z11z2) = V2(z11z2) • 0 . Equation (14) is obtained by

noting that if a price change occurs then the L.H.S. must exceed the R.H.S.

of (11).

We now wish to characterize the pair (S1
,S
2
) chosen when (zz

2
)

is in the trigger set.
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Proposition 1. Assume that F(z1,z2) E.4 . Then, (a) for any (zi,z )4 T
O *

the optimal choice of (S1,52) satisfies q
1 

la S
2 

as S I where S > S* is a- 
unique singleton in the interior of C ; (b) the continuation set C is
defined by F(z1,z2) > r(V*

Proof: (a) Any maximizer of V must be in C . Otherwise an additional
cost 0 would be incurred to obtain the same value V* . Observe that for
any point in C equation (6) applies and V is differentiable. Combining
these facts, we obtain

(15) rV(S1,S2) F(S1,S2)

where (s1,s2) e arg Max V(z1,z2) .
zz

2

Now suppose that Si $ S2 . Then, by symmetry, the points (S1,S2)
and (S2,51) are both maximizers of V(z1,z2) , yielding the same value V*

For any 0 < y < 1 , define (S1,S1) as:

(16)

(17)

im isl (1-Y)s2 '

is2 n 
(1-1)Si

2

Using recursive equation (5), the value associated with V(S1,S2) is

t* 
-rt*-rx 

-
V(S S ) f e F(S1-gx,S2-gx)dx + e [V*0]1) 2 

0

where t* t*(S
l' 2) is the optimal time for the subsequent price change

and V* is the maximum value of V realized at t* . Starting at (51,52) *
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the same choices are still feasible. Hence,

(18)
t* -V(SY

' 
SY) ) f e

r 
xF(SY-gx' 2 

SY-gx)dx e
-rt*[17*-] .l 2 1 

0

By strict quasi-concavity, F(S1-gx,S2-gx)dx < F(SI-gx,4-gx)dx

for all x t* ) x 0 . Thus, equations (17) and (18) imply that

V(SY
' 
SY) > V(SS

2
) 
' 

which contradicts the assumption that (S ,S2)l 2

maximizes V .

This proves that 51 • 52 • S . To prove that 5 is unique we use

again the quasi-concavity of F together with the valuation formula (10).

Suppose there are two values, and (S
b
,S

b
) , S

a 
S
b

that maximize V . Let se - (1-e)Sb , 0<e<1. Then,

(19) F(se,se) > F(Sa,Sa) • F(Sb,Sb) • TV* ) rV(Se,Se) .

Inequality (19) and the valuation formula (10) imply that for any

(20)

, we must have

gyse,se) gv2(se,se) > o .

9

Letting y -is 0 or , (20) implies that V can be increased in

the neighborhood of (Sa,Sa) or (5
b 5b
) , contrary to the assumption that

these are local maxima.

To prove that (S,S) is in the interior of C , note that for (z,z)

slightly above (S,S) , it is always worthwhile to wait until the price path

reaches (S,S) , thus avoiding the cost of a nominal price change, p .
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Finally, we prove that S > S* , where F attains its unique maximum

at F(S*,S*) . Suppose that S < S* . Let SY In yS* (1-y)S , 0 < y < 1 .

Then, by (15) and the assumption that (S,S) maximizes V ,

(21) F(S,S) rV* ) rV(SY,SY) .

By strict quasi-concavity of F(z ,z )1 2- '

(22) F(SY,SY) > F(S,S) .

Hence,

(23) F(S,S') > rV(SY,S

which for (S,S') C implies, by (6), that 071(0,0) + gV2(0,0) > 0 .

Since (S,S) is in the interior of C , by letting y• 0 we obtain a

contradiction to the assumption that (S,S) maximizes V .

(b) To complete the proof we now describe the boundary points between

n n n nT and C . Consider any sequence (zi,z2) e C and t*(zi,z2) 4. 0 as0

n •a . Any such limit point,

satisfy equations (13) and (14).

(s1.82), is in T
0 and therefore must

Furthermore, equation (14) must hold with equality. Hence,

(24) rV(s1,s2) rV* rp F(s1,s2) 1.
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Condition (24) implies that the boundary between To and C is given
by an iso-profit curve in the (zz

2
) space. The critical level of profits

is the imputed flow of profits associated with the optimal choice, (SS
2)net of the imputed flow of the costs of price changes. In other words, the

gain from a delay, F(81,s2) , is equated to the opportunity costs,
rV* - rp .

The optimal policy can now be described with the aid of Figure 1.

A

Figure 1

F(61, S2) EV*
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Starting at any initial (z1,z2) 4 To , the optimal policy is to jump
immediately to (S,S) . At any initial (zi,z2) C (point a, in Figure 1),
the optimal policy is to wait until the trajectory reaches the boundary

(point b) and then, again, (S,S) is chosen. After the first price change
the policy is fully repetitive. The price path starts at (S,S) . Then,

after a fixed interval, allowing real prices to erode to (s,$) ,

where s = S gc nominal prices are adjusted to attain again the level

(S,S) . Along this path, prices are always equal. We have referred to this

solution as the Synchronized Steady-State.

The optimal policy of the multi-product monopoly is seen to be

identical to the case of a monopolist selling one good analysed in

Sheshinski-Weiss [1977]. The actual values of (S,S) and (s,$) can be

calculated as in the single product case. Specifically, equations (5), (15)

and (24) can be reduced to:

(25) F(S,S) F(s,$) - rp = 0 ,

(26) F(S,S)

where c
1

c -e rxF( 
S-gx,S-gx)dx - pe-rci ,

1 - e-rc 0

S-s) . As in Sheshinski-Weiss [1977), strict quasi-concavity

of F(z1,z2) is sufficient to guarantee that the solution, (S,$) is

unique.

At this point we can comment on the differentiability of V(z1,z2) on

the boundary between T0 and C . Consider first the boundary point (s,$)

Recall that by (24), rV(s,$) = F(s,$) . If V is differentiable at this

point then, by (10), the gradient gys,$) + gV2(s,$) must be zero, which
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under (6) is consistent with the differentiability of V(z1,z2) at (s,$) .

Consider, however, the point (S,S) which is also a solution to equation

(24), satisfying si = 82 . At this point, there is a discontinuity in the

choice of t • At a point slightly above on the diagonal, t*(z1,z2) = 0

but at points on the diagonal slightly below, t*(z1, 2) = c ) c > 0 . This

discontinuity in the action leads to non-differentiability of V(z1,z2) at

(S,S) . On the diagonal above

However, on the diagonal below

,(S,S)

(S,S)

, by (13), V.(z
l' 
z
2 
) = V

2
(zz

2
) = 0

• the gradient must be strictly

negative. This follows from (6) using the strict quasi-concavity of

F(z1,z2) and the fact that Vi(S,S) = V2(S,S) = 0 . It should be noted that

in the related literature on inventories (see Sulem [1986] and Costantinides

and Richard [1978]), V(z1,z2) is differentiable at the boundary. The

difference in our model is caused by the fact that we allow the price to be

raised and to be lowered. In contrast, the inventory literature always

assumes positive orders.

Our results so far suggest that, under the menu costs hypothesis, a

fully synchronized price policy is optimal for a wide class of profit

functions. The crucial assumption behind this result is that profits are

quasi-concave in real prices. While this assumption is quite natural in a

context where prices are the choice variables, there are plausible

circumstances where it fails to hold. To illustrate this point we consider,

in the next section, an example where quasi-concavity fails.
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4. An Example Without Quasi-Concavity

Consider a given number of customers, N , each demanding one unit of

e
ba product at all prices below a reservation price and nothing at

prices exceeding b . The monopoly operates two stores, generally charging

different prices for the same product. Given the announced prices, customers

are divided between the stores according to a symmetric probability

distribution function defined on the price ratio of the two stores.

Let z
i 

be the log of the real price at store i , I22 1,2 and

p(z2-z1) the probability of purchase at store one when 21 b and 22 b .

Under symmetry, p(z2-z1) st 1 - p(z1-z2) We further assume that if either

store announces a price above b then no customer arrives at this store.

Total real profits are

(27) F(zi,

zft
N[p(z2-z1)e 1 + p(z1-z2)e 21 b , 22 b

Nez1 z
1 

b , z2 > b

z
2 

21 
> b , z2

0 z
1 > b , z2 > b

The iso-profit curves corresponding to these assumptions are presented

in Figure 2. Note the discontinuities at zi b and z2 b . Selling at

the same price at both stores or selling at that price at one store, yields

the same profits. However, as long as both prices are below b it is always

worthwhile to increase either one of the two.
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Z2

2b-s -

a -

b  

s+a-b

F(zi, 4) =70

F(Zi, 4) =70

F(ZI, Z2) =

F(ZI, Z2) eb

94 4) =70

zi
Figure 2

For this example a synchronized policy can never be optimal.

Referring again to Figure 2, consider the synchronized steady-state indicated

by the points (b,b) and (s,$) . Along this path, sales are divided equally

between the two stores. Now consider the path alternating between (b,2b-s)

and (s,b) . Along this path, z
2 

> b at all times and hence all the

customers purchase at the first store. The time between price adjusmtents

is the same as in the synchronized path and real profits at any point along

the cycle are also the same. Finally, note that any path with the same

periodicity but associated with positive sales at both stores over part of

the interval, such as (b,a) and (s,s+a-b) , is superior to both.

Therefore the synchronized steady state can never be optimal. The main
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feature of this example is that, starting with equal prices for the two

goods, the monopoly can never lose, and genc.rally gains, from increasing

either price. This situation can never arise when F(zz
2
) is strictly

quasi-concave and reaches a maximum at a finite (zz
2
) In that case,

deviations from the diagonal yield lower profits at prices above the maximum

profits.

5. Decision Costs

In this section we analyse the case of constant returns to scale in

the costs for nominal price adjustments. That is, each price change requires

a cost of 0 and if'both prices are changed simultaneously the costs are

20 . Our justification for this assumption is that with more prices to be

changed, the decision problem facing the monopoly increases in complexity.

A typical organizational solution to this problem is decentralization,

whereby separate divisions are allowed to follow separate pricing policies,

maximizing objective functions set by the center. The overall outcome of

this process is that adjustment costs for the monopoly are the sum of the

costs incurred by the separate 'price centers'.

The value function now satisfies the following recursive equation:

(28) V(z,,z2)
t -rxmax{(f e F(zi-gx, z2-gx)dx +

t)0 0

+ 
-rt
e Maxi Max V(S1,S2) - 20, Max V(S1,z2-gt)

SS
2 S

1

Max V(z1-gt,S2) - 01) •S
2
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The difference between equations (5) and (28) stems from the fact that
it may now be optimal for the firm to change only one of the two prices in
order to save the adjustment costs. Using the same arguments as in Section 3,
V(zz

2) can be shown to be symmetric, continuous and differentiable except
at some boundary points.

Let t*(z
1, 
z
2 
) be the optimal time for a change in the price of

i 

good i , and S
i ' be the optimal choice when the price of good i is

changed, i mg 1,2 . Then, whenever V(zz
2
) is differentiable, its partial

derivatives are given by

(29)

V2( 1 ,z2)

t*
1 -rxf e Fl(zi-gx,z2-gx)dx

0

0

t*1 '
e-rxF

2
( 2 -rxz

1
-gx,z

2-gx)dx + f e F
2 (S1 -8(x-t*),z -gx)dx1 2

for 
1 t*(. z ) ( t*(z 

z2 ' 
) • and 1,2 

2 1) 

(30)

t*

t* 
t*2 -rx 1 -rxV

1(zz2
) f e F

1(z1-gx,z2-gx)dx + f e F0
t*
2

V
2
(z

1,
z
2
)

for t*(z
2 1

2 -rxf e F
2(z1-gx,z2-gx)dx0

) g tl(z1,z2) .

The solution is now described with the aid of four distinct sets:
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(31)

2

{zi,z2 I t(z1,z2) > o , t;(z1,z2) > 0)

Iz1'z2 1 tt(z1,z2) = Tz1,z2) u 0)

,z2 Jtt(zi , t2(zi,z2) > 0)

,z2 I tt(z,,z2) > 0 , ) 0)

The set of initial conditions C is the continuation set where no

price change occurs. The set T
0 triggers a change in both prices, while

T
i u 1,2 is the set which triggers a change in the price of good i

only. Clearly, these sets are mutually exclusive and C LI To L.1 T1 U T2 u R

The restrictions on V(zz
2
) in the sets C and T

0 are the same
as in Section 3, except that

changed simultaneously.

(32)

(33)

and

(34)

is replaced by 20 when both prices are

The restrictions on V(z
1,
z
2
) in T

1 are:

V(zz
2) Max V(S

S1

v(zz
2
) ) Max Max V(S1,S2) 7 20, Max V(z,,S -01 ,SS

2 S
2

gV
2
(z

1'z2) rV(z1
,z2) ) F(z1'z2)

where (34) is derived from equation (14), using (32) (which implies that

V1(z11z2) u 0 ). These conditions restate the requirement that the four sets

defined above, (31), must be distinct. That is, if (z1,z2)e T1 , then

2
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changing the price of the first good is superior to any alternatirve.

Analogous restrictions on V(z1,z2) apply when (z1,z2) 6 T2 .

We are now ready to investigate the properties of the optimal price .

path for the decision costs case.

The restrictions on the value function, (32)-(34), impose restrictions

on the real price changes along the optimal path. At a boundary point

between C and T
0

we must have

(81.82) where a change in both prices is triggered,

(35) F(S1,S2) 2r0 • F(s1,s2) .

have

(36)

Similarly, at a boundary point between T
1 

and C , (sz
2
) we

F(S1,z2) '13 •.F(s1,z2) .

Finally, at a boundary point between T
2 and C , (zs

2
) 9 we have

(37) F(z1,S2) - rp • F(z1,02) .

Whenever V is differentiable at the boundary of C , one can use

the valuation formula (10) to derive these equations. Otherwise, we use the

continuity of V at the boundary. We shall sketch the derivation of

equation (36). Differentiating (32), using the envelope relation, we obtain

(38)

(39)

V
1
(s1"z2) •

1
(Sz

2
) • 0

2
(sz

2
) •

2
(Sz

2
)
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By the valuation formula (10),

(40) F(s1,z2) a rV(s1,z2) gV2(s1,z2)

(41) F(S1,z2) a rV(S1,z2) gV2(S1,z2)

Thus, using equations (32) and (39), equation (36) follows.

If t*(z1,z2) is not continuous at the boundary between T
1 and C

then V
1
(sz

2
) does not exist, but equation (40) still holds, since

V
2
(sz

2
) is well defined. Equations (35) and (37) are derived similarly.

The economic interpretation of these equations is clear. The L.H.S.

of each equation is the cost of the delay in a price change consisting .of

foregone profits at the new real prices net of adjustment costs, while the

R.H.S. is the benefit consisting of profits at the old prices.

We are now ready to investigate the properties'of the optimal price

path for the decision costs case.

It is clear that in contrast to the menu costs case, decision costs

imply that the class of profit functions which entails synchronization is

narrower. There is no savings in adjustment costs when prices are changed

simultaneously. This observation is highlighted by the following proposition.

Proposition 2. Assume that F(z11z2) . Assume further that

nF
12
(zz

2
) < 0 for all (zz

2
) . Then there is no sequence (zn11z2)e c ,

whose limit as n « is in T . In particular, a simultaneous price change0

can occur at most once.
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Proof. Suppose there is a sequence (4,4) c C whose limit point as

is in T
0 

and let (S11S2) be the choice of prices
, 

triggered at (81,82) . Clearly, (S1,S2) e c , and

(42)

(43)

(44)

V(81, is V(S1,52) - 20 ,

V(S1,S2) - 2 ) V(S1032) -

V(S1,52) "" ) V(s1,S2) - .

Conditions (43) and (44) imply, respectively, that (S1,82) 4 T2 and

(81,S2) Ti . Hence, by (15), (32) and (34),

(45) F(S11S2) - 110 F(51,s2) 9

( and

(46) F(S1,S2) - rp ) F(81,S2) .

Condition (42) together with the valuation formula (6) imply that

(47) F(S1,S2) 2r0 im F(81,82) .

Substituting (47) into (46) and using (45) we obtain

(48) F(51,S) - F(511s2) ) r ) F(si,S) - F(81,82) .

Clearly, the inequalities in (48) cannot hold simultaneously if

F
12
(zz

2
) < 0 uniformly II •
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To illustrate the implication of a negative interaction between the

two prices ( F12 < )' consider the follcwing example. Let

F(z1,z2) mg G(z14.z2) , where G(.) is strictly concave.1 Clearly,
. F

12 
sig G" < 0 .

For this example it is easy to see that a synchronized price policy
cannot be optimal. Consider the set of fully synchronized price paths. In
this class, the choice of an optimal path is equivalent to the one good case.
Thus, applying the results in Sheshinski and Weiss (19771, the optimal path
converges after one price change to a steady-state (S,$) policy. The

profit levels associated with these (S,$) values are indicated in Figure 3.

Z2

Figure 3



Starting at any part of this supposedly optimal path, it is optimal to

diverge from it after the first price chinge. Thus, starting at point a on

the diagonal, reaching the point (s,$) , then changing one price only, say

the first, to 2S - s (point b ), then allowing real prices to drift down

to (S, 2s-S) , and changing the second price to S , is superior to a

simultaneous change from (s,$) to (S,S) . The non-synchronized policy,

while providing the same profits, requires half the adjustment costs, since

at any change only one price is adjusted while the same sum of prices is

maintained. In this example, since prices are perfect-substitutes, any level

of profits can be attained by changing only one price, thus avoiding the

additional adjustment costs that would be incurred if both prices were

changed. Hence, a synchronized policy cannot be optimal.

The previous example suggests that further restrictions have to be

imposed on profit functions to permit both synchronized and staggered price

policies. In particular, in the decision costs case, some complementarity

between prices is needed to overcome the higher costs of simultaneous price

changes.

In the subsequent analysis, we shall therefore adopt two additional

assumptions:

Al. .c.2111plemenRE11:x

For any (z11z2)

(49) F
12
(zz

2) ) 0 .



A2. Non-Reversibility

For any zl,

(50)

28

z
2 and x (x > 0) ,

F1(z1,z2) > o F1(z1-'x,z2-x) > o , 1. 1,2 .

Assumption Al requires that any increase in the price of good j

also increases marginal profits from an increase in the price of good i ,

i j , thereby enhancing an accompanying increase in the price of good i

Assumption A2 imposes the natural requirement that if a price increase

is profitable at (z1,z2) , then it is also profitable after these real

prices are eroded by inflation to (z1-x, z2-x) . Clearly, monotonicity of

F w.r.t. equal changes in z
1 

and z
2 9 F

11
(zz

2) + F1' 
(z z

2 
) < 0 for

all (z
l' z2 
) implies this assumption but not vice-versa.

We now turn to an analysis of the optimal price policy, applying

assumptions Al and A2.

6. Positive Interactions 

In this section we consider a monopoly whose profit function displays

positive interactions between the prices of the two goods. As specified in

Al, an increase in z
2 

which increases profits also increases the marginal

profits from raising z
1 ' 

and vice-versa. We continue to assume that the

costs of price change are decision costs and thus that a simultaneous price

change requires a cost of 20 .
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We first prove two lemmas which will be used in the sequel. The first

concerns a property of symmetric, quasi-cGi.cave functions and the second

concerns the patern of marginal profits along an optimal path.

Lemma 1. If F(z1,z2) is quasi-concave, symmetric and differentiable, then

for any (z1,z2) ,

(51) (z1-z2)(F2(z1,z2) - F1(z1,z2)) ) 0 .

Proof: By symmetry, F(z1,z2) = F(z2,z1) . By quasi-concavity,

F(yz +(1-y)z2) ) F(z,,z2) , for all 0 ( y ( 1 . Expanding around as 0

(52) F(z1,z2). + (F1(z2,z1)(z1-z2

+ F2(z2,z1)(z2-z1))1( + 0(r) ) F(z,

Cancelling, dividing by y and taking the limit, we otain (51) H.

Lemma 2. Under assumptions Al and A2, on any interval with a fixed nominal

price for good i , i = 1,2 , we have F
i 

< 0 at the intital point and

F
i 

0 at the end point of such an interval.

Proof: Without loss of generality, suppose that at time t = 0 the price

of the first good has been raised to Si . Then,

(53) V
1
(Sz

2
) = 0
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Let t*(S1,z2) be the optimal time of the subsequent price change.

There are two cases to consider.

Case 1: the subsequent price change involves a change in

together with z2 ). Differentiating (28),

(54)
t*(Spz...) _z rx

V
1
(S

11
z
2
) = f e F

1(S1-gx'
z
2
-gx)dx .

0

By the non-reversibility assumption A2,

(55) F1(S1,z2) > 0 Ix> F1(S1-gx,z2-gx) > 0

for all t* ) x ) 0 . . Hence,

(possibly

1
(Sz

2
) > 0 , contrary to (53). Therefore,

F (S,,z2) < 0 and F1(S1-gt*,z2-gt*) > 0

Case 2: the subsequent price change is an increase in the second price. In

this case, applying equation (6) again,

(56) V
1
(Sz

2
) = f

t*(Si, -r xF 
-gx,z2-gx)dx +

t** 
-rx+ f e F

1 (S1 ' 
-gx S*-g(x-t**))dx .

2
t*(Sz

2
)

where t** = t*(S1-gt*(S1,z2), z2-gt*(S1,z2)) and = SI(S1-gt*(S1,z2)) .

Under Al, at t*(S1,z2) as a consequence of the increase in z2 F1 is

raised. Thus, using monotonicity (A2), equation (53) implies that

F1(S1,z2) < 0 and Fl(Si-gt**, SI-g(t**-t*)) > 0 .
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These two cases exhaust all possibilities, since a reduction in price

can only occur at the first change.

We now begin the analysis by proving some properties of the actions

triggered by the sets
1

T
2

and T .
0

Proposition 3. Under assumtions Al and A2, for any (z1,z2) ç Ti , I = 1,2 ,

there is a unique real price chosen for good i , S*(z ) s C , whose valuej

depends only on zj , j .

Proof: Suppose that (z1,z2) e Tl and hence a change in z1 is triggered.

Since the costs of price adjustment are independent of the size of the price

change, the optimal policy satisfies Si e argmax V(x,z2) . Clearly, the set

of maximizers depends on z
2 

but is indpendent of zi . This reflects our

Markovian assumptions, whereby profits depend on current prices only.

Nov assume that there are two maximizers S
1 

and S . Without loss1

of generality, let S1 > Si . By equation (32),

(57) V(S1,z2) = V(Si, = V(z11z2) + > 1.7*-0 .

Clearly, S1 and
1

are in the interior of C , for otherwise an

additional price change is optimal contradicting (57). We can thus

differentiate (51), using the envelope conditions, to obtain

(58) V
2 
(S'
' 
z
2 
) .

l 

In addition, since S
1 

and Si are maximizers,
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(59) V1
(S

1,z2
) ,z

2
) 0

Applying the valuation formula (10), we obtain from (57), (58) and (59)

(60) F(S1,z2) u F(Si,z2) .

Then, by the strict quasi-concavity of F , F1(S',z2) > 0 , contrary to

Lemma 2 H.

To complete the characterization of the optimal policy we need to

specify the optimal choices triggered by (z1,z2) 4 To . In view of the

symmetry imposed by our assumptions, it is clear that if (S1,S2) is an

optimal choice, so is (S2,S1) . Hence, in general, uniqueness cannot be

.expected. However, we.can prove the following:

Proposition 4. The Synchronized steady state is unique. Under Al and A2,

the symmetric staggered steady state is also unique.

Proof: Appendix A.

Proposition 4 proves that the synchronized and (under certain

conditions) the symmetric staggered steady states are both unique. However,

we shall now show that only the synchronized steady state can be chosen

following a simultaneous price change

Proposition 5. A staggered steady state will never be attained immediately

following a joint price change. Furthermore, under assumptions Al and A2,

the only steady state following a joint price change is a synchronized steady

state.
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Proof: Any non-synchronized steady-state satisfies the following necessary

conditions:

(61) V
1
(S S

2
-gt

1
) = 

2 e---„
F
1
(S

1-gx, S2
-gt

1
-gx)dx +

0

and

(62) V
2
(S

1-gt2' S2
) =

t
2
+t

1 -rx
+ f e F

1
(S

1
-gx
' 

S
2-g(x-t2))dx = 0

0

t
2

-rx_
2

e r (S
1 -gt2 ' 

-gx S
2 
-gx)dx +

t1+t2 -rx
+ f e F

2
(S

1-g(x-t1) S2-gx)dx = 0ti

where t
1 and t

2 denote the time between alternating price changes (if the

price of, say, good one is changed more than once, then t
2 is the time

elapsed from the last price change of the first good).

If a non-synchronized steady state is triggered, then the choice at

time t = 0 must be either (S
11 

S
2
-gt

1
) or (S

1
-gt

2' 
S
2
) .

Suppose the choice is (Sl, S2-gt1) • Since this choice must be

optimal at time t = 0 , we must have in addition to (61) that

(63)

(64)

• S2-gy f
t
2e-rxF

(S1-gx, 52-gt1-gx)dx = 0 .
2

0

Conditions (62) and (63) imply that

1 -f e rxF2 
(S1-gt2-gx, S2-gx)dx = 0

0
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Under A2, (64) implies that F2(S1-g(t1+t2), S2-gt1) > 0 . It

follows, under Al, that F
2
(S

1'
S
2
-gt

1
) > 0 . Furthermore, applying A2 again,

F
2 

remains positive for all x , t1 ( x ( t1+t) . Hence, the second

integral in (62) cannot be equal to zero, contrary to (63).

For staggered symmetric steady states, S1 u S
2 and t

2 a t1 > 0 .

Condition (63) implies that the second integral in (61) is equal to zero.

Hence,

(65)
t,

-rxf e F(S-gx, S2-gt1-gx)dx a 0 .
0

Comparing (63) and (65), and using Lemma 1, we see that both can hold if and

only if S1 a S2 - gt, , which contradicts the characterization

and t
2 

> 0 H.

S
2

Proposition 4 excludes an immediate switch to a non-synchronized

steady-state. Thus, for a broad class of profit functione, a staggered

steady-state can be attained only as a limit of a non-stationary path. In

contrast, a switch to a synchronized steady-state can occur immediately. A

rather puzzling aspect of the model is that when the initial conditions are

subject to choice, the outcome is not necessarily a steady-state.

Since a steady-state is, in general, not attained immediately, it

remains to analyse the conditions for convergence to synchronized and to

staggered steady states, respectively. This requires a detailed analysis of

the boundaries between the continuation and each of the trigger sets.
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7. Stability Analysis 

To examine the behavior of the prJice path out of steady state We shall

use a special approximation method. To motivate our approach, let us

consider again the single good case (Sheshinski-Weiss [1977]).

In the continuation set, this model is characterized by the valuation

equation

(66) rV(z) + gV'(z) = F(z) .

Since V(.) is a continuous function and constant outside the

continuation set, we can characterize it completely by finding a solution of

the differential equation (66) and the appropriate boundary condition. The

general solution to (66) is of the form

(67) tV(z) = Max(f e F(z-gx)dx + qe-rti
t 0

where q is a constant to be determined. In particular, if V(z) solves
--z

(66) then U(z) = V(z) + qe g is also a solution. Thus, to fully

characterize the solution we need to determine the constant q . This

constant is easily determined from the steady-state solution. Specifically,

(68) V(S) =   (f e F(S-gx)dx - e re]
-re- e

(69)

and

F(S) = - F(S-ge) - rp = 0 ,
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(70)
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fe
-rx

F'(S-gx)dx = 0
0

Equations (69) and (70) determine S and which, in turn, by (68),

determine V(S) . since S e c , we can also use (67) to evaluate V(S) .

Equating the two equations we obtain

(71)

(10')

q 9. V(S) •

Let us now consider the two-goods case. Recall the valuation formula

gV (z,,z2) + gV2(z1,z2) + rV(z1,z2) = F(z1,z2)

which holds for any C . Let V(z1,z2) be a solution to (10').

- ,7(z1+z2) 10(zrzo
Then U(z1,z2) = V(z1,z2) + e 

2g 
9 for V.) some symmetric

function, 11;(0) as 0 , is also a solution. Hence, if we can find a specific 

solution to (10') and the function V.) , then V(z1,z2) is fully

determined. A specific solution to (10') which is always available is

(72)
t -rx

V
2
) = Max[f e F(zi-gx, z

2-gx)dx + qe
- t

t 0

where q is determined from the synchronized steady-state solution, in

analogous fashion to the one-good case.

The function 4)(•) is not so easily deetermined. We therefore use a

second-order Taylor approximation for V.) :
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(73) vz2-z1) *Kw s'(°)(z2-z1) 1 *" 0)(z
2-z1
)
2 
•

The constraints on V.) imply that 40(0) • 0 and V(0) • 0

(symmetry). Hence, we only need to find one additional parameter, 10"(0) .

This parameter can be found from the staggered steady state.

To illustrate the application of this method, we shall provide an

analysis of the dynamics of the optimal path for a class of profit functions

which can be represented by a weighted sum:

(74) F(z1, • p(z2-z1)f(z1) + (1-p(z2-z1))f(z2)

for strictly quasi-concave functions f(.) and a symmetric distribution

function P(z2-z1) where 0 < p(z2-z1) < 1 9 P'( 2- ) > 0 and

p(z2-z1) • 1 - p(z1-z2) . The profits of the monopolist can be viewed as

generated by a distribution of customers between two distinct stores. This

distribution depends on the ratio of prices charged in these stores. This

class includes the example in Section 4, the additive case, p(z2-z1) •
1
2

and the single-good case, p(z2-z1) • 1 (Sheshinski and Weiss [1977)) as

special cases.

8. Weighted-Average Profit Functions

Assume that the profit function has the form (74) and that it is

strictly quasi-concave (note that f(.) strictly quasi-concave is necessary
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but not sufficient). It is easy to verify that for this class of profit

functions, the specific solution given by (,2) inherits the weighted average

property. That is,

(75) V(zi, = p(z2-z )U(zi) + (l-p(z -z ))U(z )

for some function U(.) which satisfies condition (66). Thus, the function

U(.) can be interpreted as the value function associated with a one-good

optimization problem.

1 ,To illustrate, let us first consider the additive case p(z2-z1) =

Define U(z) ,

-r(76) U(z) = Max[f xf(z-gx)dx + qe
-rt
]

t)0 0

where q , q > 0 , is a constant to be determined. As already noted, it

is easy to verify that (76) solves (66). To find q , consider the

synchronized steady state characterized by the following conditions:

1  e rx(77) U(S) = rf (s gx)dx 20e-r6) 9-rr L
- e - 0

(78)

and

e
1(S) = f e rx11 f'(S-gx)dx = 0 ,

0

(79) f(S) - 213 = f(S-g) .

= 1,2
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Equations (78) and (79) determine S and c uniquely. Thus, (77)

implies a unique value for U(S) and, i :.urn, by (76), the value of q ,

(80) RI
1

1 - e -re 0

6 -e rxf 
(S-gx)dx

To complete the characterization we need to find 10"(0). Consider the

symmetric staggered steady-state conditions for this case:

1 1(81) U(S) + U(S-gt) + fig-gt) •

(82)

and

(83)

1  1 t -rx 1 t -rx -rt
rt

F- f e f(S-gx)dx + f e f(S-gt-gx)dx - 
oe]

2 21 - e 0

1 t -rx 2t
-f e f'(S-gx)dx + f e f(S-gx)dx = 0

2"

1 1 1
f
(S) + f(S-gt) -re = f(S-2gt) + f(S-gt) .2

Using definition (76) to eliminate U(S-gt) in (81), we see that the

system (77)-(79) is identical with the system (81)-(83), for t = and
2

V-gt) = 0 . We have thus found that Ir(0) = 0 . Indeed, it can be easily

shown that ( • )= 0 everywhere is the exact solution for the additive case.

Not surprisingly, the additive case yields two independent price policies for

the two goods, each being of the (S,$) type.

The four sets T
o 
, T

1 
and T

2 are described in Figure 4.

regions designated by To trigger a simultaneous change in both prices to

Tho



40

(S,S) . Following this change, the optimal policy is fully repetitive (a

synchronized steady state). Both prices arc allowed to erode to (s,$) and

then are again changed simultaneously to (S,S) . The regions designated by

T
1 

trigger a change in the price of the first good only. At point g , for

example, z
1 

is reduced instantaneously to S . Following this change,

the price path is ebcde, which is also fully repetitive (a non-

synchronized steady state). The regions designated by T2 have similar

implications. Finally, if the initial point is in the continuation set C ,

e.g. point then the nominal prices will remain unchanged for awhile,

until point b is reached, at which time the price of the second good is

s (Z2)

.....

...*:•:.•••:•:•:•:•......:.4

S(Z2) g1(z2)

2

\\X

g2(Z1)
s*2(zi)

-:Ef(;)+f(Z2)]=0*-2 (3)

  S2(Z1)

Figure 4
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changed to S . Following this change the price path is again in a

non-synchronized steady state.

The main features of the additive case can now be summarized: (1) The

choice functions S*(z ) , j i I= 1,2 , are both constants, reflectingj

the lack of interaction; (2) the optimal policy is to jump to a steady state

immediately after the first price change. This reflects the irrelevance of

history following any price change; (3) there is a unique synchronized

steady state and a multiplicity of non-synchronized steady states, one of

which is a symmetric staggered steady state.

While each steady state can be optimal for some initial conditions,

they can nevertheless be ranked by their present value.

Proposition 5. Under additive profits, the value of each steady state

increases as the difference between the time of price adjustment of different

goods decreases.

Proof: For any steady state, let us define

1  1 c -rx(84) V(S, S-gt) = [7; f e f(S-gx)dx +
'1 e-rc 0

1 C-t -rx 1 C -rx+ (f e f(S-gt-gx)dx + f e f(S-g(x-e+t)dx)2 20 e-t

-rc -r(e-t)pe p e

where e (S-s) is the time span between consecutive changes in the price

of each good and t is the time span between price changes of the first and

the second goods.
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Steady states vary only in t , where t m 0 indicates the

synchronized steady state.

Differentiating (75) w.r.t. t • using (78) and (79),

(85)

(86)

dV
dt

-g  c-t 
• 

-rx
e rxf, 

(S-gt-gx)dx + f e P(S-g(x-e+t)dx m2(1-e-r6) 0 g-t

. ert(l_e -re) fse -rxf,
ts 
.__

gx)dx .

Since f(.) is strictly quasi-concave and (78) holds,

Cf e rxf, (S-gx)dx > 0 for all 0 < t < e .

dV •
dt 

It follows that <0 
' 

for all 0 < t < e , implying a strict ranking
-

of the steady states with a maximum at the synchronized steady state,

Since the additive case is essentially the same as the one-good case,

a more meaningful application of our method is to the case where there is

positive interaction between the two prices. To this end, we set

(87) f(z)

and

(88)

aez if 0 ( z ( bf

2aeb - aez if z > b

p(x)

x1 +e
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The specification of f(z) assumes a 'triangular' profit function,

which is widely used in the related literature on optimal inventory policy

(see, for example, Sulem [1986] and Constantinides and Richard [1978]). The

specification of p(.) corresponds to a logistic probability distribution.

The value function, V(z1,z2) , for any (z1,z2)e C , is in this

case:

(89) V(z1

ae' 
p( 
r+g

+g
l
e a- ')+ (1 -1:)( 

ae Z2 
+ q

1 
e ) +

r +g

- (z +z,)2g 1 4 + e 10(zi,z2) , if Z1,Z2 ( b

z
1 z

2b --z 
b 

--z
2g 1 2ae2ae ae ae 

P( + (I
2
e ) + (1 p)( + q

2
er + g r + g

_E-(z +z )2g 1 2
+ e 

41(z2-z1) 
, if z > b

Z
2 -17-zae g 1 ) 2ae ae g 2

P( r + g r + g (12e

-1-(z
1 
+z
2 
)

2g 
+e Vz1,z2) , if z1 ( b and z2 > b

z
2 --z2aeb ae 1  

+ 
2 

1 ) (112)( 
ae  q1e g 2 )

r + g
r + g

_E-(z +z )2g 1
if z1 > b and z2 ( b

where qi and q2 are constants.
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The continuity of V(z1,

(90)

implies that

bcr+g)

2aR  e g
c12 (r+g)r •

Both constants can be determined from the synchronized steady state.

121(21 Approximating V.) by 2 
(z2-z1)2 the coefficient

ja91
2

can be

found from the staggered steady state. Assuming known values for these

coefficients, we can now describe the trigger sets that determine the optimal

path (Figure 5).

Figure 5

A: F(z1,z2) = rV* ; B: F(z1,z2) = r(V*-0) ; C: F(z1,z2) r(V*-2
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The main difference of this from the additive case is that the range

of initial conditions which leads to synchre-lization is enlarged. This is a

reflection of the positive interaction imposed by the distribution function

p(-) • As z
2 

increases, the profits generated by the first 'store' always

increase for a given z
1 
. Furthermore, marginal profits also increase

whenever they are positive (and vice-versa). This creates an inducement for

synchronization. It also appears from Figure 5 that the symmetric staggered

steady state is the only steady state (except the syncrhonized) and that it

is ;unstable. however, we did not investigate this issue in detail. Another

important difference from the additive case is that, in general, a steady

state is not attained after the first price change. With positive

interaction, unless both prices are changed simultaneously, history always

remains relevant. Thus, the impact of inflial conditions is propagated over

time.

9. Some Remarks on the Duopoly Problem

The analysis so far focused on the case of a single decision maker.

One may also regard this problem as arising from cooperation among different

firms, each controlling it's own nominal price. An analysis of the non-

cooperative duopoly solution is the subject of on-going research, which will

be reported separately. However, we wish to make some remarks on the

difference between the duopoly and the monopoly cases.

In contrast to the monopoly case, each duopolist controls only his own

nominal price. The concept of equilibrium depends on the type of interaction
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perceived by each decision maker. In the context it is common to distinguish

two types of equilibrium: open-loop and clo3ed-loop equilibrium. In the

open-loop equilibrium, the optimal price paths viewed ao functions of time,

are mutually consistent. In the closed-loop equilibrium, the optimal

strategies, viewed as functions of current real prices, are mutually

consistent.

In some special cases, however, this distinction desappears. In

particular, with additive profits, the open and closed loops solutions

coincide. However, even in this case, they may both differ from the

cooperative (or monopoly) solution. This situation occurs if the price of

one firm affects the level of its rival's profits, but not the marginal 

profits. The monopoly always internalizes this external effect, but none of

the duopolists takes it into account.

To illustrate this observation, let us write the profits of each

duopolist, F (z,,z ) in the additive form

(91) F(z1'z2
) as f(z1) + g(z) i i,j Is 1,2 .

We shall say that the profits of the two firms are independent if

g(.) in constant. Otherwise, each firm imposes an 'externality' on the other.

However, due to additivity, this has no effect on any firm's actions. The

optimal policy is thus the same as in the single good case, i.e., an (S, s)

policy characterized by:

(92)

and

f(S) - f(S-ge) rp 0 ,
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(93) -r
f e xf'(S-gx)dx 0 .
0

In the decision costs case, the monopoly satisfies the same

conditions, where the function f(z) is replaced by f(z) g(z) . It is

easy to show that if g'(z) > 0 , i.e., the two goods are substitutes, then

the monopoly will select a higher initial price , S . However, the frequency

of price changes, under monopoly may be higher or lower than in the

duopoly case (see Rotemberg and Saloner (19861).

With non-additive profits, it is still easy to compare the open-loop

with the monopoly solution, and the same prinicple applies. That is, the

monopoly internalizes all interactions. Thus, with positive interaction,

F
12 

> 0 we would expect a stronger tendency towards synchronization by

the monopoly.

Another important distinction between the monopoly and duopoly

solutions is the potential for increasing returns in the price adjustment

costs. The monopoly may coordinate the timing of price changes and inform

consumers jointly, thereby saving adjustment costs. As we have seen in

Section 1, in the menu costs case, where the costs of price adjustment are

independent of the number of items in the price list, the monopoly will

always follow a synchronized price path. With this extreme assumption,

staggering may arise only under duopoly.
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Appendix A

Proof of Proposition 4:

The proof that the synchronized steady state is unique is the same as

in the case of menu costs.

To prove the uniqueness of the symmetric staggered steady state,

consider the point (S,z) C , where the price of the first good has just

been changed, and let t2 be the timing of the subsequent price change. The

F.O.C. satisfied at that point are:

(A.1) V2(S-g ,S2) im 0

and

A.2. F(S-gt2, Z-gi2) r(V(S-gt2, s2)-0) - gV (S-gt2, S2) im 0 .

At a symmetric steady state, S2 = S t
2 

is t and z= S - 2gt .

Evaluating the second-order conditions at this point, we have the

requirement that the matrix A,

(A.3) A al

V
22
(S-gt, S)

-gV12(S-gts S)

MOM.

-gV12(S-gt' S)

-g(Fl(S-gt, S-2gt) + F2(S-gt, S-2gt) +

+ ryS-gt, S) + el(S-gt, S))._

be negative definite. To prove the uniqueness of the symmetric staggered

steady state, consider the system



(A.4)
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V
2
(S-gt, S) = 0

(A.5) F(S-gt, S-tgt) r(V(S-gt, s)-0) 01(S-gt, S) = 0

as two equations in the unknowns S and t (in contrast to (A.1)-(A.2),

where S
2 

and t2
 are undnons and z and S were given).

(A.6)

To prove uniqueness, we shall show that the Jacobian,

V12
 
(Sgt, S) +

+ V
2
(S-gt, S)

-gV12(S-gt, S)

F (S-gt, S-2g0+ -g[F,(S-gt, S-2gt) + 2F2(S-gt, S-2gt) A,

+ F (S-gi, S-2gt)

rV ( -gt, S) +

+ el(S-gt, S)

+ rVi(S-gt, S) + S-2gt)]

is negative definite. The first diagonal term is, under Al and A2,

(A.7) b
11 

= V
12 
+ V

22 
= F S) = 0 .

The other diagonal term, b22 , is equal to the lower diagonal term

in (A.3), a
22 

minus gF2(S-at, S-2gt) . By A2, F2 just prior to a price

change has to be positive. Thus, the whole term is negative. The

determinant condition can now be written in the form

(A.8) b
1 

F(S-gt, S-2gt)) + a
22 

V
22 

> 0
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Footnotes

1 This is the case, for instance, if the demand for good i, 1Im 1,2 , is

z, z
i
+2z

j
given by e - ae

Zi Z

2 Example: let demand for the i-th good, qi , be: qi 1 + e

i is 1,2 . With zero costs, F
i +eJ- e

2ziz z4

•

-e
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