%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/




GENERALIZED EXPECTED UTILITY ANALYSIS OF
MULTIVARIATE RISK AVERSION

by
Edi Karni
Working Paper No.10-88

March, 1 9 8 8

Financial assistance from the Foerder Institute of Economic Research is
gratefully acknowledged

.FOERDER INSTITUTE FOR ECONOMIC RESEARCH
Faculty of Social Sciences,
Tel-Aviv University, Ramat Aviv, Israel.




GENERALIZED EXPECTED UTILITY ANALYSIS OF MULTIVARIATE RISK AVERSION
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1. Introduction

In expect 4 utility theory preferences over risky prospects are assumed
to be representable by a preference functional V such that V(F) =
fU(x)dF(x), where U is the decision maker'’s von Neumann-Morgenstern utility
function, and F 1is the cumulative distribution function representing the
prospect. This hypothesis, however, has been repeatedly contradicted by
experimental evidence which indicates that preferences over risky prospects
are in fact systematically nonlinear in the probabilities.zh Motivated by
this discrepancy between theory and evidence, Machina [1982a] presented an
alternative model of preferences over uni;ariate probability distributions
which 1is consistent with some of the experimental evidence and, except for
the specific property of global linearity, preserves most of the useful
theoretical properties and behavioral implications of expected utility
theory.3

In this paper we extend this approach to preferences over multivariate
probability distributions and examine the robustness of results concerning
multivariate risk aversion that have been obtained under the expected

utility hypothesis. In particular, we are concerned with three well-known

results:4 (a) that interpersonal comparisons of attitudes toward




multivariate risks require that the individuals being compared have the same
ordinal preferences5 over the commodity space; (b) that the properties of
the individual’s ordinal preferences_affect the comparative statics effects
of increasing risk aversion; and (é) that if the individual’s ordinal
preferences are homothetic then comparisons of his aversion to small
multivariate risks at different wealth levels are possible. We shall find
that each of these results extends when their respective aésumptions are

applied to what we shall term "local ordinal preferences."

2. Smooth Preferences over Multivariate Distributions

We take as our choice set the set DB(Rz) of all multivariate cumulative

distribution functions F over Ri = {(xl,...,xn) l X =20, i=1,...,n) with
bounded support, and assume that the individual’s preference relation over
DB(Rz) is complete, transitive, and representable by a real-valued
preference functional V. We assume that V is continuous with respect to the
topology of weak convergence on DB(RE). As our "smoothness" condition we
‘assume that V is continuously differentiable in the sense that at each F ¢
DB(Ri) thefe exists a local multivariate gtility function U(-,---,-;F),

continuous in X = (x .,xn) and F such that

1
(L) V() - V() = [UGGE) [AF (X) - dF)] + o([F* - F[)

where |F* - F| is the L' norm SIF Gy, ) - F(x,, . 6

..,xn)ldxl...dxn.
As in VMachina [1982a] we extend this approach to the analysis of

nondifferential shifts by considering any path {F(o,~--,-;a)|a € [0,1]} 1in

DB(RZ) from F to F* which is T"smooth enough" so that the derivative

d . o« . .‘- - 4 = ) e
E;"F(-,-~-,-,a) - F(-yorn, ,a)” =i exists for each @ € [0,1], and noting

that (1) implies




2 dV(F(',&;-,-:a) - -(d%[fU(X;F(-,-'-,';c-l))dF(X;a)]
- |

a

Thus, by the fundamental theorem of integral calculus, we have,

1 o i
(3) V(F*) - V(F) -—<I [g—a[fU(X;F(-,---,-;a))dF(X;a)] &]da,
0 ,

- which shows how the individual's ranking of these two distributions depends
upou the local utility functions along the path between them. We shall
assume that all local wutility functions are strictly increasing and

differentiable (though not necessarily concave) in (xl,---,xn).

3. Interpersonal Comparisons of Risk Aversion

The main result of Kihlstrom and Mirman [1974] concerning interpersonal
comparisons of risk aversion is that the partial ordering of multivariate
von Neumann-Morgenstern utility fungtions representing identical ordinal
preferences by concavity is equivalent to the partial ordering by their
certainty equivalents for risky multivariate distributions. _Essentially the
saﬁe result obtains in the generalized expected utility case provided the
individual’s local ordinal preferences, i.e., the rankings over R: induced
by their local wutility functions U(-,---,-;F), are identical for each
distribution F € DB(Rz). Notice, however, tﬁat the ordinal preferences
induced by the local wutility functions do not necessarily fepresent the
individual's preferences between certain bundles. The latter are
represented by preferences over the distributions SX defined as
SX(Xi""’Xé) 1 if xi > X; for all i and 6X(xi,---;g£) = 0 otherwise.

The formal statement of this result requires the following definitions:
For any F, F* € DB(RZ) and p € (0,1], we define the individual's’conditional
certainty equivalent set of F given p and F*by C(F;F*,p) = {X € RZ l V({1 -

* .
p)F* + pF) = V((1 - p)F* + pSX)}. The set C(F;F ,p) will be said to be at




* * * *
least as great as C (F;F ,P) if for each (xl,---,xn) € GC (F;F ,p) there

*
exists an (xi,---,xﬁ) € C(F;F ,p) such that xi > X; for all i. Given this,

we have:

THEOREM 1: The following conditions on a pair of smooth preference functionals
* *

V and V over DB(Ri) with local wutility functions U(X;F) and U (X;F) are

equivalent:

* L
(i) For each F , F € DB(Rz) and p € (0,1], C(F;Fx,p) is at least as great

* *
as C (F;F ,p);

(ii) For each F € DB(RZ) there exists an increasing concave function TF[-]

*
such that U (-,--+,-;F) = TF[U(-,"',';F)]-

: *
In this case we say that V is at least as risk averse as V . (For proofs of

this theorem and subsequent results see section 6).

4. Application and Comparative Statics Effects: Consumption-Saving Decisions

Consider a two-period consumption model. Let (yl,yz) denote the
decision maker’s earnings in the two periods and let T be a random variable
in [-1, @) representing the rate of interest on the first period saving, s.
Let C(s,r) = (cl(s),cz(s,f)) = (yl-s, Yo + s(1+r)) denote the two period
consumption stream corresponding to s. Thus, C(s,r) is a random variable in
mf. Let F e Dy(R ) be the distribution of (1+¥) and denote by F(s) the
distribution of C(s,r) induced by F, i.e., F(s)(cl(s),cé(s,r)) = F(r).

In expected utility theory the comparative statics effects of an
increasing risk aversion on the level of saving are analyzed in Kihlstrom
and Mirman [1974]. To extend this analysis to the generalized expected
utility case we adopt the the following notation: Let p be an increasing
index of risk aversion. Let (Vp} be a family of preference functionals

ordered by their risk aversion and denote by Up, the local utility functions

corresponding to Vp. Consider the problem of choosing the level of saving




so as to maximize a preference functional V. Then, the comparative
statics effect of an increase in risk aversion on the optimal level of

saving is given by:

THEOREM 2: Given {Vp], let s(p) = argmax Vp(F(s)). Then s(p) increases

*
(decreases) with p if there exist values r (F(B(p))) such that:

sgn.[3U (C(s,r)iF(s(p)))/8s] = sgn[r - ¥ (F(s(p)))] (= -sgn[r - £ (F(s(p)))])

for all p and s(p).

In the framework of expected utility theory this single crossing
property of the marginal utility of the control variable s obtains if the
optimal 1level of s is a monotonic function of r when r is certain. In the
generalized expected utility framework the ordinal preferences induced by
the local wutility functions may vary. Thus, it is impossible to infer the
relevant single crossing property from the behavior of an individual under
certainty.

5. Decreasing Risk Aversion

In the expected utility framework the attitudes toward small risks of a
given 1individual at different wealth levels are comparable if his ordinal
preferences are homothetic. (See Kihlstrom and Mirman [l981j.)

Although in our generalized expected utility framework we may drop the
(linearity) assumption that the local utility functions are all identical,
we still require that they induce the same homothetic ordinal preferences.
In ther words, we must have kal,---,xn;F) > U(xi,---,xﬁ;F) if and only if
U(Axl,---,Axn;F*) > U(Axi,---,kxg;F*) for all (xl,---,xn), (xi,---,xﬁ), F,
F* and X > 0. This is equivalent to the copdition that U(xl,---,xn;F)

h(u(xl,---,xn);F) for some linear homogenous u and function h which is

increasing in its first argument.




The identity of the ordinal preferences induced by each local utility
function implies that any two distributions in DB(mi) which induce the same
- probability distribution over the rénge of u must be equally pfeferred. To
see this, note that between any two distributions F* and F in DB(RE)that
induce the same probability distribution over the range of u we may
ccustruct a smooth path {F(-,-'-,-;a)la € [0,1]) consisting of distributions
chat also induce the same probability over the range of u so that the
derivative in equation (3) above is zero for all a, which implies V(F) =

% ~
V(F ). Defining HF(-) as the cumulative distribution function of u(X) when

X has the distribution F e DB(RE) and W(HF) = V(F), we may apply the

univariate, generalized expected utility characterization of decreasing risk
aversion developed in Machina [1982b]. In particular, defining the risk

premium =n in terms of the 1éve1 of u by V(F; ) = V(F~ _), where F_
u-m ute u-

F denote the cumulative distribution functions of u - 7  and
ute '

respectively, and following Machina [1982b, Theorem 1] we have:

THEOREM 3: Let V bé a smooth preference functional with twice continuously
differentiable local utility functions U(-,---,?;F) which induce .the same
homothetic ordinal preferences for‘ all F € DB(RZ). Then the following
properties are equivalent:

(i) The term -hll(u;F)/fhl(w;F)dF(w) is everywhere nonincreasing in u
and F(-) (ie., -h  (u"; F)/fh (w ;F)dF (w) = -hy ; (u;F) /fh, (w;F)dF ()
whenever u"f > u and F* equals or stochastically dominates F);

and




~ ~ ~ -~ *
(ii) if u, Au = 0, E[elu] E[elu + Au] = 0, and n and = satisfy

VE_ ) =V(F_ ) and V(F_ _ ) - ), then x> x".

u+mw u+te u+Au-m u + Au + w

The proof is as that of Theorem 1 in Machina [1982b]. In the case
where u and Au are degenerate, Theorem 3 may be regarded as a statement of
equivalent definitions of decreasing risk aversion analogous to those of

Kihlstrom and Mirman [1981].

6. Proofs

Proof of Theorem 1: (i) = (ii): Given F é DB(RZ) suppose there were no
increasing‘TF[-] for which U*(-,---,-;F) = TF[U(-,--~,-;F)], so that U(X';F)
< U(X;F) and U*(X';F) > U*(X;F) for some X, and X'. From equation (2) it
follows that V((L - 2p)F + ps, + PSy,) < V((L - 2p)F + 2p8,) and

V*((l - 2p)F + pSX + psx,) > V*((l - 2p)F + 2p6x) for some small positive P.

This implies that no element of C(O.56X + O.SSX,;F,Zp) strictly vector

*
dominates X, but that some element of C (0.56X + 0.56X,;F,2p) does strictly

dominate X, contradicting (i).

Now suppose that. the function TF[-] is not concave, so that
[U*<x";F>-U*<x';F>1/[U*<x';F>-U*<x;F>1>1>[U<x";F>-U<x';F>1/[U(x';F)-U<x;F>1
for some X, X', and X" for which UX";F) > U(X';F) > UX;F). From (2) we
have that V' ((1 - 2p)F + Py + POy > V((1 - 2p)F + 2p6y,) and V((1 - 2p)F

+ p8X + pé < V(1 - 2p)F + 2p6x,) for some small positive p. This

X")

* .
implies that there exists some element of C (0.56X + 0.56X";F,2p) which

dominates X', but that no element of C(0.56X + 0.56X";F,2p) dominates X',

contradicting (i).




. % .
(ii) => (i): Let F, F e DB(Rz) and p € (0,1] be given. . Consider first

the case in which there exist X e C(F;F*,p) such that X < X' for some X' « Supp
F, where X < X' means that ii < xi for all i with strict inequality for some 1i.
Let = {Xe R2‘| X > X} and let A£ be the complement of Ah in R:. Define

¢h : Rz -+ [0,1] as ¢h(X) = F(X) - §X(X) = F(X) - 1 for X in Ah and ¢h(X) =0
otherwise, anu ¢, : mz > [0,1] as ¢,(X) = F(X) - SR(X) = F(X) for X in A, and
.pz(X) = 0 otherwise. Let F(X;a,p) = 6X(X) + a¢h(X) + ﬁ¢£(X). For ¢ € [0,1] let

B(a) be defined by the equation:

4) V(L - PIF + pF(.;a,B(a))) = V(L - P)F" + pF) = V(1 - p)F" + ps ).
X

The existence of p follows from the assumption that Az N Supp F = ¢ and

Ah N Supp F = ¢. By strict monotonicity of V, B(-) is unique, increasing,
and B(0) =0, B(1) = 1. The smoothness of V implies that A(-) is
differentiable. Hence, for all a* € [0,1] we have:

d * .
e VUL - p)F + pF(.;a,B(a)))|

«a

p[Ucs (- pF + b a" A" 10, 0 + p@Mras, (01

Thus, d¢h + ﬂ'(a*)d¢£ represents a mean utility preserving shift from the
point of view of U(X; (1 - p)F* + pF(.;a*,B(a*))). Next we show that this
shift represents mean utility preserving increase in fisk. Let

I(uia') = (X € RY | UGK;(1 - p)F + pF(.;a",f(a"))) = u) and denote by G the
value of UX;(1 - p)F  + pF(.;a ,B(a))). Then, by definition, ag, +
ﬂ'(a*)d¢£ fepresents a decline in the probability measure of I(ﬁ;a*) and an
increase in that of I(u,a*) for all u = u.

Let S(u,a') = (X € R? | UK;(L - p)F" + pF(.;a",f(a™))) < u) and Let

H(-;a*) : R > [0,1] be given by:




Bwo®) = [ L 1 - part () + parea® pa™)]
S(u,a )

(6) %me>*=PJ b W00+ B @A, (0.
(04 S(u’a ) .

Hence, by the above argument,

7) L Husa™)

da *

a

d 1s
Consequently, P H(u;a) «x represents a mean utility preserving increase in
a

risk from the point of view of U(X;(l - p)F (.;a",p(a"))).
* * *
By hypothesis, for all @’ € [0,1], U(.;(1 - p)F + pF(.:a",f(a”))) is
a concave monotonic transformation of U(.;(1 - p)F% + pF(.;a*,ﬂ(a*))).

Hence, by Diamond ahd Stiglitz [1974, Theorem 3],

(8) JU*<X;<1 - PF + pFC e’ 6a")) (g, + B (a¥)ag,] < 0

for all a* € [0,1]. Thus, :
* % * *
V(L -p)F +pF) - V((L-p)F +ps)

X
(9) 1
* * * * * * ]
T | JUEQ - pIF + pFCsa, Bl ))) (46, (X) + B (a7)dg () ])da™ < 0.
0
* % - % * *
By monotonicity of V this implies that X < X, where X € C (F;F ,p), for
all X such that there exist X' € Supp F and X < X'.
Next consider the case where F ¢ DB(R:) is such there is no X ¢
. .
C(F;F ,p) such that X < X' for some X' ¢ Supp F. Augment the support of F
by including the point Z = (Zl’°"’zn) such that Z > X' in the sense that z;

- *
= X i=1, ...,n for all X' € Supp F. Let X ¢ C(F;F ,P) and X' ¢ Supp F

’
i’

such that X' < X < Z. (That such X exists follows from the monotonicity of




V with respect to first order stochastic dominance.) Let Ah be defined as

n - | -
before, let A£ = (X € R+ I X < X}, and let AS be the complement of AhUAE in

R). For j -=h, £, s, let #; © Ay > [0, 1] be defined by $; (0 = F(X) -

6 (X). Let F(X; a, B, v = § (X) + a¢s(X) + ﬂ¢£(X) + 7¢h(X), where, for all
X X

a ¢ [0,1], B and vy are nonnegative and are defined by the conditions:

(10) V((1-p)F + PF(.;a, B(a), 7(@) = V((1 - p)F +pF) = V((L - p)F" + ps ).
X

and
¥'(a) >0 => p'(a) = 0,

(11) .
, _ 7' (a) = 0 if y(a) = 0
prla) >0 => { v (@) = -B'(a) if v(a) > O.

By strict monotonicity of .V, B(.) and v(.) are unique, B(.) is monotonic
increasing (but not necessarily strictly monotonic increasing), and B(0) =
7(0) =20, B(l) =1, v(1) = 0. The smoothness of V implies that B and v are
differentiable. Thus, the operation described by (a, B, +v) shifts
probability mass from X to points in the augmented support of F in a way
that preserves the value of V. 1In the process some probability mass may be
shifted to Z, i.e., when v'(a) > 0, but as a tend to 1 the entire mass is
distributed on the support of F with zero mass at Z. Following the steps of
the proof from equation (5) to (9) will establish that.i* < X.

To extend this result to every X € C(F;F*,p), suppose that there exists

A A

~ * N * * *
X € C(F;F ,p) and X € C (F;F ,p) such that X <X . Let Y € Rz be such that

i Nk -% - * S% %
X<Y<X . Since X <X and C(F;F p) and C (F;F ,p) are connected sets,

A A

o x % %X * .
there exist X € C(F;F ,p) n C (F;F ,p). Let X, X and Y be in a

neighborhood of Xo, and define J(X;v) = § o(X) + u[SY(X) - § o(X)].
X X

Obviously J(.;v) € DB(Ri)' Hence,




(12) & Y3 ) = UG8 ) - U6 ) > o.

dv v=0 X X
and

(13) V) -0 (s ) - U5 ) <o,
o} o
=) X X

*
But U (X;G 0) is a monotonic transformation of U(X;G o), a contradiction. Thus,
X X

* * *
C(F;F ,p) is .. least as great as C (F;F p). Q.E.D.

Proof of Theorem 2: By theorem 1 and the hypothesis there exist functions

u(.;F) and TF["p] such that Up(.;F(s)) = TF(S)[u(.;F(s)),p] for all s and
p, where TF[.,p'] is concave transformation of TF[.,p] whenever p’' > p.

Since s(p) maximizes Vp(F(s)) we have:

0= F,EE) =L, u(iEes)) , p1ares) 0]

s(p) s(p)

j[g;TF(S<p))[u<c<s<p>,r>;F<s<p>>>,p1§;u<c<s<ps.r>;F<s<p>>>]dF<r>.

By implicit differentiation we get,

2
3 3 )
as(o) Jauas R (s (o)) [ +P] 550(C(s(p), 1) iF(s(p)))dF(x)

% fﬁiq o1 Cu )2 + &g [ Mﬁiu<Aws@>»}a«m
2 F(s(p)) L PI GEul. ou F(s(p)) [P —5uCe

a

Assuming that the second order optimality condition is satisfied, the
denomonator is negative. Hence, the sign of ds(p)/dp is the same as that of
the numerator. The remainder of the proof follows from Diamond and Stiglitz

[1974, theorem 4]. Q.E.D




FOOTNOTES
1This paper was originally conceived jointly with Mark Machina wﬁose
contribution was a necessary condition for its successful completion. I am
grateful to Mark for his invaluable help. I am also indebted to Peter
Wakker, for many helpful comments and suggestions and to Beth Allen, Chew
Soo Hong, and uoel Sobel for helpful discussions. Any remainning errors are
my sole responsibility. |
2See MacCrimmon and Larsson [1979] and Machina [1987] for surveys of
this literature.
3For alternative approaches see Chew and MacCrimmon [1979], Chew
[1983, 1984], Fishburn [1983, 1984], Quiggin [1982], and Yaari [1987].
4These results are collectively due to Kihlstrom and Mirman [1974],
[1981],and Diamond and Stiglitz [1974].
5By this term we mean the ordinal preference ranking over outcomes
induced by the individual’s (cardinal) von Neumann-Morgenstern utility

function.

We impose our continuity and smoothness assumptions on V rather than

on the underlying preference relation for expositional convenience. See
Allen [1987] for conditions on preferences over multivariate and more
general distributions which imply a local expected utility representation

similar to equation (1).
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