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INTRODUCTION

There has been considerable literature in economic theory dealing with

efficiency of intertemporal allocation of resources over time.

Characterization of dynamically efficient programs, using efficiency prices,

has been a central issue in an infinite horizon economies with production and

consumption over time. In the growth models case let us mention few, out of

many, such contributions by Malinvaud [1953], Cass and Yaari [1971], Cass

[1972], Peleg [1972], Majumdar ]1972], Benveniste and Gale [1975] and Mitra

[1979]. In models with overlapping generations (OLG) efficient competitive

equilibria have been characterized by Okuno and Zilcha [1980], Balasko and

Shell [1981] and others. However, perhaps surprisingly, very little has been

done in generalizing these results characterizing efficient allocations to

stochastic dynamic models. Peleg [1974] studied Malinvand prices in

multisector growth model with finite number of states of nature. Peled [1982,

1984] has discussed (conditional) optimality of equilibria in a stationary OLG

model. Zilcha [1984] has applied some results about efficient random

variables to a stochastic growth model. More recently Abel Mankiw Summers and

Zeckhauser [1986] discuss the issue of dynamic efficiency in a stochastic

version of Diamond's [1965] model. Given the utility functions of all

generations, they have obtained a condition that guarantees dynamic

inefficiency and one sufficient for dynamic efficiency. However, as we see in

this work, their condition about noverinvestment", for example, is far too

strong from that characterizing dynamic inefficiency.
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Our model is an overlapping generations where consumers live for two

periods, as in Diamond [1965], with random production. Thus, investment and

consumption over time are random variables. Our concern is with the issue of

overaccumulation of capital and not the intergenerational risk sharing. We

define two types of efficient production-consumption allocations. The first

criterion uses first degree 'stochastic dominance, while the second efficiency

criterion uses the second degree stochastic dominance. We obtain a complete

characterization of dynamic inefficiency: The interest rates r
t
(w) should

be below the population growth rate n "most of the time" with positive

probability. In particular, the (stochastic) future value of a unit of

capital in period 0 goes "fast" to zero with positive probability.

biamond [1965] showed that a competitive economy could reach a steady

state in which the population growth rate exceeds the steady state marginal

product of capital, i.e. dynamically inefficient equilibrium. However, we

demonstrate here that any given efficient (of type II) production consumption

allocation can be obtained as a competitive equilibrium for some risk averse

individuals in each generation. We also prove existence of competitive

equilibria from a given initial capital stocks and show that each competitive

equilibrium is short-run efficient.

Our research has been motivated by the feeling that the characterization

of efficiency in stochastic models of OLG (with production) is a significant

tool in analyzing many economic problems. OLG models have been used in the

literature in studying the effects of fiscal policies, pricing of capital

assets, etc. For example, it was shown by Tirole [1985] that dynamic
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efficiency rules out the possiblity that speculative bubbles arise as rational

expectations equilibria. Also, the Ricardian equivalence theorem (Barr°

[1974]) fails to hold when an equilibrium is dynamically, inefficient (see Weil

[19851).

The paper is organized as follows. Section 2 contains notations and

definitions. In section 3 we describe the economy. A complete

characterization of inefficiency is brought in section 4. Existence of .

competitive equilibria and the relationship between competitive equilibria and

efficiency of type II appear in section 5. All the proofs are in section

2. NOTATIONS AND PRELIMINARIES

•

Let R
n 

be the n-dimensional Euclidean space. For x, y R
n 
x y iff

xi yi for all i. x > y if x y and x 0 y, x >> y if xi > yi for

1 s i n. Let I [a,fl] where 0 < a < < co, and let p be the Lebesgue

measure on I. Define 0 — Xk_oIk where Ik — I for all k. Denote by g

the Borel sigma-field on 0 and let a be a probability measure on sequences

in 0, i.e. g is the sigma-field generated by cylinder sets in 0. Let g
t

0be the sigma-field generated by all the cylinder sets Xk_oBk where Bk — I

for all k > t. L
1
(0, g, a) is the set of all integrable function g(w)

1from 0 into R1. Let L
t
(0 g

t
, a), denoted as L

t' 
be the set of all

integrable functions which are Se-measurable. Thus L
t

s the set of all

integrable functions g(w) which depend upon the first t coordinates of w

(w
0' 

w
1,
...). L

t stands for the non-negative functions in L. A sequence
co

is an adapted stochastic process if E Lk for k 0,1,..Igk(w))k-0 gk
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Let E be the expected value operator. For g G L
t 

and k < t E
k
g(w) —

E[g(w)Ig .1] i.e. the expectation with respect to (w
k''' ' 

Thus E
k
g e

'wt);

Let g e Lk. We write g > 0 if g(w) 0 almost surely (a.s.), and

g 0 0. g >> 0 if g(w) > 0 a.s.

Denote by U the set of all continuous nondecreasing functions from R

to R
1
. U

2 
is the subset of U

1 
which contains all the concave functions.

+ +Let (X
1, 

X
2
) e L x (Y

1 
, Y

2 
) e Lt x Lt+1. We say that (X1, X2)

dominates (Y Y
2
) in the first degree stochastic dominance (FDSD), and

denote it by (X1, X2) if>1 (Y1' Y2)

(1) Etv(Xl(w), X2(w)) Etv(Y1(w), Y2(w)) a.s. Vv E U
1 

and
A

(2) Etv(X1( ), X2(w)) > Etv(Yi(w), Y2(w)) on some set of positive

1measure and some v E U .

If only (1) holds we write (X1, X2) (YI, Y2). We say that (X
1, 

X
2
)

dominates (Y1, Y2) in the second degree stochastic dominance (SDSD), and

denote it by (X1, X2) >2 (YI, Y2) if

(3) E u(X
1 
(w), X

2 
(0) E u(Y

l 
(w), Y

2
(0) a.s. Vu E U

2 
andt t 

A A

(4) E
t
u(X

1
(w), X

2
(0) > E

t
u(Y

1
(w), Y

2
(w)) on some set of positive

A

measure and some u in U
2
.

If only (3) holds we write (X1, X2) .?_-2 (YI, Y2). Thus all risk averse

2

decision makers who are given any realization of 
(w0"— 

'w1) (except a sett-
of measure zero) either prefer 

(
X
1, 

X
2
) to (Y Y

2
) or are indifferent;

and at least one risk-averse decision maker prefers (X1, 
X2-
) for a set of

positive measure of histories 
(w0' 

...,w
t-1

). We shall also use stochastic
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'dominance for one-dimensional random variables. Let X and Y belong to

L. We write X Y if E v(X(w)) Etv(Y(0) a.s. for all continuous

nondecreasipg functions v, v R
1 

R
1
. Namely if X >

1 
Y then for each given

history (
'w0"'"wt-1)' 

X(w) dominates Y(w) with respect to the random w
t
.

3. DESCRIPTION OF THE ECONOMY

Our model is basically a stochastic version of Diamond's [1965]

overlapping generations economy with production. The discrete-time economy

starts at period 0 and has indefinite horizon. There is consumption and

production in each date where the aggregate production function is assumed to

exhibit constant returns-to-scale and it is subject to random shocks. Let F:
3 '1 ,R R where F(K

t' 
L
t' 
w) represents the output at the end of period t,+ +'

Kt is the capital stock invested at the beginning of this period, Lt is the

labor input and w
t 

is a random variable representing the state of the

environment at date t. There is a perishable homogeneous good which can be

either consumed or used as productive capital input. In each period t there

are N(t) identical individuals born at date t (hence called generation t, Gt)

and who live for two periods t and t+1. Each member of G
t 

is endowed with

one unit of labor (supplied inelastically) in the first period of his lifetime

and has no labor endowment in his second period, the retirement period, where

he consumes his savings. At period 0 there are members of generation C _
-1

which are engaged in consumption only in date 0, however their consumption may

depend upon the state of nature w
0. 

The population growth rate is assumed to

•be a constant n, hence the total labor supply at date t is L
t 

L
0 
(l+n)

t
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Since our analysis is unaffected by this constant n we shall assume that n-0,

i.e. no population growth. Also, to simplify the model, we assume that the

capital depreciation rate is 1, hence F(K
' 
L; w) is the total stock oft t t

capital at the end of period t. The production function satisfies the

following assumptions,

(Al) F(K,L; wt) is homogeneous of degree 1, concave in (K,L),

and twice continuously differentiable in K, L for all wt; F(0,L; wit)

- F(K,O; wt) — 0, F1 > 0, F2 > 0, FKK < 0, FLL < 0 F1(0,L; wt) — co

and F
1
(co,L;

t
) 0 for all w

t
. F and F

1 
are continuous in w

t
.

Let 
f(kt' 

w
t
) be the per-capita production function i.e. f(k

t' wt)
Kt

1; wt).
t

f' (co,

From (Al) we see that f' > 0, f" < 0, £'(0,w) co andak

— 0 for all w
t
. The random shocks,to production are given by a

sequence of random variables 
(wt)t—O 

where each w
t 

assumes values in the

interval [a,fl] — I, 0 < a < < co. The probability measure a over the

sequences w — (we, w1, w2,...) E n is known and it satisfies,

(A2) For any A C Cl, A — 117_0Ai, where p(Ai) > 0 for

i — 0,...,k and Ai — I for i > k, then a(A) > 0. a is a

nonatomic measure.

(A2) is a mild assumption and it holds, for example, if w
t 
t — 0,1,..

are i.i.d.

Given the per-capita capital stock at the outset of period 0, k
' 

a
0 

feasible (per-capita) production consumption allocation (FPCA) from k is a
0
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01 t 
0consumption c for the G

-1 
members and a sequence (kb. (dr, c)) 0,

where 

-

where k is the aggregate capital stock at date t, (cY
' 

c°) thet t t

(per-capita) consumption allocation for

(a)

which satisfies:t'
0 + , + y + 0 • +

and e
t 
G L

t+1 
for t — 0,1,c

-1 
E L

0' 
K
t+1 

E L
t' 

c
t 
E L

t , •

(b) + cY + c°
1 

— f(k
t' 

w
't
) a.s. for t — 0,1,...k

t+1 t t-

Condition (a) indicates that k+1(w) and c(w) depend upon the history

of the states of the environment from period 0 to period t only, while c
0
t
(w)

depends upon the realizations of wr from r 0 up till r t+1 (since this

consumption takes place at date t+1). Condition (b) is a material balance

condition. Denote by P(4) the set of all FPCA from initial (per-capita)

capital ko. For a given <c°_1, (kt, (drt, c°t)))t...0> in P(k) define the

aggregate consumption

0
C cy + c t — 0,1,2, .. •

and denote by k (k, k1, k2,...), c (co, cl, c2,...). Thus, c is the

aggregate consumption program corresponding to this given FPCA. A FPCA is

called interior if its aggregate consumption c satisfies c
t 
>> 0 for all t.

Note that this implies also that kt >> 0 for all t.

Given two FPCAs from initial capital k
0' 

we say that 
<c01' 

(k
' 

(cY- t t'
c())) > dominates 

<' ' 
(i 
('

CY C13))› in the first degree stochastic-1 t t t
- dominance if c

0
1 

c 
01' 

(cY
' 
c) (c

' 
c) for t 0,1,2,... and for some- 1 - t t 1 t t

we have strict >
1. 

A FPCA in P(k
0 
) is efficient of type I if it is not

dominated in the FDSD by any other FPCA in P(k ). Similarly <c
0
_1,(kt, (ct,

-0 
'

c
o
)) > dominates <c (k

' 
(c-
' 

c ))> in the second degree stochastic-1 t t t
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- 
c
0dominance if c

0
..1 2 c_i, for all t (ct, ct) .>_-2 (ct, t) and for some r

( - -0 c°) >
2 
(c

y
' 

c 
)' 

A FPCA 
‹c0

1' C 
(k (cY

' 
c))> in P(k

0 
) is calledr r r r - t t 

efficient of type II if it is not dominated in the SDSD by any other FPCA in

P(k0). Since U
2
cU
1 

it is easy to see that any type II efficient FPCA is

also efficient of type I.

We shall use in the sequel efficient instead of "efficient of type I".

'Given a particular preferences for individuals in all generations we can

define competitive equilibrium in our economy which generalizes Diamond's

[1965] equilibrium concept to this stochastic model. Let the function u
t'

u: R
2 

--, R
1 

represent the preferences of individuals in C
t' 

t - 0,1,2,..t + .

Foragivenk0 <c-1' 
(k (d

t' t
, c 

)' 
rW) > isacompetitiver* °*

* 0* * * * co
t t' t t-O

equilibrium from k
* 

if
0

(5) c
0*
1 
- k

*
0 

f'(k
*0' wO' 

) a.s.- 

(6) <c
0* 
(k' 
* 

(c , c
y* 0* *))> is a FPCA from k-1' t t t 0.

* *
(7) t - 0,1,21

1 4- r
t+1 

- f'(k
t+1' 

w
t+1
) a.s. , ...

* * * *(8) W
t 
- f(k

t' 
w
t
) - k

t 
f'(k . w) a.s., t -  t. t 0,1,...

and for all generations Gt t 0,1,..., the solution to the maximiation:

0max E u
t t w)' et(w))s.t.

cY + s W
tt t a.s.

(9) c
0 
- (1 + r

* 
+1
)s a.s.t t

cY 0 c° > 0

is attained at (c (w), c
0*
(0), except for a set of histories

of measure zero.

(w0' ...,wt-1)
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The (stochastic) competitive interest factors are the marginal product of

capital in all states of nature. The wages W
t 

are the marginal product of

labor in all states of the environment, hence W
t 

is a random variable which

depends upon the realizations of (w
0' 
...,w). Thus in equilibrium the

capital stock in each state t equals the aggregate savings by individuals in

the previous period, i.e. k
t+1 

s
t 
can be shown using our assumption (Al)

about the production functions (s
t 

is the optimal saving of G
t 

obtained

from (9)). Condition (5) guarantees that the older individuals at t—O, who

invested k0 receive the competitive rate of return f'(ko, wo). The

material balance condition holds in each date in probability 1 due to (6).

0Given an efficient <c
1' 

(k
t' t 

(cY
' 

()(1) *c))t—O 
> in P(k

0
). Let us define a- t 

system of intertemporal profit maximizing (IPM) prices (0t) as follows:

(10) 14_1(w) VOc:(0, wt)0t(w) 
a.s., t 0,1,2,..

For each t Ot E L
t 

and let us set 1. Moreover it follows from

the definition that under the prices (0t) the intertemporal expected profits

are maximized along the path k
*
, i.e.

(11) Et[Otf(k*t,wt) - 
t-1 

k
*
] E [0 f(k,w ) t t t t' it-1k]

a.s. for all k E L
t-1 

t 0,1,2,..

4. A Complete Characterization of Inefficiency

Let us write some necessary and sufficient conditions for inefficiency of

type I.

0 coLemma 1: Let <c 
1' (kt' 

(cY
' 
c)) 0

 
> P(k ), then it is- t 

inefficient (of type I) if and only if there exists an adapted
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stochastic process (Et) such that e
t 

L
+
1 

for all t r andt—r t-

some positive measure set A, A E g a(A) > 0, such that:

(12a) e
r
(w) > 0 for all w e A e

r
(w) — 0 for w e A

(12b) et4.1(w) f(kt(w), wt) - f(kt(w) - e(w), t for w e A,

t
(w) < k(w) for all w e A, while et(w) — 0 for w e A Vt r.

This lemma is a stochastic version of Cass' [1972] result for

deterministic aggregative growth model. We relegate all proofs to the last
•

section.

To derive a complete characteriztaion of inefficiency (of type I) we make

the following assumption about the elasticities of the production function and

the marginal product,

(A3) There are positive constants 
ml' m2' 3' 

m
4 

such that for all

k > 0 and all 0 in [a, /3] the following conditions hold:

(13) m s kf'Ck'°) S m2 and m3 s 
-k
2
f"(k,0) 
f(k,O) 

s m
4'1 f(k,8)

This is a stochastic version of the assumption made by Benveniste and

.Gale [1975]. This assumption can be weakened (see Mitra [1979]) without

affecting the characterization we obtain. (A3) implies that (see for example

Mitra [1979]):

There exists constants 0 < m < M < co such that for

all .0 in (a,fil and all 0 < e < k,
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(14
me f(k,O) - f(k-e,0) Me

1 isk ef'(k,O) 
- 

Let us state our characterization theorem for interior feasible

production consumption allocations.

y 0Theorem 1: Assume that (A1)-(A3) hold and let <c
0
_1, (kt, (ct, ct))> be an

interior FPCA in P(k0). It is inefficient (of type I) if and

only if for some A in g
r 

a(A) > 0 its intertemporal profit maximizing

price system (0t), defined in (10), satisfy

1 (15 < co for all w E A.t-10t(w)kt4.1(w)

The theorem demonstrates that in this stochastic OLG model when condition

(15) holds with positive probability it implies inefficiency of the

production-consumption allocation. Moreover (15) implies that the IPM prices

should satisfy:

1 (16) < 03 on some A E g, c(A) > O.t-1
t
(w)

Thus (16) generalizes the well-known condition about the prices from the

deterministic models (see for example Cass [1972]). Rewriting condition (16)

with the interest rates let us define
t 

to be the (stochastic) future value

of a unit capital in period 0, i.e.

-17) (w) 
t1
r—O r

f'(k
r'
w) t 

(1 + r
r
(w)).r—O

Then, Theorem 1 asserts, basically, that an interior feasible program is

inefficient (of type I) if and only if the rate at which the future value of a

unit of capital in period 0 goes to zero "fast", on a set of w of positive

measure i.e. for some A, a(A) > 0.
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(18) [II (14-r (w))] < co for all w E A.t—O r-0 r

Thus if, for some interior program the interest rates r
t
(w) converge, as t

-* co, "fast" to the rate of population growth (which is assumed to be 0) in

probability I then it is efficient.

5. COMPETITIVE EQUILIBRIA AND EFFICIENCY OF TYPE II.

Let us show first the existence of competitive equilibrium from k
* 
> 0

0

when the given utility functions are concave. We add the following

technical assumption in order to simplify the existence proof.

Assumption 4: For all t u
t 

satisfies:

Bu 3uau
t0,b) — co and 0(b,0) — op for all b > 0.

ad' ac
tt

Theorem 2: Assume that (A.1)-(A.4) hold and that the given utility

function for each generation t u
t 

is continuous increasing and

concave. Then there exists a competitive equilibrium from each

initial capital Ito > 0.

Now it is shown that when the utility functions are concave any

competitive equilibrium which is efficient of type I is also efficient of type

II. Thus the characterization of type I inefficiency (in Theorem 1) is a

characterization of type II inefficiency when competitive equilibrium

allocations are considered, and u
t 
E U

2 
for all t.

Theorem 3: Under (A.1)-(A.3) any competitive equilibrium which

is efficient of type I is also efficient of type II if each utility

function u
t 

is in U
2 

for t 0,1,2,..

It has been indicated earlier, in a deterministic models (see for example
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Diamond [1965]) that in a steady state equilibrium where the population growth

factor exceeds the marginal product of capital the equilibrium is inefficient.

Since equilibrium allocations may be inefficient, let us show now that a

competitive allocation is short-run efficient, i.e.:

0* * y* 0*
Definition: A FPCA < c_1, (kt, (ct , ct ))> in P(k0) is short-run

efficient (of type II) if for all T, T 0,1,2,..., there exists no

<c0 (c
y 

c
0 *
))> in P(k) such that:-1' t' t' t 0

c0 c0* icy c0‘ 1-Y* ) for t 0,...,T-1 and-1 -1' t' t1 ""t ' ct '

Y Y*
CT CT , T+lkT+1, with at least one strict inequality.

Theorem 4: Assume that (A.1)-(A.3) hold and that ut is increasing

' for all t. Any competitive equilibrium is short-run efficient (of

type II).

In an overlapping generations model it has been shown that the second

theorem of welfare economics holds (under mild assumptions, see for example

Okuno-Zilcha [1980] and Balasko-Shell [1981]), i.e. efficient allocations may

be attained as competitive equilibria under some tax-subsidies transfers. We

show here that a FPCA which is efficient of type II (and where G-1 receives

the competitive consumption) can be attained as a competitive equilibrium for

some concave continuous nondecreasing utility functions (u
t
).

y 0Definition: We say that in a FPCA <c
0
_1, (kt, (ct, ct)) > E P(k)

C 1 is fairly treated if c
o
1

k
*
0 

f'(k
*
0' 

w
0' 
)* 

i• e• 
if this older_ - 

generation receives the competitive returns on its saving ko.

Now we state:
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0* *Theorem 5: Assume that (A1)-(A3) hold. For any interior <c_1, (kb,

0* *
c
t 
))> in P(k) which is efficient of type II and where G 1 is... 

fairly-treated, there exist continuous nondecreasing and concave utility

00 0* * .y* 0* * *functions (u
t
) 

-1't-0 
such that <c (k

t' '
(c c )), (re), (14

t
)> is att 

competitive equilibrium, where the interest rates and wages are

*
determined from (k)  -0 

by equations (7) and (8).

6. Proofs.

Proof of Lemma 1: Define for k
o 
> 0,

(19) P(k0) ((k,c) I k (ko, kl,...), c (co, cl, c2,...)

.+where k
t 
E 

Lt-1' 
c
t 
E L

t 
and c

t 
+ k

t+1 
- 

f(kt' 
w
t
) a.s.

for t 0,1,2,... ,k0 - k0).

Let us show first that the (k,c) corresponding to the given FPCA is

inefficient in P(k
0 
) if and only if 

<c°1' (kb, 
(cY
' 

c°)) > is inefficient- t t

in P(k0).

Assume that (k,c) is inefficient in P(k0) while <c°
1' (kt' 

(cY.
' 

c°))>- t t
A A A 

A

is efficient. Then for some (k,c) in P(k0), ct ct for all t and cr

A

>

1 
c
r 

for some r. Note that if r is the first date where c
r 
strictly

A
A

dominates 
cr 

then c
t 
- c

t 
for all t < r (since whenever c

t1 
c
t 

but
A 

A

C

t 

t
1 
c
t 

we must have fu(c) - fu(c) for all nondecreasing and concave

Au, u:R
1 

-- R
1
). Hence without loss of generality we can assume that c

O
-1 
-

y0 A A

AO 
A 

Ac..1 and co >1 co. Since co - c_i + co >1 co - c
0
-1 

+ cY we obtain that cY0 0

•

rito.e. *Mk 1. 0'. a.... .1
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AO A 0 A>
1 
Jo* Now we can choose c e L

1 
which satisfies: cg c a.s., cg 00 0 0 0 0'

A

Y 
A

0 0 — yand (0.0, '4) >1 (dr°o,c Thus 0 ). us c
1 

— cl - 
c0 1 

>4 cl - co cl. Again we

AO  0 AO ,. y 0choose cl which satisfies IC
1 
° y c

1 
a.s. and also (c1, cl) .....1 (c1, c1).

Continuing this process indefinitely (perhaps taking equalities from some

period on) results in contradiction to the efficiency of <c°
1' ' 
(k (cY

' 
c°))>-. t tt

in P(k0).

YNow suppose that (k,c) is efficient in -15(k0) while <c
0
_1, (

' t'Oft* Oft.

0
c
t
))> is inefficient in P(k0). Therefore, it is easy to see that the

following set is not empty,

Q — (‹c (k r, 
t' 

(c 
'

0* * y* 0* 1 0* 0c ))> G P(k0) ) c
1 

— c
-1 

and-1 t t -
y 0(cr °, ct*) a

1 
(c

t' 
c
t
) for all t a 0 with some strict inequality).

v* 0*Moreover, contains some <c
0*
 

1' 
* 

(k
t' ' 

(c- c ))> which satisfies:- t t
0* 0dr* dr and c
t 1 

c
t 

for t — 0,1,2,... with at least one strict FDSDt I t
y* 0* 

y
0 

Y* Yfor some r Take 
(c0 ' 

c) > (co, c
o
) and let us assume that0 1 c0 al c0

y* 0*and c
0*
0 >1 

c
o 
' 

while (c
t ' 

c
t 
) • (cY. c°) for t 1,2,3,.. . Thus, for0 t - t

some set of positive measure B and some i > 0 small enough we can

guarantee that c *( w) - xB cg (where xB is the characteristic function

of B). This implies that co co, cl >1 cl while ct ct for t > 1,

which is in contradiction to the efficiency of (k,c) in P(k0).
•

Now let us prove the necessary part of the Lemma. Assume that (k,c) is
Oft. OW.

inefficient in (k0).P Then there exists some (k*, c*) in i(k
0 
) which. 

dominates (k,c), i.e. c
t 
a
l 
c
t 
for all with strict dominance for some

dates. Let r be the smallest t for which ci >, c t
. Thus, for any t < rt 
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we have c
t 

c
t
. This implies easily that for any t r we must have k

t 
—

k
t 

since both programs start from the same k
0. 

Now, for t — r we have

f(k
r' 

w
r
) - k

r+1 
>
1 
f(k

r' 
w
r
) k

r+1.

Hence 
k+1 

>
1 
k 
r+1. 

Thus, on some set A of positive measure (in g) wer 

have k 1 (w) > k
1 
(w) for all w E A. Now definer+ 

e (w) k
1 
(w) - k

r+1 
(w) for all w E A andr+1 r+ 

e
r+1

(w) — 0 for w e A.

For t > r+1 define,

e
t+1

(w) f(k 
(w)' w)

 - f(k
t
(w) - ft(w), wt) .for all w.t t

(Sufficiency). Given the adapted stochastic process (c ) as in the Lemma.t t—r
A A

Define the following (k, c) in P(k0) as follows: kt kt for all t < r,

A A A A A

k - e
t 

for all t r. c 
t for all t (where kt t f(kti,_ wt) - , kt 

-1
A

k0). Now clearly c
t 

c
t 

for all t < r, and for t r
A

c
t+1 

f(k 
t 

- e 
t ' 

w
t
) - (k 

t+1 
- e ) > f(k

t'
w
t
) - k

t+1 
c
t+1

.t+1 -
A 

A A

For t r we have c +1(w) 
> c

t+1
(w) for all w E A. Thus (k,c) E P(k

o
)

dominates (k,c), i.e. (k,c) is inefficient in Nko
A•P Oft.

Proof of Theorem 1: By Lemma 1, if (k,c) is inefficient, there is a
••••

'sequence of adapted random variables which satisfy conditions (12)

for all t. Without loss of generality let r — 1 and for t 1, assume

that,

(20) e
t+1 

f(k
t' 

w
t
) - f(kt - e , w) a.s.t. t

Since e
t
(6) > 0 if and only if w G A we can rewrite (20) as follows for

all w e A,
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f(kt,wd-f(kt-et,wt)
(21 1)].e

t+1
O
t 

e
t
ib
t
P(k

t'
w
t
)(1 + ( 

c f'(k w )t t' t

(22)

By (A3), or its equivalent form (14), and (10) we obtain

et4-1(00t(w) 6tmot_1(w
Thus for all w in A and t 1,

ME
t 

I k
t et

1

Ot-1

(1 4-
1 

t+1t

me
t 
/k

t1 1  m1 
e
tt-1

(1
l+m e

t 
/k E

t t-1 
1+21 Ot_ikt.

1+

_1

ME
t
(w)

), w E A, t-1,2,..k
t
(w)

Hence we derive the following inequality

(23) 1  1E°3
l+m t-2 &1(w)k(w) 

cloo 00(w) < 03 for w e A.
t- t

which completes the proof of the necessity part of the theorem.
0
1'

Sufficiency: Let <c (k
t' 

(cY
' 

c()))> E P(k0) be a program which- t t

satisfies conditions (15) for all w e A, A E g
r 

for some r.

1 For w e A let 7(w) - min (k , c°
0 

E 
t-1

t
(w)k

t+1
(w)

) and 7(w) - 0 for

w e A. Assume that r 1 and let 6
1 

be in L
o 

which satisfies for
M7(w)  M  1w in A, 0 <

1 
(w) < min(

k0(w) 
(w) k0'2 

k
0
), and 61(w) - 0 for

/ ik 

w e A. For each t, t 1, define 6in L
t 

as follows:

- 
0 for w e A and for w e A it is defined by .
1  1 25) _ Et( 

/kt(w)6t+1(w) /11) (w)6 ( )0 1 r-0 (w)k (w)r-1 r
By our choice of 6

1 
(25) implies that & +i(u) > 0 on A. Now

(26)
.. 1

. 1 1 MS 
1 MS

 t) _._ + t 
) <0 0 6 t 6 t+1 0t-16t kt 

t-1 t

f(k ,w ) - f(k -6 ,w )1  ,  t t t t t  ,I 0t i -1 6t 6
t f'(k' w)tt
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(27)

Thus from (26) we reach

‘bt(w)6t+1(w) fs(k
t
,w
t
)[f(kt'wt)

f(kt - 6
t' 

w
t
)] for w E A i.e.

f(k
t'
w) - f(k

t 
-

t' 
w
t
) for w e A, t 1,2,..

Also it is clear from (25) that for all t 6t(w) < k(w) a.s. , Thus, by

Lemma 1, (k,c) is inefficient in P(k
0 
) which proves the theorem.

Proof of Theorem 2: Let us sketch here the proof indicating the main steps

only. The existence of a competitive equilibrium here follows from a sequence

of generational optimization problems. Given k
0 

the wages for G
0' 

which

are random, are given by Wo — f(k0,w0) - 1(0 P(k0,w0). Hence for each given

interest rate r
l' 

on savings in date 0, G
0 

solves the following problem:
y 0,max Euo(co, co)

co(wo' w1)

s.t. 
c0(w0) 

W
*(td 
0 

0)
 

- s
0 
(w
0 
) 0 a.s. and

— (1 + r1(w1)) s0(w0) 0 a.s.

Writing the first-order condition and guaranteeing at the same time that the

optimal s satisfies 1 + r (w) — f'(s
* 

' 
w1) a.s. can be achieved by solving0 0 

the following conditions for s
0
 (E
1 

is the expectation with respect to w
1
)
'

(28) E (-u (W -s f'(s )s ) + ) 01 01 0 0' 0'
w 
1 0 u wl'u02'WO- sO, fi(s0'wds0))

for almost all w
o-

Let so approach 0. If so f'(so,wi) -4 0 a.s. then by(A4) the LHS of

(28) becomes positive. However, if s
o 
f'(s

0' 
w
1
) does not converge to 0 on

some set of w of positive measure we also obtain that the LHS of (28) is

positive since f'(0, 
1
) co for all wl. Now let s0(w0) W(w0) i.e.

allowing c(w0) to approach 0, then by (A4) the LHS of (28) becomes negative.
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Using the continuity property of all the partial derivatives we see that for

almost 

*

all w
0 

there is some solution s
*
(w
0 
) to (28).

0
* * * *

When s
 
is determined k

1 
— s Hence the next period's wage W1 — f(k1,w1)

0 0"
* * * *

- P(k
1'

w
1
)k
1 

is given and the same process yields s
1 

— k
2" 

This way we

*
construct the competitive equilibrium from ko.

Ao 

1'
Proof of Theorem 3: Otherwise some <c (k

' 
(c/
' 
c))> in P(k ) dominates- t tt 0

in the SDSD the equilibrium allocation; particularly,
A 

y* 0*
E u ((29) 

..„. Ao

c/' c)
 E

t
u
t
(c 

t' 
c
t 
) a.s. for t — 0,1,2,...t t tt

and for some r we have strict inequality. Without loss of generality let

r O. Note that whenever u
t 

is strictly concave (29) has strict inequality
Ao

y* 0* Ao

y* 0*if (e/ 
t' c) 

0 (c
t 

, c
t ). 

Since Euo(c/o, co) > Euo(co , co ) we have (usingt

the equilibrium conditions),
A A

E(CY k
1 
) > E(cY* + k) — EW

o.0  0 1
AO 0* AO 0*Since c..1 2 c..1 we also have E c E

-1 c-1"
But this implies the

following contadiction:

A 
A A

0*Ef(k
* 
' 
w
0 
) E(c

O
1 
+ cY + k ) > E(c_i + + 1(1) Ef(k0,w0)0 - 0 1

which proves the Theorem.

0* * y* 0*Proof of Theorem 4: Given a competitive equilibrium <c
-1' 

(k
t' 

(ct 
' 

c
t 
)) >

*
e P(k

0 
) and assume that for some T and some <c°

1' (kt' 
(cY
' 

c°)) > E- t t 0
c
0 0*
-1 2 c-1 

and 
(cY' ' 

) *> (cY* c°*)t t —2 t t 
for t — 0,...,T-1 with strict

inequality at t — r < T. Also cY >_ cY* and kl.4., 
kT+1"

>._ 
*

Since each u
tT T i 

y 0is increasing and concave whenever 
(ct' 

c) 0 ,cy* 0*
( , c ) for some historyt t t
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0
(w0,...,wt-1) 

we have E u
t 
(cY
' 
c) > E

t
u
t
(c

t
y* 0*
' 

c
t 
). Thus by thet tt

equilibrium properties we must have

0(30) E
t 
(0 cY + 0

t+1 
c
t
] ..>_. E (0 cY* + 0 , c

0*
] a.s. for t — 0,...,T-1t t t t t t+i t

and a

measure.

t r the inequality is strict on a set in g
t-1 

of positive

0 0* 0 0*Also since either c
o
1 

c
0*
1 

or c
-1 

>
2 
c
-1 

we have Elkoc_i Elko c- -

Now, using (30) we can write,

E,b0 vT-1 4.
u 1 4- "it-0 L' 17/LY'tcYt 

/Pc]+
 E'PT(q kT+1)

> E00 c_ 
1 Et-0 E[Ibtet °t+lct WT(cT kT+1).

0Putting ct ct + ct_l for t 0,...,T we obtain,

E
T
tO 

c + E0 k > E
T 

0 c
* 
+

T
k
T+1.— t t T T+1 t

Substituting for each t ct — f(kt, w
t
) - k

t+1 
and rearranging we come to

* T
0_1k0 + Et_o E[Otf(kt, wt) -

t-1
k
t 

>

> k
* 
+ Z

T 
E[0 f(k

* 
' w) 

-
t-1

k
t
]-1 0 t—O t t t

which is a contradiction (see (11)).

Proof of Theorem 5: For each r, r 0,1,2,..., let us define a set A
r 
C

L x L
-4- +

as follows:r r+1

A
r 
— ((cy, c0) I for some s E 1,

4-- 
we haver r r r

0* :
, 

0 *cY * + s —f(k w ) - cr r' r r r+1r r-1 
— W c — f(

' w ) - Wr+1/
y* 0*Claim 1: For all r (c
r 

, c ) is an efficient of type II in A.r

Otherwise if this assertion does not hold for some r we can contradict the
0* * y* 0*fact that <c
-1'
 

t' 
(c

t ' 
c
t 
))> is a type II efficient in P(k

o
).
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Claim 2: For each r A
r 

is convex and compact in the weak topology of

1,1((,a) x L.(0
Pgri-l'a).

Proof of Claim 2: The convexity of A
r 

is clear since f(.,
wr+1) 

is concave

for all 
wr+1. 

Since the weak topology on L
1 

is metrizable (see Dunford and

Schwartz [1964] Theorem V.5.1) it is enough to show that the weak limit of

each sequence is in A. Assume that (c
yn

, c
On
) E A

r 
for all n and that

A
AOit converges (in the weak topology) to (c-

y
r' 

c
r
). Some convex combinations of

. OmOn((cYn, c )) say ((cYm, c
r 
)), converges in the norm topology of L

r 
xr n-1'

A 

AOL
r+1 

to 
(cyr' 

c
r
) (see Dunford and Schwartz [1964] Theorem V.3.14). This

convergence is in probability (see Neveu [1965] Theorem 11.5.4). Since this

sequence is uniformly bounded some subsequence of ((cYm
r

, cOm)) converges
Ao

almost surely to (c-Y
' 

c 
r 
). Since each (cYm 

' 
cOm) e A

r 
andr r  r A is closed

A Ao

under a.s. convergence we obtain that (cY
' 
c) E A. But A

r 
is a boundedT 

set and as was shown closed in the weak* topology hence it is weak*-compact

(see Dunford and Schwartz [1964] Theorem V.4.2). Since all functions in A

are uniformly bounded this proves the claim.

A

y AOClaim 3: Let (gt, C4)t) and (c-t c
t
) be in A

r 
and B in g 

r+1 Define.
Ay AO

✓ 0 
(cr, cr) on B

(c- , c )
✓ r

r' r) on -B

Then ( c
o
) e Ar r.

A

Proof of Claim 3: Let
r 

and s
t 

be the functions corresponding to

-0
c
r
) and to

A A-

cY, c0) (see the definition of Ar). Define sr
r

A

(Or,

s
r 

on B

s
r 

on -B
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Then it can be verified directly from definitions that

Y 0*c + s — f(k
*

, w ) - c a.s. and
r r r r r-1

c
0

— f(s
t' 

w
r+1
) - W

*
a.s. Hence (c

y
, 
c
0
) E A.r r+1 r r

Thus a "mixture" of any two elements in A
r 

belongs also to A. Now it is

clear that all the assumptions required for Theorem 1 in Zilcha [1984] hold.

Therefore, for some continuous non-decreasing concave function u
r 

on R
2
+

V 0 y* 0*max E(c
r' 

c
r 

A
'

) on 
r 

is attained at (c
r 
, c

r 
). It can be shown that

in fact we have: For almost any realization 
(w0,.."w1)

0 0*max E u (cY *(w), c (0) over A
r 

is attained at (Cr(c(w), c
r )).r r r r 

Otherwise we can derive a contraction to the construction of u
r
.

Thus we have obtained this way a sequence of utility function u
r 

r

0,1,2,..., which satisfy this property.

Now, maximizing Etut(cyt, c0t) on At is equivalent to
* *(31) Max E u [f(kt'wt) - c

0*
- - W

t+1
].t t t-1

St

11E11

Thus the first-order conditions for this problem holds at (c
y* 0*
t , ct ), i.e.

y* 0* y* 0*(32) E
t+1

(-u
tl
(c

t ' 
c
t 
) + f'(s

t' 
w
t+1

)u
t2
(c

t ' 
c
t 
)) 0 a.s.

Since cy* — f(k
C
u
t
) - c

0*
1 

- k
t+1 

a.s. s
t 

k
t+1 

is a maximizer fort-

problem (31).

Now let us consider the maximization problem

0*(33) max E u 
[f(k' w)

 - c 1 - (l+r
t+1

)s
t
]t t t t 

t.. 
s
t
0

where l+r
t+1 

fs(k
t+1' w +1) 

a.s.. The necessary and sufficient conditions
A 

A 
Afor interior optimum s

t 
for (33), setting cy f(k

*
,w ) - c

0*
t t t-1 st'AO A

Ct (l+rt+i)st, are
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(34) E
+1 [-utl 

(c/
' 
c) + (l+r* 

t+1 )ut2 
(CY' C°)] - 0 a.s.t t t t t

Now by induction on t one can show that the lifetime incomes in

'problems (31) and in (33) are the competitive wages corresponding to k
*
.

* * *
Assuming that s

* 
— k
* 

implies that W
t 

— f(k
t' 

w
t
) - c

0*
1 

— f(k
t' 

w
t
)t-1 t t-

* * * * *
(l+r

t
)k
t 

— f(k
t'

w
t
) - 

ktf'(kt' 
w
t
) which is the competitive income

* 0* *corresponding to the capital stock k
t
. For t — 0 by assumption c..1 k0

A

f1(k
*

0' 
w0). Thus s

t 
k
t+1 

is a solution to (34). Also note that

0* *
c
t 

s
t 
f'(s

t' 
w
t+1
) — k

* 
f'(k

* 
w ).t+1 t+1' t+1

This completes the proof that for these (ut) this given efficient of

type II allocation is a competitive equilibrium.
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