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INTRODUCTION

There has been considerable literature in economic theory dealing with
efficiency of intertemporal allocation of resources over time.
Characterization of dynamically efficient programs, using efficiency pricesf
has been a central issue in an infinite horizon economies with production and
coﬁsumption over time. In the growth models case let us mention few, out of
many, such contributions by Malinvaud [1953], Cass and Yaari [1971], Cass
[1972], Peleg [1972], Majumdar ]1972], Benveniste and Gale [1975] and Mitra
[1979]. In models with overlapping generations (OLG) efficient competitive

equilibria have been characterized by Okuno and Zilcha [1980], Balasko and

Shell [1981] and others. However, perhaps surprisingly, very little has been

done in generalizing these results characterizing efficient allocations to
stochastic dynamic models. Peleg [1974] studied Malinvand prices in
multisector growth model with finite number of states of nature. Peled [1982,
1984] has discussed (conditional) optimality of equilibria in a stationary OLG
model. Zilcha [1984] has applied some results about efficient random
variables to a stochastic growth model. More recently Abel Mankiw Summers and
’ Zeckhauser [1986] discuss the issue of dynamic efficiency in a stochastic
version of Diamond’s [1965] model. Given the utility functions of all
generations, they havg obtained a condition that guarantees dynamic
inefficiency and one sufficient for dynamic efficiency. However, as we see in
this work, their condition about "overinvestment", for example, is far too

strong from that characterizing dynamic inefficiency.
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Our model is an overlapping generations where consumers live for two
periods, as in Diamond [1965], with random production. Thus, investment and
consumption over time are random variables. Our concern is with the issue of
overaccumulation of capital and not the intergenerational risk sharing. We
define two types of efficient production-consumption allocations. The first
criterion uses first degree 'stochastic dominance, while the second efficiency

criterion uses the second degree stochastic dominance. We obtain a complete

characterization of dynamic inefficiency: The interest rates rt(w) should

be below the populatioq growth rate n "most of the time" with positive
probability. In particular, the (stochastic) future value of a unit of
capital in period 0 goes "fast" to zero with positive probability.

Diamond [1965] showed that a compet;tive economy could reach a steady
state in which the population growth rate excéeds the steady state marginal
product of capital, i.e. dynamically inefficient equilibrium. However, we
demonstrate here that any given efficient (of type II) production consumption
allocatiop can be obtained as a competitive equilibrium for some risk averse
individuals in each generation. We also prove existence of competitive
equilibria from a given initial capital stocks and show that each competitive
equilibrium is short-run efficient.

Our research has been motivated by the feeling that the characterization
of efficiency in stochastic models of OLG (with production) is a significént
tool in analyzing many economic problems. OLG models have been used in the
literature in studying the effects’of fiscal policiés, pricing of capital

assets, etc. For example, it was shown by Tirole [1985] that dynamic




efficiency rules out the possiblity that speculative bubbles arise as rational
expectations equilibria. Also, the Ricardian equivalence theorem (Barro
[1974]) fails to hold when an equilibrium is dynamically inefficient (see Weil
[1985]).

The paper is organized as follows. Section 2 contains notations and
definitions. In section 3 we describe .the economy. A complete
characterization of inefficiency is brought in section 4. Existence of
competitive equilibria and the relationship between competitive equilibria and

efficiency of type II appear in section 5. All the proofs are in section 6.

NOTATIONS AND PRELIMINARIES
Let R" be the n-dimensional Euclideén space. For x, y ¢ R" x = y I1ff
xi zy, for all 1. x>y 1if x2y and xwy, x >y Iif X, > ¥y for

l1si=<n. Let I = [a,f] where 0 <a < f <o, and let # be the Lebesgue
' ©
measure on I. Define Q = xk—OIk where I, =1 for all k. Denote by ¥

the Borel sigma-field on 1 and let o be a probability measure on sequences
in @, i.e. ¥ 1is the sigma-field generated by cylinder sets in Q. Let gt

be the sigma-field generated by all the cylinder sets xg-OBk where B, = I

k
for all k > t. Ll(ﬂ, ¥, o) 1is the set of all integrable function g(w)
from € into Rl. Let Li(n, 3t, o), denoted as Lt’ be the set of all
integrable functions which are 5t-measurab1e. Thus Lt is the set of all

integrable functions g(w) which depend upon the first t coordinates of w

+
- (wo, wl,...). Lt stands for the non-negative functions in Lt' A sequence

(gk(m)):_o- is an adapted stochastic process if g, € Lk for k=-0,1,...




Let E be the expected value operator. For g € Lt and k < t Ekg(w) -

E[g(w)l?k 1] i.e. the expectation with respect to (wk,...,w ); Thus E €

t k&
b1

Let g € Lk' We write g > 0 if g(w) = 0 almost surely (a.s.), and
g~ 0. g>> 0 1if g(w) > 0 a.s.

' 2
Denote by U1 the set of all continuous nondecreasing functions from R

to Rl. U2 is the subset of U1 which contains all the concave functions.

+

+ + +
Let - (Xl’ X2) € Lt X Lt+1’ (Yl' YZ) € Lt 4 Lt+ We say that (Xl' X

1° 2)

dominates (Yl’ YZ) in the first degree stochastic dominance (FDSD), and

denote it by (Xl’ XZ) >1 (Yl' Y if

2)
(1) Ev(X)(w), Xy(w)) 2 Ev(Y,(w), Y,(w)) a.s. Vve v} and

(2) ’ Etv(Xl(w), Xz(w)) > Etv(Yl(w), Y2(w)) on some set of positive
measure and some Vv € Ul.
If only (1) holds we write (Xl, X2) 21 (Yl’ Y2). We say that (Xl’ X2)
dominates (Yl, Y2) in the second degree stochastic dominance (SDSD), and

denote it by (Xl' X2) >2 (Y Y2) if

1)

(3) Etu(Xl(w), Xz(w)) = Etu(Yl(w), Yz(w)) a.s. VYu e U2 and

(4) Etg(xl(w), Xz(w)) > Etu(Yl(w), Yz(w)) on some set of positive
2

A
measure and some u in U

If only (3) holds we write (Xl' X2) 22 (Yl’ YZ)' Thus all risk averse
decision makers who are given any realization of (;0, ";t l) (except a set
of measure zero) either prefer (Xl, XZ) to (Yl' YZ) or are indifferent;

and at least one risk-averse decision maker prefers (Xl, X2) for a set of

positive measure of histories (wo,...,wt_l). We shall also use stochastic




"dominance for one-dimensional random variables. Let X and Y belong to

Lt' We write X Zl Y if Et v(X(w)) > Etv(Y(w)) a.s. for all continuous
nondecreasing functions v, v : R1 -+ Rl. Namely if X > Y then for each given
history (wO"'°’wt-1)’ X(w) dominates Y(w) with re;pect to the random v .
3. DESCRIPTION OF THE ECONOMY

Our model is basically a stochastic version of Diamond’s [1965]
overlapping generations economy with production. The discrete-time economy
starts at period O and has indefinite horizon. There is consumption and
production in each date where the aggregate producﬁion function is assumed to
exhibit constant returns-to-scale and it is subject to random shocks. Let F:

R3 *'Rl, where F(Kt’ Lt' wt) represents the output at the end of period ¢t,

+ +
Kt is the capital stock invested at the beginning of thié period, Lt is the
labor input and W is‘a random variable representing the state of the
environment at date t. There is a perishable homogeneous good which can be
either consumed or used as productive capital input. 1In each period t there
are N(t) identical individuals born at date t (hence called generation t, Gt)
and who live for two periods t and t+l. Each member of Gt is endowed with
one unit of labor (supplied inelastically) in the first period/of his lifetime
and has no labor endowment in his second period, the retirement period, where
he consuﬁes his savingsf At period 0 there are members of generation G-l
which are engaged in consumption only in date 0, however their consumption may

depend upon the state of nature vy The population growth rate is assumed to

be a constant n; hence the total labor supply at date t ig Lt - L0(1+n)t.
/




Since our analysis is unaffected by this constant n we shall assume that n=0,
i.e. no population growth. Also, to simplify the model, we assume that the

capital depreciation rate is 1, hence F(Kt' L ; wt) is the total stock of

t

capital ‘at the end of period t. The production function satisfies the
following assumptions,
(Al) F(K,L; wt) is homogeneous of degree 1, concave in (K,L),

and twice continuously differentiable in K, L for all v F(O,L; wt)

- F(K,0; w) =0, F, >0, F >0, F,, <0, F.. <0 Fl(0,L; v) =

1 2 KK LL

and Fl(m,L; wt) = 0 for all w F and F1 are continuous in v .

-

f(kt' wt) be the per-capita production function i.e. f(kt’ wt) -

). From (Al) we see that f' = of >0, f* <0, f'(0,w) = © and
t dk t
£’ (=, wt) - 0 for all v - The random shocks to production are given by a

sequence of random variables (;t):—o where each ;t assumes values in the
interval [a,8] = I, 0 < a < ﬂv< ©. The probability measure o over the
sequences w = (wo, wy, w2,...) € O 1is known and it satisfies,
(A2) For any AcCQ, A = n:-OAi’ where p(Ai) >0 for

i=-=0,...,k and Ai =1 for i >k, then o0(A) >0. o 1is a

nonatomic measure.

(A2) is a mild assumption and it holds, for example, if ;t t=-20,1,...

are 1.1.d.

Given the per-capita capital stock at the outset of period 0, k

*
o' @

feasible (per-capita) production consumption allocation (FPCA) from k; is




[ ]

0
consumption c?l for the G_1 members and a sequence (k_, (CZ’ cc))t_o,

t

0
where kt 1s the aggregate capital stock at date t, (CZ, ct) the

(per-capita) consumption allocation for Gt' which satisfies:

0 + + y + o - .+ -
(a) ¢y € LO, kt+1 € Lt’ cy € Lt and c. € Lt+1 for t 0,1,2,...

0

y - -
(b) k + ¢/ + ciq f(kt, wt) a.s. for t 0,1,...

t+1l t
Condition (a) indicates that kt+1(w) and c{(w) depend upon the history
of the states of the environment from period O to period t only, while cg(w)

depends upon the realizations of w_ from r =0 up till 7 = t+1 (since this

consumption takes place at date t+l). Condition (b) is a material balance

. ,
condition. Denote by P(ko) the set of all FPCA from initial (per-capita)

@

*
c_0> in P(ko) define the

* 0 y O
capital ko. For a given <c_1, (kt, (Ct’ ct)}

aggregate consumption

y o
c_=cl +c¢
t t t-1

*
and denote by E - (ko, kl, k2,...), c - (c

t=-0,1,2,... ,

o' ©1 02,...). Thus, c is the

-~ -~

aggregate consumption program corresponding to this given FPCA. A FPCA is

called interior if its aggregate consumption ¢ satisfies c. >> 0 for all t,

Note that this implies also that kt >> 0 for all t.

Given two FPCAs from initial capital ko, we say that <c?1,{kt, (cz,
cg)) > dominates < é?l’(ﬁt' (éi, 52)}> in the first degree stochastic
dom?nance if c?l 21 é?l' (cz, cg) 21 (éz, 82) for t = 0,1,2,... and for some
T we have strict >1. A FPCA in P(ko) is efficient of type ; if it is not
dominated in the FDSD by any other FPCA in P(ko). Similarly <c?1,{kt, (c{,

0 -0 - - -
cc)) > dominates <c_l, {kt, (CZ' cg))> in the second degree stochastic

/




0 -0

-1 %2 Cop
y O -y -0 0 y 0

(cf, Cr) >2 (C,v cr). A FPCA <C-1'(kc’ (ct, ct))> in P(ko) is called

dominance if ¢ ) and for some r

y O -y -0
for all t (ct, ct) 22 (ct, ce

cfficient of type II if it is not dominated in the SDSD by any other FPCA in

P(ko). Since U2CU1 it is easy to see that any tjpe II efficient FPCA is

also efficient of type I. v
We shall use in the sequel efficient instead of "effiqient of.type I,
"Given a particular preferences for individuals in all generations we can
define éompetitive equilibrium in our economy which generalizes Diamond’s

[1965] equilibrium concept to this stochastic model. Let the function u,
u Ri =+ R”, represent the preferences of individuals in Gt; t=-20,1,2,...

* Ox*x * y* Oo* . * *
For a given ko <c_1,(kt, (ct » C ), rt, wt)t-0> is a competitive

equilibrium from k; if

(5) ] =k £, wy) a.s.

O* * y* 00*
(6) <c_1o(kt' (ct ’ \'t
* R
(7) 1+ Teel ™ f'(kt+1, wt+1) a.s., t =0,1,2,...

»

)}> 1is a FPCA from kg.

* * * *
(8) Wt - f(kt’ wt) - kt b3 (kt' wt) a.s., t=20,1,...

and for all generations Gt t =0,1,..., the solution to the maximiation:

E, v, (Y(w), d(w))

a.s.

*
c, = (1 + rt+1)st

0
=0 ct =0

a.s.

is attained at

(cy*(w) co*(w)) exce g f
c » S s P or a set of histories (wo,..

W

t-1)
of measure zero.
7/




The (stochastic) competitive interest factors are the marginal product of
*
capital in all states of nature. The wages Wt are the marginal product of
*
labor in all states of the environment, hence Wt is a random variable which

depends upon the realizations of (60,...,at). Thus in equilibrium the

capital stock in each state t equals the aggregate savings by individuals in

*

* . .
the previous period, i.e. kt+1 - s_ can be shown using our assumption (Al)

*
about the production functions (st is the optimal saving of Gt obtained
from (9)). Condition (5) guarantees that the older individuals at t=0, who

. *
invested kg receive the competitive rate of return f‘(ko, mo).

material balance condition holds in each date in probability 1 due to (6).

*
Given an efficient <c?1, (kt, (CZ’ cg)):_0> in P(ko). Let us define a

system' of intertemporal profit maximizing (IPM) prices (¢t) as follows:

The

*
- ' -
(10) ¢t_1(w) £ (kt(w), wt)¢t(w) a.s., t=20,1,2,...
For each t ¢t € L: and let us set ¢_1 = 1. Moreover it follows from
the definition that under the prices (wt) the intertemporal expected profits

are maximized along the path k*, i.e.

* *
(11) Et[¢tf(kt'wt) = ’#t_lkt] = Et[‘ptf(kr"’t) - ¢t_1k]

a.s. for all ke Ll t -0,1,2,..

1

4. A Complete Characterization of Inefficiency

Let us write’some necessary and sufficient conditions for inefficiency of

type I.

. 0 0, =
Lema 1: Let <e ), (k., (¢, e))T_ > e P(ky), then it is

inefficient (of type I) 1f and only if there exists an adapted




+
stochastic process (ct):_r such that € € Lt-l for all t = r and
some positive measure set A, A € F o(A) > 0, such that:
(12a) er(w) >0 for all w e A er(w) -0 for wegA
(12b) et+1(w) > f(kt(w), wt) - f(kt(w) - et(w), wt) for w € A,

ct(w) < kt(w) for all w € A, while et(w) -0 for we A Vt=r.

This lemma is a stochastic version of Cass'’ [1972] result for
deterministic aggregative growth model. We relegate all proofs to the la;t
section.

To derive a complete characteriztaion of inefficiency (of type 1) we make
the following assumption about the.elasticities of/the production function and

the marginal product,

There are positive constants m, m, , my, m, such that for all

k>0 and all 4 in [a, B] the following conditions hold:

2
kf'gkzﬂ) -k"f" (k,0)
m1 < £(k,0) < m2 and m3 < _—ETETET— < ma.f

This is a stochastic version of the assumption made by Benveniste and

‘Gale [1975]. This assumption can be weakened (see Mitra [1979]) without
affecting the characterization we obtain. (A3) implies that (éee for example
Mitra [1979]):

There exists constants 0 < m < M < «» such that for

all 4 in [a,B] and all 0 < ¢ < k,




me _ £(k,0) - £(k-¢,0) Me
(14) kST D) =i

Let us state our characterization theorem for interior feasible

production consumption allocations.

Theorem 1: Assume that (Al)-(A3) hold and let <c?1, (kt’ (c{, cg))> be an
interior FPCA in P(ko). It is inefficient (of type I) if and
only if for some A in y,' o(A) > 0 its intertemporal profit naxinizing
price system (¢t), defined in (10), satisfy
© 1

(15) z _ < = for all w € A.
t~1% (0K 1 ()

The theorem demonstrates that in this stochastic OLG model when condition

(15) holds with positive probability it implies inefficiency of the
production-consumption allocation. Moreover (15) implies that the IPM prices

should satisfy:
' 1

(16) = T7.7v <@ on some A€ ¥, o(A) > 0.
t=1 ¢ _(w)

Thus (16)‘generalizes the well-known condition about the prices.from the
deterministic models (see for example Cass [1972]). lRewriting condition (16)
with the interest rates 1ét us define m. to be the (stoghascic) future value
of a unit capital in period 0, 1i.e.

7) me() = IOE (k w ) = M5 (1 + r ().

Then, Theorem 1 asserts, basically, that an interior feasible pfogram is
Inefficient (of type I) if and only if the rate at which the future value of a

unit of capital in period 0 goes to zero "fast", on a set of w of positive

measure i.e. for some A, o(A) > 0.




(18) z:_o[nf_o(1+rf(w))] < o for all w € A.
Thus if, for some interior program the interest rates rt(w) converge, as t
<+ o, "fast" to the rate of population growth (which is assumed to be 0) in
probability 1 then it is efficient.
5. COMPETITIVE EQUILIBRIA AND EFFICIENCY OF TYPE II.

Let us show first the existence of competitive equilibrium from kg >0

when the given utility functions {ut) are concave. We add the following

©
t=0

technical assumption in order to simplify the existence proof.

Assumption 4: For all t u, satisfies:
du du

—L ,b) -~ and ~*%(b,0) - o for all b > 0.

Yy
act . act

Theorem. 2: Assume that (A.1)-(A.4) hold and that the given utility

function for each generation t u, is continuous increasing and

concave. Then there exists a competitive equilibrium from each

*
initial capital ko > 0.

Now it is shown that when the utility functions are concave any
competitive equilibrium which is efficient of type I is also efficient of type
II. Thus the characterization of type I inefficiency (in Theorem 1) is a
characterization of type II inefficiency when competitive equilibrium
allocations are considered, and u, € U2 for all t.

Theorem 3: Under (A.1)-(A.3) any competitive equilibrium which
is efficient of type I is also efficient of type II if each utility
function ut is in U2, for t = 0,1,2;...

It has been indicated earlier, in a deterministic models (see for example

,




Diamond [1965]) that in a steady state equilibrium where the pppulation growth
factor exceeds the marginal product of capital the equilibrium is inefficient.
Since equilibrium allocations may be inefficient, let us show now that a

competitive allocation is short-run efficient, i.€.:

0%
-1

efficient (of type II) if for all T, T = 0,1,2,..., there exists no

0. y O * )
<C_1, (kt, (ct, ct))> in P(ko) such that:

0 (03 o*
€1 % S t

Y o ¥ * 11
cr = ¢p kT+1 2 kT+1' with at least one strict inequality.

* * O% *
Definition: A FPCA < ¢ {kc, (c{ ' Cy ))}> in P(ko) is short-run

y .0 y* _ 1
(ct, ct) 22 (ct , ¢ ) for t 0,...,T-1 and

T

Theorem 4: Assume that (A.1)-(A.3) hold and that u, is increasing
" for all t. Any competitive equiiibrium is short-run efficient (of

type 11).

In an o&erlapping generations model it has been shown that the second
theorem of welfare economics holds (under mild assumptions, see for example
Okuno-Zilcha [1980] and.Balasko-Shell [1981]), i.e. efficient allocations may
be attained as competitive equilibria under some tax-subsidies transfers. We
show here that a FPCA which is efficient of type II (and where G-1 receives
the competitive consumptiori) can be attained as a competitive equilibrium for
some concave continuous nondecreasing utility functions (u ).

Definition: We say that in a FPCA <c0

-1
0 _,.* .,
L= kg £k

y O *
(ke, (e, e)) > € P(ky)

*

G_1 is fairly treated if ¢ 0’ wo); i.e. if this older

' *
generation receives the competitive returns on its saving ko.

Now we state:




O*
-1

cg*))> in P(k;) which is efficient of type II and where G_1 is

fairly-treated, there exist continuous nondecreasing and concave utility

© O* * -y 0%
ut)t-O such that <c -1’ (kt' (ct , ct

(K

Theorem 5: Assume that (Al)-(A3) hold. For any interior <c e’

* *
functions )}, (rt), (Wt)> is a

competitive equilibrium, where the interest rates and wages are

*
determined from (k )}

) =0 by equations (7) and (8).

6. Proofs.

. *
Proof of Lemma 1: Define for ko > 0,

- * *
(19) P(ky) = ‘(E'f) | E = (kgy ki) e = (egy eq, Cy,y e

-~

+
where kt € Lt-l’ ct

for t - 0,1,2,...,k

+
€ Lt and ct + kt+1 - f(kt' wt) a.s.

W
0o~ kol

Let us show first that the (k,c) corresponding to the given FPCA is

v

inefficient in ?(ko) if and only if <c?1, (kt, (cz, cg)) > is inefficient
in P(ko).

Assume that (k,c) is inefficient in ?(ko) while <c?1, (k,, (cZ; c2))>

A A A A

is efficient. Then for some (k,¢) 1in ?(ko), e 21 c. for all t and cr
>1 c for some r. Note that if r 1is the first date where c, strictly

A

dominates c, then c. = e for all t < r (since whenever

A

ct 21 ct but

A

ce }1 c. We must have [u(ct) - fu(ct) for all nondecreasing and concave

u, u:R1 - Rl). Hence without loss of generality we can assume that col -
_ 0 Ly 0 y Y
c 1 < >1 y- Since 'co c ;1 *te >1 R cy we obtain that S

A A

- LA N M Pee LD iM e ke alum




A A

0 0 ~0 0
>1 cg*. Now we can choose cg € L, which satisfies: <o < ¢y @a-s., e o

A A A

0 0
and (cg, cg) >1 (cg,cg ). Thus ¢ = ¢ " % >1 S c{. Again we

A A AO 0
choose cg which satisfies cg < c a.s. and also (c{, Cl) 21 (c{, cl).

Continuing this process indefinitely (perhaps taking equalities from some

’ 0 0
period on) results in contradiction to the efficiency of <c_1,{kt,(cz, ct))>
in P(ko).

- 0
Now suppose that (k,c) is efficient in P(ko) while <c’

~ o~

y
1, {ktl (ct"

cg))> is inefficient in P(ko). Therefore, it is easy to see that the
following set is not empty,
O* y* 0% 0* 0
Q= (<c_1 s (ct v S )}I> € P(ko) | c ¢, and

(c{*, cg*) 21 (CZ' cg) for all t > 0 with some strict inequality).

*
(k,

. o* * y* 0*
Moreover, Q contains some <c_ (k_, (ct , Ct ))> which satisfies:

1’ t
* *
c{ 21 cz and cg 21 cg for t = 0,1,2,... with at least one strict FDSD

y* 0% y .0 y* y
for some r. Take (c0 , c0 ) >1 (co, co) and let us assume that co. 21 c0
O* 0 y* 0% - (Y 0
and < >1 o while (ct 'y €y ) (ct, ct) for t=1,2,3,... . Thus, for
some set of positive measure B and some 4§ > 0 small enough we can

* -
guarantee that cg (w) - 0 Xg 21 cg (where Xp is the characteristic function

* * *
of B). This implies that <, 21 Cy» N >1 1 while c. - . for t > 1,

which is in contradiction to the efficiency of (k,c) in ?(ko).

~ o~

Now let us prove the necessary part of the Lemma. Assume that (k,c) 1is

~ -~

inefficient in ?(ko). Then there exists some (k*, c*) in P(ko) which

*
dominates (k,c), 1i.e. c. 21 . for all t with strict dominance for some

~— o~

*
dates. Let r be the smallest t for which . >1 c, - Thus, for any t < r




*
we have ct -c.. This implies easily that for any t < r we must have kt

kt since both programs start from the same k Now, for t = r we have

0

*
f(kr' wT) - f(kr’ wr) - kr+

K>
r+1 "1
Hence kr+1 >1 k:+1. Thus, on some set A of positive measure (in ) we

*
have kr+1(w) > kr+1(w) for all w € A. Now define

1

*
er+1(w) - kf+1(w) - kf+1(w) for all w e A and
ef+1(w) -0 for w ¢ A.

For t > r+1 define,
et+1(w) - f(kt(w), wt) - f(kt(w) - et(w), wt) vfor all w.

)co as in the Lemma.

(Sufficiency). Given the adapted stochastic process (et tmr

A A A

Define the following (k, c) in P(ko) as follows: kt - kt for all t < r,

A ‘ A Il A

kt -‘kc - € for all t = r. c. - f(kt-l' wt) - kt for all t, (where k-l

- ko). Now clearly c. = c, for all t < r and for t > r

A

Ceqr ~ Elkp - e w)) - (k- Cear) = kv ) - k- Ce+1-

For t = r we have ct+1(w) > ct+1(w) for all w e A. Thus (k,c) € P(ko)

dominates (k,c), i.e. - (k,c) 1is inefficient in ?(ko).

~ o~ ~ o~

Proof of Thebren 1: By Lemma 1, if (k,c) is inefficient, there is a

sequence of adapted random variables (et):-r which satisfy conditions (12)

for all t. Without loss of generality let 7 = 1 and for t > 1, assume

that,

(20) €t+1 - f(kt’ wt) - f(kt T € wt) a.s.

Since et(w) >0 1if and only if w € A we can rewrite (20) as follows for

4

all w € A,




fk,_,w )-f(k_-€_,w )
, t''t t et
(21) Et‘f'l'ﬁt - et‘btf (kt’wt)[l + ( etf' (kt’wt) 1)]-

By (A3), or its equivalent form (14), and (10) we obtain

met(w)
(22) €t+1(w)¢t(w) = et(w)]/)t-l(w) (1 + W)) w € Ar t—1,2, .« |

Thus for all w in A and t =1,

me
1 1
s (1 + m

“eel Yo ¢ Yeo1 t
L . mey /k y <1 . m 1
€ ¢t-1 14m € /kt €. ¢t-l 1+m ¢t-1
Hence we derive the following inequality
© 1 1
pX < < o for w € A.
=2 B Wk (W) = "¢ (W) 9, (w)

ke

(23)

m
1+m
which completes the proof of the necessity part of the theorem.

Sufficiency: Let <c?1, (kt, (c{, c2))> € P(ko) be a program which

satisfies conditions (15) for all w e A, A€ 31 for some r.

© 1
For w € A let y(w) = min (kO' 2t:—l ¢t(w)k

} and y(w) =~ 0 for
e+1 (¥

w & A, Assume that r = 1 and let 81 be in Lg which satisfies for

‘ My (w) M 1 o
w in A, 0 < Sl(w) < min(¢0(w) , JETGTEE’ 2 k), and Sl(w) - 0 for

w &€ A. For each t, t = 1, define 6t+1 in L: as follows:

5t+1(w) -0 for we&A and for w GIA it is defined by

1 - 1 ) 2t M
Ve (@) B w6 W) T %r=0 Wk (w)

By our choice of 61 (25) implies that 6t+1(w) >0 on A. Now

-1
Ms Mé
-.‘l,l&(l'kt)< t

1
S (1 + —)
t-1"t t ¢t-18t kt

. -1
f(kt,wt) - f(kt-ét,wt)j
St f'(kt, wt)




Thus from (26) we reach

Y1 (@)
27) wt(w)8t+1(w) = ET?EZT;;)[f(kt’wc) - f(kt - 6t, wt)] for w e A i.e.

- - -1,2,...,.
81 (W) = £k v ) - £(k_- 8, w) for we€ A, t

t
Also it is clear from (25) that for all t 6t(w) < kt(w) a.s. . Thus, by

Lemma 1, (k,c) 1s inefficient in ?(ko) which proves the theorem.

~ -~

Proof of Theorem 2: Let us sketch here the proof indicating the main steps
only. The existence of a competitive equilibrium here follows from a sequence
*
of generational optimization problems. Given ko the wages for GO’ which
* * * *

are random, are given by WO - f(ko,wo) - ko f'(kO,wO). Hence for each given

interest rate r;, on savings in date O, GO solves the following problem:
y 0 y - -

max Euo(co, co) s.t. co(wo) Wo(wo) so(wo) =20 a.s. and
0

co(wo, wl) - (1 + rl(wl)) so(wo) 2 0 a.s.

Writing the first-order condition and guaranteeing at the same time that the

optimal sg satisfies 1 + rl(w) - f'(s;, wl) a.s. can be achieved by solving

*

the following conditions for sO(E1 is the expectation with respect to wl),
* * .

(28) El(-UOI(WO-SO' f (so,pl)so) + f (so, ml)uoz(wo-so, f (so,wl)so)) -0

for almost all vy

Let s, approach 0. If so f'(sO,wl) -+ 0 a.s. then by- (A4) the LHS of
(28) becomes positive. However, if sg f'(so, wl) does not converge to 0 on
some set of vy of positive measure we also obtain that the LHS of (28) is

*
positive since f'(O,wl) = o for all w) - Now let so(wo) -+ Wo(wo) i.e.

allowing cg(wo) to approach 0, then by (A4) the LHS of (28) becomes negative.




Using the continuity property of all the partial derivatives we see that for

*
almost all w, there is some solution so(wo) to (28).

0
* ined k* *

When s0 is determine 1™ 80'
*

*
- f'(k:,wl)k; is given and the same process yields s; - k2. This way we

* *
Hence the next period’'s wage Wl - f(kl,wl)

*
construct the competitive equilibrium from kO'

A A A A

*
Proof of Theorem 3: Otherwise some <c?1,(kt,(c{, cg))> in P(ko) dominates

in thé SDSD the equilibrium allocation; particularly,

A A * 0*

- y .0 y -
(29) Etut(ct’ ct) -3 Etut(c ¢ C¢ ) a.s. for ¢t 0,1,2,...

and for some r we have strict inequality. Without loss of generality let

r = 0. Note that whenever u, is strictly concave (29) has strict inequality

Y e y* 0% Yy 20 y* 0%
if (ct, Ct) v (ct » S ). Since Euo(co, co) > Euo(co v S ) we have (using

the equilibrium conditions),

Ay A y’k * -
E(c0 + kl) > E(c0 + kl) EWO.
A * A
Since c?l z, c?l we also have E c?l > E C?I. But this implies the
following contadiction:

A

* - 0 y ~ 0% y* *
Ef(ko,wo) E(c_l + S + kl) > E(c.1 + <y . + kl) - Ef(k

*
0'%0)
which proves the Theorem.

Proof of Theorem 4: Given a competitive equilibrium <c0;, (k:, (cz*' cg*)) >

*
€ P(ko) and assume tha; for some T and some <c01, (kt, (cy, cg)} > € P(kg),

0 O* 0 * O* :
c 1 22 c 1 and (c{, ct) 22 (c{ » ¢ ) for t -~ 0,...,T-1 with strict

t
inequality at t = r < T. Also ¢ > c * d k > L
. TZ an T+1 = Kpup- Since each u,

1s increasing and concave whenever 0 *, cg*) for some history




0%

(w w ) we have E u (cy cO) > E u (cy* c
0’ """ "t-1 tt e’ t tt ot t

). Thus by the

equilibrium properties we must have

0*

N ] a.s. for ...,T-1

y 0 y*
(30) Epldcr + $eyp Sl 2 Elbep + 4, e
and at t = r the inequality is strict on a set in 3t_1 of positive

measure.

0 o* Oo*
17 ¢ -1

Now, using (30) we can write,

[0k

we have E¢Oc?1 = E¢0 ¢ -

Also since either ¢

0 T-1 y
E¢OC_1 + zt—O E[¢tct + ¢
0% T-1 .. y*
> E¢O c 1 + zt—O E[l,btct + Y
-+l
Putting . cy + €1
T

T * *
Zemo PeCe * E¥pkpy > I ¥eCe + Edbpkp .

0 y
ct] + E¢T(CT +

0%
t+lct

kT+1) >

y* *
I+ Bppleqp + kpyy).

t+1

for t = 0,...,T we obtain,

Substituting for each t ct - f(kt’ wt) - kt+1 and rearranging we come to
* T
¢-1k0 + zt-O E[wtf(kt’ wt) } ¢c-1kt] >
* T * *
> ¥oakg + B g B[P flk, we) - ¥k
which is a contradiction (see (11)).

Proof of Theorem 5: For each T, r=0,1,2,..., let us define a set A C
T

+ +

Lr X L1_+1 as follows:

A = ((CZ' c?) l for some s, € L. we have

T

y o~ * ) O* - 0 *
°r + Sy f(kr' wr) Cr—l W ¢ f(sr' wr+1) . wr+l)'
O*x

*
For all r (c¥ v e, ) is an efficient of type II in Ar'

Otherwise if this assertion does not hold for some r* we can contradict the

0%

* * * : ‘
fact that <c_1, (kt, (cz , cg ))> is a type II efficient in P(k;).




Claim 2: For each r Ar is convex and compact in the weak topology of

Ll(ﬂ,fr,a) x L1(0,$T+1,a).

Proof of Claim 2: The convexity of AT is clear since f(-,wf is concave

+1)

for all w Since the weak topology on L. is metrizable (see Dunford and

T+1° 1
Schwartz [1964] Theorem V.5.1) it is enough to show that the weak limit of

each sequence is in AT. Assume that (czn, c?n) € Ar for all n and that

A A

it converges (in the weak topology) to (cf, cT). Some convex combinations of

Om

, )), converges in the norm topology of Lr X

yn On o “ym
tley ™y e ™))y say (e, ¢

Lr+1 to (CZ' c?) (see Dunford and Schwartz [1964] Theorem V.3.14). This
convergence is in probability (see Neveu [1965] Theorem I1.5.4). Since this

sequence is uniformly bounded some subsequence of ((ch, c?m)) converges
almost surely to (cZ, c?). Since each (czm, c?m) € A, and Ar is closed

A

under a.s. convergence we obtain that (cz, c?) € Ar' But Ar is a bounded
set and as was shown closed in the weak* topology hence it is weak*-compact
(see Dunford and Schwartz [1964] Theorem V.4.2). Since all functions in Ar

are uniformly bounded this proves the claim.

A A

Claim 3: Let (Ey, EO) and (cy, co) be in A and B in % Define
t t t t T T+ .
c

1°
y (cz, S) on B‘

(e}, c) = -y -0
(cfy cf) on ~B

Then (cy, cO) € A .
T T 7

Proof of Claim 3: Let s and ¢ be the functions corresponding to (EZ,

A

-0 "y %0 s_ on B
cT) and to (cr, Cr) (see the definition of Ar)' Define s =

S on ~B
T




Then it can be verified directly from definitions that
(053
r-1

* y 0
+1) - WT+1 a.s. Hence (cT, cr) € Ar'

<+ S - f(k*, w) - c¢
T T T T

a.s. and

0
c, = f(st, v

Thus a "mixture" of any two elements in Ar belongs also to A}. Now it is

clear that all the assumptions required for Theorem 1 in Zilcha [1984] hold.

2
Therefore, for some continuous non-decreasing concave function u_on R+

* *
max Er(CZ’ c?) on Ar is attained at (cz , c? ). It can be shown that

in fact we have: For almost any realization (wO""’wr-l)

max E u (cy(w) co(w)) over A is attained at (CY*(w) co*(w))

T T T O & T T * Tr :
Otherwise we can derive a contraction to the construction of ur.
Thus we have obtained this way a sequence of utility function u, =
0,1,2,..., which satisfy this property.

y 0
Now, maximizing Etut(ct' cc) on At is equivalent to

* O* *
(31) M:x Etut[f(kt’wt) - ct_1 - s, f(st, wt+1) - Wt+1].
t

Thus the first-order conditions for this problem holds at (c{*, cg*), i.e.

i y* 0% ,, % y* O*
(32) Et+1( utl(ct » C ) + £ (st’ wt+1)ut2(ct v S )) -0 a.s.

y* - * ; (05,3 * * *
Since Ce f(kt’wt) Ce1 C kt+1 a.s. S, = kt+1 is a maximizer for

problem (31).

Now let us consider the maximization problem

* 0* *
3 - -

(33) max E u [£(k, v) Ce.1 T Ser (MHrpy)sd
stZO

*

.
where 1+rt+1 - f'(kt+1, wt+1) a.s.. The necessary and sufficient conditions

for interi ti Y - et C et s
f nterior fp mum s for (33), setting cy f(kt,wt) Ceol T Sl
¢ - (14r*

t t+1)5cr are




A A o)

w2y 0 * y 0y, _
t+l[ utl(ct' ct) + (1+rt+1)ut2(ct, ct)] 0 a.s..

Now by induction on t one can show that the lifetime incomes in

(34) E

*
‘problems (31) and in (33) are the competitive wages corresponding to k .

0% *
g-1 = Bk

, wt) which is the competitive income

* * * *
Assuming that 8.1~ ke implies that Wt - f(kc' wt) -c , wt) -

* _x * * ok
(1+rc)kt - f(kt,wt) - ktf (kt

* *
corresponding to the capital stock kt' For t = 0 by assumption c?l - k;

* : *
f'(ko, wo). Thus s, - kt+1 is a solution to (34). Also note that

o* % * * %
Ce =S Flspr wegg) =k Bk g weyy)-

This completes the proof that for these (ut} this given efficient of

type II allocation is a competitive equilibrium.
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