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ABSTRACT

Long-run decisions are decisions which determine the individual's

payoffs in several periods in the future. This paper examines the

theoretical foundations of the prevalent "weighted average" assumption,

and suggests a larger class of decision rules, which take into account

the effects of the payoffs variation.

The "weighted average" assumption is a special case of the

generalized model, a case in which the decision maker is variation

neutral. Similarly, we define and characterize variation aversion and

variation-liking, and show an example of the economic implications of

these properties.
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LONG-RUN DECISIONS

by: Itzhak Gilboa

1. Introduction

There is a large class of economic problems in which a decision

maker is asked to choose one alternative out of a choice set, each of

the elements of which determines his payoff (or expected payoff) in

several periods in the future. We shall refer to these problems as

"long-run problems".

Examples in which this structure is explicit are, for instance,

models of investment, labor planning and all problems which may be

formulated as repeated games. There are, however, many more examples in

which the same structure is implicitly assumed. In fact, it seems that

one can hardly think of a "real life" decision problem (whether under

certainty or uncertainty) that may be satisfactorily represented as a

single-period problem. (In Savage (1954), for instance, the

individual's single choice is among acts which provide, for each state

of nature, a complete description of the aspects of the world relevant

to him - at any point of time in the future.)

It seems that the vast majority of the economic literature assumes

that there exists an "instantaneous utility function" u and a long-run

function U such that each alternative f (f f
2'
...) is assessed by

In many cases, no restrictions are set upon, • • • ) •

U(apart from monotonicity, quasi-concavity and so forth). In most of
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the cases in which U's functional form is specified, it is assumed to

be a weighted average Eipix.1(f1). (Common weights are 
p (1-fl)

1
i

1for 0 < < 1 and pi - 
y1

(ilsT1 for T 1.)

Such a functional is discussed and axiomatized in Koopmans (1960)

and Koopmans, Diamond and Williamson (1964). A more general

(non-separable) functional is axiomatized in Kreps and Porteus (1979),

and non-separable preferences are also used in Lucas and Stokey (1984).

The purpose of this paper is to examine the theoretical foundations

of the separable functional form from a different viewpoint, and to

provide an axiomatization of a slightly more general form, which is

quite simple and seems to us more suitable for some of the possible

applications.

• 2. Motivation

It is well known that Savage's formulation of the

decision-under-uncertainty problem may be interpreted in other ways as

well: In Savage (1954) an act is a function from the states of the

world into the set of consequences. But if one chooses to replace the

states of the world by individuals in a population, the resulting

problem is a social choice problem; if the states are replaced by

criteria and the consequences by grades we obtain a model of a

multi-criteria decision problem; and if the "states of the world" are

interpreted as points of time - we end up with a long-run decision

problem.

It follows then, that Savage (1954) - and Anscombe-Aumann (1963) -

provide axiomatic foundations for the equivalents of the Expected

Utility paradigm in the other contexts, that is to say, for the
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hypothesis that the relevant functional U is a weighted average of

(u(s)) where S is the domain on which acts are defined.sES

However, even in their "native" interpretation - namely, in the

realm of decisions under uncertainty - the classical models have been

seriously attacked. (See, for instance, Allais (1952) and Ellsberg

(1961).) It is, therefore, our task to examine their axioms carefully

before applying them to any other field of decision theory.

Let us first consider a simple example: A decision maker is faced

with a choice problem, and his decision determines his payoffs in the

next four periods. At each period his payoff may be either high (H)

or low (L). He has four alternatives which are (H,H,L,L), (H,L,H,L),

(L,H,L,H) and (L,L,H,H). Suppose that in some sense (which is quite

vague to us at this point) the "intrinsic value" of all the periods is

constant. However, there is a certain "cost of adjustment" incurred by

any change in the payoff level. For example, the payoffs may be the

standard of living levels, and the costs - the socio-psychological costs

of changing the social status. One may also think of a firm, for which

the payoffs are the revenue (and profit) levels, the variation of which

involve some organizational cost. In these cases it seems plausible

that the decision maker's preference relation >_ would satisfy

(H,H,L,L) (L,L,H,H) > (H,L,H,L) (L,H,L,H)

(where > means strict preference and means equivalence.).

It is not hard to see that such preferences do not comply with the

weighted average hypothesis. That is to say, there do not exist a
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utility function u (u(H),u(L)) and a measure p =(p1,p2,p3,p4) such

that the preferences discussed above may be explained by maximization of

the integral of u w.r.t. (with respect to) p.

In fact, this example is mathematically equivalent to the famous

Ellsberg Paradox (Ellsberg (1961)), which challenged Savage's Sure-Thing

Principle. We shall now turn to discuss this Principle.

3. The Sure-Thing Principle

Roughly speaking, the Principle (axiom P2 in Savage (1954)) says

that, if two possible acts yield the same consequences whenever an event

A occurs, the preferences between them should be determined only by the

values they assume outside A. Or, formally, if f, g, f' and g' are

four acts (functions from the set of states of the world S to the set

of consequences X), and

f(s) = g(s) f'(s) = g'(s) s E A

f(s) = f'(s) g(s) = g'(s) S E A

then f g iff f' g'.

In the original interpretation of the model, the Principle seems

almost unobjectionable: By definition, exactly one of all possible

states of the world actually obtains, hence there cannot eventually be

any situation in which the decision maker is affected by the

consequences attached by his act to other states of the world.
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Of course, the Principle has proved to be objectionable after all.

(This is an empirical fact.) However, we claim that in other

interpretations its foundations are considerably weaker to start with.

Let us consider, for example, the social choice interpretation of the

same decision problem discussed in section 2. Assume H and L

represent high and low salaries, respectively, and let the domain be

(men in city A; women in city A; men in city B; women in city B). It

is perfectly reasonable to assume that a central planner should have no

bias towards either city, nor towards either sex, but would strictly

prefer that the poorly-paid employees will not concentrate in any single

city.

In the context of long-run decisions we have already seen that the

Sure Thing Principle may not be as compelling an axion as it purports to

be in its original context. There is, however, a slight modification of

it which seems to be a reasonably sound foundation for our theory.

4. Variation-Preserving Sure-Thing Principle

In the context of long-run decisions, as opposed to the other ones,

there is a natural linear ordering on the domain of the acts: time

points (or periods) are ordered by their very definition, while states

of the world and individuals in a society are not. This additional

structure imposed on our model allows us to reject the Sure Thing

Principle as formulated, without renouncing the gist of its essence.
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Let us consider the example of section 2 once more. The prospect

(H,H,L,L) is preferred to (L,H,L,H), but if we replace the payoffs in

periods 2 and 3 by (L,H), we obtain the prospects (H,L,H,L) and

(L,L,H,H) respectively, with the latter preferred to the former. One

may observe that the replacement of (H,L) by (L,H) in periods 2 and 3

is "biased" in a certain sense: it increases the variation of (H,H,L,L)

but decreases that of (L,H,L,H). If the variation of the acts should

play any role in our theory, there is no reason to wonder at the

preference reversal. But if we restrict ourselves to such changes which

do not affect the variation asymmetrically, we may expect the Principle

to hold.

A simple way in which we can assure that changing f to f' will

have the same effect on the variation of f as changing g to g,

will have on that of g - is to restrict the scope of discussion to

changes over time intervals on the edges of which f and g coincide.

The weaker axiom which results will be called Variation-Preserving Sure

Thing Principle. It is easy to see that it allows the "preference

reversal" of section 2, since the time interval under discussion

(periods 2 and 3) does not satisfy our additional condition: on its

edges (periods 1 and 4) the two relevant acts ((H,H,L,L) and

(L,H,L,H)) do not coincide.
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5. ADescription of the Model and the Results

We shall use the framework of Anscombe-Autmann (1963) rather than

that of Savage (1954), since it allows for a finite domain and a

denumerable one with a continuous measure. Our whole discussion will,

as a matter of fact, be restricted to these two cases. (The

generalization to continuous time, for instance, meets the difficulties

of axiomatizing measurability and continuity of various function which

are endogenous in the model. The author is not aware of any set of

reasonably intuitive axioms which may guarantee the desired technical

properties.)

Since we reject the Sure Thing Principle, we cannot adhere to

Anscombe-Aumann's model; we therefore turn to its generalization

suggested by Schmeidler (1982 and 1986) using the concept of

non-additive measures. On this basic model we impose the

Variation-Preserving Sure Thing Principle and, roughly speaking, we

obtain the following result:

There are a utility function u, and two functions p, 6 on the

set of periods (s
1
,s
2'
...,s

n
), such that the preference relation is

represented by the functional

U(f) Elil....1p(sdu(f(si)) + 6(si) I u(f(s )) - u f

That is to say, there exists an "intrinsic value" to each period

s., and the first element in the summation is the expected utility

w.r.t. the measure p(.). The second element for each period s. is an

extra cost/bonus incurred by the mere variation of the function

u(f(.)).
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A formal formulation and a proof of the representation theorem are

to be found in section 6. The extension to an infinite horizon is

contained in section 7. A by-product of this section is a

characterization of continuous measures in Schmeidler's model, and a

proof that the Choquet Integral (See Choquet (1955)) is continuous in

the appropriate sense.

Given the functional form (for a finite or infinite horizon), one

may ask what is an individual's attitude towards variation. Indeed, it

turns out that we may define and characterize the notions of variation

aversion, variation neutrality and vpriation liking. This is done in

section 8.

Finally, section 9 provides an example of the implications of our

model. It shows that even if two "identical" individuals play a

repeated zero-sum game, the super-game need not be zero-sum; that is to

say, such two individuals may have a positive surplus of cooperation.

6. The Model and the Finite-Horizon Representation Theorem

6.1. SChmeidler's model and result

Let X be a non-empty set of consequences and let Y denote the

set of finite-support distributions over X ("lotteries"):

(y:X -4[0,1] I y(x)  0 for finitely many x's in X and

EX 
y(x) = U.x 



Let S be a nonempty set of points of time and let be an

algebra of subsets of S. Let F denote the set of acts, which is a

subset of the functions from S to Y, including all the constant

functions. We assume that a binary (preference) relation >_ is given on

F, such that F is exactly the set of all s-measurable bounded

functions with respect to >_: Given >_ CFxF we define >.cYxY by

identifying a lottery y in Y with the constant act which assumes the

value y over all S. An act f E F is E-measurable if (s I f(s) >

y), (s I f(s) y) E E for all y E Y. We may then assume that

F (f: S -*Y1 f is E-measurable and there are y,yEY

s.t. y f(s) 57 for all s E S).

Linear operations are performed on F pointwise. Two acts f, g E

are comonotonic iff there are no s, t E S for which f(s) > f(t)

and g(s) < g(t).

Schmeidler's axioms are:

Al. Weak Order: is complete, reflexive and transitive.

A2. Comonotonic Independence: If f, g, h e F are pairwise

comonotonic and a e (0,1), then f g iff

af + (1-a)h ag + (1-a)h.

A3. Continuity: If f, g, h G F satisfy f > g > h then there are

a,fl e (0,1) such that

af + (1+a)h > g > fif + (1-fl)h.
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A4. Mbnotonicity: If f, g E F satisfy f(s g(s) for all s E S,

then f g.

A5. Nondegeneracy: There are f, g E F such that f > g.

Axiom A2 deserves deliberation. In Anscombe-Aumann (1963), it is

assumed in a stronger form, without the comonotonicity condition. Their

theorem proves that such a preference relation is representable by

Expected Utility maximization, hence it satisfies the Sure Thing

Principle, which is too restrictive for our theory.

Indeed, their independence axiom states that the preferences

between f and g will not be changed if they are both mixed with h,

even if this mixing affects their variation asymmetrically (say,

increases that of f but decreases that of g). However, if, in A2, we

consider only triples of acts f, g, h which are pairwise comonotonic,

their mixing cannot alter their variation in a biased way, and the

weakened independence axiom which results is a reasonable one.

We now define a (non-additive) measure v on (S,E) to be a

function v: E-4[0,1] which satisfies:

(i) v(i) — 0 v(S) — 1

(ii) ACBCS —> v(A) v(B).

For a E-measurable and bounded real function v: S-4R, the (Choquet)

integral of cp (on S) w.r.t. v is

0

J
cpdv — f [v(fs I cgs) > t)) - lidt + fv((s I cgs) >1
S -co 0

When no confusion is likely to arise, the subscript "S" will be omitted

and we shall denote the integral simply by f(pdv.



We now quote

Schmeidler's Theorem: satisfies Al-A4 iff there are an affine

utility u:Y -4 R and a measure v on (S,E) such that

f g <—> fu(f)dv fu(g)dv Vf,g E F.

Furthermore, if Al-A5 hold, then u is unique up to a positive linear

transformation (p.l.t.) and v is unique.

6.2. The model

We now introduce additional assumptions. First of all, we assume

that there exists a linear order >> defined on the points of time.

2
S
.Next we assume (until section 7) that S is finite and that

W.l.o.g. (without loss of generality) we assume that S = (s )
n

where
i

5i+1 
>> s

i 
For 1 i n-1. We extend >> to subsets of S as

follows: For A C S and s E S, s >> (<<) A if s >> (<<) t for

all t E A. Similarly, for A, B C S, B >> (<<) A if B >>(<<) t

for all t E A. A, B C S are separated if 3s e S such that A << s

<<B or B << s << A.

A subset A C S is an interval if there are 1 j n such

that A — (s
k
ES I j). In this case A will also be denoted

by [si, sj].

Unless otherwise stated, we shall assume that >_ satisfies Al-A5

and refer to u and v provided by Schmeidler's theorem. Furthermore,

w.l.o.g. we assume that sup(u(y) I y E Y) > 1 and inf(u(y) I y E Y) < 0,

and for each a E [0,1], we choose ya E Y such that u(y) — a .
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For convenience, extend any act the domain S u (s
O' 

s
n+1

)

by f(so) =f(s1) 
YO 

for all f E F. (We assume also that s
n+1 

>>

S >> so.)

We may finally formulate

A6. Variation Preserving Sure Thing Principle: Suppose hat

A — [si, Si] with 1 n, and that

f, f', g, g' E F satisfy

f(s) = f'(s) g(s) g' (s) for s E A

f(s) = g(s) f'(s

and

g'(s) for s e A

f(sk) g(s) == g'(sk) for k = i-1, 1+1.

- Then f g iff f' g'.

The Main Theorem: >_ satisfied A6 iff there are p, S R such that

(i) p(s) I .5(si) I + I .5(si+1) I for i < n,

PC ) I 6(sn) I, and 6(si) —
and

(ii) fu(f)dv =Z7=ip(s)u(f(5i)) + 6(si)I u(f(si)) - u(f(si...1))

for all f E F.

Moreover, if A6 holds then p and (5 are unique.
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6.3. Proof of the theorem

Let us first assume A6 holds. We begin with

Lemma 1 Suppose A, B C S are separated. Then

v(A u B) v(A) + v(B)

Proof: Suppose w.l.o.g. that A << s << B. Now assume that there

exists C C S such that: (i) C >> s; (ii) C n B =0; and (iii)

v(B u C) > v(B).

Let a — v(B)/v(B u C) and define f f
2' 

f
3' 

g g
2' 

g
3 
E F as

follows:

and

f1 (t)

f3 (t)

yo

0

t G B

otherwise

t E B

t E A

otherwise

t eBuA

otherwise

g
1
(t) =

g2(t)

Ya 
tEBUC

YO 
otherwise

Ya 
t E, AuBUC

YO 
otherwise

Yl

g3(t) =ya

yo

t G A

t EBUC

otherwise.
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Since fu(f
1 
)dv

u(g1) 
dv, we obtain fl gl. By A6, f2 g2

and £3 g3 must also hold. Hence fu(f2)dv = fu(g2)dv and fu(f3)dv

fu(g3)dv. The first equality implies

(1-a)v(B) + av(AuB) av(AuBuC)

and the second one yields

v(AuB) (1-a)v(A) + av(AuBuC).

Hence v(AuB) (1-a)v(A) + (1-a)v(B) + av(AuB),

whence v(AuB) v(A) + v(B).

We now turn to the case in which there does not exist a subset C

as required. We define S' S U (s*) and >>' on S'u(s0,s1.0.1) by

s
n+1 

>>1 * >>' s
n 
>>' >>'s >>'s

1 0.

For A C S', let v' (A) (AnS) + e lts*EAI for a fixed c > 0. Now

let F' = (f: S' Y) and define >' on F' by fs,u(-)dv'. By

Schmeidler's theorem, >1 on F' satisfies axioms Al-A5. However, it -

also satisfies A6 since

u(f)dv'
sS' 

f)dv + u(f(s*)) • e for f E F'.

Considering A and B as subsets of S', there exists C = (s*)

which satisfies our conditions. Therefore v'(AuB) = v'(A) + v'(B).

0But s* E (AUB)
c 

and our conclusion follows.

By Lemma 1 we know that v is completely determined by its value

on the intervals (since any A C S is the disjoint union of finitely

many separated intervals). As there are
(n;-1)

intervals, there are no
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degrees of freedom in specifying v. However, the

next lemma shall prove that this upper bound is not the best one one may

obtain:

Lemma 2: Let A and B be two intervals such that AnBo 0. Then

v(AuB) + v(AnB) v(A) + v(B).

Proof: If A C B or B C A, the lemma is trivial. Assume, then,

w.l.o.g. that A— [si, sj] and B— jsk, sl] where 1 15i<k<j< /

. As in the previous lemma we first assume that there exists a

subset C C [s1+1, sn] such that (BnC) > v(B). In this case, let a

E [0,1) satisfy v(B) (1-a)v(AnB) + av(BUC) and define f f
2' 

f
3'

gl, g2, g3 E F by:

yl 
t E B Y1

f
1
(t) g1(t) Ya

otherwise
YO Yo

yl 
t E B Yl

2
(t) t E A-B 

g2(t) Ya

YO 
otherwise 

YO

and

t E AuB Y1

f
3
(t) g (t) =Ya

otherwise
YO YO

t G AnB

t e (B-A)uC

otherwise

t E AnB

t E (B-A)u(A-B)uC

otherwise

t E A

t E (B-A)uC

otherwise
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Since fu(fi)dv v(B) = (1-a)v(AnB) + av(BuC) fu(gi)dv, fl gi

and A6 implies that f2 g2 and £3 g3. By fu(f2)dv fu(g2)dv

we obtain

(1-a)v(B) + av(AuB) (1-a)v(AnB) + av(AuBuC)

and the equality fu(f3)dv = fu(g )dv yields

v(AuB) (1-a)v(A) + av(AuBuC).

Combining the equalities we get

(17a)v(A) + (1-a)v(B) (1-a)v(AnB) + (1-a)v(AUB)

where a < 1.

In case no such event C exists, one may proceed as in Lemma 1 to

complete the proof. 0

Note that in view of this last lemma, v is completely determined

by its value on intervals of length 1 and 2. Hence there are no more

than (2n-1) degrees of freedom in specifying v. We shall now proceed

to represent v in a simple way which will suggest an intuitive

explanation of the (2n-1) parameters:
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A A

Lemma 3: There are functions p, 6: S R such that:

(1) ;(si) > 0 Vi n

— 0
"s1)

For any 1 i n and 2O such that i + / n,

A 1 A

v([ , si+2]) = 6(si) + Ek=op(si+k).

Furthermore, these two functions are unique.

Proof: Let us first define the functions:

v( 
ti'

 and for 2 i n define

and

A

P(si) sii) - v((si_i))

A A

6(si) v((s)) - p(s
i
).

A A

A

set 6(s1
A

— 0, p(s )

It is obvious that p and 6 satisfy conditions and (ii), and

that they are the only pair of functions satisfying:

(1)

(2)

A A

v((si)) 6(si) + p(s)
A

A

Vi n

Vi n-1.

All we have to show is that p and S also satisfy condition

(iii). We use induction on 2. For 2 — 1 and / — 2 we use (1) and

(2) respectively. Assuming correctness for 2-1, lemma 2 yields
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v([s s
i+/

]) = v([s s. 
1 
]) + v([s.

11 
s. ])
1+/

A

.2'4A 
A

V((Si4.1..1)) 6(si) Ek=0P(si+k) + 6(si+1_1) +

A A A A

p(s14.2_1) + p(s 2) - 
144 

6(s. ) - p(s. ) -1 1+/-1

A

=6
A

Ek=0P(Si+k).

Now we have

Lemma 4: For any f e F,

fu(f)dv E7=1;(5i)u(f(5i)) + l'i(s)[u(f(si)) - u(f(si..1)))+

(where x
+ 

— max (x,0) for x e R.)

0

Proof: For a given f e F, let II: (1,...,n) -4 (1,...,n) be a

permutation such that u(f(s
n(i)

)) >_ 
u(f(s(1 

.
+1) 

)) for 1 ._. i lc_ n-1.n 

By the definition of the Choquet Integral,
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fu(f)dv = E7=1[u(f(sw(i))) - u(f(sw(i+1))))v((si In(j) n(i)))

i-1 n(i)
)) - u(f(s

w(i+1)
))]-

{j

A

P(Sw(j))

(j)--7r(i))

A

$5(s )1

71'0) (u(f(s
w(j)-

1))<u(f(s
7r(i)

)))]

A

— E 
1

. p(s. f i)) +1—
(k f ))>u(f(sk..1)))

A6(sk4u( k)).-

- u(f(sk-1))]

A A

+ 6(s) u(f(si)) - u(f(si_i))] 0- i-1

Now we may also prove that

A A A

Lemma 5 For any i 2, p(s11) S(s) - p(s) and for i n-1
A A A

6(si) + p(si)

Proof: This result follows from the monotonicity axiom (A4) and Lemma

4. 
0

We shall now prove the Main Theorem. Let us define the functions

p and 6 by

1 A
S(si) =

and

for i n



- 20 -

A 

1 A 

A

i) = p(s) + (6(s.) - for i n

A

(with 6(s
n+1
) = 0 by definition.)

Let us first show that these functions satisfy our conditions.

lAConsider condition (i). Obviously, 6(s1) T5(si) O. To see that

p(s) 6(si) I + I 6(s1.4.1) I, one only has to use the definition of

p and 6 and Lemma 5. Next consider condition (ii). Since

+ 1
x + 'xi) for all x E R, Lemma 4 completes the proof.

Conversely, we have to assume that there are p and 6 as

required, and prove that A6 holds. However, this is quite easy. 00

7. Extension to an Infinite Horizon

Let us now suppose that S =(Si E N) where s. << s
i+1, 

and

retain all other assumptions and definitions.

In the case of an infinite S, questions of continuity quite

naturally arise. If E is a a-algebra, we shall say that a measure v

is continuous if, wheneverBCB CS, lim v(B
n
) = v(uB) andn n+1

n.0 n>.1 n-4 

whenever S D B B
n 
D 

n+1
we have lim v(B ) v( n Bn).

n>.1

In our case, E — 2 is a a-algebra, and it makes sense to ask

when is v continuous. Our interest in this problem is not a matter of

sheer curiosity (although we do not believe there is anything wrong with

sheer curiosity): We cannot expect to have a "neat" representation of

the Choquet Integral as an infinite series - unless v is continuous.
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So let us define a topology on the set of acts F. We define it by

the following notion of convergence: Let (f
n1 

F and f E F. We

say that 
(fn1 

monotonically converges to f if the following two

conditions hold:

(i) There is a sequence (A
n1 

.for which A
n 

A
n+1 

and

U A
n 

S, such that f
n
(s) f(s) for s E An.

n>..1

or

ii) Either fn(s) ) f(s)

fn(s) 5 fn+1(s) 5-f(s)

We now introduce another axiom:

for all n > 1 and s E S

for all n 1 and s E S.

Al (Time Continuity) Suppose that (fn) monotonically converges to

and that f > g(f < g). Then there exists an n 1 such that fn >

gun <
The following lemma applies to Schmeidler's model whenever E is a

a-algebra (and do not depend upon the denumerability of S or the

strict order (>>) defined on it):

Lemma 6 Suppose Al-A5 hold. Then A7 is satisfied iff v is

continuous.

Proof: First assume A7 holds. Suppose that B C B (B E E) and
n n+1 n

let B= u B
n
. Let A =B 

n 
u B

c

11.1

and



f
n
(s)

1
S E B

n
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f(s)

yl 
S E B

YO YO
otherwise otherwise.

By A7, fu(fn)dv fu(f)dv, hence v(B) v(B).
n-4.0

Now, consider the case B
n 
D B

n+1 
(B
n 
E E) and denote B n B . Let

n

B U BC
An and define

nn
and f as above. Again

monotonically converges to f and the result follows.

Now assume v is continuous, and that there are f, (A
n
)
n_.1

ifn)n

and

(fn n?..-1 
as required by A7. (I.e., (fn) >1 monotonically converges to

and f
n 

on A
n
.) All we have to show is that fu(f)dv

n-+to

u(f)dv, that is, that the Choquet Integral is continuous w.r.t.J

monotonic convergence.

Since f and f
1 

are bounded, the whole sequence (f
n )n:1 

u (f)

is uniformly bounded. Without loss of generality we may assume that it

1
is bounded by y and yo, hence fu(fn)dv — fov((s 1 u(fn(s)) > t))dt

1
for all n > 1 and fu(f)dv — f v((s 1 u(f( )) > t))dt.

0

Suppose fn(s) ..-5 f (s -.5f(s) for all n > 1 and s E S. (Then+1

other case, namely 
fn 
(s)

""' fn+1(s) -- f(s)' 
is proved symmetrically.)

For every t E [0,1],
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and

(s 1 u(f(s)) > t) C (s I u(frol.(s)) > t) C (s u(f(s)) > t)

U (s J u(f(s)) > t) (s I u(f(s)) > t).

Hence v((s I u(f(s)) > t)) v((s I u(f(s)) > t)) monotonically.
n:+00

Since [0,1] is compact, v((s I u(f(s)) > t)) uniformly converges (as

a function of t) to v((s I u(f(s)) > t)).

This implies that fu(fn)dv -4 fu(f)dv. 0
n4c0

We may now prove

Theorem 2 Assume satisfies Al-A5. Then A6 and A7 hold iff there

are p, 6: S R such that:

(i) p(s) 16(si)I+ 
6(si+1 

)1 for i 1 and 6(s
1
)= O.

(ii) For any f e F,

fu(f)dv ET.Elp(s)u(f(si)) + 6(si) u(f(si)) - u(f(si_1))1.

Proof: For the "only if" part, let p and 6 be defined as in the

proof of the Main Theorem. Let there be given f E F and assume

w.l.o.g. that yl f(s) yo for all s E S. Define An — i n)

f(s) s e An
and f

n
(s)

YO 
otherwise
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By A7, fu(fn)dv fu(f)dv. But fu(fn)dv Z7=1p(si) f(si)) +

(S(si) I u(f(si)) - u(f(si_1)) and (ii) follows. Hence i) is also

valid as in Lemma 5.

Now let us prove the "if" part. A6 is proved as in the Main

Theorem. To see that A7 holds as well, one only has to notice that

since the series in (ii) converges for all f G F, v is continuous. DO

8. Definition and Characterization of Variation Aversion

In this section we shall assume that n >_ 3 (or n co) and that

on top of Al-A7, the following strong monotonicity axiom is satisfied:

A5* (Strong Mbnotonicity): For f, g E,F, if f(s) g(s) for all s e

and f(s) > g(s) for some s E S, then f > g.

Note that A5* implies that p(si) > 0 for all i.

We shall say that is variation averse if the following

condition holds: For all
f2' g, 

gEFandi> , if:' 1

(i) f ( i) gl(si 
f
2 i 

g2(s)

(ii) f (sj) f2(s) and g (sj) g2(s) for j 0 i

(iii) f1 
— gl

f
1
(s
i
) ; g

(si+1) g (s') 
andand (iv) f

1
(s

i-1
),
 
f1(s 1)

g1(5i-1) 
g2(s)

then f
2 
< g

2
.
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Thatistosay,iffl -gl andweimprovebothofthemons.(to

the level f
2
(s
i
) g

2
(s
i
)), but f

1'
s variation has increased while

that of gi has remained constant, then the modified fl (namely, f2)

is less preferred than the modified gl (which is g2).

Theorem 3: Let satisfy Al-A7 and A5*. Then is variation

averse iff 6(s ) < 0 for all i >_ 2.

Proof: First suppose that >2. is variation averse. Let us use the

functional form of Lemma 4 (rather than that of the Main Theorem (or
A

Theorem 2) itself) and show that S(s) < 0. For a fixed i 2, choose
A A A

0 < < a < < 1 such that (fl-a)(6(si_ ) + P(ss_i)) =7p(si+1).

Now define

Ya j i-1

f
1 
(s.) 

7 
j i+1j 

YO 
otherwise

and

j

j = i-1

j i+1

otherwise

gl(sj) Ya

YO

j = i-1

otherwise

Y - ,

otherwise



Hence, by variation aversion, f <
2 -2'

A A

- (p-a)6(si) > O. Hence 6(si) < O.
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The numbers were chosen in such a way that fu(fi)dv fu(gi)dv.

fu(g2)dv - fu(f2)dvHowever,

On the other hand, if 6(si) < 0 for all i 2, > is obviously

variation averse, and the proof is complete. 00

The definitions and characterizations of variation liking and

variation neutrality are, of course, very similar and will not be given

here in detail.

9. An Example

Consider a zero-sum two-person game played infinitely many times by

two players which are identical as regards their assessments of future

payoffs. That is to say, there exists single functional

such that U(u (z
1
),u (z

2
),...) represents player I's utility if the

outcome of the i-th stage is zi, and U(u
II
(z1), u

II
(z2),...)

represents player II's utility.

In the classical model, 1, u2,...) = Ei_ipi i. Hence the

super-game itself is also zero-sum and any pair of strategies is

Pareto-optimal. However, if the two players are not variation-neutral,

is no longer a linear functional and this claim is no longer true.

luI(zi) luII(zi) ullSince (zi_i) I for any stage i

and any outcome vector (z
1, 

z
2'
...), it may be the case that replacing

(z
1, 

z2,...) by (z
1, 

z;,...) will strictly increase or decrease both

players' utility levels. Similarly, two identical agents in a single

commodity economy (without production) may benefit from trade.
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