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IMPLEMENTATION THEORY IN ECONOMIES WITH INCOMPLETE INFORMATION

by: David Wettstein*

1. Introduction

The theory of mechanisms' design in general and implementation in

particular deals with ways by which a society can achieve desired outcomes.

We shall deal with economic environments, the society, or the

environment will consist of a set of individuals endowed with initial

endowments and preferences. An outcome will be a reallocation of the

initial aggregate endowment vector to the various individuals.

A Social Choice Correspondence (SCC) will map environments into sets of

allocations, the set corresponding to a given environment can be thought of

as the set of "desired allocations". This set will usually depend on the

characteristics of the individuals comprising the environment, their

preferences, initial endowments, etc.

The basic problem is how can an outside designer make sure the economy

reaches a desired outcome. If the designer had complete information on the

characteristics of the environment, he could just tell the individuals what

they should do and thus reach a "good" outcome.

The author is grateful to Professor David Schmeidler for several helpful
conversations and also wishes to thank Professor Andrew Postlewaite for
helpful discussions.
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The problems start once the designer does not possess all the relevant

information, and has to rely on the individuals to supply it. The

straightforward solution would seem to be: Let each individual supply the

required information, and then, based on the messages received, go ahead and

tell the individuals what they should do. However, realizing their messages

determine their fates, the individuals might find it advantageous to give

out false information, and then there is nothing to guarantee that the

outcome arrived at is indeed a good one.

So we are actually dealing with a game. In the complete information

framework for the straightforward way to work we actually need truthtelling

to be a Nash Equilibrium (NE) for any possible configuration of

characteristics which amounts to requiring that truthtelling is a dominant

strategy. This is a very stringent requirement severely limiting the class

of SCC's that are implementable.

The basic result on implementation with complete information was proved

by Maskin [1977]. He employed the Nash Equilibrium (NE) concept and showed

that any SCC satisfying monotonicity and no veto power can be implemented

provided the number of individuals exceeds three. Maskin's proof had some

flaws in it and a complete proof of the above theorem can be found in Saijo

[1985]. Since in economic environments with private goods the no veto power

assumption is usually satisfied, we get that a monotonic SCC can be

implemented. The proof was carried out by explicitly constructing the

desired game.



_ 3

The next step was trying to define and investigate implementation in

the presence of incomplete information. Postlewaite and Schmeidler [1984]

defined economies with differential information using the following model:

There is a space 0 of possible states of nature, an w in 0 completely

determines all the characteristics of the economy. Each individual has a

partition on 0 and knows only what member of his partition occurred. An

allocation rule associates with each w in 0 an allocation of commodities

to the various individuals. An SCC is a collection of allocation rules.

They have shown that if the number of individuals exceeds three and if Non

Exclusivity of Information (NEI) is satisfied then any SCC satisfying a

strong condition of monotonicity can be implemented. The solution concept

is no longer the NE but the Bayesian Nash Equilibrium (BNE) introduced by

Harsanyi [1967-68] for games with incomplete information. NEI is the

assumption that any N-1 individuals, where N is the number of individuals,

can tell what the true state of nature is if they pool together their

information. Their proof is constructive as well.

Similar results were proved by Palfrey and Srivastava [1985]. They

succeeded in proving their results with a weaker monotonicity condition.

The differences in the phrasing of the results stems in part from the fact

that they did not make the assumption that the SCC is closed under common

knowledge concatenation, which appeared in Postlewaite and Schmeidler

[1984].

A major fault with the mechanisms proposed above is their inherent

discontinuity, a slight change, which might be interpreted as a slight
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mistake, in one's strategy might cause a huge change in the outcome reached.

Hence the continuity of the mechanism is very important, especially when

dealing with implementation since in reality "mistakes" do occur and a

discontinuous mechanism is just not suited to deal with them.

In the incomplete information framework the discontinuity problem

assumes an additional aspect. The informational structure in the mechanisms

proposed by Postlewaite and Schmeidler [1984] and Palfrey and Srivastava

[1985] was discrete so that their mechanism was trivially continuous with

respect to the information structure. However, once the information

structure is taken to be continuous the mechanism is no longer trivially

continuous.

We build a "continuous" version of the above models. The informational

structure is made "continuous" by assuming the following form. The state of

the economy is determined by the realization of an N-dimensional random

variable. The distribution of the random variable is common knowledge as in

Aumann [1976]. However, individual i observes only the i-th coordinate of

the vector, his preferences depend on the whole realization and his

consumption. Various interpretations of the random variable are possible.

It could be thought of as a way of parametrizing the utility functions of

the various individuals.

This formulation is general enough to include economies with complete

information as in Maskin [1977] in which case the support of the random

variable is the "diagonal" any single coordinate uniquely determines all
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the others. In the Postlewaite and Schmeidler framework as in Palfrey and

Srivastava, the random variable assumes only a finite number of values.

In our framework NEI is the requirement that the support of the random

variable is such that any N-1 coordinates uniquely determine the remaining

one. Without loss of generality we assume the coordinates must add up to

zero.

In the complete information setup, the individuals are much better

informed than is the designer. Using this fact the game forms designed

usually try to deduce the preferences of the remaining individual from the

strategies of N-1 individuals. In the most general case of incomplete

information such a deduction process is infeasible. The N-1 individuals

have no way of knowing for sure what the remaining individual observed. The

NEI assumption makes such a deduction process still possible. It seems to

us implementation theory runs into difficulties without that sort of an

assumption.

At this stage it is advisable to sum up what are the informational

assumptions in our model ("Who knows what?"). The designer and the

individuals know the distribution of the random variable, how the individual

characteristics depend on the realization of it, and know the SCC, the

designer does not observe any part of the realization while the i-th

individual gets to observe the i-th component of the realization. The

problem facing the designer is finding a game form implementing the SCC.

In the first part of the paper we show that a monotonicity condition,

basically the same one used by Palfrey and Srivastava [1985], is necessary
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if the implementing game form satisfies certain properties. Then we show

that if NEI is satisfied any SCC satisfying monotonicity can be implemented

if the number of individuals exceeds three and some technical conditions

(continuity and strong monotonicity of preferences) are satisfied. The

proof is carried out by constructing an "almost" continuous game form

implementing the SCC. Some convexity demands regarding the support of the

random variable and the SCC will guarantee continuity.

We do not make the assumption that the SCC is closed under common

knowledge concatenation as in Postlewaite and Schmeidler [1984]. Instead we

assume the game designed can consist of several stages. The first stage is

played before any private information is observed, then the private

information is observed and the game continues. The assumption that there

is an initial stage where everyone possesses symmetric information somewhat

restricts the applicability of the results. However, this assumption can be

replaced by the common knowledge concatenation assumption at the cost of

further complicating the mechanism.

The second part of the paper introduces the notion of signalling

structures. An aspect peculiar to implementation theory in economies with

incomplete information is the fact that the designer might be able to change

the initial distribution of information among the individuals. This might,

of course, alter individual preferences. In the complete information

'framework one could also let the designer have some means of changing

tastes, 'maybe at some cost, but these issues seem to be more natural in

economies with incomplete information.
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The game forms designed will basically consist of two main stages. At

the first stage individuals act, and based on those acts some signals

(possibly different ones for different individuals) are sent out. At the

second stage individuals act again, but now, however, their evaluation of

outcomes might be altered as a result of the signals received. Then the

game form based on all the acts taken determines the outcome.

In this framework we shall define monotonicity in the wide sense (MWS)

which is implied by monotonicity, and show that if NEI is satisfied any SCC

satisfying MWS can be implemented if the number of individuals exceeds three

and the previously mentioned technical assumptions are satisfied.

The game with signalling can be reduced tO a game with no signalling by

using much larger strategy spaces than the ones used in the games proposed

so far. Namely the players will be able to condition part of their acts on

some aggregates based on other players' acts. This shows that the theorems

concerning the necessity of monotonicity are valid only if one restricts the

strategy space so that no conditioning of the type mentioned above can

occur.

In the complete information framework much work has been done on

implementing the Walrasian, Lindahl and some other market related

correspondences - Hurwicz [1979], Schmeidler [1980] and Postlewaite and

Wettstein [1983]. We shall show that the SCC induced by Constrained

Rational Expectations Equilibria can be implemented by a continuous and

feasible mechanism provided that the usual assumptions are satisfied, NEI,

continuity, strong monotonicity of preferences and the number of
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individuals exceeds three. The game form constructed will naturally differ

from the general game forms constructed in the previous proofs. It will

require much less information on the part of the designer and the

individuals. One part of the game will use the game described in

Postlewaite and Wettsein [1983]. The Constrained Rational Expectations

Equilibria (CREE) differ from the Rational Expectations Equilibria (REE)

only on the boundary of the feasible set. We do not discuss the existence

of REE, a discussion of this and many other issues with all the relevant

references can be found in Jordan and Radner [1982].

The paper is organized as follows. In the first section several

notations and some terminology are introduced. In the next section we prove

the two theorems concerning monotonicity and implementation. In the third

section we introduce some additional notations and prove the theorem

concerning MWS and implementability. In the fourth section a game form

implementing the CREE is constructed. The last section discusses possible

extensions and some further lines of research.

2. NOTATIONS AND DEFINITIONS

- An n-dimensional random variable. It will sometimes be referred to

as the profile.

=-. (E
l'•••' 6 

? where e. ER for all i = 1,...r ,n

- The support of c.

J. - The projection of J onto the (i
m
) axis. For

... m, •

instance,instance, J
23 

is the set of all pairs of numbers that individuals

2 and 3 could have observed.
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The economy E will consist of the following:

1. An n-tuple of utility functions

U. R
k 
x R

n 
R i = 1,...,n,

1 +

Ui(X,e) - X denotes the commodity bundle in R
k 

consumed

by the individual, and e is the realization of the

random variable.

Hence the economy contains n individuals and k commodities.

R
k2. An n-tuple of initial endowments (w1,.. .,w

n
) where w. G is the

initial bundle of individual i. Hence we assume the endowments are certain

and do not vary with e. w = w. and assume w G R
1 ++

.
i=1

We assume that the distribution of the rarickat'variable and the U. '5
1

are common knowledge as in Aumann [1976], but the particular realization of

e. observed by the various individuals is private information.

X - An allocation for

X e Rnk
' 

X = where X. denotes the commodity bundle allocated+ 

to individual i.

A - The set of feasible allocations for E

)n .
A = E R141:k I 7.=14

i=1 i

for all j = 1,...,k)
A

A - The set of feasible net trades

A 

A = ((z
1,

...,z
n
) G R

nk 
I z.J 0 for all j = 1,...,k)

+ 
i=1.
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Remark: With this definition of a feasible net trade we implicitly assume

free disposal.

- An allocation rule for E

f: J -* A, associates a feasible allocation with each possible profile

- The set of all allocation rules

a - A trade rule
A

a: J -+ A, associates a feasible net trade with each possible profile

- The set of all trade rules

6 - The zero trade rule which maps every c in J into the null

vector in R
nk
.

- A Social Choice Correspondence (SCC).

F c

f* e F The default rule.

An SCC F will be called monotonic if the following holds:

a

For any allocation rule f e F, if there exists a mapping

) where cr.: J. '4 J. that satisfies the followinn g:1 1 1

(i) For any e in J, u(E) is in J

where u(E) cal(e1),...,un(en))
(,ii) For all i = 1,...,n, for any allocation rule a that satisfies

for all c. inin J.
1



E(Ui(fi(e_ v cri(ei)), e a.(e.)) I a.(E.))

a.(e.)), e a.(e.)) I a.(e.))
-1

We have for all 6. inin J.
1

E(Ui(fi(a(e)), e) I ei) E(Ui(ai(a(e)),e) I ei)

where (e a.(e.)) (e
-1 "ei-l'ai(ei)'

Then we have fE F where

l(c) = f(cr(e))

A game form G will consist of the following:

1. An n-tuple of strategy sets (S1,... ,S) whereS.denotes the

strategy set of individual i.

S. — B. x D.
1 1 1

B. denotes acts that have to be decided upon before. any private

information is observed. The acts in D. e taken after the
1

private information is observed.

S = -r-rn -rrnH
i=1 

HS
i 

; B= B
i D — 1Ti=1D
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2. An outcome function g: Bx1)--, A

g = .,gn) where gi denotes the bundle received by the i-th

individual.

The timing of actions is fixed. First the individuals choose an act in

B.. Then they observe their e. and decide on their action in D.. A
1 1 1

strategyforindividualiwillbeachoiceofb.in B. and a function

J. -+ D.. We must remark that the case where the individuals cand.
1 1 . 1

condition their acts on a function of acts taken by others is excluded.

3. In defining the Bayesian Nash Equilibrium (BNE) of such a game we use

the following notations.

s = (sl,...,sn) ; b = (b1,.. .,b) 6 = (61,...,6n) will respectively

denote generic elements of S, B and D.
A

For s in S. we define
1

A A

(.,$) =  
1 
s. ,s

n
)

+1"—
A

(b .,b) is similarily defined.

d(e) = (d1(e1),...,dn(en))
A

For all e in J and all S in D. fine:
1

A A

(d — (d
1 
(e
1

,..., )d.
1 (e.1 

),6,d.
1+1 (e.1+1 

),...,d
n
(e
n
))

1- 1- 

A BNE of the game is an n-tuple of strategies s = (s ...,s )
n

where s. (s.,a.) satisfies for all i = 1,...,n the following:

A A

E (Ui(gi(s),e)) E(Ui(gi(ss),e)) for all s in Si.

Where the expectation is taken with respect to e, note that s

in part, depends on e.
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For all e. in J.
1 1

A

E(Ui(gi(E,a),e) I ed E(Ui(gi(S,a_i,6),e)
A

e.) for all (5 in D..
1

Note that actually (ii) is implied by (i) almost everywhere. The strategies

chosen by the individuals yield an allocation rule a.

a(e) = g(b,d(e))

N
G
(E) - the set of allocation rules corresponding to BNE of the game

form G for E.

We shall say that G implements F if:

N
G
(E) F

3. Necessary and Sufficient Conditions for Implementability.

Theorem 1: If an SCC is implementable by a game form G which satisfies

the following condition:

For all f in F there exists a BNE S = (3,a) satisfying
(Cl) For all 6 in D, for all i = 1,...,n

A

for all b and 1; in B..
1

(CZ) g(E,a(e)) = f(e) for all e in J.

Then F must satisfy monotonicity.

Proof: Suppose that F is implementable by a game form G with the above

property and take an f in F and a mapping a which satisfies the

requirements of the monotonicity definition.

In the game G we must have a BNE satisfying (Cl) and (C2) with

respect to f.
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Denote that BNE by (b, d), thus we have:

(i) g(b,d(e)) = f(e)

(ii) A change in the Bi strategy on the part of a single individual will

have no effect whatsoever on the outcome.

We shall show that the following n-tuple of strategies forms a BNE as well.

(E,a(o) = (b,d(c7(6)))

where d(a(e)) = (d1(a1(e1),...,dn(an(en)))

By (ii) above it is enough to show that no individual can gain by a

deviation from his d. strategy, at the second stage of the game. Suppose

by way of contradiction that there exists an individual i and an e. in
A

J. for which there exists a .5 in D. that satisfies:
1 1

A

(B) E(Ui(gi(s,a()),€) < E(Ui ii,a_i(e),6),e)

Now define an allocation rule a in the following way:

a(e) = f(e) for 1E.
1 ii

A

) = g(b(e)05) if e. =

By B we have that this allocation rule satisfies

E(Ui(fi(u ),e) < E(Ui(ai(u(e)),e)
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where f.(a(e)) =f.(a (e
1 
),...,a

n
(e
n
)) and a.(c(e)) is similarly

defined.

Hence for this i, the allocation rule a cannot satisfy

E(Ui(fi(e_vai(ei)), e_ vai(ed) Iui(ei))

E(Ui(ai(e_ vai(ei)), e_ vai(ed) Iui(ei))

For all possible ei's.

(recall that (e_vai(ed)

Since we have by the definition of a an equality for all ui(ei) different

from u. (€.- ) we must have:
1 1

E(U.(f.(e ,a (e )), e a.(e- )) u.(e )) <i i 1 i i

E(U.(a.(e ,u (e )), e ,o (c )) I a.(e ))i i -i 1 i i

By the definition of a and since the di's together with b yielded f

we have:

E(Ui(gi(b,d(e_i,ui( i))), e-i,ui(i)) I ai( i)) <
A

_ vai( i)) I uiCe.i)).

But this contradicts the fact that the d.'s are part of a BNE. Individual

i at the second stage of the game, after observing a.(e.- ), is better off
A

doing (5 and not doing his equilibrium strategy when the others follow

their equilibrium strategies.
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So we get that the allocation rule ,en) = f(a1(61),---an(en))
induced by a BNE. Hence I is in F as well, since the game form G

implemented F, and F indeed satisfies monotonicity.

is

0

As we shall see later on, the conclusion of theorem 1 is false if you

enlarge the strategy spaces in such a way that agents are able to condition

some of their acts on a function of acts taken by others. We shall return

to this issue when dealing with signalling structures.

In order to prove that a monotonic F can be implemented we shall have

to assume that J satisfies NEI (Non Exclusivity of Information). This

assumption will be formulated as follows:

(NEI) For all e in J 2. ei = 0
1=1

This is not the most general way of formulating the NEI consumption. We use

this convenient form to refrain from additional notations. In the proof we

use may the :fact that any e. can be uniquely expressed as a function of

all the other coordinates. We also need two technical assumptions that the

U's are continuous and strictly increasing in their first k arguments,

and that no-one ever gets the Zero bundle allocated to him. These

assumptions are needed, amongst other things, to guarantee that various

fines imposed during the game are indeed effective.
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Theorem 2: If the following assumptions are satisfied:

(Al) n 3

(A2) For all i U. is continuous and strictly

increasing in its first k arguments.

(x y, x 0 y implies for all e in J

Ui(x,e) >

(A3) F satisfies monotonicity

(A4) J satisfies NEI

(A5) For all f in F and all e in J

fi(e) 0, fi(e) 0 0

For all i = 1,...,n

where f. denotes the bundle allocated to individual i.

Then F can be implemented.

Proof: We shall construct an explicit game form implementing F. The

strategy space for individual i will be:

where

S. = B. x D.
1 1 1

B. = P1

D. — J. xii'xNxM

N denotes the set of all positive natural numbers and M the set of all

strictly positive numbers.
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A generic element of the strategy space will be denoted by

f
i

r., a., n., m)
' 1 1 

.

The first component belongs to Bi and the last four to D. The strategy

of individual i can be given the following interpretation:

f
i

- An allocation rule individual i would like to have. This has to be

decided upon before the observation of any private information

r. - The e. he "observed".
1 1

a. - A trade rule individual i would like to have
1

n. - An "indication" as to how much weight should be assigned to the trade

rule demanded

m. - A number affecting the "fines" imposed on individual i for any

detected lies (declared profiles outside J) and deviations from

allocations in F.

The outcome function is defined as follows:

Stage 1

Construct a weighted average of the fi's and denote it by k. We shall

explicitly show how kl(el,...,e
n
), which indicates how much of the first

commodity does individual

constructed:

Define:

get, given some realization of e, is
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t
1 

t'
a.(€ 1,...,e ) f. (e

n
) - f.

1 
(Cl,... n) In j 1 j 

t.
where f. indicates how much of the i

th 
commodity does individual j get

in the allocation rule proposed by t.

Now define:

a.
1
a

1

and finally

\n
a=

Li —lai.

if a > 0

if a = 0

f (e 
1" 

e ) = i=1fi.f.
1 n 

 1 J

i 1,...,n

In this way we get an allocation rule f, if k is in F we call it f

and move to the next stage. Otherwise we choose the f in F which

minimizes

f ilk(e) - f(e)il
2
d/(e)

where /(e) denotes the distribution function of e. If this problem has

more than one solution we just choose one of them. If it has no solution

then we choose the default allocation rule as f. In any case we come up

with an f e F.
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As said previously this stage takes place before any private

information is observed. The next stages take place after the individuals

observe their f.'s.
1

The individuals, after observing their respective e.'s, announce r.,

a., n., m..
1 1 1

Stage 2.

n profiles in J one for each individual are constructed. The i-th

profile denoted by (ri,...,ri,...,r
n
) is constructed in the following way.

The closest point in JI to (r r. r.
' 1-1' 1+1'

denoted by:

(r . r. r.
,—"r' 1-1' 1+1ni

and r. is defined by

r. = -
1 

.ri
jpAl

This way we get a profile in J given by

r = ( ..,r
n
)

is
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This construction has two properties which we shall use later on.

(i) If (r1,...,rn) is in J then all the n profiles are identical

and equal to r.

(ii) A change in the strategy of individual i will not change the

i-th profile.

Stage 3.

Construct a trade rule -a-. It will depend on the announced trade rules a.

and the various n. '5.
1

We shall explicitly show how

-1 -1
aj(e1 

a.(E) for j = 1,.. • ,n

-1
are constructed, where a.(e) shows how much of the first commodity is

)n
traded by individual j given some realization of e. Define R =. n..

1-1

Then solve:

.(l 2 -1 2
min 1(0) + + (an(E))
s.t.

-1 -1
ye) + ▪ + an(e) - 0

n1+0.1
1 

n
n -1 1

 (ye) - ye)) + • + --(a
n
(E) - an(e)) - 0

-14

K such problems are solved and a trade rule -a-. is thus constructed.

a.(e) - shows how much did individual j trade in commodity i

allocation rule proposed by individual j.

in the
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Remarks: If the a.(e) are all zeros then the a.(e) will be zeros as

well.

Writing (n1 + 0.1) ensures the set of feasible points for the minimization

problem is nonempty. This, in turn, will guarantee the existence of a

unique solution to the minimization problem (since the objective function is

continuous, strictly convex and bounded from below).

Stage 4.

Define an allocation rule r by r = a + f, where -a-. and f are

respectively the trade rule and allocation rule constructed in the previous

stages.

Now we shall construct parts of a set of new allocation rules, one for each

individual.

For all i = 1,...,n define p by:

= l 
6..r.(e

l' 
..,E

n
) ' 

where 0 <
i 

1 and is the largest such number for which:

-i -i
E(U.(p.(e 

i
,r.) r.)

-1 - 



- 23 -

Notice that for any individual

with r..
1

Now define

is defined for all e . compatible
-1

where 0 < 7 1 is the largest such number for which

Stage 5.

Define e as the closest point in J to (r
1, 

...,r
n
) and let:

= t..q.(r )

m.
where t. = (1 +  1 (SupP(e)II + ilr-;11))-1

\11. m.

Li=i -3

First we shall prove that F C N
G
(E). Given f in F we construct the

following BNE:
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for all i = 1,..

r. = 6.; a. — 5; n. m. 1 for all i 1,.. ,n and1 1 1 1 1

for all e in J.

At stage 1 we end up with f and no single individual can change the

agreed upon by deviating and declaring some other allocation rule. At stage

2 we get the profile (e. ..,e
n
) for all the individuals.

At stage 3 we get the zero trade rule.

At stage 4 we get r = f and p where defined equals r. Finally since

the profile is the same for all individuals, ri equals p and hence f.

At stage 5 we get for all i = 1,...,n

gi(b,d(e)) =fi(e) for all e in J

since t. = 1.
1

So this n-tuple of strategies does yield the allocation rule f.

It remains to be shown that this n-tuple of strategies does form a BNE.

Individual i cannot affect the allocation rule f or the (ii)

profile by changing his strategy. Since all the others report truthfully

r is the "true" profile. He can change the a but this will never yield

him an allocation which is strictly preferred to the f allocation given

the true e. observed by him.

In order to prove N
G
(E) C F we shall first show that all BNE must

have:
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•
= for all e in

(r (e )
n( fl

))G J for all e in J.

If one of these conditions is violated, we get, by stage 5, that no choice

of m. would yield an equilibrium point. m. must be strictly positive,
1 1

but the i-th individual would like to make it as small as possible.

We shall now show that in a BNE the set of mappings

n
(e
n
)

satisfies the requirements of the monotonicity condition. r. maps J.
1

into J. and as remarked before
1

r(e) is in J for all e in J.

Now, suppose by way of contradiction, that there exists as individual i

and an allocation rule a that satisfies for all €. inin J..
1

E(U.(f.(e ,r (c )), e ,r.(e )) r.(e ))
1 1 i i -i 1 i 1 i

E(Ui(ai(e_vri(ei)), e-i,ri(ei)) I ri(ei))

But there exists an €. inin J. for which
1

E(Ui(fi(r(e)),e) e ) <E (U. .(r(f)),e)
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If that is the case,when observing e
i' 

individual i can improve his

position by changing his strategy.

By declaring an n. large enough and an m. small enough and the

trade rule

a(e) = a(6) - f(6)

The i-th individual can get arbitrarily close to the allocation rule

a.(6 r.(€.))
-1

So the i-th individual can get a sequence of allocations

a.(6 r.(e.)) -4 a.(6 
1 -1 1 1 1 -1 1 1

n-co

Since U. is continuous we have that
1

lim U.(a.(e r.(c.)), e
- 

e )
-1 1 i

n-+co

U.(a.(e r.(e.)), e e
1 1 -1 1 1 -1 i

for all e . compatible with r.(L).
-1 1 1

So this sequence of allocations satisfies
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E(Ui(fi(r(e)), e) I < E(lim U (a(r
i 

.
114c0

Since 'U. can be bounded from above by an integrable function we can take

the limit out of the expectation operator and obtain:

E(Ui(fi )),e) e.) < lim E(U.(a.(r(e)), e)
n-kx)

So we see the i-th individual can, by getting close enough to the a

allocation (by a suitable change of his strategy), improve his position

contradicting the fact that we were at a BNE.

Hence r1(e1),...,rn(en) satisfy the requirements of the monotonicity

definition. However, the allocation yielded by the BNE is precisely

f(r1(61),...,rn(En))

and since F satisfies monotonicity and f was in F we have

f(yel),...,rn(en)) e F as well.

0

Remark: If we assume J and f are closed and convex sets then all the

projections we perform are continuous and we have a "truly" continuous game

form.
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4. Mbnotonicity in the Wide Sense and Implementability

In order to define monotonicity in the wide sense we shall have to

introduce some more notations.

A signalling structure will be an n-tuple of functions P = (P1,...,P
n
)

where

P.: F J '4 r. 1,...,n1 1

P.:J -4 r.
1 1

and Pi(e) is the signal individual i should get if allocation rule

in F is used and in J occurred. The signals sent to individual i

are taken from some arbitrary space denoted by ri. For most applications

this can be taken as some Euclidean space. More complex signalling

structures where the signals themselves are realizations of some random

variables can be handled at the cost of more notations and the definitions

and the results will basically remain the same.

An SCC F is said to satisfy Monotonicity in the Wide Sense (MWS) if there

exists a signalling structure P such that the following holds:

For any allocation rule E F if there exists a mapping

a = (a1 11,...07) -where a.: J. -4J. that satisfies the following:1 1

(i) For any e in J, a(e) is in J

(ii) For all i = 1,..

,for all e

. n for any allocation rule a that satisfies

in J.
1



- 29 -

E(Ui(fi(e_i, ai(ei)), e_i, ai(ei)) I ai(ei), ai(ei)))

f
E(U.(a.(e

' 
a.(e )), e a.(e.)) 

-i  -1

for all e
-i 

compatible with a.(e.)
1 1

We have that for all 6. in J.
1 1

E(Ui(fi(a(e)),e) I ei, Pi(a_i(e_i), ai(ei)))

E(Ui(ai( (e)),e) I, ai(ei)))

for all e
-i 

compatible with e
i
.

(a (e .),a.(e.)) denotes
-1 -1

e. ) a.
1-1 ' 1

Then we have in F where:

,

1+1 i+1)'•••'an(en))

We shall now define a new game form which uses much larger strategy

spaces than the ones used before. We shall define a BNE for that game and

then prove that the allocations yielded by BNE will coincide with the

allocations in F.
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Generally speaking the game will consist of three stages. The first

stage is played before any private information is observed and at the end of

this stage an allocation rule in F is decided upon. The second stage

takes place after the individuals observed their private information and at

that stage each one reports the private information he "supposedly"

observed. At the end of that stage various signals, based on the allocation

rule agreed upon and the private information transmitted, are sent out to

the individuals. After observing their respective signals, the individuals

act again and this is the last stage of the game after which the outcome is

determined. Formally speaking the game form G will consist of the

following:

1. An n-tuple of strategy sets (S S )
1, ' n

S. = B. x H. x D.
1 1 1 1

B. denotes acts that have to be taken before the observation of any

private information. H. denotes acts that have to be taken after the

observationoftheprivateinformation.InourframeworkH.is just

each one is requested to report the number he supposedly observed.

The acts in D. are taken after the signal is observed

n nS = B = 
IITT
i=1 

B H = 11
TT 

H. D n
i=1 Il

TT
i=1

2. A signalling structure P = (P1,...,Pn) where

P.: B x H r.1 1
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is the signal received by individual i and 
1 

is some abstract
1 

signal space

3. An outcome function

g: BxHxD-* A where A denotes, as before, the set of all

feasible allocations

g = (g1,...,gn) where gi denotes the bundle received by the

i-th individual.

A strategy for individual i will be a choice of b. in 
' 

unction

h.: J. H. and a function di: Ji x r. , D..
1 1 1 1 ) 1

In defining the BNE of such a game we use the following notation:

s = (si,...,sn); b = (b1,...,bn); a = (a
l'
...,a

n
); 

= n '

7 — (71,...,7
n
) will respectively denote generic elements of S, B, H, D

and T.
A

For s in S. we define
1

A

S) = S,

A A

(d_i,d) is similarily defined, d in any function mapping J. x T.

A

into D.
1

h(e) = (h
1
(e
1
),...,h (e ))

n n

g6,7) = (di(E1,71),...,dn(en'in))
A

For all e in J and all a in H. define:
A A

(h_i,a) = (h1(e1),...,hi-l(ei-1),a,hi+1(ei+1),...,hn(en))
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A

For all (6,-0 in J x r and all 6 in D. define:
1

A A

(d_i, 6) — n n n
.... .... .... ....

A BNE of the game is an n-tuple of strategies s — (s
l'

...,s
n
) where s.

1

6. E
i' 

il
i 
) satisfies for all i — 1,...,n the following:

1' 

(i) E(Ui(gi(s),e)) 
A

for all s in S..
1

(ii) For all e. in J.
1 1

c) I
A A

E(U.(g.(E,F1 ,a,a .,d),e
1 1 -i -1

A A

For all a in H. and all d mapping Ji x ri into D.
1 1

(iii)For all e. inin J. and
1

(cr

in r.1

A

E(Ui(gi(E,E,a_i,15),6)

A

for all 6 in D..
1

Note that (ii) and (iii) are actually implied by (i) almost everywhere. Now

we can state the following theorem.

Theorem 3: If the following assumptions are satisfied:

(Al), (A2), (A4), (A5) of .theorem 3

and (A3)' F satisfies MWS

Then one can construct a game form G whose BNE coincide with F.

Proof: We shall use the same notations as in the formal definition of the

game form. The strategy set for individual i will be:
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where

Si. x

D. := ,RxNxM
1

N and M respectively denote the set of all positive natural numbers and

the set of all strictly positive numbers.

A generic element of the strategy space will be denoted by:

r., a., n., m).
' 1 1 

.

The first component belongs to B., the second to H. and the last three to

D..
1

The interpretation of the strategy is similar to the one in theorem 2.

The outcome function is defined as follows. Stages 1 and 2 as in Theorem 2.

At the end of stage 2 the individuals get their respective signals.

Individual i gets the signal:

• Recall that P is the signalling structure that appeared in the definition

of MWS, f is the allocation rule arrived at in stage 1, and -ii is the

profile constructed for the i-th individual.
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'At,this point of the game the individuals decide on their strategy

choice in D..
1

_ 
At stage 3 the trade rule a is constructed the same as in theorem 2.

At stage 4 the p. is somewhat different.i

For all i = 1,...,n define pi by:

P• ..,e
n
)

1 1 e
n
)

where 00 .< 6. 1 and is the largest such number for which:

-i -i f -i
E(Ui(fi(el,...I 0 r. . ▪ .,e 

,n
), e r.) r. E.(r ))

fE(Ui(pi ▪ e
n
), e , Ir., P.(r ))

Notice that for any individual i, p
i 

is defined for all e compatible

fwith and the signal ).

and the outcome function gi are defined as in theorem 2.

First we shall prove that F is contained in the set of BNE.

Given f in F we construct the following BNE:

f
i 
= f for all i = 1,...,n

r. = . for all i = 1,...,n

all e's in J and all possible

signals.



- 35 -

Since everyone reports truthfully the ii will be the "true" profile.

Individual i can change the a but this will never yield him an

allocation which is strictly preferred to the f allocation given the true

e. and the "true" signal observed by him.

Now we show that N
G
(E) C F, the same way as in theorem 2 it can be

shown that:

(r1(E1),...,rn(611)) E J for all e in J

- 6 for all 6 in J and all possible signals.

Now we show that in a BNE the set of mappings

(r1(61),...,rn(en))

satisfy the requirements of the MWS condition. r. maps J. into J. and

as remarked previously r(e) is in J for all e in J.

Now suppose by way of contradiction, that there exists an individual

and an allocation rule a that satisfies for all e in J..
1

f -
E(U

i 
(f

i 
(e r.(6 )), e ,r.(6

i 
)) r.(6.), P.(6 ., r.(6.)))

i -1

E(U
i 
(a.(e r 
(6ii 

)), e r.(6 )) r.(6.),
i 1 -1

for all e
i 

compatible with r.(€.)
-1 1 1
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But there exists an (e e ) in J for which

E(Ui(fi(r(e)),e)

E(Ui(ai(r(e)),e)

e P.(r ), 
i
))) <

i' 

e P
f
(r .), r.(L)))

In that case the i-th individual could at the third stage improve his

position by changing his strategy after observing c. and the signal

P.(r .(e .), r(e- )). Now the same way as in theorem 2 we contradict the
-1 -1

fact that we started from a BNE.

Hence r
1
(e
1
),...,r

n
(e
n
) satisfy the requirements of the MWS

definition. The allocation yielded by the BNE is precisely f(r(e)) and

since F satisfies MWS and f is in F we have

f(r(e)) E F as well.

0

5. Implementation of Constrained Rational Expectations Equilibria

In the previous sections we found sufficient conditions for the

implementability of given SCC's. The next issue we wish to address is

whether specific SCC's can be implemented more efficiently, i.e. by having

smaller strategy spaces or reducing the informational requirements on the

part of the designer. The same issue arises in economies with complete

information. The typical strategy spaces used in the general implementation

theorems asked the individuals to report whole profiles of preferences. In
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our framework individuals send some real parameters, but since it is assumed

the designer knows the basic form of the utility function, i.e. he knows the

this is equivalent to having individuals send whole profiles of

preferences.

In economies with complete information various game forms, using much

smaller strategy spaces, were built to implement specific SCC's. Several

works were concerned with implementing the SCC induced by competitive

equilibrium allocations, namely, the Walrasian correspondence, or some

variant of it. The typical game form had individuals announcing prices and

net trades.

A natural analogue of the Walrasian correspondence in economies with

incomplete information is the SCC induced by Rational Expectations

Equilibria (REE).

This concept of equilibrium takes into account the fact that in the

presence of incomplete information the individuals will use any information

available, be it private or some publicly observed signal, in order to form

correct conditional expectations.

In our framework the definition of a REE takes the following form:

A pricing function P: J R
k 

and an allocation rule f: J A

constitute a REE if the following holds:

(i) for all i = 1,...,n fi(e) solves the problem

max E(Ui(X,e)
X
s.t.

P(e).Wi

X 0

for all e in J.
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(ii) For all e in J

P(e)(4 
\ f.(e
=1 1

W) = 0

(J, A, W, respectively denote the support of e, the set of feasible

allocations and the aggregate initial endowment.)

This is the usual definition of REE, however it is often required that

the above conditions hold just almost everywhere. It is, of course, assumed

that the individuals know the distribution of e and the pricing function.

One could, of course, let the individuals have different beliefs about the

distribution of e, but this is not done in our framework.

If we assume that the utility functions are strictly increasing,

can be taken to map J into R and then )n 
i1

f.(e) = W for all e in
++ =

J.

In economies with complete information the Walrasian correspondence is

not monotonic. However, a variant of it, the Constrained Walrasian

Correspondence is. The same problem arises here and the definition of a

Constrained Rational Expectations Equilibrium (CREE) is as follows:

P: J R
k 

and f: J -4 A constitute a CREE if the following holds:

(i) For all i = 1,.. fi(e) solves the problem

max E(Ui(X,e) ei, P(e))
X

S.T.

P(e)W.

X .15 W

X >_ 0

for all e in J
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(ii) P(c)() f.(e) -
i=1 1

The difference between a CREE and a REE is that in the former, individuals

are not allowed to demand bundles that exceed in one, or more, of their

coordinates the available aggregate endowment. It is clear that for

interior solutions both definitions coincide.

In Postlewaite and Wettstein (1983) a game form implementing the

Constrained Walrasian Correspondence was constructed. This game form will

be a part (stage 3) of the game we construct to implement CREE.

The game form we construct to implement the CREE will have much less

stringent informational requirements than the ones possessed by the general

gaineforminamorem3.nedesignerdoesnotknowthelL's, but he will

still know the distribution of 6 and the initial endowments.

Our assumptions will be similar to the ones used in theorem 3, and the

game form constructed, as far as timing of actions is concerned, will follow

the lines developed in the previous section.

Theorem 4: If the following assumptions are satisfied:

(Al) n 3

(A2) For all, i U. is continuous, strictly increasing

and strictly concave in the first k arguments for any c in J.

(A3) For all. W. is in R
k 

.
++

(A4) J satisfies NEI.

Then the game form described below implements the CREE correspondence.
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The Game Form

where

The strategy set for individual i will be:

S. — B. x H. x D.
1 1 1 1

D.= R x R
++ 

x R-44

P is the set of all functions from J into R
k
+. 

A generic element of the
+

strategy space will be denoted by:

(pi, r., z., n., m.)
1111

The first component belongs to B., and has to be decided upon before the

observation of any private information. The second component belongs to H.

and has to be decided upon after the observation of e.. The last three

belong to Di and have to be decided upon after observing the signal which

in our case will be some price vector.

The strategy of individual i can be given the following

interpretation:

p - The pricing rule individual i would like to prevail.

r. - The e. he "observed".
1 1

z. - A net trade individual i would like to have.
1

n. - An "indication" as to how much weight should be assigned to the

net trade demanded.

m. - A number affecting the fines imposed on individual i for any

detected lies (declared profiles outside J).
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The outcome function is defined as follows:

Stage 1

a weighted average of the P
i
's is constructed the same way as k is

constructed in stage 1 of theorem 2.

Stage 2

n profiles in J, one for each individual, are constructed in the same way

as in stage 2 of theorem 2. The i-th profile is denoted by r .

By the end of this stage we have a pricing function P and n profiles

n

Individual i is now told what r r i) s, i.e. he is told a certain price

vector in R..
++

Stage 3

After being told some price vector, individual i sends z,. n. and m..1

A set K. is defined for each individual:

WifW) = (z E Rk I = 0, z + W. 0, z + W. 15 W)
1 1

yi is defined to be the closest point in Ki to z.. Note that K
i

is a

closed and convex set.

C = (n e I n.ni :5_ 1 for i = 1,.. ,n and n-).
1 
n.(y.+W.) W)

1—

n* will be defined by n* = max n. Now define c as the closest point in
neC

to (r1,...,r
n
) and let
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g.(s ) = n*-n..t.(y, + Wi)

m.
where t. + 

1 

j =1

ilr -

m.

Proof: In the first part of the proof we shall show that any CREE

allocation can arise as a BNE of this game.

Let P(e), f(e) denote a CREE.

We now construct the following BNE which yields f.

Pi= 
P

r. = f
1

for all i = 1,...,n

for all e in J and all i 1,...,n

z 
= 

f.(e) - W. for all e and all the possible signals for
3.

n. = 1
1 1

all i = 1,...,n.

At the first stage we end up with P and no single individual can change it

by deviating and declaring some other pricing function.

At the second stage we end up with the true profile (6 for all

the individuals. At the end of this stage each individual is told the

"true" price P(e1,..

For all e in J z. is contained in 1j, and hence yi equals z. and
1 1

since f was a CREE we have that for all f in J

4_1(fi(e) - W. + Wi) = W
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So that lalk = 1, since n. — 1 for all i = 1,...,n.
1

t. = 1 equals one since they always tell the truth.

Thus

g(s1".
.,s

n
) = f(e)

Now we shall show that this n-tuple of strategies does form a BNE.

Individual i cannot change the set K
i 

and he gets for any e in J the

point, f.(e) - W. in K
i 

which, by the definition of the CREE is the most

preferred point in K. Hence individual cannot gain by changing his

strategy. This holds for all i = 1,...,n, which shows this n-tuple of

strategies forms a BNE.

Now we shall show that any BNE of the gme forms a CREE allocation.

BNE gives rise to some pricing function P which is constructed in stage 1.

At the second stage we have an n-tuple of strategies

r1(e1),...,rn(en)

where r.: J
i 

J
i
.

1

These functions tell what observation will be reported by individual i as

a function of his true observation. Because of the t term we get the

same as in theorems 2 and 3 that r(e) = (r1(e1),...,r
n
(e
n
)) must satisfy

r(e) is in J for all e in J. So the "effective" pricing function we

have is

P(el...,e
n
) = P(r

1
(e
1
),...,r

n
(e
n
))
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After stage 2, each individual is told the price vector P(e) and his

utility of bundle X if occurred is now:

V
i 
(X) E(Ui(X,e) I 

It can be shown the same way as in Postlewaite and Wettstein [1983] that for

any e in J the BNE,must have

n*.n. ---. 1 for all i 1,...,n
1

= °

and as is clear from the properties of r(e)

t. =l for all i 1,...,n.
1

Furthermore, proceeding as in Postlewaite and Wettstein [1983] it can be

shown that for any in J the bundle received by individual i in the

BNE, fi(6), must solve:

max Vi(x)
X

s.t.

•

X e Ki(P(e), Wi, W)
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)n
and also 

i=1
f
i
(e) = W for all e in J.

Hence the allocation rule induced by the BNE f(e), and the pricing function

P(e) constitute a CREE.

0

Remark: If J is assumed to be convex the above game form is indeed

continuous.

6. Concluding Remarks

We have succeeded in continuously implementing various SCC's. However,

the strategy space was rigged so as to eliminate bad BNE. This was done by

constructing a noncompact strategy space. The question is whether we could

obtain similar results using a compact strategy space so that there will

always be a best response strategy.

The signalling structures we used were, of course, not the most general

ones. One could consider adding some noise to the signals and so on. This

will prove interesting when examining the implementability of specific

SCC's.

The NEI assumption is indeed quite restrictive. However, it is not

clear whether it can be relaxed. Blume and Easley [1985] have shown this is

a necessary condition for certain kinds of implementation. It could be that

introducing a repeated game structure where some misrepresentation could

hurt you in the long run, will enable us to relax that assumption.

One area not mentioned in this work where many of the ideas used here

can be applied, has to do with resource allocations within large' firms. The

designer will be the manager and the players the heads of the various

departments. Good allocations will supposedly be profit maximizing ones.
a
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