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IRREVERSIBLE INVESTMENT, CAPACITY CHOICE, AND THE VALUE OF THE FIRM

by

Robert S. Pindyck

ABSTRACT

A model of capacity choice and utilization is developed

consistent with value maximization when investment is irreversible

and future demand is uncertain. Investment requires the full

value of a marginal unit of capacity to be at least as large as

its full cost. The former includes the value of the firm's option

not to utilize the unit, and the latter includes the opportunity

cost of exercising the investment option. We show that for
moderate amounts of uncertainty, the firm's optimal capacity is

much smaller than it would be if investment were reversible, and a

large fraction of the firm's value is due to its options for

future growth. We also characterize the behavior of capacity and

capacity utilization, and discuss implications for the measurement

of marginal cost and Tobin's q.
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1. Introduction.

When investment is irreversible and future demand conditions are

uncertain, a firm's investment expenditure involves the exercising, or

"killing," of an option (the option to productively invest). One gives up

the option of waiting for new information (about evolving demand and cost

conditions), and using that information to re-evaluate the desirability

and/or timing of the expenditure. This lost option value must be included

as part of the cost of the investment. As a result, the standard investment

rule "Invest when the marginal value of a unit of capital is at least as

large as the purchase and installation cost of the unit" is not valid.

Instead the marginal value of the unit must exceed the purchase and

installation cost by an amount equal to the value of keeping the firm's

option to invest alive -- an opportunity cost of investing..

This aspect of investment has been explored in an emerging literature,

and most notably in the recent paper by McDonald and Siegel (1986). They

show that with even moderate levels of uncertainty, the value of a firm's

option to invest can be large, and an investment rule that ignores this will

be grossly in error. Their calculations and those in the related papers by

Brennan and Schwartz (1985) and Maid and Pindyck (1985), show that in many

cases projects should be undertaken only when their present value is at

least double their cost.'

The existing literature has been concerned with investment decisions

involving discrete projects, e.g. whether to build a factory. In this paper

I examine the implications of irreversibility for capacity choice, e.g. how

large a factory to build. In particular I focus on the marginal investment

decision. This provides a simple and intuitively appealing solution to the

_
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optimal capacity problem, as well as insight into the sources and evolution

of the firm's value. In addition, it clarifies the measurement of long-run

marginal cost, and provides a simple generalization of Tobin's q.

A firm's capacity choice is optimal when the value of the marginal

unit of capacity is just equal to the total cost of that unit. This total

cost includes the purchase and installation cost, plus the opportunity cost

of exercising the option to buy the unit. An analysis of capacity choice

therefore involves two steps. First, the value of a marginal unit of

capacity must be determined, given that the firm already has capacity K.

This is non-trivial because future profits resulting from the marginal unit

are nonlinear functions of (unknown) future demands. (If demand falls, the

capacity may be unutilized.) Second, the value of the option to invest in

the marginal unit must be determined (it will depend on the value of the

marginal unit itself), together with the decision rule for exercising the

option. In essence, this decision rule is the solution to the optimal

capacity problem.

Because a marginal unit of capacity need not be utilized, it is worth

more when demand fluctuates stochastically. This might suggest that the

firm should hold more capacity when future demand is uncertain, but in fact

the opposite is true. The reason is that uncertainty also increases the

opportunity cost of exercising the option to invest in a marginal unit.

Although the value of the marginal unit increases, the value of the option

increases even more, and the net effect is to reduce the firm's optimal

capacity.

This model of capacity choice also has implications for the valuation

of firms. The value of a firm has two components: the value of installed



capacity, and the value of the firm's options to install more capacity in

the future. Using reasonable parameter values, we find that for typical

firms, "growth options" should account for more that half (and for some

firms much more than half) of market value.

This paper, like others cited above, stresses the options that firms

have to productively invest. I consider these options to be a distinguising

characteristic of firms. Firms hold them even if they are price-takers in

product and input markets, and they can account for a good fraction of their

market value. What gives firms these options? It may be a patent on a

particular production technology. More generally, the firm's managerial

resources and expertise, reputation, market position, and possibly scale,

all of which may have been built up over time, enable it to productively

undertake investments that individuals or other firms cannot undertake.

The next section lays out a simple model of capacity choice with

irreversible investment. It differs from previous models of this type,

e.g. that of Brennan and Schwartz (1985) and McDonald and Siegel (1986), in

that the focus is on the marginal investment decision, rather than the

decision to invest in a single lumpy project. Remaining sections of the

paper use the model to study the value of the firm, the behavior of capacity

and capacity utilization over time, and implications for the measurement of

marginal cost and Tobin's q.

2. A Model of Capacity Choice.

Consider the investment decisions of a firm that might have monopoly

power, and faces the following demand function:2

P = - X(/ (1)
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(The firm might be a price-taker, in which case Y = 0.) Here 9(t) evolves

over time according to the following stochastic process:

de = a0dt + aeodz (2)

where dz is the increment of a Weiner process, i.e. dz = s(t)(dt)1/2, with

c(t) a serially uncorrelated and normally distributed random variable.

Eqn. (2) says that the current value of 9 (and thus the current demand

function) is known to the firm, but future values of 9 are unknown, and are

lognormally distributed with a variance that grows with the time horizon.

Thus even though information arrives over time (the firm observes 0

changing), future demand is always uncertain, as is the case in most

real-world markets.3

Denote by the correlation of 0 with the market portfolio. Now

suppose some asset or portfolio of assets exists with a stochastic return

perfectly correlated with 0, so that if x is the price of this asset, it

evolves according to:

dx = pxdt + axdz

By the CAPM, the expected return on this asset must be p = r + sip...a, where

si is the market price of risk. We will assume that a, the expected percen-

tage rate of change of 0, is less than g. (It will become clear later

that if this were not the case, no firm in the industry would ever install

any capacity. No matter what the current level of 0, firms would always be

better off waiting and simply holding the option to install capacity in the

future.) Denote the difference between g and a by 8, i.e. 8 = g - a.

The firm's problem is to determine, initially and over time, its

optimal investment spending on new production capacity. I assume that the

firm starts with no capacity, so that at t = 0 it decides how much initial
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capacity to put in place. Later it may or may not add more capacity,

depending on how demand evolves.

For simplicity I assume that new capacity can be installed instantly,

and capital in place does not depreciate.4 Another assumption -- and an

important one -- is that investment is irreversible. That is, although

capital in place can be sold by one firm to another, its scrap value is

small because it has no alternative use than that originally intended for

it. Thus a factory built to produce widgets can only be used to produce

widgets, so if the demand for widgets falls, its market value will fall.

The fact that investment is irreversible implies that there is an

opportunity cost associated with adding capacity -- adding capacity today

forecloses the possibility of adding it instead at some point in the future

_... •
(or never adding it at all). Put another way, the firm currently has

options to install capacity at various points in the future (options that

can be exercised at the cost of purchasing the capital), and by installing

capacity now, it closes those options. The optimal rule is to invest until

the value of a marginal unit of capital is equal to its total cost -- the

purchase and installation cost, plus the value of the option on the unit.

A few more details are needed to finish specifying the model: (i) each

unit of capital can be bought at a fixed price k per unit; (ii) each unit

of capital in place provides the capacity to produce one unit of output per

time period; and (iii) the firm has an operating cost C(Q) = c10 +

(1/2)c202. In general cl and/or c2 can be zero, but if X = 0 (so the firm

is a price-taker), we require c2 > 0 to bound the firm's size.

Note that if future demand were certain i.e. a = O s the firm's optimal

initial capital stock would be K*(0) = (0 - cl - rk)/(2X+c2), or equivalent-
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ly, the firm should add capacity only if 0(K) > (2Y+c2)K + CL + rk. We will

see that if future demand is uncertain, the firm's initial capital stock

will be smaller than this. Furthermore, for moderate amounts of uncertain-

ty, it will be smaller by a considerable amount.

The Value of a Marqinal Unit of Capacity.

To solve the firm's investment problem we first determine the value of

an incremental unit of capacity. That is, given that the firm already has

capacity K, we want to find the value to the firm of an incremental unit,

which we denote by AV(K). (Note that AV(K) is a function of 0 as well as

K.) This is just the present value of the expected flow of incremental

profits from the marginal unit. Because the unit does not have to be

utilized, future incremental profits are a nonlinear function of 9, which is

stochastic. In particular, given a current capacity K, the incremental

profit at any future time t resulting from a marginal unit of capacity is:

Mr(K) = max [(), (Ot (2Y+c2)K c1)] (3)

Thus AV(K) can be written as:

JO(K) = 77A1r,(14.9)f(0 1 t)dOe-Ptdt
00 L

(4)

where +(O l t) is the density function for 0 at time t, p is the risk-adjusted

discount rate, and Alit(K;0) is given by eqn. (3). It is difficult, however,

to evaluate (4) directly. In addition, the rate p might not be known.

Instead we obtain AV(K) by solving the following equivalent problem:

What is the value of a factory that produces 1 unit of output per period,

with operating cost (2Y+c2)K + cl, where the output is sold in a perfectly

competitive market at a price Ot, and where the factory can be shut down

(temporarily and costlessly) if the price Ot falls below the operating
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cost” It is shown in the Appendix that the solution to this problem is:

AV(K) =

where:
1

1 = r8(P1 - P2)

b 01
1

b2OP2 + 0/8 - C(2Y+c2)K + cl]ir

; 0 < (2Y+c2)K c i

0 > (2Y+c2)K + cl

1(r-8-a2/2) 
+ ((r-&-2/2)2 4. 2ra2

1/2

(r-8-a2/2) 1 
2ra23

1/2
C(r-8-a2/2)2

r - E2(r-8)

0.2

1-131
C(2I+c2)K + c i]

- E1(r-8) 1-p2
C(2Y+c2)K + c l]

r8(p1

> 1

<0

>0

>0

A numerical example is useful to illustrate the characteristics of

AV(K), as well as other aspects of the .model. For this purpose I choose

r = 8 = .05, k = 10, cl = 0, and either Y = .5 and c2 = 0, or equivalently

= 0 and c2 = 1.6 I vary 0 or K, and consider values of a in the range of

0 t .4.7 For purposes of comparison, let AV0(K) denote AV(K) for a = 0, so

AVo(K) = 0/8 - [(2Y+c )K + ci)/r for 0 > (2Y+c2)K + cl, and 0 otherwise.

For our numerical example, AV0(K) = 20(0-K) for 0 > K, and 0 otherwise.

Figure 1 shows AV(K) as a function of 0 for K = 1 and a = 0, .2, and

.4. Observe that AV(K) looks like the value of a call option -- indeed it

is the sum of an infinite number of European call options (see Footnote 5).

As with a call option, AV(K) is increasing with a and for a > 0,

AV(K) > AVo(K) because the firm need not utilize its capacity. As 0 4 m,

AV(K) 4 AVo(K); for 0 very large relative to K, this unit of capacity

will almost surely be continuously utilized over a long period of time.

Figure 2 shows AV(K) for a = .2 and K = 0, .5, and 1. Note that AV(K)

is increasing with K, and when K is smaller, AV(K) AVo(K) is smaller for
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all 0 (the marginal unit is more likely to be utilized). When K = 0, 0(0)

= 00(K); because c l = 0, the first marginal unit will always be utilized.

Figure 3 shows AV(K) as a function of K for 0 = 2, and a = 0, .1, 9•

and .4. Because demand evolves stochastically, a marginal unit of capacity

has some positive value no matter how large is the existing capital stock;

there is always some chance that it will be utilized over any finite period

of time. The greater is a, the more slowly O(K) declines with K.

The fact that 0(K) is larger when a > 0 might suggest that the firm

should hold a larger amount of capacity, but just the opposite is true. As

shown below, the firm's opportunity cost of exercising its option to invest

in the marginal unit also becomes larger, and by an even greater amount.

The Decision to Invest in the Marginal Unit.

Having valued the marginal unit of capacity, we can now determine the

value of the firm's option to invest in this unit, and the optimal decision

rule for exercising the option. This is straightforward; the option is

analogous to a perpetual call option with exercise price k, on a stock that

pays a proportional dividend at rate 6 and has a current price 0(K). In

the Appendix it is shown that its value, which we denote by AF(K), is:

where:

a(K) = c
a0f31

AV(K) - k

a =
PI

9 < 0*(K)

(p2-pi)
p"S t

>0 ,

(6)

and b2 are given under eqn. (5) above, and e(K) is . the critical

value of 0 at which it is optimal to exercise the option, i.e. for 0 > 0*(K)

the firm should purchase the unit. This critical value 0*(K) is in turn the

solution to :
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+12.312.1.:E32.(0.)(32
pispi

(2Y+c2)K + Cj
k = 0 (7)

Eqn. (7) can be solved numerically for 0*, and eqn. (6) can then be

used to calculate 6F(K). The reader can verify that as 8 4 0, 0*(K) 4 00.

Unless 8 > 0, the opportunity cost of investing in a unit of capacity always

exceeds the benefit. Thus if firms in an industry are investing optimally,

we should always observe & > 0.

As with a call option on a dividend-paying stock, both AF(K) and the

critical exercise value 0*(K) increase as a increases. Figure 4 shows AF(K)

as a function of 0 for K = 1 and a = 0, .2, and .4. When a = 0, 0* = 1.5,

i.e. the firm should increase capacity only if 0 exceeds 1.5. For a =

and .4, 0" is 2.45 and 3.44 respectively. The opportunity cost of exercis-

ing the firm's option to invest in additional capacity is LIF(K), which

increases with so a higher a implies a higher critical value 0*(K).

Also, it is easily shown that 0*(K) is monotonically increasing in K.

The Firm's Optimal Capacity.

The function 0*(K) is the firm's optimal investment rule; if 0 and K

are such that 0 > 0*(K), the firm should add capacity until 0* falls to 0.

Equivalently we can substitute for b2(K) and rewrite eqn. (7) in terms of

K*(0), the firm's optimal capacity:

r-E1 (r-8)0P2C(2X+c2)K* + c 1 31-132
r8131

E2Y+c2)K* + c l

- 

(E1:14 — k=0 (7,)
BPI

Figure 5 shows K*(0) for a = 0, .2 and .4. (For many industries .2 is

a conservative value for a -- see Footnote 7.) Observe that K* is much

smaller when future demand is uncertain. For a = .4, 0 must be more than

three times as large as when a = 0 before any capacity is installed.

••:.
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Another way to see how uncertainty over future demand affects the

firm's optimal capacity is by comparing AF(K), the value of the option to

invest in a marginal unit, with AV(K) - '4, the net (of purchase cost) value

of the unit. The optimal capacity K*(0) is the maximum K for which these
•

•••••

two quantities are equal. Note from eqn. (6) that for 0 > On - or equiva-

lently, K < K* exercising the option to invest maximizes its value, so that

AF(K) = AV(K) k, but for K > K*, AF(K) > AV(K) - k, and the option to

invest is worth more "alive" than "dead."

This is illustrated in Figure 6, which shows AF(K) and AV(K) - k as

functions of K, for 0 = 2 and o = .2. Recall that AV(K) is larger when

future demand is uncertain. As the figure shows, if the opportunity cost of

exercising the option to invest were ignored (i.e. the firm added capacity

until QV(K) k was zero), the firm's capacity' would be about 2.3 units, as

opposed to 1.5 units when a = 0. But at these capacity levels the opportun-

ity cost of investing in a marginal unit exceeds the net value of the unit,

so that the value of the firm would not be maximized. Instead the firm's

optimal capacity is only K* = .67, the largest K for which AF(K) = AV(K) -

k, and the solution to eqn. (7).

3. The Value of The Firm.

As noted above, K*(0) is the capacity level which maximizes the firm's

market value, net of cash outlays for the purchase of capital. This can be

seen algebraically and from Figure 6 by noting that the value of the firm

has two components, the value of installed capacity, and the value of the

firm's options to install more capacity in the future. The firm's net

value as a function of its capacity K is thus given by:



00

Net Value = SAV(v)dv + SAF(v)dv - kK
0

(8)

Differentiating with respect to K shows that this is maximized when K = K*

such that AV(K) - óF(K) - k = 0.

The value of the firm's installed capacity, V(K*), is just the first

integral in egn. (8). In Figure 6 it is the area under the curve AV(K) - k

from K = 0 to K*, plus the purchase cost kK*. The value of the firm's

options to expand is the second integral, which in Figure 6 is the area

under the curve AF(K) from K = K to 00 . As the figure suggests, the value

of the firm's growth options is a large portion of its total value.

Figure 7 shows 6F(K) as a function of K for 0 = 2 and a = 0, .1,

and .4, together with the optimal capacity levels K. For each a, the net

(of purchase cost kK*) value of the firm is just the area under the corres-

ponding curve (remember that for K < K*, 6F(K) = AV(K) - k). Observe first

that the value of the firm is much larger for larger values of a; a larger a

implies a larger value for each unit of installed capacity, and a much

larger value for the firm's options to expand. Second, the larger is a, the

larger is the fraction of firm value attributable to its growth options.

The sensitivity of firm value and its components to uncertainty over

future demand can also be seen from Table 1, which shows K*, V(K*), F(K*),

and total value for different values of a and 0. When a = 01 the value of

the firm is only the value of its installed capacity. Whatever the value of

01 the firm is worth more the larger is i.e. the more volatile is

demand. When a = .2 or more, more than half of the firm's value is F(K*),

the value of its growth options. Even when a = .1, F(K) accounts for more

than half of total value when 8 is 1 or less. (When demand is currently

a
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small, it is the possibility of greater demand in the future that gives the

firm much of its value.) And there is always a range of 0 for which K* is

zero, so that all of the firm's value is due to its growth options.

As mentioned earlier, or more should be typical for many

industries. A testable implication of the model is that for firms in such

industries, the fraction of market value attributable to the value of

capital in place should not be much more than one half. A second implica-

tion is that this fraction should be smaller the greater is the volatility

of market demand. I have not tried to test either of these implications

(valuing capital in place is itself a difficult task). However, calcula-

tions reported by Kester (1984) are consistent with both of them. He

estimated the value of capital in place for 15 firms in 5 industries by

capitalizing a flow of anticipated earnings From this capital, and found

it is half • or less of market value in the majority of cases. Furthermore,

this fraction is only about 1/5 to 1/3 in industries where demand is more

volatile (electronics, computers), but more than 1/2 in industries with less

volatile demand (tires and rubber, food processing).

Our model may help to explain the recent findings of McConnell and

Muscarella (1986). They show that the market value of firms has a tendency

to increase (decrease) when managers announce a decrease (increase) in

planned investment expenditures. They interpret this as evidence that on

average, firms overinvest.. But if changes in planned investment expendi-

tures are the result of changes in uncertainty over future demand, these

findings would be exactly those predicted by our model. For example, if

other things equal, future demand becomes more uncertain, firms should cut

back on investment expenditures, but their market value should rise.
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4. The Dynamics of Capacity, Capacity Utilization, and Firm Value.

If the firm begins with no capacity, it initially observes 0 and

installs a starting capacity K*(0). If 0 then increases, it will expand

capacity accordingly, and the value of the firm will rise. The value of its

growth options will also rise, but will become a smaller fraction of total

value (see Table 1). However if 9 decreases, it will find itself holding

more capacity than it would have chosen had the decrease been anticipated.

The firm's value will fall, and depending on how much 0 decreases, some of

its capacity may become unutilized.

Because capital does not depreciate in this model, the firm's capacity

is non-decreasing, but will rise only periodically. The dynamics of

capacity is characterized in Figure 8, which shows a sample path for 0(t),

and the corresponding behavior of K(t). (The duration of continuous upward

movements in K(t) is exaggerated.) The firm begins at to by installing

K*(00) E K. Then 0 increases until it reaches a (temporary) maximum 01 at

t l, and K is increased accordingly to KT. Here it remains fixed until tr.,

when 0 again reaches 01. Afterwards K is increased as 0 increases, until t3

when 0 begins to decline from a new maximum, and K remains fixed at K.

Thus an implication of the model is that investment occurs only in

spurts, when demand is rising, and only when it is rising above historic

levels.B Firms usually increase capacity only periodically, and this is

often attributed to the "lumpiness" of investment. But lumpiness is clearly

not required for this behavior.

Let us now examine the firm's capacity utilization. Clearly during

periods of expansion, all capacity will be utilized. When demand falls,

••:• •
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however, some capacity may go unutilized, but only if it falls far enough.

If the firm had unlimited capacity it would maximize current profits by

setting output at Q* = (9-c1)/(2Y+c2). However K*(9) < (0-c1)/(2Y+c2), and

as shown in Section 2, can be much less even for moderate values of a. Thus

for 0 in the range 0(K) 5 (2X+C2)I< Cs, < 0 < 0*(K), capacity will remain

fixed but will be fully utilized. Capacity will go unutilized only when 0 <

9(K). In Figure 8 this occurs during the intervals (t., tb) and (t., td).

The irreversibility of investment induces firms to hold less capacity

as a buffer against unanticipated drops in demand. As a result there will

be periods of low demands when capacity is fully utilized. A large drop in

demand is required for capacity utilization to fall below 100%.

The value of the firm will move in the same direction as 9. Most of

the time the firm's capacity K will be above K*(0) -- in Figure 8 exceptions

are during the intervals (to, tl) and (t2, t3) but given 9 and K, the

firm's value can always be computed from:

Value = SAV(vO)dv + SAF(v;0)dv (9)
0

The share of the firm's value due to its growth options will also fluctuate

with 0. For example as Table 1 shows, during periods when capacity is

growing (so that K = K*(0)), this share falls. It also falls when 9 is

falling and K > K*(0). Thus as firms in this model evolve over time, growth

options tend to account for a smaller share of value.

5. The Relation Between Price and Marginal Cost.

Hall (1986) has reported that for most two-digit industries in the

U.S., price exceeds marginal cost by a significant amount. Furthermore,
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he finds no explanation for this disparity that is consistent with competi-

tion. Our model provides an explanation for this finding, and shows how to

correctly measure long-run marginal cost.

Suppose cr = 0. Then AF(K) = 0, and the firm sets K (and 0) so that:

AUK) = 0/8 - C(2Y+c2)K + ci)/r = k (10)

Note that AV(K), the value of a marginal unit of capacity, is net of

(capitalized) marginal operating cost. Let us rewrite (10) as follows:

0/8 - NK/r = (c t + c2K)/r + k (10')

The left-hand side of (10') is capitalized marginal revenue (9 is capital-

ized at a rate 8 because it is growing at rate a; with a = 0, 8 = r - a).

The right-hand side is full marginal cost, the capitalized operating cost,

plus the purchase cost of a unit of capital. Eqn. (10') is the usual

relation between marginal revenue and marginal cost when the former is

increasing at a deterministic rate.

Now suppose u > 0, and K = K"(0). Then from eqn. (5), the optimality

condition AV(K) = k + AF(K) can be written as:

AV(K) = b20P2 0/6 - E(2Y+c2)K + c 1 3/r = k + AF(K) (11)

or: 0/8 - = - b20P2 + (c2K + ci)/r + k + AF(K) (11')

Observe that two adjustments must be made to obtain full (capitalized)

marginal cost, the RHS of (11'). The first term on the RHS of (11') is the

value of the firm's option to let the marginal unit of capacity go unutil-

ized, and must be subtracted from capitilized operating cost. The last term

is the opportunity cost of exercising the option to invest. As we have seen

in Section the last term dominates the first, so that K must be smaller

to satisfy (11'), and marginal cost as conventionally measured will under-

state true marginal cost.
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If the firm is a price-taker, X = 0 and P = 9. Price will equal

marginal cost, if the latter is defined correctly as in (11'). Unfortunate-

ly the first and last terms on the RHS of (11') are difficult to measure,

particularly with aggregate data. But if one wishes to compare price with

marginal cost, ignoring them can be misleading.9

b. Marqinal q and Investment.

The q theory of investment says that firms have an incentive to invest

whenever marginal q -- the present value of a marginal unit of capital

divided by the cost of that unit -- exceeds one. But models based on this

theory have not been very successful in explaining investment." There may

be several reasons for this, but one possibility is that in such models

the cost of a marginal unit of capital typically includes only the purchase

and installation cost. As we have seen, if product markets are volatile,

this can grossly understate the true cost of the unit.

According to the usual definition, q = AV(K)/k. But this ignores the

opportunity cost AF(K); clearly q > 1 does not imply that K should be

increased. A better definition for q is:

q* = EAV(K) - AF(K)3/k (11)

Setting q* = 1 now determines the optimal K.

It is easy to see why marginal q as it is usually measured may fail to

explain investment. Note that an increase in demand (i.e. in 0) will

increase AV(K), but it will also increase AF(K), although by a smaller

amount. And if a increases, both AF(K) and AV(K) rise, but AV(K) by less,

so that the desired capital stock falls. But the market value of the firm

increases, so that if market value is used to measure q, we will see an
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increase in q but a decrease in investment.

As mentioned earlier, GF(K) is unfortunately difficult to measure. But

in some cases it may be possible to construct a proxy for LF(K) based on the

sample variance of demand fluctuations. The use of such a proxy might

improve the explanatory power of q theory models.

7. Conclusions.

The model presented here is a simple one that ignores complications

such as adjustment costs, delivery lags, and lumpiness of capital expendi-

tures. It can easily be extended to account for these factors, but

numerical methods may then be required to obtain solutions. Of course once

numerical methods are used, other aspects of the model can also be general-

ized. For example, demand can be a nonlinear function of 0, or 0 could

follow some alternative stochastic process, perhaps including jumps.

By treating capital in place as homogeneous, we have been able to focus

on the marginal investment decision, and clarify the ways in which irrever-

sibility of investment and uncertainty over future demand affect both the

value and cost of a marginal unit of capacity. Besides yielding a relative-

ly simple solution to the problem of capacity choice, the model provides a

straightforward method for calculating the firm's market value and its

components. It also provides insight into the measurement of long-run

marginal cost, and Tobin's q.

In many markets output prices fluctuate with annual standard deviations

in excess of 20 percent. Our results show that in such markets, firms

should hold much less capacity than would be the case if investment were

reversible or future demand were known with certainty. Also, much of the

••••••



market value of these firms is due to the possibility (as opposed to the

expectation) of stronger demands in the future. This value may result from

patents and technical knowledge, but it also arises from the managerial

expertise and infrastructure, and market position that gives these firms (as

opposed to potential entrants) the option to economically expand capacity.
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APPENDIX

Here we derive eqn. (5) for the value of a marginal unit of capacity,

and eqns. (6) and (7) for the option to invest in the unit.

Recall that the value of a marginal unit of capacity, V(K;0), is the

value of an "incremental project" that produces 1 unit of output per period

at operating cost (2Y+c2) + ci, which is sold in a competitive market at

price 0(t), and where the firm can (temporarily) shut down if price falls

below cost. Now create a hedge portfolio that is long the project and short

AVe units of the output, or equivalently the asset or portfolio of assets

that is perfectly correlated with 0. This portfolio is risk-free, and so

must earn the risk-free rate r. This implies that AV must satisfy the

following differential equation:

1 2 2
-a 0 AV + (r6)$V + ire - (2Y+c2)K - cl] - rAV = 0 (A.1)

80 0

where subscripts denote partial derivatives, and j is a switching variable;

j = 1 if 0(t) (2Y+c2)K + cl, and 0 otherwise. The boundary conditions

are: AV(0=0) = 0

lim AV = 0/6 - C(2Y+c2) + c1 J/r
0.1••

lim V. = 1/8
e es

• and AV and AVe continuous at the switch point 8 = (2Y+c2)K + cl. The reader

can verify by substitution that (5) is the solution to (A.1) and the

associated boundary conditions.

Note that AV must be the solution to (A.1) and the boundary conditions

even if the unit of capacity (the "incremental project") did not exist, and

could not be included in a hedge portfolio. All that is required is an

asset or portfolio of assets (x) that replicates the stochastic dynamics of

0. As Merton (1977) has shown, one can replicate the value function with a
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portfolio consisting only of the asset x and risk-free bonds, and since the

value of this portfolio will have the same dynamics as AV, the solution to

(A.1), AV must be the value function to avoid dominance.

Eqn. (6) for F(K;0) can be derived in the same way. It is easily

shown that AF must satisfy the equation:

1 2 2
-a 

90 
+ (r-8)0F0 

- rAF = 0 (A. 2)

with boundary conditions:

AF(0=0) = 0

AF(0=9" = AV(9=0") - k

AF.(0=9") = AV0(9=9")

where 0" is the exercise point, and AV(9") - k is the net gain from exer-

cising. The reader can verify that eqns. (6) and (7)satisfy (A.2) and the

associated boundary conditions.
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TABLE I: VALUE OF FIRM
(ci = c2 = 07 X = .5, r = 8 = .05, k = 10)

tl K* V(K*) F(K0) VALUE

0 .5 0 0 0 0
1 0.5 7.5 0 7.5
2 1.5 37.5 0 37.5
3 3.5 87.5 0 87.5
4 3.5 157.5 0 157.5

.5 0 0 0.4 0.4
1 0.23 4.3 3.4 7.7
2 1.00 33.1 9.1 42.2
3 1.82 80.4 20.3 100.7
4 2.65 147.3 35.5 182.8

.2 .5 0 0 3.1 3.1
1 0.04 0.8 13.5 14.3
2 0.67 24.0 49.2 73.2
3 1.37 67.1 94.6 161.7
4 2.09 134.1 143.7 277.8

.4 .5 0 0 25.8 25.8
1 0 0 69.7 69.7
2 0.15 5.9 182.6 188.7
3 0.64 36.2 307.2 343.4

4 1.22 91.3 427.5 518.8
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FOOTNOTES

1. Other examples of this literature include the papers by Bernanke

(1983), Cukierman (1980), Baldwin (1982), and Paddock, Siegel, and

Smith (1984). In the papers by Bernanke and Cukierman, uncertainty

over future market conditions is reduced as time passes, so firms have

an incentive to delay investing when markets are volatile (e.g. during

recessions). In the other papers cited above and in the model I

present here, future market conditions are always uncertain. But

because access to the investment opportunity is analogous to holding a

call option on a dividend-paying stock, for any positive amount of

risk, an expenditure should be made only when the value of the result-

ing project exceeds its cost by a positive amount, and increased

uncertainty will increase the incentive to delay the investment

expenditure. Thus the results are similar to those in Bernanke

and Cukierman, but for different reasons.

2. Analytic solutions for this model can be obtained for any demand

function linear in 0, i.e. P = 0(t) + f(Q). I use (1) for simplicity.

J. It is straightforward to also allow for uncertainty over future

operating cost. The qualitative results would be the same.

4. Relaxing these assumptions makes no qualitative difference in the

results. In fact, allowing for lead times in the construction and

installation of new capacity will magnify the effects of uncertainty.

For a related model that looks specifically at the effects of lead

times, see Maid and Pindyck (1985).

5. The valuation of a factory that can be temporarily shut down has been

studied by Brennan and Schwartz (1985) and McDonald and Siegel (1985).

Observe from eqn. (3) that the present value of an incremental profit

at future time t is the value of a European call option, with expira-

tion date t and exercise price (2Y+c2)K + CL, on a stock whose price is

0, paying a proportional dividend 8. This point was made by McDonald

and Siegel (1985). Thus AV(K), the value of our "equivalent factory,"

can be found by summing the values of these call options for every

future t. However this does not readily yield a closed form solution,

and I use an approach similar to that of Brennan and Schwartz (1985).

6. As can be seen from eqn. (5) .(X=0, c2=1) and (X=.5, c2=0) give the

same marginal value of capital, and the same optimal behavior of the

firm. In the first case the firm is a price-taker but earns infra-

marginal rent, and in the second case it has monopoly power.

7. The standard deviations of annual changes in the prices of such

commodities as oil, natural gas, copper, and aluminum are in the range

of 20 to 50 percent. For manufactured goods these numbers are somewhat

lower, but often 20 percent or higher. Thus a value of o of .2 could

be considered "typical" for simulation purposes.
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B. If we allow for depreciation, investment will occur more frequently and
even when demand is somewhat below historic highs, but it will still
occur in spurts.

9. Hall's test of marginal cost pricing is based on the relation between

the marginal product of labor and the product wage. If firms set
marginal operating cost equal to a (constant) proportion of price, his
technique will apply, whatever the capital stock. But as shown in
Section 4/ there can be a wide range of prices for which the firm is
capacity constrained, and the ratio of marginal operating cost to price
will vary with price.

10. For example, the model developed by Abel and Blanchard (1996) is one of
the most sophisticated attempts to explain investment in a q theory
framework; it uses a carefully constructed measure for marginal rather
than average q, incorporates delivery lags and costs of adjustment, and
explicitly measures expectations of future values of explanatory
variables. But Abel and Blanchard conclude that "our data are not
sympathetic to the basic restrictions imposed by the q theory, even
extended to allow for simple delivery lags." Also, see Summers (1981).
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FIGURE 1: VALUE OF A MARGINAL UNIT OF CAPACITY
(K = 1)
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FIGURE 3: MARGINAL VALUE OF INSTALLED CAPACITY
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FIGURE 4: VALUE OF OPTION TO INVEST IN MARGINAL UNIT OF CAPACITY
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FIGURE 5: OPTIMAL CAPACITY K*(9)
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FIGURE 7: VALUE OF OPTION TO INVEST IN MARGINAL UNIT,
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