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1. Introduction

There has been much recent dissatisfaction with the expected
utility hypothesis due primarily to the systematic practical
violation of the independence axiom. (See Machina (1984a) for a
survey of thé relevant literature.) Since expected utility theory
continues to dominate the economics of uncertainty, it is important
to investigate the robustness of its results to failures of the
independence axiqm. Machina (1982) provides several demonstrations
of such robustness. In this note, we provide é new class of
robustness results. The analysis proceeds in two stages. First, we
establish a cbrrespondence theorem which translates any appropriate
theorem in expected utility analysis into a theorem in a generalized
preference framework. Then, we present seve?al illustrative
gpplications of this theorem. The examples cover a broad range of

models that arise in the economics of uncertainty -- optimal

stochastic growth, portfolio diversification and optimal insurance

design. Many other instances will no doubt occur to the reader where
our correspondence theorem applies.

Intuitively, the metatheorem hinges on the fact that since
"smooth" preference functionals are locally expected utility, first
order'conditiéns in optimization‘problems involving such general
functionals "resemble" those arising when the expected utility
specification is adopted. The only difference is that a local
utility funcfion fepiaces the von Neumann-Morgenstern utility index.
Machina (1982, p.288) points out this formal analogy in one context.
Here,‘the'énalogy is viewed in a more general context and several

new implications are derived from it.




Section 2 presents a definition of upper-semi-smoothness of a
preference functional and some examples of such preference
functionals. The correspondence theorem is proved in Section 3. Its
appliéations are developed in the final three sections. Some

technical details are collected in an appendisx.

2. Ugger—Semi—Smdoth Utility
Let X be a convex subset of Rn, where n = ® is allowed, and
denote by D(X) the set of all c.d.f.'s having support in X. A path
is a function Hk;) that maps [0,1] into D(X). The set of all paths
is denoted by I. Subsets of I will be of interest. In particular,

consider

{H(.') en | H (1-a)F+aG, F and G € D(X), « € [0,1]},

(H ), €@ | Hy = F 4 1545 Fx and Fy € D(X), a € [0,1]},

(H ., € C, | F; has a density function}.
Paths in Cd are linear in the space of distributions. Paths in Cr
are linear in the space of r.v.'s.

If V is a preference functional defined on D(X), we say that Vv

is ‘upper-semi-smooth in the path sense with respect to C < 7, if 3 u

X x D(X) - R such that v H(.) € C,

un(*,Ho)d[Ha-Ho]’> 0 for a-sma;l

=Y V(Ha) - V(Ho) > 0 for a small. (1)

Refer to the path derivative u as a local utility function for Vv

A special case of (1) occurs .when V is linear on D(X) and hence




u is indgpendent of its last argument. Then V is an expected utility
functional and u is its von Neumann-Morgenstern utility index.

When X is a compact subset of the real line (of indeed of any
& with n < ©), Machina (1982) considered the implications of a
Fréchet differentiable preference functional in the L1 norm and

showed the existence of u, referred to as a local utility function,

having the property that

V(G) - V(F) = J u(-,F)d[G-F] + o(NG-FIl). (2)
X

Clearly, a Fréchet differentiable functional satisfies (1) for any

path H that is smooth in the L1 norm (i.e., "Ha—Ho" is

(-)
differentiable in «). In particular, such a functional is upper-semi-
smooth with respect tc Cd and Cr‘ For example, consider the

following guadratic preference functional (Machina, 1982):
1 2
V(F) = J RAF + 7[] sdr]?,
X X

with local utility function given by

u(x,F) = R(X) +'[J SdF]S(x).
X

The relation between upper-semi—émoothness and Giteaux differentia-
bility is considered in the appendix.

Machina's analysis however does not readily extend to infinite
dimensional outcome sets X. Moreover, smoothness in the sense of (1)
is weaker than Fréchet differentiability in that the one-sided local
approximation of the preference functional V by the path derivative
u is rééuired only on some set of paths ;n D(X) and not on open
neighborhoods of HO defined by some norm. Moreover, unlike Fréchet
differentiability, smoothness in. the sense of (1) is invariant to

arbitrary increasing transformations of V, i.e., it is ordinal.




A class of preferences that are'always upper-semi-smooth is
given by preference functionals that are induced by expected utility

maximization problems; that is, suppose that

V(F) = max J ¢ (x,a)dF(x),
a€B ‘X

where "a" is the choice variable and B is a constraint set. The
probability disfribution F represents a temporal risk in the sense
of Kreps‘and Porteus (1979) and Machina (1984b). Kreps and Porteus
showed that inducéd preferences over temporal risks are generally
nonlinear in F. Machina provided conditions under which such
preferences will be Fréchet differentiable. But upper-semi-
smoothness for V always holds as long as the optimization problem
defining V has a solution for each F in D(X). The proof is as

follows: Let H be any path, and denote byta*(F) a solution given

(-)

F. Let u(-,F) = #(-,a*(F)). If I u(-,H,)d(H-Hy) > O for a small,
) : X a 0

then
V(Ho) = x¢('la*(Ho))dHol

V(H ) 2 X¢(-,a*(Ho))de

4X¢(°,a*(H0))dHO = V(HO) for a small.

Another class of examples that always satisfies (1) is given by
implicit weighted utility (Chew, 1983; 1985; Dekel, 1985). In this

case, the utility V(F) is defined to be the solution s of:
I w(x,s)[v(x)-s]dF(x) = O, o (5)
X

. ‘ N
where v is a utility function on X, and w(:,*) : X X Rng(v) » R is

a weight function which depends on the outcome x as well as the




reference utility level s. w(x,s)[v(x)-s] is continuous and strictly
deéreasing in s. Then V is upper-semi-smooth with respect to Z with

local utility function given by
u(x,F) = w(x,V(F))[v(x)-V(F)]. (6)

This follows from the observation that V(G) > V(F) if (and only if)

[ u(-,F)are-F1 > o.
X

A different example, called rank-dependent utility is the
following (see, e.g., Quiggin (1982) and Chew, Karni and Safra

(1985)). Assume that X is an interval of R,

V(F) =.f v(z)d(goF) (z), (7)
X

where v : X - R and g : [0,1] » [0,1]. Both v and g are continuous
and g is strictly increasing and onto. It is shown in the appendix
that when g is differentiable and v is bounded, V is upper-semi-

smooth with respect to Cq and C;.

3. A Correspondence Theorem
A subset C ¢ 7 is called locally-monotone with respect

A of real-valued functions on X if v f € A, and Vv H(.) € C,

fod[Hl-Ho] >0 ,?' fod[Ha—HOJ >0 for small «a.

For example, Cd is locally monotone with respect to any real-valued
function on X, while C. is locally monotone with respect to the

class of concave functions on X.

The subset S ¢ D(X) is said to be connected with respect to C <

7 ifVF, GesS,3H  €Csuchthat By =F, H =G, and H, € S for




a € (0,1). For example, any convex subset of D(X) is connected with
respect to Cd while many standard economic problems (Sections 5 and
6) generate subsets of D(X) that are connected with respect to Cr’

The appendix provides an instance of connectedness with respect to a

set C differeht from both C, and Cr'

d

Consider optimization problems of the form

max { V(F) | F € s},

where S ¢ D(X) is a (fixed) constraint set. If a unigue optimum
exists, we denote it by F*(V). Theorem 1 below is the central result

of this paper.

Theorem 1: Let A be & set of real-valued functions on X.
Suppose that C ¢ I is locally-monotone with respect to A and that S
is connected with respect to C. Consider optimization problem (8).
Suppose the following is true:

(a) If V is an expected utility functibnal-and if u € A, then F*(V)
exists and it lies in R.

Then:

(b) If V is upper-seﬁi—smooth with respect to C, if F*(V) exists and

if u(-,F) e AVY F € S, then F*(V) € R.

Statement (a) defines a class of theorems in expected utility
analysis. It asserts that under specified assumptions, the solution
of the simple optimizétion problem (8) will have certain properties.
Statement (b) describes the corresponding theorem for upper-semi-
smooth preference functionals. Existence of F*(V) is often

guaranteed by continuity, compactness and convexity assumptions on V




and/or S. The critical hypotheéis in (b) is that each local utility
function satisfies the assumptions corresponding to A, which renders
the independence axiom‘unnecessary. That F*(V) ¢ R can again be
deduced.

Proof: Let W be the expected utility functional with utility
indexvu(',F*(V)). Note that the latter is in A. Thus, by (a), F*(W)
exists. if

| F*(W) = F*(V),

then F*(V) € R is implied by (a). Suppose (9) is false. Then,
W(F*(W)) > W(F*(V)). (Eguality here would contradict the uniqueness
of F*(W) as the W-maximizing distribution in S.) Since S is
connécted with respect to C, 3 H(.) € C ;uch that HO = F*(V), H, =

1
F*(W) and Ha € S for « € (0,1). By local monotonicity of C,

f u(.,F*(V))d{Ha—F*(V)] > 0 for small «. By upper-semi-smoothness,
X

this implies that V(Ha) > V(F*(V)) for small «, contradicting the

optimality of F* (V).

4, Optimal Insurance Design

An individual with wealth w faces a random damage x 2 0 with a
distribution function F;. Let a risk neutral insurance company oﬁfer
a contract (w,I), whefe w > I > 0, w is the insurance premium and I
is the expected indemnity. Thus the insured pays @ with certainty

and choéses a payoff function s(x) »

0 subject to the constraint
E[s(i)] = I. The set of feasible distributions for net wealth is

given by




| E[Y] ¢ w-m+I-E[x] ).

Note that S is connected with respect to C, which is always locally

d

monotone. Let

A= {u: R, = R | u is increasing and strictly concave}.
For any expected utility functional with utility index in A, a

unigue optimum‘inls exists (this is a special case of the result in

. Raviv (1979) which extends Arrow (1974)), and it lies in
R {F§ € Sj 3 d > 0 and §(x) = w-n—min(i,d) vV realizations x of i}.

That is, the optimal insurance contract has full coverage beyond
some deductible d > 0.

By Theorem 1, such contracts are alsc optimal for upper-semi-
smobth'(with respect to Cd) preference functionals whose local
utility functions u(-,F) € AV F € S. In particular, the optimality
of such contracts is established for the realistic case of temporal
risks if each "primitive" von Neumann-Morgenstern utility index
~¢(-,a), from (4) is increasing and strictly concave.

In the particular example of the rank-dependent utility (7),
the restriction u € A is equivalent to (i) v is strictly increasing
on R+ (hence u(x,F) increasing in x V F € D(R+)); (ii) v and g are

both concave and at least one is strictly concave (hence u(x,F)

strictly concave in X V F € D(R+)). This follows immediately from

expression (A.4) for u(-,F) given in the appendix. (Note that (i)
and (ii) correspond to first and second degree stochastic dominance
respectively;) The general statement of the above equivalence for
Fréchet smooth utility functionals was shown by Machina (1982;

1983).




The corresponding conditions for implicit weighted utility are
those which correspond to the increasingness and concavity of u(-:,F)
as défined in (6). Note that, when w(x,s) is not differentiable in
s, impli;it weighted utility may not be Fréchet (or even Gateaux)

‘differentiable, even though it is always upper-semi-smooth.

5. Stochastic Optimal Growth

‘Consider the agéregative optimal growth model with uncertain

- technology as in Brock and Mirman (1972) and Mirman and Zilcha
(1975). Assume that the jnitial stocks of capital vary in [a,b], O <
a<b <®, and let X ¢ mt be the set of all realizations of feasible
consumption plans c = (EO,E,,---) from some initial stock x, €
[a,b]. Then, 3 0 < B < such that 0 ¢ Cy < B for t =0, 1, 2,

if (cg.Cy, -+) € X. Fix x, in [a,b], let S = (F € D(X) | F is the

distribution function for some feasible consumption c = (Co:Cy

-)}, and define the class of von Neumann-Morgenstern utility

indices

A= {u: X+ R | u(c) = fo u(c ) on X, where 0 < a« < 1, a

t 0
-+ R, 4 is increasing, strictly concave, continuously
differentiable with U'(0) = w}.

If preferences'are expected utility with utility index in A, a

unique optimal consumption blan exists with distribution function F*

and t-th marginal F}. Moreover, F* € R where

R = {F e.D(X) | 3 a distribution function G on [0,B] such that

Ft - G uniformly on [0,B]}.

tax

Thus, the distribution functions of the optimal consumption levels
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converge asymptotically to some limiting distribution.

Note that S is connected with respecﬁ to Cr and the latter is
locally monotone with fespect to A. Thus our theorem may be applied
to extend this convergence result beyond the expected utility
framework. For example, let V be the weighted utility functional

defined on D(X) by

V(F) = EF[z:ath(Etx]/EF[zfatw(Et)J,
where 0 <« <1, h : [0,B] » R and w : [0,B] -+ [m,m] for some 0 < m
<m <, Then V ié upper—semi—smooth (with respect to Cr) with local
utility functioﬁ:~

'u(c,F) = Z:atﬁ(ct,F),
where ﬁ(-,F) = h(-)-V(F)w(-). Restricf h and w so that ﬁ(-,F) is
increasing, strictly concave and continuously differentiable with

= o ¥ F € D(X). By Theorem 1, the optimum of V has the

vlimiting property described above (i.e., belongs to R).

Similarly, the result applies to guadratic preference

functionals (3) with

R(c) zatg(ct)

s(cj Zats(ct)

for r, s increasing, strictly concave, continuously differentiable

with r'(0) = s'(0) = o, s > 0 everywhere. We have

u(c,F) = Zatﬁ(ct,F),
where

(- F) = r(-) + Eglza’s(S)1s(-).




6. Portfolio Diversification

Cohsider a two-risky-assets portfolio problem where the assets
have gross returns E, and Ez neither of which is degenerate, and the
range of each Ei is contained in some compact interval X c R.
Suppose that El and E, have equal means and are negatively
- correlated in the sense of Samuelson (1967, p.7) or Hadar and

Russell (1974, p.238). The constraint set facing the investor is

S {(FeD(X) | F=F for some « € [0,1])}.

(1—d)§,+a§2
{u : X =2 R | u is continuous, strictly increasing and
strictly concave on X).
For any expected utility functional with utility index in A, a
unique optimum in S exists (Samuelson, 1967; Hadar and Russell,
1974) and it lies in |

R=(Fes I F = chE,—!»(l—a)E2

for some a € (0,1)}.
That is, the optimal portfolio is diversified.

, By Theorem 1, diversification is also optimal for any upper-
semi-smooth preference functional with respect to Cr whose local
utility function u satisfies, v F € S, u(-,F) € A. This includes the
examples described in Section 2. In particular, the diversification
result is extended to the context of temporal risks.

For rank-dependent utility (6), upper-semi-smoothness is valid

with respect to C; if g is differentiable and v bounded. Thus

diversification is optimal for_such rank-dependent utility functions

if we consider only r.v.'s 2, and z, having density functions. Of

course, monotonicity and concavity restrictions analogous to those
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described in Section 4 must be imposed.

Appendix
We consider here the relation between upper-semi-smoothness and
G&teaux differentiability. For a preference functional V defined on
D(X),.wé say that V is smooth in the Gateaux sense, .if there exists

€ D(X), A > 0,

u : X x D(X) - R such that v F, FO

V(AF+(1-A)FO)—V(FO) = AJ u(x;FO)d[F(x)—Fo(x)]+o(A). (A.1)
X A

It is clear that Ga&teaux differentiability implies upper-semi-
smoothness with respect to Cd' It is easy to show that the converse
does not hold (see remark at the end of Section 4).

We consider upper-semi-smoothness with respect to:

. v a . )
Cp = {H(.) € : saHd(x)|0+ exists v x € X}. (A.2)

Note that Cp contains Cd as well as C; allowing for a potentially
broader cléss,of applications for Theorem 1. Shavell's (1979) paper
on optimal insurance under moral hazard provideé an example of a

feasible set S that is connected with respect to Cp.

The following smoothness definition relative’to vais due to
Hadamard (1923). V is Hadamard differentiable if 3 u.: X x D(X) 4+ R

such that v H(.) € Cp'

V(H,) - V(Hy) = un(x,Ho)d[Ha—Hol + o(a).  (a.3)
‘Clearly, Hadamard smoothness implies Gateaux smoothness. It also

implies upper-sémi-smoothness with respect to C Again, from Lemma

p°
1 below, implicit weighted utility provides a counterexmple for the

converse.
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Lemma_1: If V is Gateaux differentiable whose Gateaux
derivative u(-,F) Is continuous and |u(x,F)| { M< eV x € X and vV F
€ D(X), then V is Hadamard differentiable.

Proof: Consider H(.) € Cp' Then

1
2(V(Hg) - V(HY)) - jxu( JHy)alo ol

1
5(V(Hg) - V(H +6 [ 1)} + B,

ia dl0+

1.
ot

1 2 2
B = E(V(Ho+5[§EHalo+]) - V(H,)) - un(-,Ho)d[gaHal

Note that Gateaux differentiability of V implies that B converges to

0 as 6 - 0. Let

= (1- t)[H +6[ 11 + tH&

t aa al

1
5(V(H,) - V(H +5[3_H |
1

Al g 1

j d(g[H -H 1~

aa al0+

completes the proof.

As shown in Chew, Karni and Safra (1985), when g is
differentiable on [0,1], rank-dependent utility (7) is Gateaux

differentiable (but not Fréchet differentiable) with local utility

function given by (A.4) below:

u(x,rF) = g'(F(z))dv(z).

j(—w,x]nx
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Observe that u in (A.4) is uniformly bounded if v is bounded. In

that case, rank-dependent utility is Hadamard differentiable and

therefore upper-semi-smooth with respect to Cp, Cd and C;.
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