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ABSTRACT

This paper extends Machina's generalized expected utility theory to include

state-dependent preferences. The extended framework is used to define the
relation more risk-averse and to conduct comparative static analysis of demand
for air travel insurance with respect to variations in risk aversion. We show
that when the practice of taking out air travel insurance is inconsistent with
the expected utility theory, it is in disagreement with Machina's hypothesis

IT.
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1, Introduction

At the core of the expected utility theory of individual decision-
making under risk is the independence axiom, which implies that the preference
functional representing the decision-maker's preferences over lotteries (i.e.,
objective probability distributions) is linear in the probabilities,

This assumption; however, is inconsistent with a substantial body of experi-

mental evidence to the effect that preferences over lotteries are in fact

systematically nonlinéar in the probabilities.
Motivated by this discrepancy between theory and evidence, Machina

[1982] generalized the expected utility theory in a manner which eliminated

many of the reported inconsistencies while preserving most of its useful theo-

retical properties. The essence of this modification consists of the replace-

ment of the independence axiom by the weaker assumption that the decision

* Some of the results reported in this paper were originally conceived during
a conversation with Mark J. Machina. Mark also offered numerous useful comments
and suggestions on an earlier version of this paper. For both I am deeply grateful.




maker's preferences over lotteries are representable by a "smooth" (i.e.,
Fréchet differentiable) preference functional. Preference relations that satis-
fy this condition can be shown to be "locally expected utility maximizing," in
the sense that small changes in the probabilities about a given distribution
will be ranked according to the expectation of the "local utility function" at
that distribution. Furthermore, except for the independence axiom, if the
local utility functions possess the properties that are typically imposed on the
von Neumann-Morgenstern utility function, then the general behavioral imp]%ca-
tions of the expected utility theory are preserved.

Originally developed for univariate state-independent preferences, this

analytical framework may be extended to include state-dependent preferences.

Besides the pure theoretical interest, such an extension is motivated, by the

criticism leveled against the expected utility theory as a model of behavior

in circumstances where the state-dependent nature of the decision-maker's pre-

ference is a natural element of the decision-problem. This criticism was

voiced by Eisner and Strotz [1961], who claim that the observed practice of taking out

air-travel insurance is inconsistent with expected utility maximizing behavior.

Unlike the experimental evidence against the independence axiom, much of which
is based upon respohses to hypothetical questions and as a consequence raises

serious methodological questions, the purchase of air-travel insurance repre-

sents actual decisions, and is therefore more compelling.

Elsewhere (see Karni [1984]) I have shown that the inconsistency
pointed out by Eisner and Strotz is valid only under certain air-travel insur-
ance pricing formula, and, therefore, cannot be regarded as conclusive regard-

ing the validity of the expected utility theory. However, even within the
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context where Eisner and Strotz's criticism is valid taking out flight insur-
ance is not inconsistent with the generalized expected utility framework modi-
fied to allow for the dependence of the decision-maker's preferences on the
state of nature. |

2, Comparative Risk Aversion with State-Dependent Preferences:
The Generalized Expected Utility Case

To develop a measure of absolute risk aversion for state-dependent
preferences the generalized expected utility framework must first be modified
to incorporate such preferences. Thereafter the analysis proceeds along the

same lines as in the case of the expected utility theory,

2.1  The Representation of State-Dependent Preferences

Let S be a finite set of states of nature and denote by P
the set of all probability distributions on S. Let F be a function
from S on to the set of integers {1,...,n}, thus ordering the set S.
Henceforth this order, which is arbitrarily chosen, is maintained. Denote
by D[O,M] the set of cumulative probability distribution on the closed
interval [O;M], and for each s€ S let Hs(w) € D[0,M] denote the
conditional cumulative distribution of wealth in state s. Denote by B
the set of ultimate outcomes, namely B = {(w,s)|we [0,M],s € S}. Let

L[B] -be the set of all joint probability distributions on B. For

HelL[B] let H(y,i) =Priwzy, s < i} = i=]p(s)HS(y), for all

y € [0,M], i =1,...,n.

Decision-makers are assumed to have preference relations on L[B)
that are complete, transitive and representable by a continuous real-valued
- preference function V() on L[B]. The last restriction requires that
the preference relation be continuous, (i.e., for every H e L[B]

the set of elements that are weakly preferred to H and the set of
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elements to which H is weakly preferred are closed in L[B]), The definition of
continuity requires a definition of convergence of a sequence. In the present
case a sequence {H"(<,+)} « L[B] is said to converge to H(s,¢) if and only if
for all s € S : p"(s) > p(s) and Hg(w) > Hs(w) for each continuity point w of
Hg (w).
Instead of the independence akiom of the expected utility theory

the critical restriction imposed on the preference relation is that its func-
tional representation V() be Fréchet differentiable. This, in turn, requires
the eXistgnceKof a norm on the space AL[B] = {A(H*-H)|H*,H € L[B1,x € R}. This

*
norm is given by ||A(H -H)|| = Iklp(H*,H) where the metric p(e,+), is defined as

M
p(H*,H) = ) |H*(w,s) - H(w,s)|dw. The functional V(+) is Fréchet differen-
seES 0

tiable at the point H in L[B] if there exists a continuous linear functional

y(+;H) on AL[B] such that
(1) V(") = V(H) = p(H*-H3H) + o | [H*-H||),

Since AL[B] is a linear subspace of L][B], by the Hahn-Banach Theorem
there exists a continuous linear extension of ¥(+;H) to L][B]. Consequently,
by the Riesz representation theorem on L][B], there is a function £(<3;H) € L”[B]
such that for any W ¢ L[B]

M *
(2) W(H -H;H) = ) | [H"(w,s) - H(w,s)JE(w,s;H)dw.
s€S 0

i ow
(3) U(w,i3H) = = ) | &(x,s;H)dx.
s=1 0

Then integrating ( 2 ) by parts we get:




* n My *
Y(H -H;H) = - l]JOU g(x,i3H)dx][dH (w,i) - dH(w,i)]
i=1°0 0

n M

[Jwi(x,i;H)dx] 1 [p*(S)dH:(w) - p(s)dH_(w) 1.
0 s=1

-) )
i=1°0

Rearranging the summation and using ( 3 ) we obtain:

* n M *
(5) V) - V() = ) [ UGS (1)dH (w) - p(i )aH, (w)]
'|=

+o (||H-HI]).

Thus, for a differential movement from H(+) to H*('), the change in the value
of the preference functional V(«) is given by the first term on the right-hand
side of (.4 ), which is the difference in the expectation of the random vari-
able U(;,-;H) under H*(°,-) and H(e,*) respectively. U(s,<;H) may be inter-

preted as a "local state-dependent utility function."

2.2 Conditional Reference Sets and Comparability of Risk Aversion

As in the case of the expected utility theory, interpersonal compari-
son of risk aversion in the framework of the generalized expected utility re-
quires that the individuals being compared have identical reference sets. In
the latter case, however, the utility functions are local. Consequently, the
reference sets are local in the same sense, namely, they are conditional on the

elements of L[B] for which the relevant state-dependent local utility functions

are defined. To define the conditional reference set we begin by considering risky
prospects such that the level of wealth in each state of nature is given with

certainty. Formally, given an n-dimensional vector (w],...,wn) = xfEi [O,M]n and
peEP such that p(s) >0, s =1,...,n, let I(p,w) € L[B] be such that for all.

s“E S, Is(wé) =1 for w; < Vg and Is(ug) =‘0 otherwise.
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In other words, given I(+,*) the conditional probability of obtaining W
in state s is 1, and the probability of realizing the ultimate outcome
{Ww,s) € B is p(s) if w = W and zero otherwise. Thus, the unconditional

mean wealth corresponding to I(p,w) is Lsp(s)ws. Given p® € P denote by
L. s€ .

K(p®,c) the subset of L[B] which consists of all 1(p®,w) such that

éspo(s)wS = ¢c. Thus, K(Eo,c) js the subset of L[B] consisting of all the
s

elements whose conditional distributions on [0,M] are degenerate and which
yield a given constant unconditional actuarial wealth.

cor wuswrary He L[BI, I(p°w) ¢ K(p%c) and q € [0,1] we have, from

equation ( 5 ),

(6) SVLO-)H + ql(p°w)]

~ ~

q=0
M
= = ) J Ulw,s;H)p(s)dH (w) + ) pO(s)U(wg,s;H).
s€S 0 s€S
Equation ( 6 ) represents the change in the value of the preference functional
resulting from a differential shift in the probability distribution H in the
direction I(RO,%)-H. To obtain a conditional reference point we maximize
( 6 ) on.K(p°c), i.e., given H we solve for the distribution I(s,+) that re-
sults in the most preferred differential shift among the distributions I(-,*)
with the same unconditional actuarial wealth. Formally this is equivalent to
maximizing

(7) L p%(s)U(wg,s3H)
€S

on [0,M1" subject to the constraint

( 8) ) p°(s)wS = c.
| 'S
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Assuming risk aversion so that the local utility function U(e,3H) is concave

in w for all s and an internal solution, the necessary and sufficient condi-

tions for maximum are given by ( 8 ) and
(9) Uw(ws,s;H) =y _ S = 1yee0,n

where v is the Lagrange multiplier corresponding to the constraint ('8 ) and

Uw(°,°;H) denotes the partial derivative of U with respect to w. Denote the

*
solution by w (c,H), then this solution represents a conditional reference

point. Given H & L[B] the set of all conditional reference points obtained for

all ¢ > 0 is the conditional reference set, RSV(H). Formally,

Definition . 1: Let w*(c,H) be the solution to (7)4(8); then

the conditional reference set is RS, (H) = W (c,H) € [0,MI"[c > 0.

The conditional reference set is a local property of the non-linear preference
functional V(+). Notice also that giveh H € L[B] the conditional reference
set can be represented as an n-dimensional vector of monotonic increasing and
differentiable functions fi(-IH) : [0,M]~> [O0,M], where f](le) = W.

The comparison of two individuals with state-dependent preferences in
terms of their risk aversion requires that their conditionaT reference sets

be identical. This is stated formally in:

*
Definition 2: Two preference functionals V(+) and V (*) repre-

senting state-dependent preferences are said to be locally compar-

able at He L[B] if and only if RSy(H) = RSV*(H). They are said

to be globally comparable if they are locally comparable at all

He L[B].

Notice that if the preference functionals are linear in the probabili-
ties, namely, the local utility functions are independent of H, then we are in
the expected utility framework. The local and global comparability in this

case amount to the same condition.




2.3 Conditional Risk Premium

In Karqu[19831 I defined the concept of risk premium for state-depend-

ent preferences as the difference between the actuarial value of a risky pros-
pect and the actuarial value of a reference point yielding the same level of
expected utility. For lack of better terminology I refer to the reference

point described above as the reference equivalent. Extending this notion to

the generalized expected utility framework I introduce the notion of condition-

al reference equivalent, which is defined as:

Definition 3: For any H e L[B], I(p,w) € K(p,c) and q € [0,1] the

conditional reference equivalent of I(p,w), according to the prefer-

ence functional V(+), is I(E’ﬂl) where )8'62 RSV(H) is defined by the
equation

d _d ) .
aaV[(1-q)H + qI(E,y)] 4=0 HHM[(] q)H + ql(p,w )] 4=0

Thus the conditional reference equivalent is the element of the con-

ditional reference set which is indifferent according to the local utility function

U(-3H) to the initial risky prospect. Using definition 3 we define the conditional

risk premium, "V(I(R’ﬂ);H) as follows:

((10) my(I(p,w);H) = (s)lwg-w' 1.

&s°
Thus, the conditional risk premium is the difference between the actuarial value
of the conditional risky prospect I(E,Q) and the actuarial value of its conditional
reference equivalent I(R,x'). The conditional risk premium is a measure of the

decision-maker's risk aversion in the neighborhood of H, i.e., it is a local

measure in L[BJ. Utilizing this measure the relation "more risk averse," in




a local and a global sense, are defined in:

Definition 4: Let V(¢) and V*(-) be non-linear functional repre-

sentation of state-dependent preferences: (a) If V(+) and v*(-)
are comparable at H € L[B], V(+) is said to be more risk averse
than V*(-)‘at H if and only if?\ﬂ(e’f);H) > "V*(I(E’Y);H) for all
I(E’f) and p€ P. (b) If V(+) and V*(°) are globally comparable
and the above inequality holds for all H € L[B] then V(+) said to

be globally more risk averse than V*(-).

Thus, in spirit if not in detail, the relation "more risk averse" is

defined according to the original notion of Pratt [1964].

2.3 Equivalent Characterizations

The partial ordering on the class of comparable non-linear preference
functionals introduced in definition 4 has equivalent characterizations in
terms of properties of the local utility functions. These are summarized in
Theorem 1 below and should be recognized as the analogue of the characteri-

zations of the relation "more risk averse" for linear preference functionals,

THEOREM 1: Let V(<) and V*(-) be globally comparable, state-de-
pendent Fréchet differential preference functionals on L[BJ] and denote
by U(w,s;H) and U*(w,s;H) their respective local utility functions.
Suppose that the local utility functions are differentiable then the

following conditions are equivalent.
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*
= Uy (w,s;H) Uy (W5 53H)

(1) U5 for all H € L[B] and all s € S

U (s 3H
L ss5H)  and W e [o,M].

For each H € L[B] and p € P there exists monotonic increasing

and concave transformation TH[-] such that:

L p(S)U(Fg (w[H),55H) = TyL ) p(s)U™(F () ,s5H)]
) s€S

(ii1) my(I(p,w)sH) 2 “v*(I(p’Y);H) for all H and I(E,w) in L[B].

*
Clearly if V() and V (+) are not globally comparable but are locally

comparable at H then Theorem 1 holds locally at H. The proof of Theorem 1

is analogous to that of Karni [1983] Theorem 1 and is not provided here.

3, Some Economic Implications

With appropriate restrictions on the properties of the local utility
functions the analytical framework presented in subsection 2.1 preserves
the economic implications of the expected utility theory. In addition, how-
ever, it is not contradicted by an empirical observation that may be in-
consistent with the expected utility theory. These points are illustrated by

the following discussion.

3.1 Risk Aversion and Air-Travel Insurance

Consider the problem presented originally by Eisner and Strotz [1961] of

selecting the optimal air travel insurance coverage. Suppose that rather than being an
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expected utility maximizer, the passenger's preferences are represented by a
Fréchet-differentiable, state-depeﬁdent non-linear preference functional. Let
p and (1-p) denote the probabilities of states 1 and 2, respectively, where
state of nature 1 represents life or a safe trip while state of nature 2 repre-
sents death or a plane crash. Assume that the insurance company is

risk neutral. Denoting by C the level of flight insurance coverage, the in-

surance premium £(C) is given by (1-p+b)C, where b € [0,p). Thus, if we denote

by w? and wg the passenger's initial wealth in states 1 and 2 then upon taking

out air-travel insurance policy his terminal wealth in the two states of nature

respectively are:

W (C) = wy = (1-p+b)C and wy(C) = wy + (p-b)C.
Given the initial wealth distribution I[p,w®], where w® = (w?,wg) and p =

{p, 1-p 2 the traveler's objective is to choose a level of insurance coverage C

so as to maximize
V(I[p,w(C)]) subject to C > 0,

where w(C) = {wy (C),wy(C)),
Theorem 2 below asserts that a more risk’averse decision-maker in
the sense of definition .4 will take out more insurance coverage than a com-

parable less risk averse one.

THEOREM 2: Let V(+) and V*(-) be globally comparable, risk averse,
state-dependent, Fréchet differentiable preference functionals on

’ *
L[B], whose local utility functions are denoted U(w,s;H) and U (w,s;H)
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respectively. If V(<) is more risk averse than V*(-) than V()
chooses larger flight insurance coverage than V*(-) for all I[p,w°]

and b € [0,p).

Theorem 2 is analogous to Theorem 2 in Karni [1983]., It i}1ustrates'the fact that

by redefining the analytical concepts that were developed within the framework
of the expected utility theory in terms of the state-dependent local utility
functions the behavioral implications of the expected utility theory can be

obtained within the framework of Machina's generalized expected utility

analysis. The proof of Theorem 2 appears in Section 4.

- 3.2 Flight Insurance and the Expected Utility Hypothesis

Much of the‘experimental evidence which challenges the independence
axiom of thé von Neumann-Morgenstern expected utility theory is subject to the
methodo]ogica] criticism of not representing actual decisions. If one takes the
attitude that decision-making is an exerting mental process, this evidence must
be taken with a great deal of skepticism since there is no reason to suppose
that rational decision-makers exert themselves to make good decisions in hypo-
thetical situations. Evidence recording actual decisions is more compelling.
One such piece of evidence which may contradict the expected utility
hypothesis was suggested by Eisner and Strotz [1961].

The essence of Eisner and Strotz's argument is that if, prior to
embarking on a flight, one is already in possession of an optimal amount of
term life-insurance coverage then the increase in the total probability of

death resulting from taking a plane trip makes it optimal to gamble on one's
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life rather than take out additibna1 life insurance coverage. Barring gamb]ing

on one's-life the optima1 solution is not to buy any air-travel insurance.
Hence the observed practice of taking out air-travel insurance policies con-
tradicts the expected utility hypbthesis.

This conclusion depends critically on the insurance pricing formula
used by Eisner and Strotz. In particular, it can be shown (see Karni [1984])
that if air-travel insurance is offered according to the terms specified in
the preceding sub-section, then the aforementioned inconsistency may be
eliminated. Thus, while their sweeping conclusions are not warranted by their
argument it is nevertheless interesting to see that the purchase of air-travel
insurance is not inconsistent with the generalized expected utility theory
even within the model of Eisner and Strotz.

Suppose that insurers set the premium, £(+), of term life-insurance

policies according to the formula:
( 11) 2(c) = mpC m21

where, as before, C denotes the insurance coverage and p denotes the probability
of death during the term covered by the policy. Consider an individual whose
pre-insurance wealth in the states 1 and 2 is given by (w?,wg), where the

states 1 and 2 represent 1life and death during the period covered by the in-
surance, respectively. ‘Suppose that the probability of the individual dying
during the term, say a day, of the policy is p' and that he can purchase in-
surance according to the terms specified in ( 11 ) with'p = p'. The decision-

maker will choose his insurance coverage, C, so as to maximize:




(.12) V(ILp',w(C)]) subject to C 3 0

where p' = (1-p',p') and w(C) = (w] - mp'C,w2 - (1-mp')C). Let c* denote the
optimal coverage then differentiating V(<) with respect to C and evaluating

at C* we obtéin:

(13) SV (1lp,w(C)1) o

QeL(-p MW, (€),1517) + p'Ulwy(C),2517)] -

mp* (1-p*)U, (W (€7),1517) + (1emp')p'U (wy(C™),2;1%)

0

where U(e,*;I) is the local utility function at I = I[p,w(C*)]. Thus,

U, 0p(€),251) g oy

(14) . o
U, (W, (C),151) s

The expression on the left-hand side of equation ( 14 ) is.the subjective rate
of substitution between wealth in the two states. The expression on the right
hand side is the market rate of substitution. If we think of wealth in a given
state as a contingent commodity then the expression on the right hand side of

( ]4 ) is the ratio of the wealth given up in state 1 per dollar worth of
wealth received in state 2. As a ratio between two quantities of cont{ngent
goods this expression is the pfice of 1 dollar worth of insurance coverage.

Suppose that upon taking out one day term life insurance policy in the

amount C* our decision-maker learns that on the very same day he must take a
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plane trip. Suppose further that the probability of his dying in a plane crash
is 5 and that the probability of his dying from all other causes during that
day is now p", where 6 4 p" > p'. Ih other words, since a part of the day will
be spent in f]igﬁt, the probability of dying as a result of say a car accident
is reduéed. The total probability of dying on the given day is, however, in-
creased as a result of taking the trip.

Before boarding the flight the decision-maker is offered air-travel
insurance according to the terms specified in (11 ), namely, if he takes out
flight insurance coverage in the amount C then he must pay the premium 2(6) =
mﬁé. Upon taking out flight insurance the original probability distribution

p of wealth across states which is described in the following table:
n

Probability Wealth

State 1 , w1(C*)
*

State 2 wo (C )

becomes, 5 and is described below:

Probability ' Wealth
State 1 1-p-p" ~wy(c) - mpC

plane crash wz(c*) + (1-m6)6
State 2 * -a
safe trip p" W, (C )y - mpC.

State 2, namely the decision-maker dies during the day, is now refined to

distinguish the cause of death since the total compensation depends on whether




he dies as a result of a p1ane crash or from other causes.
To determine whether the decision-maker‘should take out a positive
amount of air-travel insurance consider the path I[R(a),%],d_€{0,1} where

p(0) = p and p(1) =p (i.e, p(0) = 0, p"(0) =p' and B(1) = F, p"(1)-= p").

~

Differentiating V(+) with respect to C and evaluating at C =0, o =-1 we get:

(15) d v (1p(1),w(€)])
dC ~ ~

-~

c=0,
1-B(1)-p" (1)U (€)-mp (1)E,151(1))
+ (MU, (™) + (1-mp(1))€,2;1(1))

. )

+ p" (MU, (€ - m(1)E,251(1)]).
C=0

(-(1-p(1)-p" (1B (1Y, (wy (€, 151(1))

+ (D (-mp (1) - p"(Dmp(1)IY, W,(¢7),251(1 N}

I(1) = 1p(1),w(eH)].

U (W, (C"),251(1 ) e ey - )
L - Q=1 )" ()5 y(romlp (1 149" (1))
U, Wy (C),15100 )  T-mbp(17)+p"(1 )]

¢ U (wy (€T),151(T))
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If the preference functional V(¢) is 1inear in the probabiTities,

and consequently Uw(wi(c*),i;l[.;,])= Uw(wi(C*),i) for al1 I[.5.Jand i = 1,2,
then from (i 16) and since, by definition 5(0) = 0, p"(0) = p', we have:

(]7 \) Uw(wz(c )32) - mn _é(o)_pn(o)] - m(]_p:)'
| U, (€)1 Tenlp(0)ap(0)] T

But as we move froma =0 to =1 the market rate of substitution or the price

m{1-p(a)-p" ()]

2 increases. Therefore, the expression in
T-m[p(a)+p"(a)]

of insurance

(. 17) must be negative and conseqdent]y thé optimal level of E must be nega-
tive. If C<o0 is institutionally prohibited, as is actually the case with
flight insurance, then the optimal 1evé1 of C is zero. Thus the purchase of a
positive amount of air-travel insurance coverage is inconsistent with the
linearity of the preference functional. This is the Eisner and Strotz's claim.
According to the generalized expected utility analysis the subjective
rate of substitution given by the ratio of the marginal utility of wealth in
the two states may change with I[.;.]. In particular, if this ratio
increases by more than the increase. in the market rate of substitution
then the expression in ( 16 ) is positive, and the purchase of air-travel in-
surance is not inconsistent with the postulated structure of the decision-
maker's preferences. The interpretation of this sufficient condition is as
follows: As the probability of death increases the marginal utility of wealth
in the event that the individual dies increases relative to the marginal

utility of wealth in the event that he survives by more than the increase in
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the price of the insurance. In particular,‘if' m 'is close to 1, as indeed

seems to be the case, then the sufficient condition fof the purchase of air

travel insurance is that as the probability of death increases the marginal

utility of wealth in case of death increases relative to that in the event

that the individual stays alive. This condition is proposed as an hypothesis

about the structure of the individual preferences. Henceforth we shall refer

to it as the flight insurance hypothesis.

'}%3.3 Further Discussion of the Flight Insurance Hypothesis
Though formally not comparable the behavioral interpretation of the

flight insurance hypothesis is in disagreement with hypothesis II of Machina
[1982]. 1In view of the central importance of hypothesis II in explaining the
observed violations of the independence axiom this conclusion merits further
elaboration.

According to Machina's hypothesis II the decision-makers local absolute
risk aversion of the local utility functions is non-decreasing with shift
towards stochastically dominating probability distributions. One way of
stating this result formally is to say that for any X1s X, € [0,M] such
that x3 > xp, Uy (xg3F)U, (X53F) > Uy (xq5F%) JU, (x55F%)
for all cumulative distribution functions F, F* on [0,M] such that F=*
stochastically dominates F. In particular if the entire probability mass is

concentrated on X1 and X, @ shift of probability mass from x, to

2
2'
This implication is is illustrated in Figure = 1la below where the indifference

X1 must reduce the ratio of the marginal utility of X; and x

curves U(F) and U(F*) represent the expected local utility functions
under F and F* respectively.
The requirement that { 16 ) be positive implies that, as the probability

mass is shifted from state 2 to state 1, the local marginal utility of wealth




19

in state 2 increases relative to that of state 1. This is illustrated in
panel (b) of Figure 1 where the indifference curves U(I(é)) and U(I(1))
represent the expectations of the local utility functions U(f,~,I) under
I(z) and I(1l) respectively. Notice that the location of the points
(wl(C*), w2(C*)) below the reference set is an implication of m > 1.

The shift of probability from I(2) to I(1) does not have an immediate
interpretation in terms of stochaéfic dominance. However, it is quite
conceivable that at any level of wealth every decision-maker prefers state 1
(Tife) over state 2 (death). It is therefore appropriate to regard the shift
of pfobability mass from state 2 to state 1 as a move towards stochastically
dominating distribution. Yet as is shown in Figure 1, the effect of such a
shift increaseé rather than reduces the mérgina] rate of substitution. It is
in this sense that the flight insurance hypothesis disagrees with Machina's
hypothesis II. In a formal sense this disagreement does not represent a
logical contradiction as the two hypotheses are embedded in distinct models of

behavior.

%

U(z (1))

W (C*
(a) | (b) /€

FIGURE 1 - The effects of a shift towards a stochastically dominating;

distributions: (a) according to Machina's hypothesis II,

(b) according to the flight insurance hypothesis

U (T



Proofs
=
Theorem-',2 is a corollary of the following:
Lemma (1: Given the hypothesis of Theorem 2 . for any distribution
H ¢ L[B] y positive probability q, and w(C) (w (C), Wo(C) ) if C and
¢ y1e1d the most preferred distribution of the form (1-q)F +
qIlp,w(C)] for V(-) and V¥(+) respectively. where V( ) ‘and. V*(+) are

strictly quasiconcave in C, over the set of distributions

{(1-q)H + qI[p,w(C)1}, then C>C* i.e., the

conditional demand for flight insurance coverage is smaller for the
less risk averse individual than it is for the more risk averse in-

dividual.,

Proof of Lemma 1

Assume by way of negation, that for some H ¢ L[B]1, and q € (0,1),

A A

o ok
cr > C. Then there exists T¢ (C,C ) such that:

%wﬂuﬂm+qm@ymnﬂc>o

V((1-q) + qrtg,q<c)1)}|c

Let H = (1-q)H + qI[p,w(C)], then He L[B] and

d *
0 < gtV (-0 + qllpw(©) ) |

2 M
i ANRNUREDEE qu[gqg(C)])}‘

C

2 * .
q %Ciélp"u (w; (C),1;H) .
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qLepU, Wy (€),15H) (1-p#b) + (1-p)UX(w,(C ),23H) (p-b)]

alp(1-p) LU, (W,(C),23H) = Uy (wy (€),15H)]

-bLpU, (w; (€),15H) + (1-p)U] (w, (€),25H) 1.

But -bLpU} (wy (€),15H) + (1-p)US (W, (€),25H)] < .

* * — -
Hence Uw(wz(t),Z;H) > U, (w1 (C),T3H). Let < w],wz(C) > € RS(H). Since
U*(°,1;H) is concave it follows that G] < w](C). For He L[B], we [0,M]
and i = 1,...,n, define T;u[+J by U(w,i3H) = T.,[U"(W,13H)], then

T! [U*(f.(le),i;H)] =T, ) p(s)U*(f (w|H),s;H)] for all i.
iH i H SES s
Then by the same argument as above,

V(R + allpw(©) D} |

a{p(1-p) LY, (W (C),23H) - U, (w, (€),15H)]

- bIpU, (w, (C),15H) + (1-p)U, (w,(C),2;H) T}
a{p(1-p) T4y, L™ (w0, (€), 25H) U] (w, (€, 23H)

= T30 (0 (€),15H) U7 (wy (€),15H)

= BIPTILLU™ (wy (€),13H) 10 (W, (€),13H)

+ (1-p) T3 [U" (W, (€),25H) U] (w, (€),23H) 13

But G] < w](C) and T]H[°] is concave, hence TiH‘[U*(w1(C),1;H)]_§
* A * ) * —
TR0 (wys15H) ] = Tou[U (W5(T),25H)].  Hence, factoring out Toy[U (wy(T),25H)]

we get,

&wuhmﬂ+Mqunnc




2 qTéH[U*(wz(C),Z;H)]g—C-{v*((l-q)ﬂ +qIlp,w(C)1)} . > 0,

Tyu[+1 > 0 and §‘w[v"'(-)}|t5 > 0. This is

A

a contradiction. Hence for a1l H € L[B] and q € (0,1), c* s C.
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